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Preface

Dear reader

Before you is a compilation of lectures held at the University of Bonn all revolving
around interstellar dust and the formation of stars.

From lecture notes to print

The incentive to turn my scribbled lecture notes into a book was twofold: the
desire to reach a larger audience, and the wish to hand students a more polished
and lasting description of the tools for future work. Lecture and written text,
even when covering the same topic, should not be identical in their contents, but
complementary: they are two independent didactical challenges. In a lecture, the
student should be able to follow from beginning to end. The speaker stresses
ideas and concepts and does not waste time in elaborating lengthy formulae. A
good lecturer may be likened to a salesman at the front door. He is aggressive,
his arguments are compelling and what he says sounds exciting which prevents
us from slamming the door in his face.

A serious writer, however, can convince only by more subtle tones, most of
all through thoroughness. He is like the unobtrusive shopkeeper whom we have
been visiting for years. We know we can trust his goods, although he himself
may be a bit boring. Whereas an opinion about a lecture is formed quickly and
is not likely to change afterwards, we esteem a book only at second sight. Not
every chapter has to be grasped at first reading. Instead, there is opportunity to
contemplate a figure, formula or paragraph at leisure, over a steaming pot of tea
or the curly smoke rings of a pipe.

The topic

The central theme of this book is cosmic dust. Its relevance for astronomy and for
the evolution of the cosmos is not obvious. Unless we use special equipment,
more sophisticated than binoculars, it does not catch our attention as does a
variable star, a comet or a globular cluster. Dust only screens the light at optical
wavelengths. Its constituents, the grains, are disappointingly small and would

xix
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barely be visible under a microscope. The total dust mass in the Milky Way is
negligible compared to that of the stars or even the interstellar gas. However, we
believe that man is made of this very dust and that, by itself, is reason to study it
in depth.

But there is more to it. Interstellar dust is not an isolated component of the
universe, like pulsars or white dwarfs, which could be removed and everything
else would stay the same. Instead, it is in intimate contact with the rest of the
world, giving and taking, and this is best exemplified by the influence it has on
star formation and on the appearance of young stars and galaxies.

The addressee

This text was conceived for students who have received an elementary but
comprehensive introduction to physics—this is usually the case after two years of
university studies—and who have taken a general course in astronomy. It is also
aimed at PhD students who are starting research and have come across interstellar
dust in one of its many manifestations. Hopefully, this book will also be of service
to astronomers in general.

I admit that it contains hardly any exciting new results; not because a book is
never fresh, nor for fear that excitement might be detrimental to the heart. Instead,
the goal was to supply the student with those basic facts about small solid particles
that passed the test of time. Only being acquainted with the old results can one
fully enjoy the new. As many of the basic facts are scattered over the literature
and are sometimes hard to dig up, a selected compilation was thought to be useful.

Another reason to concentrate on matters where there is consensus and to
avoid being specific or touching upon controversial topics lies in the very nature
of the dust itself. Hardly any two dust grains in the universe are alike and this
immense diversity explains, to a large degree, why all numbers about interstellar
dust are vague and insecure. When an astronomical number is certain, say, the
mass of a planet or the distance to a star, one can happily apply it in further work
without worrying how it was derived. But when the number is ill determined, one
should know the physical and technical pillars upon which its derivation rests.
Only then can one estimate how far it may, or should, be stretched, or come up
with a new number, physically founded and adapted to the particular problem.

Astronomy is a branch of physics

This is a provocative statement and may arouse indignation. As if I had forgotten
how the great discoveries of the past 30 years have come about: As a result
of revolutionary technologies and grand enterprises! Indeed, when one recalls
how astronomical satellites have widened our outlook on the universe, it seems
justified to consider astronomy a branch of Space Project Management, and when
one thinks of the progress achieved by new telescopes, astronomy appears as
a subfield of Telescope Engineering or Receiver Development. It was new-
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technology instruments that have allowed us to peep into hitherto hidden realms.
Even ADM (Advanced Data Manipulation) may be more important to astronomy
than physics in view of the gigantic quantities of data that have to be crunched
and transformed into convincing numbers and pictures.

So I freely acknowledge the priority of management and technology over
physics. If one were to reduce the physics in astronomy courses to a minimum
(one cannot do entirely without it) and teach instead the fields mentioned earlier,
astronomy would continue to thrive for a decade or two, if one includes Science
Marketing, even for three. Despite all this, out of sheer pleasure for the subject,
this book stresses the link between astronomy and physics. It attempts to
summarize the major physical topics with direct application to interstellar grains
and wishes to encourage students to try the physical approach to an astronomical
problem, without polemizing against higher resolution or higher sensitivity.

The language

It is obviously English. The obvious needs no words but there are lamentable
aspects about using the modern lingua franca. I consider it a trifle that no sentence
came easy. Indeed, it did me good learning some more of a foreign language
while composing the text. Nor do I mind that one suspects behind simple phrases
a simple mind, this supposition may be true.

A serious argument against writing in a tongue one has not fully mastered
is that style and clarity are akin because improving the style usually means
improving the thought, nothing else. After all, a textbook on physical sciences
is not a railway timetable. A poignant style enhances the understanding, helps
memorize and carries the reader over difficult stretches. Ach, in this respect,
German would have been beneficial to the reader.

More important still is the obligation to preserve and develop one’s language
as an inherited gift and an attribute of culture of no less import than the collection
of national wines. As English has become so pervasive in our daily scientific
work, we, the majority of astronomers, tend to forget technical terms in our
mother tongue or do not update them and this has the deplorable consequence
that we speak and write about our favourite subject clumsily in two languages: in
English and in our own.

But the strongest point in a plea to retain in science one’s mother tongue
in all its might, parallel to the lingua franca, is that each language imprints on
the mind its own pattern of thinking. Pondering a problem in different languages
means approaching it on different paths, and each path offers its specific outlook.
It is erroneous to think that the findings of natural sciences are fully expressed in
numbers or formulae. Words are needed, too. A formula lacks cross relations and
does not sufficiently take into account the analogous character of what it asserts.
For example, I solve equations containing time but do not very well know what
time is. If words are needed to explain a formula, how many more are required
to arrive at it? What would quantum mechanics be if it were reduced to equations



xxii Preface

without extensive accompanying text? Who would shorten R Feynman’s Lectures
on Physics? They are the work of a genius not because of the formulae, they are
the usual ones but because of the way the story is told. And a successful struggle
with an astronomical problem also needs a vivid, precise and powerful language
to put all its facets into a fruitful perspective.

To whom I am indebted

I owe to my colleagues who bore with me, helped with their expertise and
advice and encouraged me, in particular: David Graham, Michaela Kraus,
Antonella Natta, Richard Porcas, Johannes Schmid-Burgk and Alexandr Tutukov.
I am grateful to those who undertook the pains of critically reading parts of
the manuscript: Christian Henkel, Aigen Li, Armin Kirfel, Ralf Siebenmorgen,
Werner Tscharnuter, Nikolaj Voshchinnikov, Malcolm Walmsley and Jan Martin
Winters.

Two books served as guides (Vorbilder) which I tried to follow, without
pretending to match them. Each has, to my mind, one outstanding merit:
L Spitzer’s Diffuse Matter in Space is of dazzling perfection. It has been on
my desk for decades (and I am still struggling with parts of it today). M Harwit
pioneered in his Astrophysical Concepts to teach astronomy anew, with the eyes
of a physicist, addressing the student and enlightening the professor.

The philosophical headline

A long scientific text is frequently preceded, one might even say embellished,
by words from an authority outside the field, such as a philosopher or a poet.
Although far from being an expert in the scientific subject itself, his words carry
weight because they shed light on the topic from a different angle of cognition
and reassure the natural scientist in his moments of doubt. I wish to follow this
custom.

Dabbling in poetry and philosophical treatises, I found numerous aphorisms
suitable for such a purpose but the most appropriate headlines for this book came
to me as a birthday gift from my daughters. It is the following verse by the
19th century North-American poet Walt Whitman which they had calligraphically
written onto cardboard. Here is what Whitman left us:

When I heard the learn’d astronomer,
When the proofs, the figures, were ranged in columns before me,
When I was shown the charts and diagrams, to add, divide, and measure

them,
When I sitting heard the astronomer where he lectured with much

applause in the lecture-room,
How soon unaccountable I became tired and sick,
Till rising and gliding out I wandered off by myself
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In the mystical moist night-air, and from time to time,
Looked up in perfect silence at the stars.

Of course, any literary praise of these lines from my side is out of place,
being a layman in literature. So I will not say a word about the magic beat that
pervades the poem: How the rhythm starts from impatience, condenses into anger
and transforms into serenity. I will not admire how irresistibly Whitman conjures
the lure of the night sky and contrasts it to the unnerving ambition of scholars.
Nor will I marvel at his prophetic power to foresee and congenially describe the
feelings of a backbencher at an astronomical meeting more than a century after
his time.

The reason for picking this poem as the philosophical headline is that it pays
a wise tribute to the irrational. Reflected or not, irrationality, like the mystical
moist night-air, is at the root of any sincere endeavour, including the quest of an
astronomer to understand the cosmos. Some colleagues strongly disagree and
regard with contempt those who let themselves be charmed by such a poem.
I take their objections very serious but find the occasional vehemence of their
arguments soothing, corroborating, at least, that they are not moved by logic and
astronomical data alone.

At the end of this longish foreword, a line comes to mind by
F M Dostojevskji from his novel The Demons. At a benefit party, Stepan
Verchovenskji, the aging hero of the narrative, makes an ambitious opening
speech which Dostojevskji laconically summarizes by the words

�� ��� �� �	� 
����� � �	� 
� �
��	 ��	������ �����������̆�

After intensive consultations with linguists and psychologists, I venture in
the present context the translation: Hmm well, well hmm!

Let this be the concluding remark.

Yours sincerely
EK

Bonn

Easter 2002
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Chapter 1

The dielectric permeability

We begin by acquainting ourselves with the polarization of matter. The
fundamental quantity describing how an interstellar grain responds to an
electromagnetic wave is the dielectric permeability which relates the polarization
of matter to the applied field. We recall the basic equations of electrodynamics
and outline how plane waves travel in an infinite non-conducting (dielectric)
medium and in a plasma. We summarize the properties of harmonic oscillators,
including the absorption, scattering and emission of light by individual dipoles.
Approximating a solid body by an ensemble of such dipoles (identical harmonic
oscillators), we learn how its dielectric permeability changes with frequency. This
study is carried out for three scenarios:

• a dielectric medium where the electron clouds oscillate about the atomic
nuclei;

• a dielectric medium where the charge distribution in the atomic dipoles is
fixed but the dipoles themselves may rotate; and

• a metal where the electrons are free.

1.1 Maxwell’s equations

At the root of all phenomena of classical electrodynamics, such as the interaction
of light with interstellar dust, are Maxwell’s formulae. They can be written in
different ways and the symbols, their names and meaning are not universal, far
from it. Before we exploit Maxwell’s equations, we, therefore, first define the
quantities which describe the electromagnetic field.

1.1.1 Electric field and magnetic induction

A charge q traveling with velocity v in a fixed electric field E and a fixed magnetic
field of flux density B experiences a force

F = q
[
E+ 1

c
v× B

]
(1.1)

1
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called the Lorentz force; the cross × denotes the vector product. B is also called
the magnetic induction. Equation (1.1) shows what happens mechanically to a
charge in an electromagnetic field and we use it to define E and B.

The force F has an electric part, qE, which pulls a positive charge in the
direction of E, and a magnetic component, (q/c)v × B, working perpendicular
to v and B. When the moving charges are electrons in an atom driven by an
electromagnetic wave, their velocities are small. A typical value is the velocity
of the electron in the ground state of the hydrogen atom for which classically v/c
equals the fine structure constant

α = e2

�c
� 1

137
� 1.

Protons move still more slowly because of their greater inertia. For an
electromagnetic wave in vacuum, |E| = |B| and, therefore, the term (v× B)/c in
formula (1.1) is much smaller than E and usually irrelevant for the motion of the
charge.

1.1.2 Electric polarization of the medium

1.1.2.1 Dielectric permeability and electric susceptibility

In an electrically neutral medium, the integral of the local charge density ρ(x) at
locus x over any volume V vanishes,∫

V
ρ(x) dV = 0.

However, a neutral body of volume V may have a dipole moment p (small letter)
given by

p =
∫
V
xρ(x) dV . (1.2)

The dipole moment per unit volume is called the polarization P (capital
letter),

P = p
V
. (1.3)

It may be interpreted as the number density N of molecules multiplied by the
average electric dipole moment pmol per molecule:

P = Npmol.

E and P being defined, we introduce as an additional quantity the
displacement D. It adds nothing new and is just another way of expressing the
polarization of matter, P, through an electric field E:

D = E+ 4πP. (1.4)
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The local polarization P and the local average electric field E in the dielectric
medium are much weaker than the fields on the atomic level and constitute just a
small perturbation. Therefore, P, D and E are proportional to each other and we
can write

D = εE (1.5)

P = χE (1.6)

with

χ = ε − 1

4π
. (1.7)

The proportionality factors ε and χ are material constants, they mean more or
less the same; ε is called the dielectric permeability or dielectric constant or
permittivity, χ bears the name electric susceptibility. In the trivial case of a
vacuum, the polarization P vanishes, E = D and ε = 1. In a dielectric medium,
however, a constant field E induces a dipole moment so that ε > 1 and P �= 0.

We have, altogether, three quantities describing the electric field: D, E and
P, although two would suffice. For example, we could replace D in all equations
by εE. Equation (1.5) is the first of two constitutive relations complementing the
set of Maxwell’s formulae.

1.1.2.2 The electric polarizability

Another quantity we will need is the electric polarizability αe. If we place a small
grain of volume V into a constant electric field E, it acquires a dipole moment

p = αeVE. (1.8)

Because of the dipole moment, the field in the vicinity of the grain becomes
distorted. It no has longer the value E but some other value, say Ee (e for
external). As one recedes from the grain, Ee approaches E asymptotically. There
is also a field Ei inside the grain. This differs from the constant outer field E.
The relation between them is described in detail in section 3.4. The polarization
P (capital letter) depends linearly both on Ei (from (1.6)) and on E (from (1.8)),
the proportionality factors being αe and χ , respectively,

P = χEi = αeE. (1.9)

In the general case, αe and χ are tensors, and the dipole moment and the
fields do not have the same direction.

1.1.3 The dependence of the dielectric permeability on direction and
frequency

Unless specified otherwise, we always assume (on a macroscopic level with
dimensions much greater than an atom) homogeneity so that the dielectric
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permeability ε does not depend on the position in the grain. The relation (1.5),
D = εE, is linear, which means that ε is independent of the field strength.
However, it may depend on the direction of the fields because, on a microscopic
level, a grain is made up of atoms and is thus not homogeneous. Equation (1.5)
must then be generalized to

Di =
∑
i

εik Ei + D0i .

The constant term D0i implies a frozen-in dipole moment even in the absence
of an outer field. This happens only in special cases known as pyroelectricity; for
mono-crystals with a cubic structure (see section 7.1), D0i is always zero. The
tensor εik is symmetric, εik = εki , and can always be brought into a diagonal
form by the appropriate choice of coordinate system. It then has, at most, three
independent components. If the three diagonal elements are equal, ε reduces to a
scalar and the grain is said to be isotropic. Crystals of the cubic system have this
pleasant property but in interstellar grains we will also encounter anisotropy.

It is an essential feature for a discussion of interstellar dust that ε is a function
of frequency:

ω = 2πν

or, as one says, that ε shows dispersion. The functional form of ε(ω) is called
the dispersion relation and will be used extensively in what follows. So the
term dielectric constant, which is the other frequently used name for ε(ω), is
misleading when taken at its face value.

In electrostatics, only one parameter is needed to specify the polarization and
χ or ε are real. However, in an alternating field, one needs for each frequency ω
two independent numbers which, out of mathematical convenience, are written as
one complex variable:

χ(ω) = χ1(ω)+ iχ2(ω) (1.10)

ε(ω) = ε1(ω)+ iε2(ω). (1.11)

1.1.4 The physical meaning of the electric susceptibility χ

We explain the physical meaning of χ in the case of a harmonically and slowly
varying field,

E = E0e
−iωt .

We use scalar notation for the moment and let E0 be real. The vector representing
the complex field E then rotates in the complex plane clockwise, as depicted in
figure 1.1. For a slowly varying field with small ω, the susceptibility χ is close to
its static value:

χ1 � χ(0) χ2 � χ2(0) = 0.
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real

imaginary

P Eϕ

Figure 1.1. The electric field vector, E, in the medium is presented as a complex quantity
of length E , which rotates at frequency ω. It induces a complex polarization P in the
material of length P. When damping is weak, P lags behind E by a small angle ϕ. The
real part of the complex electric susceptibility is equal to the ratio of the radii of the two
circles, χ1 = P/E , whereas the imaginary part gives the phase lag, χ2 = χ1ϕ. Only the
real components of P and E have a physical meaning, the complex representation is for
mathematical convenience.

The static value χ1(0) is positive because the polarization must point in the
direction of the electric field. Obviously the real part χ1 determines the maximum
polarization during one cycle via the relation Pmax � χ1E0.

As the field changes, E and P are not in phase because the electrons always
need a little while to adjust. The polarization P , therefore, lags behind by some
time 
t � ω−1 corresponding to a small angle

ϕ = ω
t = tan(χ2/χ1) � χ2/χ1 � 1. (1.12)

The interval 
t must be positive for reasons of causality: sensible people
squeal only after they have been pinched. Therefore, the imaginary part χ2 is
positive and determines, for a given χ1, the time lag. While adapting to the
field, the electrons have to overcome internal friction, which implies dissipational
losses. Some of the field energy is inevitably drained into the dielectric medium.
If χ2 and
t were negative, the field would draw energy from the dielectric body,
decreasing its entropy which contradicts the second law of thermodynamics. Even
χ2 = 0 is impossible as it would mean that E and P are absolutely synchronous
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and dissipation is completely absent.
If the frequency ω is not small but arbitrary, the angle ω
t is also not

necessarily small. Nevertheless, we can exclude χ2 ≤ 0 for the same reasons
as before. The real part of the susceptibility, χ1, however, may become zero as

well as negative. The maximum of P is now given by Pmax =
√
χ2

1 + χ2
2 E0.

Of course, we could also choose a time dependence eiωt for the field
and nothing would change. The sign of i is just a convention, although one
that must be followed consistently. When E = E0eiωt , the field rotates anti-
clockwise in figure 1.1 and the susceptibility, instead of (1.10), would be χ(ω) =
χ1(ω)− iχ2(ω), again with positive χ2.

1.1.5 Magnetic polarization of the medium

In a macroscopic picture, a stationary motion of charges with density ρ and
velocity v, corresponding to a current density J = ρv, produces a magnetic
moment

m = 1

2c

∫
(x× J) dV . (1.13)

When the integral extends over a unit volume, it is called the magnetization M,

M = m
V
. (1.14)

For example, a charge q traveling with velocity v in a circular orbit of radius
r constitutes a current I = qv/2πr . The magnetic moment of this moving charge
is

m = qvr

2c
= AI

c

where A = πr2 signifies the area of the loop. If A is small, the accompanying
field is that of a dipole.

Without the motion of the macroscopic charge, the magnetization of matter
comes, in the classical picture, from the atomic currents (electron orbits). The
magnetic moment per unit volume M may be interpreted as the number density
N of molecules in the substance multiplied by the total magnetic moment mmol
per molecule:

M = Nmmol.

The magnetic field H is defined by

H = B− 4πM. (1.15)

Similar to the situation of the electric field, we could replace H by B in all
equations and retain two field quantities, B and M, instead of three. We would
prefer the pairs (E,P) and (B,M), because the electric field E, the magnetic
flux density B as well as the polarizations P and M allow a direct physical
interpretation; however, conventions urge us to drag D and H along.
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1.1.6 The magnetic susceptibility

The second constitutive equation concerns the magnetic field H and the induction
B. If the substance is not ferromagnetic, a linear relation holds as in (1.5):

B = µH. (1.16)

µ is the magnetic permeability and also generally complex,

µ = µ1 + iµ2.

It also shows dispersion. In vacuo, B = H and µ = 1. For diamagnetic
substances, µ is a little smaller than one, for paramagnetic substances a little
bigger, µ is large only for ferromagnets. Similar to (1.7), we define the magnetic
susceptibility by

χ = µ− 1

4π
(1.17)

so that M = χH. If there is any chance of confusion, one must explicitly write
χm or χe for the magnetic or electric case. In analogy to (1.8), a constant outer
magnetic field H induces in a small body of volume V a magnetic dipole moment

m = VM = αmVH (1.18)

where αm is the magnetic polarizability and M the magnetizationwithin the body.
For interstellar grains, which are weakly magnetic substances with |µ| close to
one, the magnetic induction and magnetic field are practically the same inside
and outside, and χ � α. If B denotes the interstellar magnetic field and M the
magnetization of the grain, one usually writes M = χB.

1.1.7 Dielectrics and metals

We will be dealing with two kinds of substances for which Maxwell’s equations
are often formulated separately:

• Dielectrics. These are insulators and no constant current can be sustained
within them. Nevertheless, alternating currents produced by a time-variable
electric field are possible. In these currents, the charges do not travel far
from their equilibrium positions.

• Metals. This is a synonym for conductors and, in this sense, they are the
opposite of dielectrics. When a piece of metal is connected at its ends
to the poles of a battery, a steady current flows under the influence of an
electric field. When this piece of metal is placed in a static electric field,
the charges accumulate at its surface and arrange themselves in such a way
that the electric field inside vanishes and then there is no internal current.
However, time-varying electric fields and currents are possible.

In the interstellar medium, one finds both dielectric and metallic particles but
the latter are probably far from being perfect conductors.
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1.1.8 Free charges and polarization charges

We are generally interested in the electromagnetic field averaged over regions
containing many atoms. So we usually picture the grain material to be a
continuous medium. However, sometimes we have to dive into the atomic world.
On a scale of 1 Å or less, the medium becomes structured. Atoms appear with
positive nuclei and negative electrons spinning and moving in complicated orbits
and the electric and magnetic fields, which are smooth on a macroscopic scale,
have huge gradients.

Consider a microscopic volume δV in some piece of matter. It contains
protons and electrons and the net charge divided by δV gives the total local charge
density ρtot. For an electrically neutral body, electrons and protons exactly cancel
and ρtot integrated over the body is zero. Often ρtot is written as the sum of two
terms:

ρtot = ρpol + ρfree. (1.19)

The first arises from polarization. In a dielectric medium, the electric field
polarizes the atoms and thus produces aligned dipoles. If the polarization within
the particle is uniform, ρpol is zero because the positive and negative charges of
the neighboring dipoles exactly balance; the only exception is the surface of the
particle where charges of one kind accumulate. However, if the polarization P
is spatially non-uniform, ρpol does not vanish. Then the separation of charges is
inhomogeneous and leads to a charge density

ρpol = − divP. (1.20)

The second term in (1.19), ρfree, comprises all other charges besides ρpol.
For example, when the polarization is constant, divP = 0 and ρfree stands for all
charges, positive and negative. In an uncharged body, their sum is zero. When
charges are brought in from outside, ρfree �= 0. Within a metal, P = 0, and
polarization charges can only appear on the surface.

Moving charges constitute a current. The total current density Jtot may also
be split into parts similarly to (1.19),

Jtot = Jfree + Jpol + Jmag. (1.21)

The first term on the right-hand side is associated with the motion of the
free charges, the second with the time-varying polarization of the medium and
the third represents the current that gives rise to its magnetization:

Jfree = vρfree Jpol = Ṗ Jmag = c · rotM. (1.22)

1.1.8.1 Sign conventions

We have to make a remark about the sign convention. An electron, of course, has
a negative charge, its absolute value being e = 4.803× 10−10 esu (electrostatic
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units). After Maxwell’s equation (1.27), the electric field of an isolated positive
charge (proton) is directed away from it and repels other positive charges
according to (1.1). The moment p of a dipole created by two opposite but equal
charges is, from (1.2), directed from the minus to the plus charge and anti-parallel
to the electric field along the line connecting the two charges. Hence a dielectric
grain in a constant field E has a polarization P parallel to E and surface charges
as depicted in figure 3.4 of chapter 3. With the help of this figure, we can explain
the minus sign in equation (1.20). Going from left to right, the polarization jumps
at the left edge of the grain from zero to its value inside. The gradient there
is positive and thus a negative charge appears on the surface. In the case of non-
uniform polarization within the grain, at a place where divP > 0, the electric field
pulls a small charge δq out of a tiny volume δV leaving behind an unbalanced
negative charge−δq .

1.1.9 The field equations

We have now defined all quantities that appear in Maxwell’s equations and we
write them down, first, for a neutral dielectric medium:

divD = 0 (1.23)

divB = 0 (1.24)

rotE = − 1

c
Ḃ (1.25)

rotH = 1

c
Ḋ (1.26)

second, for a medium with free charges and currents:

divD = 4πρfree (1.27)

divB = 0 (1.28)

rotE = − 1

c
Ḃ (1.29)

rotH = 1

c
Ḋ+ 4π

c
Jfree. (1.30)

A dot above a letter stands for partial time derivative, for instance, Ḃ =
∂B/∂ t . Applying the operator div to (1.30) gives the expression for charge
conservation:

ρ̇free + div Jfree = 0. (1.31)

E denotes the electric and H the magnetic field, D the electric displacement,
B the magnetic induction, J the current density and c, of course, the velocity of
light. Our choice of mathematical symbols is summarized in appendix A together
with some common relations of vector analysis.
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1.2 Waves in a dielectric medium

We derive from Maxwell’s equations how a plane wave propagates in an infinite
medium, define the optical constant, or refractive index and recall a few formulae
concerning energy, flux and momentum of the electromagnetic field.

1.2.1 The wave equation

In harmonic fields, which have a sinusoidal time dependence proportional to
e−iωt , Maxwell’s equations (1.25) and (1.26) become simpler:

rotE = i ωµ
c

H (1.32)

rotH = − i ωε
c
E. (1.33)

Applying the operator rot to (1.32) and (1.33), we arrive, with the help of formula
(A.6) of vector analysis, at


E+ ω
2

c2
µεE = 0 
H+ ω

2

c2
µεH = 0 (1.34)

or

E− µε

c2 Ë = 0 
H− µε
c2 Ḧ = 0. (1.35)

These are the wave equations which describe the change of the
electromagnetic field in space and time. In an infinite medium, one solution to
(1.34) is a plane harmonic wave,

E(x, t) = E0 · ei(k·x−ωt) (1.36)

H(x, t) = H0 · ei(k·x−ωt) (1.37)

where k is a vector with k2 = ω2µε/c2. The characteristics of a plane harmonic
wave are an eik·x space variation and an e−iωt time variation. All waves in
interstellar space that interact with interstellar matter are planar because the
sources from which they arise are very distant.

1.2.1.1 Flux and momentum of the electromagnetic field

An electromagnetic wave carries energy. The flux, which is the energy per unit
time and area, is given by the Poynting vector S. For real fields, its momentary
value is

S = c

4π
E×H. (1.38)

In a vacuum, when E0 denotes the amplitude of the electric field vector, the time
average is

〈S〉 = c

8π
E2

0 . (1.39)
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When we use complex fields, the time average of the Poynting vector is a
real quantity and, from (A.33), is given by

〈S〉 = c

8π
Re{E×H∗}. (1.40)

H∗ is the complex conjugate of H. The wave also transports momentum, through
a unit area at a rate S/c. In the corpuscular picture, an individual photon travels at
the speed of light, has an energy hν, a momentum hν/c and an angular momentum
�.

1.2.2 The wavenumber

The vector k = (kx , ky, kz) in (1.36) is called the wavenumber and is, in the most
general case, complex:

k = k1 + ik2

with real k1,k2 and obeys the relation

k2 = k2
1 − k2

2 + 2ik1 · k2 = ω
2

c2 µε. (1.41)

Of course, k2 = k · k = k2
x + k2

y + k2
z . Inserting the field of a plane wave given

by (1.36), (1.37) into equations (1.32) and (1.33) yields

ωµ

c
H = k× E and

ωε

c
E = −k×H (1.42)

and after scalar multiplication with k

k · E = k ·H = 0. (1.43)

• First, we consider the standard case in which k is real. Its magnitude is then

k = ω
c

√
εµ

and the imaginary parts ε2 and µ2, which are responsible for the dissipation
of energy, must be zero. This is strictly possible only in a vacuum. Any
other medium is never fully transparent and an electromagnetic wave always
suffers some losses. As k specifies the direction of wave propagation, it
follows from (1.42) and (1.43) that the vectors of the electric and magnetic
field are perpendicular to each other and to k. The wave is planar and travels
with undiminished amplitude at a phase velocity

vph = ω
k
= c√

εµ
. (1.44)
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The real amplitude of the magnetic and electric field, E0 and H0, are related
through

H0 =
√
ε

µ
E0. (1.45)

In particular, in a vacuum

vph = c H0 = E0 k = ω
c
= 2π

λ
.

• Next, let k be complex. Then ε2 and µ2 are complex, too, and the electric
field vector equals

E(x, t) = E0 · e−k2·x · ei(k1·x−ωt).

As the wave propagates, light is absorbed and the wave amplitude suffers
damping proportional to e−k2·x. The phase of the wave is constant in a plane
perpendicular to k1 and the amplitude is constant in a plane perpendicular to
k2.
If the vectors k1 and k2 are parallel, the planes of constant phase and constant
amplitude coincide. There is a unit vector e parallel to k defining the
direction of wave propagation such that k = (k1 + ik2) · e, where k1, k2
are the lengths of k1,k2. Such a wave is called homogeneous.
If k1 and k2 are not parallel, one speaks of an inhomogeneous wave and the
surface where the field is constant is not a plane. The geometrical relations
(1.42), (1.43) then lose their obvious interpretation.

1.2.3 The optical constant or refractive index

For the propagation of light, the electromagnetic properties of matter may be
described either by the wavevector (from (1.41)) or by the optical constant

m = √εµ. (1.46)

m is also called the (complex) refractive index. When the medium is metallic
and has a conductivity σ , one must use the dielectric permeability ε as defined in
(1.115), rather than (1.5). It is clear from the definition of the optical constant
(1.46) that m does not contain any new information, in fact less than all material
constants ε, µ and σ taken together. The name optical constant is unfortunate as
m is not constant but varies with frequency. It is a complex dimensionless number,

m(ω) = n(ω)+ ik(ω) (1.47)

with real part n and imaginary part k. In the common case of a non-magnetic
medium, where

µ = 1
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the real and imaginary parts of the optical constant follow from ε1 and ε2,

n = 1√
2

√√
ε2

1 + ε2
2 + ε1 (1.48)

k = 1√
2

√√
ε2

1 + ε2
2 − ε1 (1.49)

and, vice versa,

ε1 = n2 − k2 (1.50)

ε2 = 2nk. (1.51)

(1.46) has two solutions and we pick the one with positive n and non-negative k1.

1.2.4 Energy dissipation of a grain in a variable field

The total energy of an electrostatic field E in vacuum, produced by a fixed
distribution of charges, is

U = 1

8π

∫
E · E dV

where the integration extends over all space. This formula follows readily
from the potential energy between the charges, which is due to their Coulomb
attraction. It suggests an energy density

u = 1

8π
E · E. (1.52)

If the space between the charges is filled with a dielectric,

u = 1

8π
E ·D. (1.53)

When we compare (1.52) with (1.53), we find that the energy density of
the dielectric medium contains an extra term 1

2EP which accounts for the work
needed to produce in the medium a polarization P. Therefore, if we place, into
a constant field in a vacuum, some small dielectric object of volume V , the total
field energy changes by an amount

w = − 1
2VP · E. (1.54)

It becomes smaller because some work is expended on the polarization of the
grain. If the outer field slowly oscillates, E = E0e−iωt , so does the polarization
and for small energy changes

dw = − 1
2Vd(P · E) = −VP · dE.

1 In order to abide by the customary nomenclature, we use the same letter for the imaginary part of
the optical constant (italic type k) and for the wavenumber (Roman type k).
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The time derivative ẇ, which we denote by W , gives the dissipated power
and its mean is

〈W 〉 = −V 〈PĖ〉 = 1
2Vω Im{αe}|E0|2 > 0. (1.55)

It is positive and proportional to frequency ω and volume V , which makes
sense. The bracket 〈. . .〉 denotes the time average, and we have used P = αeE
from (1.8). Because of the mathematical relation (A.33), the real part of the
dielectric polarizability Re{αe} disappears in the product 〈PĖ〉 confirming that
only the imaginary part Im{αe} is responsible for heating the grain.

Formally similar expressions but based on different physics, hold for
magnetism. We first look for the formula of the magnetic energy density. Whereas
static electric fields are produced by fixed charges and the total energy of the
electric field is found by bringing the charges to infinity (which determines their
potential energy), static magnetic fields are produced by constant currents. These
currents also exert a force F on a charge but from (1.1) do no work because
F · v = (q/c)v · (v × B) = 0. Therefore, in the case of a magnetic field, one
has to evaluate its energy by changing H. This produces according to (1.25) an
electric field E and thus a loss rate E · J. After some elementary vector analysis,
one gets, for the total energy of the magnetostatic field,

U = 1

8π

∫
H · B dV

which implies an energy density of the magnetic field

u = 1

8π
H · B. (1.56)

In complete analogy to the electric field, a time-variable magnetic field,
H = H0e−iωt , leads in a small body of volume V and magnetic polarizability
αm (see (1.18)) to a heat dissipation rate

〈W 〉 = 1
2Vω Im{αm}|H0|2. (1.57)

(1.55) and (1.57) are the basic equations for understanding the absorption of
radiation by interstellar grains.

1.2.4.1 The symmetry of the polarizability tensor

We have already mentioned that, for an anisotropic substance, the dielectric
permeability ε is a tensor and symmetric. The same applies to the polarizability.
So instead of (1.9), we write more generally

Pi =
∑
j

αi j E j .
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The symmetry of the tensor αi j can be shown by computing after (1.54) the
total energy W expended on polarizing a particle in a cycle consisting of four
steps. At the beginning, the particle is unpolarized. In the first step, one applies
an electric field in the x-direction, in the second step in the y-direction. Then
one takes back the component Ex and finally the component Ey. If the cycle is
loss-free, the condition W = 0 requires αxy = αyx. In a similar way, one finds
αxz = αzx and αyz = αzy.

1.3 The harmonic oscillator

In the early history of atomic theory, H A Lorentz applied the harmonic oscillator
model to the motion of an electron in an atom. Despite its simplicity and the
fact that electrons ‘move’ in reality in complicated paths, the Lorentz model is
quite successful in a quantitative description of many phenomena that occur on
the atomic level and reveal themselves in the macroscopic world. The oscillator
concept is very fruitful, although a precise idea of what we mean by it is often
missing. Usually we have in mind the electrons in an atom but occasionally
the oppositely charged atomic nuclei of a crystal or some other kind of dipoles
are meant. But generally we assume that a grain is built up of a system of
oscillators. Using this concept, we later derive the dispersion relation ε = ε(ω)
of the dielectric permeability around a resonance at frequency ω0.

1.3.1 The Lorentz model

We imagine the following idealized situation: An electron of mass me and charge
e is attached to a spring of force constant κ . A harmonic wave with electric field

E = E0 e
−iωt

exerts a force F = eE which causes the electron to move, say, in the x-direction.
Its motion is governed by the equation

me ẍ + bẋ + κx = F. (1.58)

On the left-hand side, there is (a) an inertia term me ẍ ; (b) a frictional force,−bẋ,
which is proportional to velocity and leads to damping of the system unless it is
powered from outside; and (c) a restoring force,−κx , that grows linearly with the
displacement from the equilibrium position. Putting

ω2
0 =

κ

me
γ = b

me

we get

ẍ + γ ẋ + ω2
0x =

eE

me
. (1.59)
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The oscillator has only three properties:

• charge-to-mass ratio e/me,
• damping constant γ and
• resonant frequency ω0 (if the electron is unbound, ω0 = 0).

In the following, we discuss only the one-dimensional oscillator, where the
electron moves along the x-axis but one may readily generalize this to three
dimensions. It is assumed that the electric field is spatially constant over the
displacement x of the electron. This is correct as long as the velocity v of the
electron is small, v � c, because then x � v/ω can be neglected in comparison
to the wavelength c/ω of the field. Indeed, the velocity of an electron in an atom
is typically of order v/c ∼ 1%.

1.3.2 Free oscillations

In the simplest case, when there is no friction (γ = 0) and no perturbation from
outside (E = 0), (1.59) reduces to

ẍ + ω2
0x = 0 (1.60)

and the electron oscillates harmonically forever at its natural frequency ω0. If
there is friction (γ �= 0) but no external force,

ẍ + γ ẋ + ω2
0x = 0 (1.61)

the solution is called a transient. It has the general form

x = e−γ t/2 · (Ae−iωγ t + Beiωγ t ) (1.62)

where A and B are complex constants and

ωγ =
√
ω2

0 − γ 2/4.

For x to be real, it is required that B be the complex conjugate of A,

B = A∗

which means Re{A} = Re{B} and Im{A} = − Im{B}. If γ 2 < 4ω2
0, i.e. when

damping is weak, ωγ is real. The electron then oscillates at a frequency ωγ
somewhat smaller than the natural frequency ω0, with an exponentially decaying
amplitude. If friction is strong, γ 2 > 4ω2

0 and ωγ is imaginary. The amplitude
then subsides exponentially without any oscillations. Critical damping occurs for

γ = 2ω0. (1.63)
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1.3.3 The general solution to the oscillator equation

In the most general case of equation (1.59), there is friction plus an external field
that acts on the electron. It is now convenient to write the displacement and the
electric field as complex variables; sometimes for clarity we mark the complexity
of a quantity explicitly by a bar. So if we assume an harmonic field,

Ē = Ē0 e
−iωt ,

Ē and Ē0 are complex and

¨̄x + γ ˙̄x + ω2
0 x̄ =

e

me
Ē0e
−iωt . (1.64)

One obtains the general solution of this inhomogeneous equation by adding
to the general solution (1.62) of the associated homogeneous equation (1.61) one
particular solution of (1.64), for example

x̄ = x̄0 e
−iωt . (1.65)

In such a sum, the transient (1.62) eventually dies out and only (1.65)
remains. The electron then oscillates at frequency ω and not ω0. Equation (1.65)
describes the steady-state solution into which any particular solution, satisfying
certain initial values for x and ẋ at some earlier time t0, evolves. For the complex
amplitude of the displacement of the electron one finds

x̄0 = eĒ0

me(ω
2
0 − ω2 − iωγ ). (1.66)

Putting E0 = |Ē0| and x0 = |x̄0|, the real amplitude of the electron’s
displacement becomes

x0 = eE0

me

√
(ω2

0 − ω2)2 + ω2γ 2
. (1.67)

If damping (γ ) is small and the incoming wave vibrates with the natural
frequency of the electron (ω = ω0), the amplitude x0 is proportional to γ−1 and
can become very large.

A static field E0 induces in the oscillator a permanent dipole moment

p = ex0 = e2E0

meω
2
0

.

One can apply this equation to atoms to obtain a rough estimate for the dipole
moment induced by a field E0 if one chooses for the characteristic frequency ω0
a value such that �ω0 is of order of the ionization potential of the atom.
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1.3.3.1 The phase shift

Equation (1.65) tells us that although the electron has a natural frequency ω0, it
moves in the forced oscillation with the frequencyω of the external field. Without
friction (γ = 0), the electron and the field are synchronous. With friction, the
complex variables for position and field, x̄ and Ē , are out of phase because of
the imaginary term iωγ in (1.66). The electron always lags behind the field by a
positive angle

� =
{

tan−1(x) if ω < ω0
tan−1(x)+ π if ω > ω0

where x = ωγ

ω2
0 − ω2

.

• At low frequencies (ω � ω0), the lag is small.
• Around the resonance frequency, the phase shift changes continuously and

amounts to 90◦ at ω = ω0.
• For ω � ω0, it approaches 180◦. Then the electron moves opposite to the

direction in which it is being pushed by the external force eE . This is not a
miracle but reflects the steady-state response of the electron. Initially, when
the field E was switched on, the acceleration vector of the electron pointed,
of course, in the same direction as the electric field.

1.3.4 Dissipation of energy in a forced oscillation

The total energy of the oscillator is the sum of kinetic energy T plus potential
energy V :

T + V = 1
2me(ẋ

2 + ω2
0x

2). (1.68)

The total energy declines when there is friction. If we think of a grain as
being composed of many oscillators (atoms), friction results from collisions of
the electrons with the lattice and this leads to heating. The damping constant
γ , which has the dimension s−1, is then interpreted as the collisional frequency.
Because the mechanical power W , which is converted in a forced oscillation into
heat, equals force multiplied by velocity:

W = Fẋ

multiplication of formula (1.58) with ẋ gives

W = Fẋ = d

dt

(
1
2me ẋ

2 + 1
2meω

2
0x

2
)
+ γme ẋ

2.

The terms in the brackets represent the total energy. If γ is small, the time
derivative of the total energy almost vanishes and only the term γme ẋ2 remains.
With ẋ = −ωx , the time-averaged dissipation rate is

W = 1

2
γmeω

2x2
0 =

γ e2E2
0

2me

ω2

(ω2
0 − ω2)2 + ω2γ 2

. (1.69)
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(In fact, we should denote the time average by 〈W 〉 but for simplicity we write
W .)

• When the frequency is very high or very low, the heating rate W goes to zero
because the velocities are small.

• Near the resonance frequency (ω � ω0), however, and especially when
damping is weak, the power W becomes large.

1.3.5 Dissipation of energy in a free oscillation

If the system is not driven by an external force and if damping is small, the
electron swings almost freely near its natural frequency ω0, while its amplitude
gradually declines like e−γ t/2. If the motion of the electron is described by

x(t) =
{
x0e−γ t/2e−iω0t for t ≥ 0
0 for t < 0

(1.70)

the total energy E (unfortunately, the same letter as for the electric field) at time
t = 0 is

E0 = 1
2meω

2
0x

2
0

and afterwards it falls due to dissipational losses like

E = E0e
−γ t . (1.71)

The energy of the system drops by a factor e in a time τ = 1/γ or after ω0/2πγ
cycles; the initial loss rate is

W = 1
2γmeω

2
0x

2
0 .

The Fourier transform of x(t) in equation (1.70) is, by definition,

f (ω) =
∫ ∞
−∞

x(t)eiωt dt (1.72)

or, in view of the reciprocity relation,

x(t) = 1

2π

∫ ∞
−∞

f (ω)e−iωt dω. (1.73)

The two functions x(t) and f (ω) form the Fourier transform pair. The
integral (1.73) can be regarded as an infinite expansion of the motion of the
electron, x(t), into harmonic functions e−iωt of amplitude f (ω) and with
continuously varying frequencies ω. For the amplitudes in the Fourier expansion
of the free oscillator of (1.70), we find

f (ω) = x0

∫ ∞
0

e−γ t/2e−i(ω0−ω)t dt = x0

i(ω0 − ω)+ γ /2 . (1.74)
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In the decomposition of x(t) into harmonics, only frequencies with a
substantial amplitude f (ω) are relevant. As we assume weak damping, they all
cluster around ω0. The loss rate corresponding to each frequency component is
then proportional to the square of the amplitude:

W (ω) ∝ γ | f (ω)|2 ∝ γ

(ω − ω0)2 + (γ /2)2 .

Equation (1.74) is the basis for the Lorentz profile to be discussed in
section 1.4.

1.3.6 The plasma frequency

The plasma frequency is defined by

ωp =
√

4πNe2

me
(1.75)

where N is the number density of free electrons. The inverse, ω−1
p , gives the

relaxation time of the electron density. To prove it, we apply a perturbation to
a plasma in equilibrium which consists of heavy, immobile positive ions and
unbound light electrons. Prior to the disturbance, the mean charge density ρ over
any macroscopic volume
V is zero: positive and negative charges balance. Now
consider in the plasma a slab S1 with sides
x,
y,
z and 
y ·
z = 1, so that
the volume of the slab 
V = 
x . All electrons inside S1 are suddenly displaced
along the x-axis by the infinitesimal length
x . After this disturbance, they are in
the neighboring slab S2, which has the same shape and volume as S1, and the net
charge density (ions plus electrons) in S2 is no longer zero but equal to Ne. The
electric field E arising from the charge separation as a result of shifting electrons
from S1 to S2 exerts a force F on the displaced electrons and accelerates them:

F = Ne
x · E = N
xme ẍ .

The field E = 4πNex is found by integrating the basic equation 4πρ =
divD; therefore,

4πNe2x = me ẍ .

Comparison with (1.60) shows that the electrons will oscillate around their
equilibrium position with the frequency ωp of (1.75).

1.3.7 Dispersion relation of the dielectric permeability

Because the restoring force, −κx , in (1.58) is due to electrostatic attraction
between the electron and a proton, we may consider the oscillating electron as
an alternating dipole of strength x̄e. A real grain contains many such oscillators
(electrons) that are driven by the incoming wave up and down. If they swing in
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Figure 1.2. The dispersion relation specifies how the dielectric permeability ε = ε1 + iε2
or, equivalently, the optical constant m = n + ik, change with frequency; here for a
harmonic oscillator after (1.77). The vertical line helps us to locate the maxima with
respect to the resonance frequency.

phase and their volume density equals N , the dipole moment per unit volume
becomes, from (1.66),

P̄ = Nx̄e = Ne2

me

Ē

ω2
0 − ω2 − iωγ =

ε − 1

4π
Ē (1.76)

where the equals sign on the far right comes from (1.6). The bar designates
complex quantities. Equation (1.76) represents the so called dispersion relation
of the complex dielectric permeability and specifies how ε varies with frequency.
If we use the plasma frequency of (1.75), where N is the number density of free
electrons, we get

ε = ε1 + iε2 = 1+ ω2
p(ω

2
0 − ω2)

(ω2
0 − ω2)2 + γ 2ω2

+ i ω2
pγω

(ω2
0 − ω2)2 + γ 2ω2

. (1.77)

Figure 1.2 presents an example of the dispersion relation ε(ω) calculated
with γ /ω0 = 0.2 and ωp = ω0. Despite this particular choice, it shows the
characteristic behavior of the dielectric permeability at a resonance. Also of
interest are the limiting values in very rapidly and very slowly changing fields.
As we can compute m from ε after (1.48) and (1.49), figure 1.2 also gives the
dispersion relation for n and k.

• In a constant field E , all quantities are real. The induced dipole moment per
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unit volume and the static permeability are:

P = Ne2E

meω
2
0

ε(0) = 1+ ω
2
p

ω2
0

.

• In a slowly varying field (ω � ω0),

ε = 1+ ω
2
p

ω2
0

+ i ω
2
pγ

ω4
0

ω. (1.78)

The real part ε1 approaches the electrostatic value ε(0), whereas ε2 becomes
proportional to frequency ω times the damping constant γ and is thus small.
Correspondingly, n goes towards a constant value and k falls to zero.

• Around the resonance frequency, ε2 is quite symmetric and has a prominent
peak. But note in figure 1.2 the significant shifts of the extrema in n, k and
ε1 with respect to ω0. At exactly the resonance frequency, ε1(ω0) = 1 and
ε2(ω0) = ω2

p/γω0.
• The imaginary part ε2 goes to zero far away from the resonance on either

side but always remains positive. ε1 increases from its static value as ω nears
ω0, then sharply drops and rises again. It may become zero or negative, as
displayed in figure 1.2.

• At high frequencies (ω � ω0) and far from the resonance, there is very little
polarization as the electrons cannot follow the field due to their inertia and ε
can be approximated by

ε = 1− ω
2
p

ω2
+ i ω

2
pγ

ω3
. (1.79)

ε is then an essentially real quantity asymptotically approaching unity. This
is a necessary condition for the fulfilment of the Kramers–Kronig relations
(see section 2.5). Refraction disappears (n → 1), and the material becomes
transparent because there are no dissipational losses (k, ε2 → 0).

• At very high frequencies, when the wavelength is reduced to the size of an
atom, the concept of a continuous medium breaks down and modifications
are necessary.

1.4 The harmonic oscillator and light

We continue to discuss the optical constant from the viewpoint that matter is made
of harmonic oscillators. We derive the emission of an accelerated charge, compute
how an oscillator is damped by its own radiation and evaluate the cross section
for absorption and scattering of a single oscillator.



The harmonic oscillator and light 23
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Figure 1.3. For light traveling from focus F1 of an ellipse to focus F2 via the reflection
point M on the circumference of the ellipse, the total path length F1MF2 is indifferent to
variations around M. If the reflection point M lies on the tangent T, the actual path is a
minimum, if it is on the curve C which has a curvature radius smaller than the ellipse at M,
the path is a maximum.

1.4.1 Attenuation and refraction of light

The attenuation of light is due to the dissipation of energy. In the harmonic
oscillator model, the electrons transfer kinetic energy in collisions to the lattice.
The loss rate depends foremost on the imaginary part of the dielectric constant
ε2, which itself is proportional to the frictional parameter γ . In a resonance, ε2
has its maximum value close to but not coinciding with the natural frequency ω0
(see figure 1.2). ε2 or k can never be negative as this would imply amplification
of light, which is impossible for a dust grain in thermodynamic equilibrium. In
an idealized loss-free medium ε2 and k vanish.

The real part of the dielectric constant, ε1, may take up positive and negative
values. The real part of the optical constant, n, however, is always positive. The
index n determines the phase velocity vph of the wave. Without damping one
finds, from (1.44) and (1.46),

vph = c

n
.

n is responsible for the phenomenon of refraction. According to Fermat’s
principle, light traveling in a medium of varying n chooses, from among all
possible paths, the quickest. More precisely, when infinitesimally varying the
actual path, to first order, the travel time does not change. So the chosen route
might be a local minimum or a local maximum (see figure 1.3).

Fermat’s principle formally explains how spectacles and binoculars work and
why a light ray changes its direction when it passes from a medium with index n1
to one with n2. The physical reason that, for example, the phase velocity in glass
is different from that in vacuum is contained in the concept of superposition which
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states that the field at any given point is the sum of the fields from all oscillators
anywhere in the world.

Consider, for this purpose, a plane wave that encounters a flat, thin sheet of
glass oriented perpendicular to the direction of wave propagation. The electric
field of the wave accelerates the electrons in the glass and they start to radiate
themselves. The field Ea far ahead of the sheet is, according to the principle of
superposition, the sum of the fields created by all electrons plus the field of the
incident wave. When one computes Ea (it is not too difficult), one finds that it
has a phase shift relative to the incident wave, i.e. to the wave if there were no
sheet. One gets exactly the same phase shift if one neglects the fields from the
electrons altogether and assumes the wave has traveled in the sheet at a reduced
phase velocity c/n. So the phase velocity c/n follows, in a subtle way, from the
interference of the incoming wave with waves generated by the excited oscillators.

For a medium that is almost transparent, i.e. when the damping is weak and
γ � ω0, the expression for n reduces, from (1.48) and (1.77), to

n � 1+ ω2
p

2(ω2
0 − ω2)

. (1.80)

So for small attenuation, n is nearly constant at low frequencies and equal to
1+ω2

p/2ω
2
0. As one approaches the resonance (see figure 1.2), n rises, reaches its

maximum shortward of ω0, dips afterwards below one and goes asymptotically to
unity at high frequencies. In terms of actual frequencies, it all depends, of course,
on the value of ω0. When n rises with ω, i.e. to the left of ω0 in figure 1.2,
one speaks of normal dispersion. This is true, for example, for glass in the
visible range: blue light entering a prism is bent more than red light. However,
if dn/dω < 0, the dispersion is called anomalous, for historical reasons. When
n is less than one, the phase velocity exceeds the velocity of light in vacuum.
This does not violate special relativity as it is not possible to transmit information
with a monochromatic wave. A wave package, which is composed of waves of
different frequencies and is capable of carrying a message, cannot travel faster
than c (see (1.131)).

If a substance has several resonances arising from different oscillators with
number density Nj and natural frequency ω j , one has instead of (1.80)

n(ω) � 1+ 2πe2

me

∑
j

N j
ω2
j − ω2

.

1.4.2 Retarded potentials of a moving charge

An oscillating electron represents a current that is surrounded by a time-variable
magnetic field which, in turn, induces an electric field and so on; in the end, an
electromagnetic wave is emitted. To calculate the emission, we first summarize
what the electric and magnetic fields produced by arbitrarily moving charges
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of density ρ look like. We start with Maxwell’s equations in the so-called
microscopic form where all contributions to charge and current are included, not
only the ‘free’ parts:

divE = 4πρtot divB = 0 (1.81)

rotE = −1

c
Ḃ rotB = 1

c
Ė+ 4π

c
Jtot. (1.82)

They follow immediately from the equation set (1.27)–(1.30) with the help
of (1.19)–(1.22). Again there is charge conservation, ρ̇tot + div Jtot = 0. We now
drop the suffix ‘tot’. Because divB = 0, there exists a vector potential A such
that

B = rotA (1.83)

and because rot(E+ Ȧ/c) = 0, there exists a scalar potential φ with

E+ 1

c
Ȧ = −∇φ. (1.84)

These potentials are gauged by imposing on them the Lorentz condition,

divA+ 1

c
φ̇ = 0 (1.85)

which leaves the fields E and B untouched. Then φ and A obey the relations


A− 1

c2
Ä = − 4π

c
J (1.86)


φ − 1

c2
φ̈ = − 4πρ. (1.87)

(1.86) and (1.87) are equivalent to Maxwell’s equations. In vacuum, they
become wave equations and their right-hand sides vanish. If the charges are
localized around the center of the coordinate sytem and if their position is denoted
by x1, the potentials at the point x2 of the observer are (see any textbook on
electrodynamics):

φ(x2, t) =
∫
ρ(x1, t ′)
|x2 − x1| dV (1.88)

A(x2, t) =
∫

J(x1, t ′)
c |x2 − x1| dV . (1.89)

The potentials A and φ are called retarded as they refer to the present time
t but are determined by the configuration at an earlier epoch t ′. The delay
corresponds to the time it takes light to travel from x1 to x2:

t ′ = t − |x2 − x1|
c

. (1.90)
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If the size d ∼ |x1| of the region over which the charges are spread is small
compared with the distance r = |x2| to the observer,

d � r

(astronomers are always at a safe distance from the action), we may put r �
|x2−x1| and take r out from under the integrals. Moreover, |x2−x1| � |x2|−x1·e,
where e is the unit vector pointing from the atom to the observer, so

t ′ � t − (r − x1 · e)/c. (1.91)

If the d is also small compared with the wavelength,

d � λ

there will be no phase shift among the waves emitted from different parts of the
source and the emission is coherent, so we can write

t ′ � t − r/c
and

A(x2, t) = 1

cr

∫
J(x1, t − r/c) dV . (1.92)

This expression applies, for example, to atoms where a charge is oscillating
at a frequency ν and the linear dimension of the system d ∼ ν−1v = λv/c, where
v is the non-relativistic charge velocity.

1.4.3 Emission of an harmonic oscillator

Under such simplifications, one obtains the dipole field. The vector potential A
follows from a volume integral over the current density J at the earlier epoch
t ′ = t − r/c. If there is only one small charge q of space density ρ(x) that is
oscillating about an opposite charge at rest, equation (1.92) yields

A(x2, t) = 1

cr
ṗ(x1, t − r/c) (1.93)

because the current density is J = ρv and the wiggling charge q constitutes a
dipole p = qx1 whose derivative is given by the integral over the current density.
If there are many charges qi shaking at velocity vi , the result is the same with
p =∑ qixi .

We do not discuss the near field here. Far away from the charge, the wave is
planar and

H = e× E E = H× e.

Far away, ∇φ in (1.84) is negligible because φ represents the potential of the
charge (see the comment after equation (6.10)) and the electric field of a charge



The harmonic oscillator and light 27

falls off like 1/r2, whereas the field of a light source falls off more slowly like
1/r . We thus have E = −Ȧ/c and

H = 1

c2r
p̈× e = ω2

c2r
e× p (1.94)

E = ω2

c2r
(e× p)× e (1.95)

where we have assumed that the dipole varies harmonically at frequency ω.
Having determined the fields E and H via the dipole moment p, we can compute
the flux dW carried in a solid angle d� = sin θ dθ dφ into the direction e which
forms an angle θ with the dipole moment p. This flux is given by the Poynting
vector of (1.38), so

dW = |p̈|
2

4πc3 sin2 θ d�. (1.96)

The emission is zero in the direction of the motion of the charge and
maximum perpendicular to it. Integration over all directions yields for the total
momentary power radiated by a dipole:

W = 2

3c3
|p̈|2. (1.97)

If the dipole oscillates harmonically proportional to cosωt , the time-
averaged power equals half the maximum value of W in (1.97).

1.4.4 Radiation of higher order

More generally, if one does not make the simplification t ′ = t − r/c but sticks to
equation (1.91) and expands J(x1, t ′) in (1.89) for small x1 · e, equation (1.93) is
modified and at first order one has to add two correction terms:

A = 1

cr
ṗ+ 1

cr
ṁ× e+ 1

6c2r
Q̈. (1.98)

m is the magnetic dipole moment of equation (1.13) and

Qij =
∫
ρ(x)[3xix j − x2δi j ] dV (1.99)

the electric quadrupole moment, a traceless tensor. The vector x has the
components xi and the length x ; δi j denotes the Kronecker symbol. From Qij
one defines the vector Q,

Q = (Q1, Q2, Q3) with Qi =
∑
j

Qi j e j (i = 1, 2, 3)

and this Q is used in (1.98). The vector potential A in formula (1.98) is also
evaluated at the time t ′ = t − r/c. Again, one finds the Poynting vector
S = (c/4π)E×H from E = −Ȧ/c and H = e× E.
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Even when the electric dipole moment vanishes, there may still be electric
quadrupole or magnetic dipole radiation, associated with Q̈ and ṁ, respectively
but they are several orders of magnitude weaker. One can easily show that if all
particles have the same charge-to-mass ratio as, for instance, the two atoms in
the hydrogen molecule H2, the time derivatives p̈ and m̈ are zero so that only the
electric quadrupole radiation remains.

1.4.5 Radiation damping

An accelerating electron radiates and the emitted light reacts on the electron
because of the conservation of energy and momentum. Although theory (quantum
electrodynamics) and experiment agree extremely well, there is currently no strict,
self-consistent description of the feedback. We describe the feedback in classical
terms here.

When a force F accelerates a free and otherwise undamped electron, we
write the equation of motion in the form

F + Frad = meu̇.

The additional force Frad accounts for the retardation caused by the radiative
loss and u = ẋ is the velocity. Frad acts oppositely to F . Averaged over some time
interval 
t , we assume that the emitted power due to the radiative deceleration
(see (1.97)) is equal to the work that the force Frad has done on the electron:

−
∫

t
Fradu dt = 2e2

3c3

∫

t
u̇2 dt .

When we integrate the right-hand side by parts and assume a periodic motion
where uu̇ = 0 at the beginning and at the end of the time interval
t , we find∫


t

(
Frad − 2e2

3c3 ü
2

)
u dt = 0.

So the force becomes
Frad = meτ ü

with

τ = 2e2

3mec3 = 6.27× 10−24 s.

Frad has to be added in the equation of motion of the harmonic oscillator, so
(1.59) becomes

ω2
0x + γ u + u̇ − τ ü =

eE0

me
e−iωt .

It contains time derivatives in x up to third order but, because ü = −ω2u for a
harmonic oscillation, the steady-state solution is again

x̄ = x̄0e
−iωt
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(a bar denotes complexity) and the complex amplitude becomes

x̄0 = eĒ0

me

1

ω2
0 − ω2 − iω(γ + τω2)

.

This is the same expression for x̄0 as in (1.66) if one replaces there the
dissipation constant γ by

γ + τω2 = γ + γrad.

The term

γrad = 2e2

3mec3
ω2 (1.100)

is the damping constant due to radiation alone and follows from equating the
time-averaged losses 1

2γradmeω
2x2

0 of the harmonic oscillator after (1.69) to the
time-averaged radiated power p2

0ω
4/3c3 of (1.97). Note that we always assume

the radiative losses over one cycle to be small in comparison to the energy of the
oscillator.

1.4.6 The cross section of an harmonic oscillator

1.4.6.1 Scattering

An oscillating electron with dipole moment

p̄ = p̄0e
−iωt = ex̄0e

−iωt

scatters, from (1.67) and (1.97), the power

W sca = 2

3c3
ω4 p2

0 =
2

3c3

e4E2
0

m2
e

ω4

(ω2
0 − ω2)2 + ω2γ 2

(1.101)

where we put p0 = | p̄0|. So its cross section σ sca, defined as the scattered power
divided by the incident flux S = (c/4π)E2

0 of (1.38), becomes

σ sca(ω) = W sca

S
= σT

ω4

(ω2
0 − ω2)2 + ω2γ 2

(1.102)

where

σT = 8πr2
0

3
= 6.65× 10−25 cm2 (1.103)

is the Thomson scattering cross section of a single electron; it is frequency
independent. r0 is the classical electron radius and follows from equalling the
rest mass energy mec2 to the electrostatic energy e2/r0:

r0 = e2

mec2 = 2.82× 10−13 cm. (1.104)
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If there is only radiative damping, we have to set γ = γrad after (1.100).
From equation (1.102) we find the following approximations for the scattering
cross section at the resonance, and at low and high frequencies:

σ sca(ω) =



σT

(
ω

ω0

)4

if ω � ω0

σT

4

ω2
0

(ω − ω0)2 + (γ /2)2 if ω � ω0

σT if ω � ω0.

(1.105)

When the frequency is high, the electron is essentially free and the cross
section constant and equal to σT. When the frequency is small, σ sca falls with
the fourth power of ω (Rayleigh scattering). Near the resonance, we have put
ω2 − ω2

0 � 2ω0(ω − ω0).

1.4.6.2 Absorption

In a similar way, we get from (1.69) for the absorption cross section of the
harmonic oscillator

σ abs(ω) = W abs

S
= 4πe2

mec

ω2γ

(ω2
0 − ω2)2 + ω2γ 2

(1.106)

with the approximations

σ abs(ω) = πe
2

mec




4γω−4
0 ω2 if ω � ω0

γ

(ω − ω0)2 + (γ /2)2 if ω � ω0

4γω−2 if ω � ω0.

(1.107)

A frequency dependence according to the middle line of (1.107) or (1.105)
results in a Lorentz profile. It has the characteristic feature that the intensity over
an emission or absorption line changes proportional to [(ω−ω0)

2+(γ /2)2]−1. As
we have seen in the Fourier analysis of the motion of a free oscillator after (1.74),
at the root of such a profile is the exponential decline e−γ t/2 of the amplitude of
the electron.

1.4.7 The oscillator strength

Integrating σ(ω) after (1.106) over frequency yields the total cross section for
absorption,

σtot =
∫
σ(ω) dω = 2π2e2

mec
. (1.108)

The integrand has significant values only around ω0, so to evaluate σtot we
could also use the approximate second formula of (1.107). We note that∫ ∞

0

γ

(ω − ω0)2 + (γ /2)2 dω = 2
∫ ∞
−2ω0/γ

dx

1+ x2 � 2π (γ � ω0).
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When the cross section σ is a function of ν = ω/2π , we get

σtot =
∫
σ(ν) dν = πe

2

mec
.

The true quantum mechanical cross section for a downward transition j → i
integrated over frequency is often written as

σtot = πe
2

mec
f j i (1.109)

where f j i is called oscillator strength. It is of order unity for strong lines,
otherwise smaller. f j i is related to the Einstein coefficients for induced and
spontaneous emission, B ji and A ji (see section 6.3), through

πe2

mec
f j i = hν

c
B j i = c2

8πν2
A ji (1.110)

where hν is the energy difference between level j and i .

1.4.8 The natural linewidth

If the oscillator is not driven by an external field but swings freely near the
resonance frequency ω0, its energy decays exponentially like e−γrad(ω0)t (see
(1.71) and (1.100)). The intensity of emission, I (ω), at a frequency ω is
proportional to x2

0(ω), the square of the elongation given in (1.67). One may
call x2

0 (ω) the resonance curve (see figure 1.4). Because all relevant frequencies
for emission are close to ω0, we have ω2 − ω2

0 � 2ω0(ω− ω0) and the full width

ω of the resonance curve x2

0(ω) taken at half maximum becomes


ω = γrad = 2r0

3c
ω2

0

or, expressed in wavelength,


λ = 2πc

ω

ω2
0

= 4π

3
r0 = 1.18× 10−4 Å. (1.111)

This is the natural linewidth as derived from classical physics. It does not
depend on the frequency of the transition, all intrinsic properties of the oscillator
have canceled out.

In quantum mechanics, the Einstein coefficient A ji is the counterpart to the
radiative damping constant γrad of classical electrodynamics. A ji specifies the
rate at which a system in level j spontaneously decays to a lower level i (see
section 6.3). The probability of finding the system in state j decreases with time
like e−A ji t , in analogy to the classical formula.
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Figure 1.4. The emitted intensity of a classical oscillator with a resonance at λ0 that is
damped only radiatively with a damping constant γrad after (1.100). Irrespective of λ0, the
width of the line is 1.18× 10−4 Å in wavelengths or γrad in frequency.

Furthermore, in quantum mechanics, the energy E j of state j is fuzzy
because of the uncertainty principle, 
E
t ≥ �. Here 
t � A−1

j i is the average
time that the atom stays in level j . Therefore, E j is undetermined by an amount

E = �A ji resulting in a frequency uncertainty 
ω = A ji . (More accurately,
when calculating
ω, one has to sum the A coefficients of all possible downward
transitions starting in j and something similar must be done for the lower level i ,
unless it is the ground state.)

The time A−1
j i that the atom resides in state j also gives the duration of the

emitted pulse. As the pulse travels with the velocity of light, the length of the
wave train is cA−1

j i . The emission thus cannot be strictly monochromatic but has
a frequency spectrum centered at ω0.

1.5 Waves in a conducting medium

We modify the expression for the dielectric permeability or the complex
wavenumber for the case that some of the electrons in the material are not bound
to individual atoms but are free so that they can conduct a current. The medium
is then a plasma and the dispersion relation is known as the Drude profile. We
show that, in the presence of a magnetic field, the optical constant n of a plasma
depends for circularly polarized plane waves on the sense of rotation. This leads
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to the phenomenon of Faraday rotation. We also derive the group velocity of a
wave package in a plasma.

1.5.1 The dielectric permeability of a conductor

A conductor contains free charges that can support a constant current, as we know
from everyday experience with electricity. Ohm’s law asserts a proportionality
between the electric field E and the current density J (omitting the suffix ‘free’),

J = σE. (1.112)

σ is called the conductivity and is usually defined for a quasi-stationary
electric field; in a vacuum, σ = 0. When a conductor is placed in a static field,
no current can flow because the charges arrange themselves on its surface in such
a way that the electric field inside it cancels out. In a dielectric medium, however,
a static electric field is, of course, possible. An electric field may exist in a metal,
either because it varies rapidly and the charges do not have time to reach their
equilibrium positions or it is produced by a changing magnetic field according to
(1.25).

We treat conductors because some interstellar grains have metallic properties
and because the interstellar medium is a plasma. Let us start with the Maxwell
equations (1.29) and (1.30) which are appropriate for conductors,

rotE = −1

c
Ḃ rotH = 1

c
Ḋ+ 4π

c
J.

When we insert harmonic fields into these formulae, we get for a
homogeneous medium with the help of (1.112)

rotE = i ωµ
c

H

rotH = −i ω
c

(
ε + i 4πσ

ω

)
E. (1.113)

We may look at (1.113) as an expansion of rotH into powers of ω. The term
with the conductivity σ dominates at low frequencies, more precisely when

|ε| � 4πσ

ω
.

Then equation (1.113) reduces to

rotH = 4πσ

c
E (1.114)

which describes the magnetic field produced by a quasi-stationary current.
Formally, we can retain the field equation

rotH = ε
c
Ė,
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as formulated in (1.33) for a dielectric medium, also for a conducting medium.
However, ε must then denote the sum of the dielectric permeability of (1.5),
written here as εd to indicate that it refers to a dielectric, plus a term relating
to the conductivity:

ε = εd + i 4πσ

ω
. (1.115)

The complex wavenumber of (1.41), which appears in the wave
equations (1.34), is in a conducting medium

k2 = ω
2µ

c2

(
εd + i 4πσ

ω

)
. (1.116)

The optical constant m follows from ε of (1.115) via m = √εµ (see (1.46)).
At low frequencies, the dielectric permeability of a metal is approximately

(see (1.123) for an exact expression)

ε(ω) = i 4πσ

ω
.

ε is then purely imaginary (ε1 = 0), much greater than one (|ε| � 1) and
has a singularity at ω = 0. From (1.48) and (1.49) the optical constants n and k
are, therefore, also large and roughly equal:

n � k →∞ for ω→ 0. (1.117)

The difference between dielectrics and metals vanishes when the
electromagnetic field changes so rapidly that the electrons make elongations that
are small compared to the atomic radius. Then the restoring force, −κx , in
(1.58) is negligible and all electrons are essentially free. This happens around
ω � 1017 s−1.

1.5.2 Conductivity and the Drude profile

We repeat the analysis of the harmonic oscillator in section 1.3 for a plasma. The
electrons are then free, they experience no restoring force after an elongation and,
therefore, ω0 = 0 in (1.59). With the same ansatz x̄ = x̄0e−iωt as before, we find
the velocity of a free electron in an harmonic electric field:

v̄ = e

me(γ − iω) Ē .

The conductivity follows from the current density J = σE = Nev. If there are N
free electrons per cm3,

σ = Ne2

me(γ − iω) =
ω2

p

4π(γ − iω) (1.118)



Waves in a conducting medium 35

where ωp =
√

4πNe2/me is the plasma frequency of (1.75). So generally
speaking, the conductivity is a complex function and depends on ω,

σ(ω) = σ1(ω)+ iσ2(ω) =
ω2

p

4π

γ

γ 2 + ω2 + i
ω2

p

4π

ω

γ 2 + ω2 . (1.119)

• At long wavelengths (ω � γ ), σ becomes frequency independent. It is then
an essentially real quantity approaching the direct-current limit

σ(ω = 0) = ω2
p

4πγ
(1.120)

which appears in Ohm’s law. The conductivity depends on the density of
free electrons through ωp and on the collision time through γ .

• If the frequency is high or damping weak (γ � ω), the conductivity is
purely imaginary and inversely proportional to frequency. There is then no
dissipation of energy in the current.

When we put εd = 0, µ = 1, and substitute, for the conductivity σ , the
expression from (1.118) into (1.116), we find for the wavenumber of a plasma

k2 = ω
2

c2

(
1− ω2

p

γ 2 + ω2
+ i γ
ω

ω2
p

γ 2 + ω2

)
. (1.121)

Without damping,

k2 = ω
2

c2

(
1− ω

2
p

ω2

)
. (1.122)

In this case, when ω is greater than the plasma frequency, the real part n of the
optical constant is, from (1.48), smaller than one, so the phase velocity is greater
than the velocity of light, vph > c. For ω = ωp, n becomes zero. A wave with
ω ≤ ωp cannot penetrate into the medium and is totally reflected. The bending
of short-wavelength radio waves in the ionosphere or the reflection on metals (see
(3.60)) are illustrations.

The dielectric permeability ε(ω) corresponding to (1.121) is known as the
Drude profile (see (1.41)):

ε(ω) = 1− ω2
p

γ 2 + ω2 + i
γ

ω

ω2
p

γ 2 + ω2 . (1.123)

To get some feeling for the numbers associated with the conductivity, here
are two examples:

• Copper is a pure metal with a free electron density N � 8 × 1022 cm−3,
a plasma frequency ωp = 1.6 × 1016 s−1 and a damping constant γ �
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3 × 1013 s−1. It has a high direct-current conductivity σ ∼ 7 × 1017 s−1.
Therefore copper cables are ideal for carrying electricity.

• Graphite, which is found in interstellar space, has N � 1.4 × 1020 cm−3

and γ � 5 × 1012 s−1, so the direct-current conductivity becomes σ �
7×1015 s−1; it is two orders of magnitude smaller than for copper. Graphite
is a reasonable conductor only when the electrons move in the basal plane.

1.5.3 Electromagnetic waves in a plasma with a magnetic field

In the presence of a magnetic field, wave propagation is generally complicated.
We consider the fairly simple situation when a plane wave with electric vector
E = (Ex , Ey, 0) travels without attenuation through a plasma parallel to a
constant magnetic field B = (0, 0, B) oriented in the z-direction. The trajectory
r(t) = (x, y, 0)(t) of an electron follows from integrating the equation of motion,
F = mer̈, where F is the Lorentz force of (1.1),

ẍ = e

me
Ex + eB

mec
ẏ ÿ = e

me
Ey − eB

mec
ẋ . (1.124)

The variable magnetic field of the wave is neglected. If the wave is linearly
polarized, it can be regarded as a superposition of two oppositely circularly
polarized waves. For example, if the electric vector stays along the x-axis,

E = (1, 0, 0)E0e
−iωt = 1

2

[
(1, i, 0)+ (1,−i, 0)]E0e

−iωt .

We, therefore, put
r± = x ± iy E± = Ex ± i Ey

and interpret the (x, y)-plane as a complex plane, and E+ and E− as the electric
vectors of two circularly polarized waves associated with the electron trajectories
r+(t) and r−(t). It follows from (1.124) that

r̈± = e

me
E± ∓ i eB

mec
ṙ±.

The solution to this differential equation is

r± = e/me

ω2 ± ωωcyc
E±

with the cyclotron frequency

ωcyc = eB

mec
. (1.125)

A circularly polarized wave makes an electron rotate. The presence of the
magnetic field B modifies the orbit, and the modification is different for clockwise
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and anti-clockwise rotation. If there are N electrons per unit volume, their motion
implies a current J± = σ±E± = Neṙ±, where the conductivity

σ± = i Ne
2/me

ω ∓ ωcyc
.

Without damping, the optical constant n2 = ε1. The dielectric permeability ε is
given in (1.115) with εd = 1, therefore,

n2± = 1− ω
2
p

ω2

(
1± ωcyc

ω

)−1
. (1.126)

We conclude that the two circularly polarized waves travel with different
phase velocities vph = c/n±. This leads to a change in the direction of the
polarization vector of the linearly polarized wave. This effect is called Faraday
rotation.

1.5.4 Group velocity of electromagnetic waves in a plasma

A one-dimensional wave package is a superposition of monochromatic waves (see
(1.36)):

u(x, t) =
∫ ∞
−∞

A(k) · ei(kx−ωt) dk (1.127)

in which the amplitude A(k) has a sharp peak at some wavenumber k = k0. We
therefore develop the dispersion relation ω = ω(k) around k0,

ω(k) = ω0 + dω

dk
(k− k0). (1.128)

Here ω0 = ω(k0) and the derivative dω/dk is evaluated at k = k0. At the
time t = 0, the wave package has the form

u(x, 0) =
∫ ∞
−∞

A(k)eikxdk.

Inserting (1.128) into (1.127) gives

u(x, t) = exp

[
i

(
dω

dk
k0 − ω0

)
t

]
︸ ︷︷ ︸

=C

∫ ∞
−∞

A(k) exp

[
ik

(
x − dω

dk
t

)]
dk

= C · u (x ′, 0) (1.129)

with

x ′ = x − dω

dk
t .
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Therefore, as the factor C is purely imaginary and irrelevant, the wave
package travels with the group velocity

vg = dω

dk
. (1.130)

According to (1.122), for a plasma without damping

vg = dω

dk
= c ·

√
1− ω2

p/ω
2 ≤ c. (1.131)

For the product of group and phase velocity vph = ω/k (see (1.44)),

vph · vg = c2. (1.132)

1.6 Polarization through orientation

The polarization which we have modeled with the help of the harmonic oscillator
of section 1.3 is due to the deformation of atoms in the sense that their internal
charges are shifted relative to each other. In this section, we consider molecules
with an intrinsic dipole moment and a rigid charge distribution that are allowed
to rotate. This process is principally relevant to gases and liquids and only
marginally to solids, provided the molecules are sufficiently ‘round’ so that they
can turn and are not hooked too strongly to their neighbors. However, the analysis
which we develop here also applies to the alignment of atomic magnets and we
will use the results later in chapter 11 on grain alignment.

1.6.1 Polarization in a constant field

An atom or molecule with a dipole moment p in an electric field E has a potential
energyU that depends on orientation,

U = −p · E = −pE cos θ (1.133)

where θ is the angle between the vectors p and E, their lengths being p and E .
The potential energy is at its minimum when the dipole moment lines up with the
field and θ = 0.

The atoms are never perfectly aligned because they are tossed around by
the motions of their neighbors. In thermal equilibrium at temperature T , the
distribution of orientations is expressed by the Boltzmann factor e−U/kT . If
f (θ) dθ denotes the number of atoms that have angles between θ . . . θ + dθ , then

f (θ) = f0e
−U/kT = f0e

pE cos θ/kT . (1.134)

The average value of cos θ follows from integrating f (θ) over all directions,

〈cos θ〉 =
∫
f (θ) cos θ d�∫
f (θ) d�

(1.135)
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where d� is an element of the solid angle. If there are N dipoles per unit volume,
the polarization P in the direction of E equals

P = Np〈cos θ〉. (1.136)

In our particular case, where f (θ) ∝ epE cos θ/kT , the mean cosine is given by

〈cos θ〉 = L(x) with x = pE

kT

where L(x) denotes the Langevin function:

L(x) = coth(x)− 1

x
= x

3
− x3

45
+ · · · . (1.137)

We see that the strength of the net polarization P depends on temperature.
Easy to handle and relevant to our applications are weak fields (pE � kT ) for
which

f (θ) = N

4π

[
1+ pE

kT
cos θ

]
. (1.138)

f (θ) is now almost constant, all directions are almost equally likely and the
average angle is

〈cos θ〉 = pE

3kT
.

An identical formula holds for magnetic dipoles (dipole moment m) in a
magnetic field. One just has to replace pE by mB .

1.6.2 Polarization in a time-variable field

The distribution function f for the orientation of dipoles in the case of a time-
variable field is considerably more complicated. It now depends not only on the
angle θ between dipole moment and field but also on time, so we have to write
f (θ, t) instead of f (θ). The time enters into f for two reasons. First, the field
exerts on each dipole a torque

τ = pE sin θ (1.139)

which makes it rotate. The rotation speed θ̇ is assumed to be proportional to the
torque τ , so

τ = ζ θ̇ (1.140)

where ζ is a friction coefficient. Second, there is Brownian motion because
the dipoles are jostled about in collisions. We now sketch how one derives an
expression for the distribution function leaving aside the mathematical details. Let
f (θ, t) d� be the number of dipoles whose axes fall into a small solid angle d�
and make an angle θ with respect to the field E. The directions of the individual
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dipoles vary smoothly with time due to Brownian motion and the alternating
electric field. One computes the change


 = ḟ d�δt

in the number of dipoles f (θ, t) d� over the time interval δt . The interval δt is
chosen long enough so that the dipole axes manage to escape from d� but also
sufficiently short so that their directions are modified only by a small angle. The
change 
 is split into a contribution due to Brownian motion and one due to the
field


 = 
Brown +
field.

• To evaluate 
Brown, one can restrict the discussion to the dipoles in the
vicinity of d�, because δt is small. This leads to an expression for 
Brown
that depends on f and its spatial derivatives times the mean square angular
distance 〈φ2〉 which the axis of an individual dipole travels during the time
δt . But 〈φ2〉 is known: for Brownian motion 〈φ2〉 = kT δt/4ζ .

• The other term 
field is much easier to calculate. The axes are turned at an
angular velocity θ̇ by a variable torque τ (see (1.140)) that tries to align the
moments with the field. The difference in the number of axes that leave and
enter the solid angle d� is 
field.

Altogether, Debye [Deb29] found for the time derivative of the distribution
function

ζ ḟ = 1

sin θ

∂

∂θ

[
sin θ

(
kT
∂ f

∂θ
+ τ f

)]
. (1.141)

The first term in brackets on the right-hand side of (1.141) is due to Brownian
motion, the second term due to the rotation of the dipoles by the field.

1.6.3 Relaxation after switching off the field

The average orientation in a constant time field is described by the Maxwell–
Boltzmann equation (1.134). It does of course not depend on time, so ḟ vanishes.
We may convince ourselves that (1.134) is, indeed, a solution to (1.141) for
ḟ = 0.

Suppose now that the field is suddenly switched off at time t = 0. Then
for t > 0, the torque τ is absent and the orientations begin to randomize; after
a while, complete disorder is established. This process is called relaxation and
governed by the equation

ζ

kT
ḟ = 1

sin θ

∂

∂θ

(
sin θ

∂ f

∂θ

)
(1.142)

which follows from (1.141) for τ = 0. To solve (1.142), we try a distribution
function

f (θ, t) = 1+ ϕ(t) pE0

kT
cos θ
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which is similar to (1.138) but for the relaxation function ϕ(t) and the factor
N/4π which has been dropped. Substituting f (θ, t) into (1.142) yields

ϕ(t) = e− 2kT
ζ t
. (1.143)

The form of the relaxation function implies exponential decay. The system
relaxes from statistical alignment in a constant field to random orientation on a
time scale

trel = ζ

2kT
. (1.144)

1.6.4 The dielectric permeability in Debye relaxation

In the presence of an harmonic field E = E0e−iωt , the distribution function f
depends explicitly on time. The Maxwell–Boltzmann formula (1.134) is then no
longer applicable and needs to be generalized. It is easy to find a solution to
Debye’s equation (1.141) when the variable field is weak, i.e. when

pE0 � kT .

Naturally, we try an ansatz for f in the spirit of (1.138), again without the
factor N/4π ,

f (θ, t) = 1+ Ae−iωt pE0

kT
cos θ.

When inserted into (1.141) and terms with E2
0 are neglected, it yields

A = 1

1− iωtrel
.

So the full expression for the distribution function in a variable weak field is

f (θ, t) = 1+ pE0

kT
cos θ

e−iωt

1− iωtrel
. (1.145)

For a static field (ω = 0), we are back to Maxwell–Boltzmann. At very high
frequencies, f becomes constant and is independent of the direction of the field.

We can now compute the polarization P of such a medium according to
(1.136). For 〈cos θ〉 in (1.135) we have to use the distribution function from
(1.145). Because P = χE , we obtain for the susceptibility χ (or the dielectric
permeability ε) in the case of rotational polarization:

χ = ε − 1

4π
= Np2

3kT

1

1− iωtrel
= Np2

3kT

[
1

1+ ω2t2rel

+ i ωtrel

1+ ω2t2rel

]
. (1.146)

This function is plotted in figure 1.5. It should be compared with ε(ω) for
a dielectric and a metal, i.e. with (1.77) and (1.123). We have here the novelty
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Figure 1.5. The dielectric permeability ε = ε1+ iε2 after (1.146) and the optical constant
m = n + ik for the case that polarization is due to the alignment of molecules with a
permanent dipole moment p; here we put 4πNp2/3kT = 1. Shown are n, k and ε1 − 1
and ε2.

that ε depends on temperature. For small frequencies, one may approximate the
imaginary part of χ by

χ2 = χ0
ωtrel

1+ ω2t2rel

� ωχ0trel

(
χ0 = Np2

3kT

)
. (1.147)

χ0 is the static value of χ(ω) and refers to a time constant field. The
dissipation rate is proportional to ω, inversely proportional to temperature and
otherwise determined by the relaxation time trel.

Let us consider water as an example of rotational polarization. The water
molecule has an intrinsic electric dipole moment as the three nuclei in H2O form
a triangle with an obtuse angle of 105◦. Therefore the center of positive charge,
which lies in the midst between the hydrogen atoms, and the center of negative
charge, located near the oxygen atom, do not coincide, resulting in a permanent
dipole moment p = 1.9 Debye.

Liquid water has, at room temperature, a viscosity η � 0.01 g cm−1 s−1. If
the water molecules are approximated by spheres of radius a, the friction constant
ζ follows from the viscosity using the equation for the torque (1.139) and the force
F of Stokes’ law (see (9.41)),

ζ = τ
θ̇
∼ Fa

θ̇
∼ 6πηa3. (1.148)

For a ∼ 1 Å, trel � 2 × 10−12 s approximately. The associated frequency
t−1
rel lies in the microwave region. With the support of experimental data, one can
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improve the estimate to trel � 8× 10−12 s but the first guess was not bad. As the
density of water is N = 3.3× 1022 cm−3, at room temperature we have roughly
Np2/3kT ∼ 1. When water freezes, the molecules find it hard to adjust their
orientation because they cannot rotate freely in a solid. Then the viscosity and
the relaxation time jump by a large factor and the frequency at which ε2 has its
maximum drops and polarization due to Debye relaxation becomes unimportant.



Chapter 2

How to evaluate grain cross sections

In section 2.1, we define cross sections, the most important quantity describing
the interaction between light and interstellar grains. Section 2.2 deals with the
optical theorem which relates the intensity of light that is scattered by a particle
into exactly the forward direction to its extinction cross section. In sections 2.3
and 2.4, we learn how to compute the scattering and absorption coefficients of
particles. The problem was first solved in the general case for spheres by G Mie
[Mie08] and the underlying theory bears his name. Section 2.5 is concerned
with a strange but important property of the material constants that appear in
Maxwell’s equations, such as ε or µ. They are complex quantities and Kramers
and Kronig discovered a dependence between the real and imaginary parts. In the
final section, we approximate the material constants of matter that is a mixture of
different substances.

2.1 Defining cross sections

2.1.1 Cross section for scattering, absorption and extinction

For a single particle, the scattering cross section is defined as follows. Consider a
plane monochromatic electromagnetic wave at frequency ν and with flux F0. The
flux is the energy carried per unit time through a unit area and given in (1.39) as
the absolute value of the Poynting vector. When the wave hits the particle, some
light is scattered into the direction specified by the angles (θ, φ) as depicted in
figure 2.1. The flux from this scattered light, F(θ, φ), which is received at a large
distance r from the particle is obviously proportional to F0/r2; we, therefore,
write

F(θ, φ) = F0

k2r2�(θ, φ). (2.1)

The function �(θ, φ) does not depend on r nor on F0. We have included in
the denominator the wavenumber

k = 2π

λ

44



Defining cross sections 45

F
0

(θ,φ)F

φ

θ

Figure 2.1. A grain scatters light from a plane wave with flux F0 into the direction (θ, φ).
In this direction, the scattered flux is F(θ, φ).

to make �(θ, φ) dimensionless; the wavelength λ is then the natural length unit
with which to measure the distance r .

• The cross section for scattering of the particle, Csca, follows from the
condition that F0Csca equals the total energy scattered in all directions per
unit time. Consequently,

Csca = 1

k2

∫
4π
�(θ, φ) d� = 1

k2

∫ 2π

0
dφ
∫ π

0
dθ �(θ, φ) sin θ

with the element of solid angle

d� = sin θ dθ dφ. (2.2)

The scattering cross section Csca has the dimension of an area. It is assumed
that the frequency of radiation is not changed in the scattering process.

• Besides scattering, a particle inevitably absorbs some light. The
corresponding cross section Cabs is defined by the condition that F0Cabs

equals the energy absorbed by the particle per unit time.
• The sum of absorption plus scattering is called extinction. The extinction

cross section,
Cext = Cabs + Csca (2.3)

determines the total amount of energy removed from the impinging beam of
light.

• The albedo is defined as the ratio of scattering over extinction,

A = Csca

Cext . (2.4)

It lies between 0 and 1; an object with a high albedo scatters a lot of light.

All these various cross sections do not generally depend on the radiation
field, the temperature or density of the dust material (which only changes very
little anyway). In this respect, it is much simpler to calculate cross sections of
grains than of gas atoms.
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2.1.2 Cross section for radiation pressure

2.1.2.1 Phase function and asymmetry factor

In equation (2.1), �(θ, φ) specifies how the intensity of the scattered radiation
changes with direction. We form a new function f̃ (θ, φ), which is proportional
to �(θ, φ) but normalized so that the integral of f̃ over all directions equals 4π :∫

4π
f̃ (θ, φ) d� = 4π

and call it the phase function. An isotropic scatterer has f̃ = 1.
For spheres, there is, for reasons of symmetry, no dependence on the angle

φ, only on θ . It is then convenient to have a phase function f which has cos θ as
the argument, so we put f (cos θ) = f̃ (θ). Again f = 1 for isotropic scattering
and the normalization condition is

1 = 1
2

∫ +1

−1
f (x) dx . (2.5)

When one does not know or does not need the full information contained
in f (cos θ), one sometimes uses just one number to characterize the scattering
pattern. This number is the asymmetry factor g, the mean of cos θ over all
directions weighted by the phase function f (cos θ),

g = 〈cos θ〉 = 1
2

∫ +1

−1
f (x) x dx . (2.6)

• It is easy to verify that g lies between−1 and 1.
• When scattering is isotropic, and thus independent of direction, g = 0.
• When there is mainly forward scattering, g is positive, otherwise it is

negative. In the limit of pure forward scattering, g = 1; for pure
backscattering g = −1.

2.1.2.2 The momentum imparted on a grain by radiation

Electromagnetic radiation also exerts a pressure on a grain. A photon that is
absorbed deposits its full momentum hν/c. If it is scattered at an angle θ (see
figure 2.1), the grain receives only the fraction (1 − cos θ). Therefore, the cross
section for radiation pressure, C rp, can be written as

C rp = Cext − g · Csca. (2.7)

As g can be negative, although this case is unusual, C rp may be greater than
Cext. To obtain the momentum transmitted per second to the grain by a flux F ,
we have to divide by the velocity of light c, so the transmitted momentum is

F · C rp

c
. (2.8)
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2.1.3 Efficiencies, mass and volume coefficients

The definition of the cross section of a single particle can be extended to 1 g
of interstellar matter or 1 g of dust, or 1 cm3 of space. We use the following
nomenclature (omitting the dependence on frequency):

• The cross section of a single particle is denoted by the letter C .
• Efficiency, Q, is the ratio of C over the projected geometrical surface area

σgeo:

Q = C

σgeo
. (2.9)

For spheres, σgeo = πa2, where a is the grain radius. There are efficiencies
for absorption, scattering, extinction and radiation pressure, again

Qext = Qabs + Qsca (2.10)

Qrp = Qext − g · Qsca. (2.11)

With the exception of spheres, σgeo as well as the Cs and Qs change with the
direction of the incoming light.

• Mass coefficient, K , is the cross section per unit mass. It refers either to 1 g
of dust or to 1 g of interstellar matter. The latter quantity is some hundred
times smaller.

• Volume coefficient is the cross section per unit volume and also denoted by
the letter K . It refers either to 1 cm3 in space (which typically contains
10−23 g of interstellar matter and 10−25 g of dust) or to 1 cm3 of dust material
with a mass of about 1 g.

2.2 The optical theorem

When a beam of light falls on a particle, some light is absorbed by the grain,
heating it, and some is scattered. The optical theorem asserts that the reduction of
intensity in the forward direction fully determines the particle’s extinction cross
section.

2.2.1 The intensity of forward scattered light

Consider a plane electromagnetic wave of wavelength λ propagating in a vacuum
in the z-direction with electric field

Ei = ei(kz−ωt). (2.12)

For easier writing, we neglect the vector character of the field and assume
a unit amplitude. When the wave encounters a grain located at the origin of
the coordinate system, some light is absorbed and the rest is scattered into all
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Figure 2.2. Light enters from the left, is scattered by a particle and falls at a large distance
r through a disk of diameter d . The x-axis is perpendicular to the (y, z)-plane.

directions (θ, φ). At a distance r which is large when measured in wavelength
units (kr = 2πr/λ� 1), the scattered field can be presented as

Es = S(θ, φ)
ei(kr−ωt)

−ikr . (2.13)

The information about the amplitude of the scattered wave lies in the
complex function S(θ, φ), the exponential term contains the phase. Because
|Es|2 is proportional to the scattered intensity, comparison of (2.13) with (2.1)
tells us that |S(θ, φ)|2 corresponds to �(θ, φ). As before, conservation of energy
requires Es ∝ 1/r . The wavenumber k = 2π/λ is introduced to make S(θ, φ)
dimensionless, the factor −i in the denominator is just a convention.

Let us now determine the flux F through a disk of area A far behind the
grain. The disk has a diameter d , so d2 ∼ A. Its center coordinates are (x = 0,
y = 0, z0). It lies in the (x, y)-plane and is thus oriented perpendicular to the
z-axis. All points (x, y) in the disk fulfil the inequalities

|x | � z0 |y| � z0

and their distance to the particle is, approximately,

r � z0 + x2 + y2

2z0
.

The radiation that goes through the disk consists of the incident light (Ei)
and the light scattered by the particle (Es). The two fields interfere and to obtain
the flux through the disk, they have to be added:

F =
∫
A
|Ei + Es|2 d A. (2.14)
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Dividing (2.13) by (2.12), we get

Es = EiS(θ, φ)
eik(r−z)

−ikr (2.15)

and for the sum of the incident and scattered field

Ei + Es = Ei

{
1− S(0)

ikz0
exp

(
ik
x2 + y2

2z0

)}
. (2.16)

Here we put
S(0) = S(θ � 0, φ)

because d � z0, so the disk as viewed from the grain subtends a very small angle.
Therefore, in this expression for |Ei + Es|2, we may neglect terms with z−2

0 . In
this way, we find

|Ei + Es|2 = |Ei|2 − 2|Ei|2
kz0

Re

{
S(0)

i
exp

(
ik
x2 + y2

2z0

)}
.

To extract the flux F from (2.14), we have to evaluate the integral (see
(A.27)) ∫ ∞

−∞
e
ik(x2+y2)

2z0 dx dy =
[ ∫ ∞
−∞

e
ikx2
2z0 dx

]2

= i 2πz0

k
. (2.17)

Of course, the disk does not really extend to infinity. But the integral still
gives more or less the correct value as long as the disk diameter is much greater
than
√
z0λ = √2πz0/k, i.e. it is required that

λ� d � √A � z0.

We, therefore, obtain the flux

F = |Ei|2
(
A − 4π

k2 Re{S(0)}
)
.

Now without an obstacle, the flux through the disk would obviously be
A|Ei|2 and thus greater. The light that has been removed by the particle
determines its cross section for extinction:

Cext = λ
2

π
Re{S(0)}. (2.18)

This is the grand extinction formula, also known as the optical theorem. It
is baffling because it asserts that Cext, which includes absorption plus scattering
into all directions, is fixed by the scattering amplitude in the forward direction
alone. The purely mathematical derivation of (2.18) may not be satisfying. But
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P

y

l

z

Figure 2.3. Light passes through a plane-parallel slab of thickness l with one face lying
in the (x, y)-plane. The slab is uniformly filled with identically scattering particles. We
determine the field at point P with coordinates (0, 0, z).

obviously Cext must depend on S(0): the extinction cross section of an obstacle
specifies how much light is removed from a beam if one observes at a large
distance, no matter how and where it is removed (by absorption or scattering).
If we let the disk of figure 2.2 serve as a detector and place it far away from the
particle, it receives only the forward scattered light and, therefore, S(0) contains
the information about Cext.

2.2.2 The refractive index of a dusty medium

One may also assign a refractive index to a dusty medium, like a cloud of grains.
Let a plane wave traveling in the z-direction pass through a slab as depicted
in figure 2.3. The slab is of thickness l and uniformly filled with identically
scattering grains of number density N . When we compute the field at point P
on the z-axis resulting from interference of all waves scattered by the grains, we
have to sum over all particles. This leads to an integral in the (x, y)-plane like the
one in (2.17) of the preceding subsection where we considered only one particle.
But there is now another integration necessary in the z-direction extending from
0 to l. Altogether the field at P is:

Ei + Es = Ei

{
1− N S(0)

ikz

∫ l

0
dz

1

z

∫ ∞
−∞

dx dy e
ik(x2+y2)

2z

}

= Ei

(
1− S(0) λ

2

2π
Nl

)
. (2.19)

The main contribution to the double integral again comes from a region of area
z0λ (see figure 2.2 for a definition of z0). We see from (2.19) that the total field
at P is different from the incident field Ei and it is obtained by multiplying Ei by
the factor

1− S(0) λ
2

2π
Nl. (2.20)
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Not only do the grains reduce the intensity of radiation in the forward
direction but they also change the phase of the wave because the function S(0)
is complex. We can, therefore, assign to the slab an optical constant (with a bar
on top)

m = n + ik.
The field within the slab then varies according to (1.41), like ei(kmz−ωt).

If the slab were empty containing only a vacuum, it would vary like ei(kz−ωt).
Therefore, the presence of the grains causes a change in the field at P by a factor
eikl(m−1). When m is close to one (|m − 1| � 1), which is certainly true for any
interstellar dust cloud,

eikl(m−1) � 1− ikl(m − 1). (2.21)

Setting (2.20) equal to (2.21) yields

n − 1 = 2πN

k3
Im{S(0)} (2.22)

k = − 2πN

k3
Re{S(0)}. (2.23)

The refractive index of the slab, m = n+ ik, refers to a medium that consists
of a vacuum plus uniformly distributed particles. The way m is defined, it has the
property that if the particles are pure scatterers, k is nevertheless positive. This
follows from comparing (2.18) and (2.23) because the extinction coefficient Cext

of a single grain does not vanish. A positive k implies some kind of dissipation,
which seems unphysical as no light is absorbed. One may, therefore, wonder
whether n and k obey the Kramers–Kronig relation of section 2.5. However, they
do, as one can show by studying the frequency dependence of S(0).

To find the refractive index m = n + ik from (2.22) and (2.23) for a cloud
filled with identical spheres of size parameter x = 2πa/λ and refractive index
m = n + ik, one can calculate S(0), with m and x given, from (2.65).

2.3 Mie theory for a sphere

Scattering and absorption of light by spheres is a problem of classical
electrodynamics. Its full derivation is lengthy and we present only the sequence
of the main steps. Missing links may be filled in from the special literature (for
instance, [Boh83, Hul57, Ker69]). The reader not interested in the mathematics
may skip the next pages, or even cut them out carefully, and resume the text
with the last subsection entitled Absorption and scattering efficiencies. What is
in between can be condensed into one sentence: In Mie theory, one finds the
scattered electromagnetic field and the field inside the particle by expanding both
into an infinite series of independent solutions to the wave equation; the series
coefficients are determined from the boundary conditions on the particle surface.
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2.3.1 The generating function

Consider a spherical particle in vacuum illuminated by a linearly polarized
monochromatic plane wave of frequency ν = ω/2π . Let Ei and Hi describe
the incident field. We denote the field within the particle by E1,H1 and outside
of it by E2,H2. The field outside is the superposition of the incident and the
scattered field (subscript s),

E2 = Ei + Es (2.24)

H2 = Hi +Hs. (2.25)

The further calculations are greatly simplified by the following relations. Let
c be an arbitrary constant vector and ψ a solution to the scalar wave equation


ψ + k2ψ = 0 (2.26)

where

k2 = ω
2µε

c2

from (1.41) (or (1.116) in the case of conductivity). All material properties are
taken into account by the wavenumber k. Then the vector function M, defined by

M = rot(cψ) (2.27)

is divergence-free (divM = 0) and a solution to the vector equation


M+ k2M = 0. (2.28)

This is easy to prove either by the standard formulae of vector analysis or
component–wise. The vector function N given by

N = 1

k
rotM (2.29)

also obeys the wave equation


N+ k2N = 0 (2.30)

and M and N are related through

rotN = kM. (2.31)

2.3.2 Separation of variables

In this way, the problem of finding a solution to the vector wave equation reduces
to finding one for the scalar wave equation. We start with the vector function

M = rot(rψ). (2.32)
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M is tangential to the sphere of radius |r| because the scalar product of r and
M vanishes: r ·M = 0. In spherical polar coordinates (r, θ, φ), the wave equation
for ψ reads:

1

r2

∂

∂r

(
r2 ∂ψ

∂r

)
+ 1

r2 sin θ

∂

∂θ

(
sin θ

∂ψ

∂θ

)
+ 1

r2 sin2 θ

∂2ψ

∂φ2 + k2ψ = 0. (2.33)

We make an ansatz of separated variables

ψ(r, θ, φ) = R(r) · T (θ) · P(φ). (2.34)

Arranging (2.33) in such a way that its left-hand side depends only on r and
its right-hand side only on θ and φ, both sides must equal a constant value, which
we write as n(n + 1). In the same spirit, we can separate θ and φ. This leads to
the three equations:

d2P

dφ2 + m2P = 0 (2.35)

1

sin θ

d

dθ

(
sin θ

dT

dθ

)
+
[
n(n + 1)− m2

sin2 θ

]
T = 0 (2.36)

d

dr

(
r2 dR

dr

)
+
[
k2r − n(n + 1)

]
R = 0. (2.37)

The linearly independent solutions to (2.35) are sinmφ and cosmφ. Because
they must be single-valued (P(φ) = P(φ + 2π)) it follows that m =
0,±1,±2, . . . . Equation (2.36) is satisfied by the Legendre functions of the first
kind Pm

n (cos θ), where n and m are integer and m ∈ [−n, n]. Formula (2.37) has,
as solutions, the spherical Bessel functions of the first ( jn) and second (yn) kind

jn(ρ) =
√
π

2ρ
Jn+ 1

2
(ρ) (2.38)

yn(ρ) =
√
π

2ρ
Yn+ 1

2
(ρ) (2.39)

where ρ = kr and n + 1
2 is half-integer. Altogether we obtain

ψemn = cos(mφ) · Pmn (cos θ) · zn(kr) (2.40)

ψomn = sin(mφ) · Pmn (cos θ) · zn(kr). (2.41)

Here zn may either equal jn or yn . In the subindices of ψ , e stands for even
(associated with cosine terms) and o for odd (sine terms). As ψ is the generating
function for M, we get, from (2.27),

Memn = rot(rψemn) (2.42)

Momn = rot(rψomn). (2.43)

Nemn and Nomn then follow from (2.29).



54 How to evaluate grain cross sections

2.3.3 Series expansion of waves

In the next step, one expands the incident, internal and scattered waves into the
spherical harmonics Memn , Momn , Nemn and Nomn . Starting with the incident
plane wave Ei, the not straightforward result is

Ei =
∞∑
n=1

En
(
M(1)

o1n − iN(1)e1n

)
with En = E0i

n 2n + 1

n(n + 1)
(2.44)

where the scalar E0 denotes the amplitude of the incident wave. The awkward
expression (2.44) for the simple incident wave is the consequence of using
spherical coordinates which are not suited for planar geometry; but, of course,
these coordinates are the right ones for the scattered light. The superscript (1)
at M and N signifies that the radial dependence of the generating function ψ is
given by jn and not by yn; the latter can be excluded because of its behavior at
the origin. Note that all coefficients with m �= 1 have disappeared. For the rest of
this paragraph, the symbol m is reserved for the optical constant.

For the internal and scattered field one obtains

Ei =
∞∑
n=1

En(cnM
(1)
o1n − idnN(1)e1n) (2.45)

Es =
∞∑
n=1

En(anN
(3)
e1n − bnM(3)

o1n). (2.46)

Superscript (3) denotes that the dependence of the generating function is given
by the spherical Hankel function h(1)n (z) = jn(z) + iyn(z) of order n. At large
distances (kr � n2), it behaves like

h(1)n (kr) �
(−i)neikr
ikr

. (2.47)

The magnetic fields Hi,Hs follow from the corresponding electric fields by
applying the curl after Maxwell’s equation (1.25).

2.3.4 Expansion coefficients

The expansion coefficients in (2.45) and (2.46) follow from the boundary
conditions of the electromagnetic field at the surface of the grain. To derive the
latter, consider a small loop in the shape of a rectangle with two long and two
very much shorter sides. One long side lies just outside the particle in vacuum
and runs parallel to the surface S of the grain, the other is immediately below the
boundary within the particle. When we integrate rotE = (iωµ/c)H from (1.32)
over the rectangular loop employing Stokes’ theorem (A.15) and make the loop
infinitesimally small, the integral vanishes so that the tangential components of E
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must be continuous at the boundary of the grain. Applying the same procedure to
equation (1.33), or to (1.113) for metals, we get the same result for the tangential
component of H. Therefore, at all points x ∈ S

[E2(x)− E1(x)]× e = 0 (2.48)

[H2(x)−H1(x)]× e = 0 (2.49)

where e is the outward directed normal to the surface S. Substituting for E2,H2
from (2.24) and (2.25) yields for the components of the fields

E1θ = Eiθ + Esθ

E1φ = Eiφ + Esφ

H1θ = Hiθ + Hsθ

H1φ = Hiφ + Hsφ.

This set of equations leads to four linear equations for the expansion
coefficients an , bn , cn and dn of the internal and scattered field (see (2.45) to
(2.46)). If λ is the wavelength of the incident radiation, m the complex optical
constant of the sphere, a its radius, and

x = 2πa

λ

the size parameter, then an and bn are given by

an = ψn(x) · ψ
′
n(mx)− mψn(mx) · ψ ′n(x)

ζn(x) · ψ ′n(mx)− mψn(mx) · ζ ′n(x)
(2.50)

bn = mψn(x) · ψ ′n(mx)− ψn(mx) · ψ ′n(x)
mζn(x) · ψ ′n(mx)− ψn(mx) · ζ ′n(x)

. (2.51)

In the trivial case, when the optical constant m = 1, the scattered field
disappears as an = bn = 0. The complex functions

ψn(z) = z jn(z)
ψ ′n(z) = z jn−1(z)− njn(z)
ζn(z) = z[ jn(z)+ iyn(z)] = zh(1)n (z)
ζ ′n(z) = z[ jn−1(z)+ iyn−1(z)] − n[ jn(z)+ iyn(z)]

may be calculated from the recurrence relations [Abr70, section 10.1.19]

jn(z) = − jn−2(z)+ 2n − 1

z
jn−1(z)

yn(z) = − yn−2(z)+ 2n − 1

z
yn−1(z)
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starting with [Abr70, sections 10.1.11 and 10.1.12]

j0(z) = sin z

z
j1(z) = sin z

z2
− cos z

z

y0(z) = − cos z

z
y1(z) = −cos z

z2 −
sin z

z
.

When |mx | is of order 100 or bigger, one encounters numerical difficulties
because the complex Bessel functions contain the term ez which becomes
excessively large. A numerically much superior algorithm is printed in
appendix A of [Boh83].

2.3.5 Scattered and absorbed power

If we imagine the particle to be surrounded by a large spherical and totally
transparent surface A, the energy absorbed by the grain, Wa, is given by the
difference between the flux which enters and which leaves the sphere. If S is
the Poynting vector of the electromagnetic field outside the particle,

S = c

8π
Re{E2 ×H∗2}

where E2 or H2 is the sum of the incident and scattered field from (2.24) and
(2.25), Wa is determined by the integral

Wa = −
∫
A
S · er d A. (2.52)

Here er is the outward normal of the surface, and the minus sign ensures that Wa
is positive. The Poynting vector S can be considered to consist of three parts:

S = Si + Ss + Sext

with

Si = (c/8π)Re{Ei ×H∗i }
Ss = (c/8π)Re{Es ×H∗s }

Sext = (c/8π)Re{Ei ×H∗s + Es ×H∗i }
and, therefore,

−Wa =
∫
A
Si · er d A +

∫
A
Ss · er d A +

∫
A
Sext · er d A.

The first integral vanishes because the incident field (subscript i) enters and
leaves the sphere without modification. The second integral obviously describes
the scattered energy,

Ws = c

8π
Re
∫ 2π

0

∫ π

0

(
EsθH

∗
sφ − EsφH

∗
sθ

)
r2 sin θ dθ dφ. (2.53)
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The negative of the third integral, which we denote by −Wext, is, therefore,
the sum of absorbed plus scattered energy:

Wext = Wa + Ws

= c

8π
Re
∫ 2π

0

∫ π

0

(
EiφH

∗
sθ − EiθH

∗
sφ − EsθH

∗
iφ + EsφH

∗
iθ

)
r2 sin θ dθ dφ

(2.54)

and thus the total energy removed from the beam at a large distance. According
to our definition in section 2.1, Wa is related to the absorption coefficient of the
particle, Cabs, through Wa = SiCabs, where Si is the time-averaged Poynting
vector of the incident field. Likewise for the scattering and extinction coefficient,
Ws = SiCsca and Wext = SiCext.

2.3.6 Absorption and scattering efficiencies

As the fields Ei and Es have been evaluated in (2.44)–(2.46), one obtains from
(2.53) and (2.54) after some algebra the following formulae for the efficiencies of
extinction and scattering:

Qext = 2

x2

∞∑
n=1

(2n + 1) · Re{an + bn} (2.55)

Qsca = 2

x2

∞∑
n=1

(2n + 1) ·
[
|an|2 + |bn|2

]
. (2.56)

They must usually be evaluated with the help of a computer. The expansion
coefficients an , bn are given in (2.50) and (2.51). The asymmetry factor of (2.6)
becomes

g = 4

x2Qsca

∞∑
n=1

[
n(n + 2)

n + 1
Re{a∗nan+1 + b∗nbn+1} + 2n + 1

n(n + 1)
Re{a∗nbn}

]
.

(2.57)

2.4 Polarization and scattering

We introduce the amplitude scattering matrix, define the Stokes parameters and
compute the radiation field scattered into a certain direction. A number of results
in this section are merely summarized, not fully derived but the missing links
concern only the mathematics.

2.4.1 The amplitude scattering matrix

Consider a plane harmonic wave propagating in the z-direction and a particle at
the origin of the coordinate system. Some light is scattered by the particle into a
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certain direction given by the unit vector e. The z-axis together with e define what
is called the scattering plane.

The amplitude of the incident electric field Ei may be decomposed into
two vectors, one parallel, the other perpendicular to the scattering plane; their
lengths are denoted by Ei‖ and Ei⊥, respectively. Likewise, one may decompose
the scattered electric field Es, the components being Es‖ and Es⊥. A three-
dimensional model would help visualize the geometrical configuration but a two-
dimensional drawing is no better than words and, therefore, missing.

At a large distance r from the particle, in the far field where r � λ, there
is a linear relation between (Es⊥, Es‖) and (Ei⊥, Ei‖) described by the amplitude
scattering matrix, (

Es‖
Es⊥

)
= eik(r−z)

−ikr
(
S2 S3
S4 S1

)(
Ei‖
Ei⊥

)
. (2.58)

The factor before the amplitude scattering matrix is the same as in (2.15)
where we considered a scalar field, with only one function S. Here we deal with
vectors and there is an amplitude scattering matrix consisting of four elements Sj .
They depend, of course, on the scattering direction, which is specified by the unit
vector e or by two angles, θ and φ.

As an example, we work out the scattering matrix of a small grain of unit
volume. If its polarizability α is isotropic, its dipole, p, due to the incident wave
is

p = αEi.

The scattered electric field is given by equation (1.95),

Es = ω
2α

c2r
(e× Ei)× e.

It is always transverse to e and depends only on e and p (or Ei) and not on the
direction k from which the incident wave is coming. With the help of figure 2.4
we can easily figure out that Es‖ = cos θEi‖ and Ei⊥ = Es⊥, so for a dipole(

S2 S3
S4 S1

)
= −ik3α

(
cos θ 0

0 1

)
. (2.59)

2.4.2 Angle-dependence of scattering

In the case of a sphere, the amplitude scattering matrix (2.58) also acquires a
diagonal structure as the elements S3 and S4 vanish:(

Es‖
Es⊥

)
= eik(r−z)

−ikr
(
S2 0
0 S1

)(
Ei‖
Ei⊥

)
. (2.60)
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θ
E

k

p
i

e

Es

z

r

Figure 2.4. An incident wave with electric field Ei excites a dipole p and is scattered into
the direction of the unit vector e. The scattered wave has the electric field Es. The incident
wave travels in the direction of the wavenumber k. Both Ei and Es lie in the scattering
plane which is defined by e and k. Alternatively (this scenario is not shown in the figure),
Ei and p may be perpendicular to the scattering plane given by the same vectors k and e.
Then Es is also perpendicular to the scattering plane.

S1, S2 depend only onµ = cos θ , where θ = 0 denotes the forward direction.
They can again be expressed with the help of the expansion coefficients an, bn
from (2.50) and (2.51),

S1 =
∑
n

2n + 1

n(n + 1)
(anπn + bnτn) (2.61)

S2 =
∑
n

2n + 1

n(n + 1)
(anτn + bnπn) (2.62)

with

πn(cos θ) = P1
n (cos θ)

sin θ
τn(cos θ) = dP1

n

dθ
.

The functions πn and τn are computed from the recurrence relations

πn(µ) = 2n − 1

n − 1
µπn−1 − n

n − 1
πn−2

τn(µ) = nµπn − (n + 1)πn−1

beginning with
π0 = 0 π1 = 1.

• For unpolarized incident light (Ei‖ = Ei⊥), the intensity of the radiation
scattered into the direction θ is given by

S11(cos θ) = 1
2

[
|S1|2 + |S2|2

]
. (2.63)

The factor before the matrix in (2.60) has been negelected. The notation
S11 comes from equation (2.76); in (2.1) the same quantity was denoted �.
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When integrated over all directions,∫ π

0
S11(cos θ) sin θ dθ = 1

2 x
2Qsca.

• The angle-dependence of the normalized phase function f (cos θ) (see (2.5))
is related to S11 through

S11(cos θ) = x2Qsca

4
f (cos θ). (2.64)

• We now have two ways to determine the extinction cross section Cext =
πa2Qext of a grain. Either from (2.55) or by inserting S1(0) = S2(0) of
(2.61) into the general extinction formula (2.18). Comparison of the two
formulae yields

S1(0) = S2(0) = 1
2

∑
n

(2n + 1) · Re{an + bn}. (2.65)

• We add for completeness the formula for the backscattering efficiency. It is
defined by

Qback = 4
S11(180◦)

x2
(2.66)

and it is a useful quantity in radar measurements or whenever a particle is
illuminated by a source located between the particle and the observer. Its
series expansion is

Qback = 1

x2

∣∣∣∣ ∞∑
n=1

(−1)n(2n + 1) · (an − bn)
∣∣∣∣2. (2.67)

For a large and perfectly reflecting sphere, Qback = 1.

2.4.3 The polarization ellipse

Consider a plane harmonic wave of angular frequency ω, wavenumber k and
electric field

E(x, t) = E0 · ei(k·x−ωt)
(see (1.36) and (1.37)) that travels in the z-direction of a Cartesian coordinate
system. The amplitude E0 is, in the general case, complex,

E0 = E1 + iE2

with real E1 and E2. At any fixed z, the real part of the electric vector E rotates
at frequency ω and the tip of the vector describes in the (x, y)-plane, which is
perpendicular to the z-axis, an ellipse,

Re{E} = E1 cosωt + E2 sinωt . (2.68)
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The sense of rotation changes when the plus sign in (2.68) is altered into
a minus sign, i.e. when E2 flips direction by an angle π . There are two special
cases:

• Linear polarization. For E1 = 0 or E2 = 0, or when E1,E2 are linearly
dependent, the ellipse degenerates into a line. By adjusting the time t ,
it is always possible to make E0 real. At a fixed location z, the electric
vector swings up and down along a straight line whereby its length changes;
it vanishes when Re{E} switches direction. The field can drive a linear
oscillator in the (x, y)-plane.

• Circular polarization. The vectors are of equal length, |E1| = |E2|, and
perpendicular to each other, E1 · E2 = 0. The ellipse is a circle. At a
fixed location z, the electric vector never disappears but rotates retaining
its full length. The circularly polarized wave sets a two-dimensional
harmonic oscillator in the (x, y)-plane (with equal properties in the x- and
y-directions) into a circular motion; it transmits angular momentum.

One can combine two linearly polarized waves to obtain circular polarization
and two circularly polarized waves to obtain linear polarization. The magnetic
field has the same polarization as the electric field because E and H are in phase
and have a constant ratio.

2.4.4 Stokes parameters

The polarization ellipse is completely determined by the length of its major and
minor axes, a and b, plus some specification of its orientation in the (x, y)-plane.
This could be the angle γ between the major axis and the x-coordinate. Instead
of these geometrical quantities (a, b, γ ), polarization is usually described by the
Stokes parameters I, Q,U and V . They are equivalent to (a, b, γ ) but have the
practical advantage that they can be measured directly. We omit the underlying
simple mathematical relations as well as the description of the experimental setup.

When a plane harmonic wave is scattered by a grain, the Stokes parameters
of the incident (subscript i) and the scattered wave (subscript s) are linearly related
through 


Is
Qs
Us
Vs


 = 1

k2r2



S11 S12 S13 S14
S21 S22 S23 S24
S31 S32 S33 S34
S41 S42 S43 S44





Ii
Qi
Ui
Vi


 . (2.69)

The Stokes parameters of the scattered light as well as the matrix elements
refer to a particular scattering direction (θ, φ); r is the distance from the particle.
The matrix Si j contains no more information than the matrix in (2.58) and,
therefore, only seven of its 16 elements are independent, which corresponds to
the fact that the four elements Sj in the matrix of (2.58) have four absolute values
|Sj | and three phase differences between them.
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• Only three of the four Stokes parameters are independent as for fully
polarized light

I 2 = Q2 + U2 + V 2. (2.70)

• Unpolarized light has
Q = U = V = 0

and for partially polarized light, one has, instead of the strict equality
I 2 = Q2 +U2 + V 2, an inequality

I 2 > Q2 + U2 + V 2.

• For unit intensity (I = 1), linearly polarized light has

V = 0 Q = cos 2γ U = sin 2γ

so that
Q2 +U2 = 1.

The degree of linear polarization is defined by√
Q2 +U2

I
≤ 1. (2.71)

It can vary between 0 and 1.
• Circular polarization implies

Q = U = 0 V = ±1,

the sign determines the sense of rotation of the electric vector. The degree of
circular polarization is

−1 ≤ V

I
≤ 1. (2.72)

• Even when the incident light is unpolarized, i.e. when

Qi = Ui = Vi = 0 (2.73)

it becomes partially polarized after scattering if S21, S31 or S41 are non-zero.
Indeed, dropping the factor 1/k2r2 in (2.69), we get

Is = S11 Ii Qs = S21 Ii Us = S31 Ii Vs = S41 Ii. (2.74)

2.4.5 Stokes parameters of scattered light for a sphere

In the case of a sphere, the transformation matrix (2.69) between incident and
scattered Stokes parameters simplifies to


Is
Qs
Us
Vs


 = 1

k2r2



S11 S12 0 0
S12 S11 0 0
0 0 S33 S34
0 0 −S34 S33





Ii
Qi
Ui
Vi


 . (2.75)
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Out of the 16 matrix elements, eight are non-trivial and they have only four
significantly different values:

S11 = 1
2 (|S1|2 + |S2|2) (2.76)

S12 = 1
2 (|S2|2 − |S1|2)

S33 = 1
2 (S
∗
2 S1 + S2S

∗
1 )

S34 = i
2 (S1S

∗
2 − S2S

∗
1 ).

Only three of them are independent because

S2
11 = S2

12 + S2
33 + S2

34.

• If the incident light is 100% polarized and its electric vector parallel to the
scattering plane so that Ii = Qi, Ui = Vi = 0, we get, dropping the factor
1/k2r2 in (2.75),

Is = (S11 + S12)Ii Qs = Is Us = Vs = 0.

So the scattered light is also 100% polarized parallel to the scattering plane.
• Likewise, if the incident light is 100% polarized perpendicular to the

scattering plane (Ii = −Qi, Ui = Vi = 0), so is the scattered light and

Is = (S11 − S12)Ii Qs = −Is Us = Vs = 0.

• If the incident wave is unpolarized (Qi = Ui = Vi = 0), the scattered light
is nevertheless usually polarized; in this case,

Is = S11 Ii Qs = S12 Ii Us = Vs = 0.

When one defines the quantity p as the difference of the intensities |S1|2 and
|S2|2 divided by their sum,

p = |S1|2 − |S2|2
|S1|2 + |S2|2 = −

S12

S11
(2.77)

the absolute value |p| is equal to the degree of linear polarization of (2.71).
We will not compose a new name for p but also call it degree of polarization,
although it contains, via the sign, additional information. In the forward
direction, S1(0) = S2(0) and p = 0.

• The sign of p, or of S12, specifies the direction of polarization. Usually,
S12 is negative and then linear polarization is perpendicular to the scattering
plane. But S12 can, from (2.76), also be positive, as happens for big spheres
(see figures 4.7 and 4.8). Then polarization is parallel to the scattering plane.

In the general case, when the particles are not spherical (anisotropic) and
which is outside the scope of what we calculate here, none of the matrix elements
in (2.69) vanishes. Then the polarization vector can have any inclination towards
the scattering plane and p may also be non-zero in the forward direction.
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2.5 The Kramers–Kronig relations

The formulae of Kramers and Kronig establish a link between the real and
imaginary parts of the material constants, like χ, ε, µ or σ (see section 1.1).
Their deduction is very abstract and the result baffling. The relations have some
fundamental consequences, however, their practical value is, at present, moderate.

2.5.1 Mathematical formulation of the relations

We have to digress briefly into the theory of complex functions. Let

f (z) = u(z)+ iv(z)
be a function of the complex variable z = x + iy. The integral over a path p
in the z-plane, described through the parametrization z(t) = x(t) + iy(t) with
α ≤ t ≤ β, is defined by∫

p
f (z) dz =

∫ β

α

f (z(t)) · z′(t) dt . (2.78)

The fundamental theorem of complex functions states that if f (z) is regular
in a region G, i.e. it is single-valued and has a derivative, then the integral over
any closed path p in G vanishes:∫

p
f (z) dz = 0. (2.79)

For the function f (z) we choose

f (z) = g(z)

z − x0
(2.80)

where
g(z) = g1(z)+ ig2(z)

is also a complex function and x0 a real and positive number. If f (z) is regular
in the upper half of the z-plane, the integral along the closed path p, which is
depicted in figure 2.5, is zero according to (2.79). The path p runs along the x-
axis from left to right, makes a small semicircle of radius δ around x0, and returns
in a big half–circle of radius R to the starting position; we have divided it into
four segments p1 to p4.

Now assume that R is very big and that g(z) has the property to vanish for
|z| → ∞; the integral along the big half–circle p4 then vanishes too. The small
semicircle p2 may be parametrized by z(t) = x0 − δe−it with 0 ≤ t ≤ π . The
integral over p2 gives

−i
∫ π

0
g(x0 − δeit ) dt = −iπg(x0) for δ→ 0. (2.81)
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Figure 2.5. To derive the Kramers–Kronig relations, we integrate a function f that is
related to the dielectric susceptibility χ , or permeability ε, over a closed path (thick line)
in the complex (x, y)-plane. The path consists of four segments, p1 to p4. The points
in this plane are identified with complex frequencies ω. Only the positive x-axis has a
physical meaning but equation (2.88) allows us to define χ for any complex argument ω.

We thus have for the whole path p, from (2.79),

−
∫ ∞
−∞

g(x)

x − x0
dx − iπg(x0) = 0. (2.82)

The integral with the bar is the Cauchy principal value defined by

−
∫ ∞
−∞

g(x)

x − x0
dx = lim

δ→0

{ ∫ x0−δ

−∞
g(x)

x − x0
dx +

∫ ∞
x0+δ

g(x)

x − x0
dx

}
. (2.83)

Equation (2.82) holds separately for the real and imaginary parts. Let the function
g be symmetric (for real x) such that g(−x) = g∗(x) or

g1(−x) = g1(x) and g2(−x) = −g2(x).

Writing the integral in (2.82) over the whole x-axis as the sum of two
integrals with limits from −∞ to 0 and from 0 to +∞ and exploiting
the symmetry of g, one obtains the Kramers–Kronig relations after small
manipulations

g1(x0) = 2

π
−
∫ ∞

0

xg2(x)

x2 − x2
0

dx (2.84)

g2(x0) = − 2x0

π
−
∫ ∞

0

g1(x)

x2 − x2
0

dx . (2.85)
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Putting in (2.84) x0 = 0 yields the special case (no Cauchy principal value)

g1(0) = 2

π

∫ ∞
0

g2(x)

x
dx . (2.86)

In formula (2.83), both integrands within the big brackets go at x0 to infinity
like 1/x at x = 0. Therefore, each of the integrals alone diverges; however, their
sum is finite.

2.5.2 The electric susceptibility and causality

In the application of equations (2.84)–(2.86) to a physical situation, the complex
function g is identified with the electric susceptibility χ of (1.6) and the variable
x with the frequencyω. Likewise, we could use the dielectric permeability ε, with
the small modification that we have to put g1 = ε1 − 1 and g2 = ε2. We reiterate
that, in the constitutive relation (1.6),

P = χ(ω)E
the polarization P depends linearly on the electric field E because E is so much
weaker than the fields on the atomic level. In the most general case, the vector
P at time t is not determined by the present value of E alone but by the whole
preceding history. We, therefore, write the linear relation in the form

P(t) =
∫ ∞

0
F(τ )E(t − τ ) dτ. (2.87)

This equation specifies how P responds to the application of an electric field
E. Besides linearity, formula (2.87) also expresses causality because P(t) results
from an integration over the past. The function F(τ ) depends on time and on
the properties of the medium. It has values substantially different from zero
only in the immediate past over an interval 
τ corresponding to the time scale
for polarizing the molecules. At times much larger than 
τ , the function F(τ )
vanishes because the distant past does not influence the present.

When we consider monochromatic electric fields, E(t) = E0e−iωt , the
polarization P = χE has exactly the form of (2.87), if the dielectric permeability
is given by

χ(ω) =
∫ ∞

0
eiωτ F(τ ) dτ. (2.88)

Although only a real and positive frequency has a physical meaning, this
equation formally extends χ to any complex argument ω of the upper half of
figure 2.5; in the lower half where Im{ω} < 0, the integral (2.88) diverges. Such
an extension is necessary to perform the integration in (2.79). We summarize here
some of the properties of the electric susceptibility of (2.88):

• If |ω| → ∞, χ goes to zero. For large and real frequencies, it is
physically understandable because the electrons cannot follow the field, so
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the polarization is zero; for large imaginary ω, it is mathematically clear
because of the factor e−|ω|τ in (2.88).

• The function F(τ ) in (2.87) must for physical reasons, and to guarantee
causality, be finite over the integration interval [0,∞], i.e. over the past. As
a consequence, the susceptibility χ of (2.88) has no singularities in the upper
half of the complex ω-plane and this is a necessary condition for obtaining
the Kramers–Kronig relations (see (2.79)).

• χ fulfils the symmetry relations

χ(−ω) = χ∗(ω) for real ω (2.89)

χ(−ω∗) = χ∗(ω) for complex ω.

The last equation expresses the fact that a real field E produces a real
polarization P.

When, in (2.80), we replace g(z) by χ(ω), we may convince ourselves that
χ(ω) has all the desired mathematical properties to obey the formulae (2.84)–
(2.86), if ω0 is a real and positive frequency.

2.5.3 The Kramers–Kronig relation for the dielectric permeability

Here is the final result formulated explicitly for the dielectric permeability. For an
arbitrary medium, ε1 and ε2 are not completely independent of each other but for
any frequency ω0,

ε1(ω0)− 1 = 2

π
−
∫ ∞

0

ωε2(ω)

ω2 − ω2
0

dω (2.90)

ε2(ω0) = − 2ω0

π
−
∫ ∞

0

ε1(ω)

ω2 − ω2
0

dω. (2.91)

For the static limit of ε1 at zero frequency,

ε1(0)− 1 = 2

π

∫ ∞
0

ε2(ω)

ω
dω. (2.92)

Similar relations hold for the electric susceptibility χ , the electric
polarizability αe or the optical constant m = n + ik. Whenever the vacuum
value of the material constant is one (as for ε), the −1 appears on the left-hand
side (see (2.90) and (2.92)), when the vacuum value is zero (as for χ), the −1 is
missing.

2.5.4 Extension to metals

In a metallic medium, the conductivity σ of (1.119) also follows the Kramers–
Kronig (KK) relations. We may either put g(ω) = σ(ω) or

g(ω) = i 4πσ(ω)

ω
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which is the expression that appears in the generalized permeability of (1.115).
However, for a metallic medium we have a pole not only at ω0 (see figure 2.5)
but also at ω = 0. When, on itegrating the function g(ω)/(ω−ω0) along the real
frequency axis from −∞ to +∞, we circumvent this additional pole at ω = 0
into the upper half of the complex plane in the same way as ω0 (see (2.81)), we get
an additional term −4π2σ(0)/ω0 on the left-hand side of equation (2.82) where
σ(0) is the direct-current conductivity.

When we consider a conducting medium with a dielectric constant

ε = εd + i 4πσ

ω
= ε1 + iε2

from (1.115), equation (2.91) for ε2(ω0) has to be replaced by

ε2(ω0) = −2ω0

π
−
∫ ∞

0

ε1(ω)

ω2 − ω2
0

dω + 4πσ(0)

ω0
. (2.93)

Equation (2.90) for ε1(ω0) stays in force as it is but the long wavelength limit
ε1(0) must be adapted because ε2(ω) has a singularity at ω = 0. Going back to
the more basic formula (2.84) for ε1(ω0), there now appears a term

−
∫ ∞

0

dω

ω2 − ω2
0

which is always zero. What remains is the following modification of (2.92):

ε1(0)− 1 = 2

π

∫ ∞
0

ε2(ω)− 4πσ(0)/ω

ω
dω.

2.5.5 Dispersion of the magnetic susceptibility

The magnetic susceptibility χm is defined in equations (1.16) and (1.17) and
connects the field H with the magnetization M through

M = χmH.

M has, from (1.13) and (1.14) the physical meaning of a volume density of
magnetic moments. To speak of a magnetic susceptibility χm makes sense only
if, neglecting free charges, in the expression (1.21) for the total current density
Jtot the magnetic current dominates over the polarization current:

Jmag = c rotM � Jpol = Ṗ.

With the help of Maxwell’s equation, rotE = −Ḃ/c, we get the order of
magnitude estimate

Ṗ = χe Ė ∼ χeωE ∼ χeω
2µHl/c.
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Assuming χe, µ ∼ 1 and a typical length l that must be much greater than
an atomic radius, the condition Jmag � Jpol requires frequencies

ω � cχm/ l.

Therefore χm(ω) becomes constant and real above some critical value ωcr.
In practice, magnetic dispersion stops well below optical frequencies, so ωcr �
1015 s−1. Whereas at high frequencies the dielectric permeability ε approaches
one, the magnetic permeability µ goes to a value µcr = µ(ωcr) which may be
different from unity. This necessitates the following modification in the KK
relations:

µ1(ω0)− µcr = 2

π
−
∫ ∞

0

ωµ2(ω)

ω2 − ω2
0

dω.

2.5.6 Three corollaries of the KK relation

2.5.6.1 The dependence between ε1 and ε2

Any set of physically possible values ε1(ω) and ε2(ω) for any grain material must
obey the KK relations (2.90) and (2.91). They thus serve as a check for the internal
consistency of data measured, for example, in the laboratory or derived otherwise.
It is even sufficient to know one of them over the entire wavelength range, either
ε1(ω) or ε2(ω), to compute the other. Whereas ε1(ω) is not restricted at all, ε2(ω)

is associated with the entropy and must be positive everywhere. A data set for
ε1(ω) is wrong if it yields at just one frequency a negative value for ε2(ω).

As an example of a dispersion formula that obeys the KK relations we
may take equation (1.77) or (1.121). They apply to the harmonic oscillator or
a metal, respectively. That they fulfil the KK relations may be verified from
general mathematical considerations for the function ε(ω), which is the smart
way; or by doing explicitly the KK integrals for (1.77), that is the hard way; or
numerically, which is the brute way. Even the last method requires some delicacy
when handling the Cauchy principal value. Numerical integration is inevitable
when ε(ω) is available only in tabulated form.

When we look at the dispersion relation (1.77) and realize that ε1 and
ε2 have the same denominator and contain the same quantities e,me, γ , ω and
ω0, equations (2.90)–(2.92) which link ε1 with ε2 are no longer perplexing.
However, when we discussed the physics associated with the optical constants n
and k, which determine the phase velocity and the extinction, the two parameters
appeared very distinct and independent so that any general connection between
them comes, at first glance, as a surprise.

2.5.6.2 Dust absorption at very long wavelengths

In a slowly varying electromagnetic field, a dielectric grain of arbitrary shape and
composition absorbs, from (1.55), the power

W = 1
2Vω Im{αe}E2

0 = Cabs(ω) · S
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where V is the volume of the grain, Cabs its cross section and S = (c/8π)E2
0 the

Poynting vector. The particle has to be small, which means that the frequency
of the wave must stay below some critical value, say ω1. We now apply
equation (2.86) to the polarizability α of the grain and split the integral into two:

α1(ω = 0) = 2

π

∫ ∞
0

α2(ω)

ω
dω = 2

π

∫ ∞
0

α2(λ)

λ
dλ

= 2

π

∫ λ1

0

α2(λ)

λ
dλ+ 2

π

∫ ∞
λ1

α2(λ)

λ
dλ.

Note that we have swapped the integration variable from frequency to wavelength.
Because α2 is positive and the integral over α2/λ in the total interval [0,∞] finite,
the last integral must also be finite. If we make in the range λ > λ1 = 2πc/ω1
the replacement

α2(λ)

λ
= Cabs(λ)

8π2V

and write Cabs = σgeoQabs, where σgeo is the geometrical cross section, we get
the following convergence condition:∫ ∞

0
Qabs(λ) dλ <∞.

Therefore, the absorption efficiency of any grain must, at long wavelengths,
fall off more steeply than λ−1. But this last constraint attains practical importance
only when we know the threshold wavelength after which it is valid.

We could also have derived the result for Qabs(λ) at long wavelengths using
the dielectric permeability ε instead of αe but then metals would have required
some extra remarks because in conductors ε2 → ∞ for ω → 0, whereas their
polarizability αe stays finite (see, for instance, (3.9)). A similar discussion to the
one we carried out for αe holds for the magnetic polarizability αm.

2.5.6.3 Total grain volume

One may apply the KK relation not only to grain material but also to the
interstellar medium as such [Pur69]. Because it is so tenuous, its optical constant
m = n + ik is very close to one. A small volume V in the interstellar medium of
size d may, therefore, be considered to represent a Rayleigh–Gans particle. This
class of grains, for which |m − 1| � 1 and d|m − 1|/λ � 1, is discussed in
section 3.5. Of course, the particle is inhomogeneous as it consists of a mixture
of gas, dust and mostly vacuum but for its absorption cross section we may
nevertheless use (3.42)

Cabs(λ) = 4πV

λ
k(λ) = 2πV

λ
ε2(λ).
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The static limit (2.92) of the KK relation then gives

ε1(0)− 1 = 2

π

∫ ∞
0

ε2(λ)

λ
dλ = 1

π2V

∫ ∞
0

Cabs(λ) dλ. (2.94)

In a static electric field E, a volume V of interstellar medium with dielectric
permeability ε(0) has, from equations (1.3), (1.6) and (2.94), a dipole moment

p = ε(0)− 1

4π
EV = E

4π3

∫ ∞
0

Cabs(λ) dλ.

Alternatively, we may express p as resulting from the polarization of the
individual grains within V . They have a total volume Vg and at zero frequency a
dielectric constant εg(0), so, from (3.8),

p = 3

4π
Vg
εg(0)− 1

εg(0)+ 2
E.

When we crudely evaluate the long wavelength limit of this ratio from figure 7.19,
we obtain a value of order one,

εg(0)− 1

εg(0)+ 2
∼ 1.

Along a line of sight of length L, the optical depth for absorption is τ (λ) =
LCabs. Therefore, the total grain volume Vdust in a column of length L that
produces an optical depth τ (λ) and has a cross section of 1 cm2 is

Vdust � 1

3π2

∫ ∞
0
τ (λ) dλ.

When we take the standard normalized interstellar extinction curve of
figure 7.8 for τ (λ), which refers to a visual extinction AV = 1 mag, we obtain
for the previous integral in the interval 0.1–10 µm a value of about 2 × 10−4.
Consequently, the total dust volume in a column of 1 cm2 cross section with
AV = 1 mag is

Vdust � 6× 10−6 cm−3. (2.95)

Such an estimate is of principal value, although its precision does not allow one
to discriminate between grain models.

2.6 Composite grains

Interstellar grains are probably not solid blocks made of one kind of material
but are more likely to be inhomogeneous so that the dielectric function within
them varies from place to place. There are many ways in which inhomogeneity
can come about. For instance, if particles coagulate at some stage during their
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evolution, the result will be a bigger particle with voids inside. The new big
grain then has a fluffy structure and for its description, even if the grains before
coagulation were homogeneous and chemically identical, at least one additional
dielectric function is needed, namely that of vacuum (ε =1). If chemically
diverse particles stick together, one gets a heterogenous mixture. We note that
purely thermal Brownian motion of grains (see section 9.3) is too small to
make encounters between them significant but omnipresent turbulent velocities
of 10 m s−1 are sufficient to ensure coagulation in dense clouds. Another way to
produce inhomogeneities is to freeze out gas molecules on the surface of grains;
this happens in cold clouds. A third possibility is that during grain formation
tiny solid subparticles, like PAHs (section 12.1.1) or metal atoms, are built into
the bulk material and contaminate it chemically. The chemical composition of
interstellar dust is discussed in section 7.4 and in chapter 12.

2.6.1 Effective medium theories

The cross section of composite particles can be computed exactly in those few
cases where the components are homogeneous and the geometrical structure is
simple; examples are spherical shells, cylinders with mantles or coated ellipsoids.
For any real composite particle, where different media are intermixed in a most
complicated manner, such computations are out of the question.

To estimate the optical behavior of composite particles, one has to derive
an average dielectric function εav representing the mixture as a whole. Once
determined, εav is then used in Mie theory, usually assuming a spherical shape
for the total composite grain. The starting point is the constitutive relation

〈D〉 = εav 〈E〉. (2.96)

Here 〈E〉 is the average internal field and 〈D〉 the average displacement
defined as

〈E〉 = 1

V

∫
E(x) dV 〈D〉 = 1

V

∫
ε(x)E(x) dV . (2.97)

The integration extends over the whole grain volume V . If we envisage the
grain to consist of a finite number of homogeneous components (subscript j ),
each with its own dielectric function ε j and volume fraction f j , we can write

〈E〉 =
∑
j

f jE j 〈D〉 =
∑
j

f jε jE j . (2.98)

The E j are averages themselves (from (2.97)) over the subvolume f j V ; we
have just dropped the brackets. The constitutive relation (2.96) is thus replaced
by ∑

j

ε j f jE j = εav

∑
j

f jE j . (2.99)
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We envisage the components to be present in the form of many identical
subparticles that are much smaller than the wavelength. When such a subparticle
is placed into an extended medium with a spatially constant but time-variable field
E′, there is a linear relation between the field in the subparticle and the field in the
outer medium (see sections 3.1 and 3.3),

E j = βE′. (2.100)

When one assumes that such a large-scale average field E′ in the grain exists,
one can remove the local fields E j and find the average εav.

2.6.2 Garnett’s mixing rule

To exploit (2.99), we first imagine the grain to consist of a matrix (subscript m)
containing inclusions (subscript i ). For simplicity, let there be only one kind of
inclusions with a total volume fraction fi so that fi + fm = 1. For the constant
large-scale field E′ in (2.100), we take the field in the matrix and obtain

εi fiβ + εm fm = εav fiβ + εav fm .

For spherical inclusions, the proportionality factor β in equation (2.100) has
the form

β = 3εm
εi + 2εm

which is a generalization of equation (3.7) when the medium surrounding the
sphere is not a vacuum but has some permeability εm . We thus arrive at the
Garnett formula:

εav = εm 1+ 2 fi (εi − εm)/(εi + 2εm)

1− fi (εi − εm)/(εi + 2εm)
. (2.101)

The expression is evidently not symmetric with respect to the inclusion and
matrix. One has to make up one’s mind which component should be regarded
as the inclusion that pollutes the matrix. If the concentration of the inclusions, fi ,
is small, equation (2.101) simplifies to

εav = εm
(

1+ 3 fi
εi − εm
εi + 2εm

)
.

The Garnett mixing rule is very similar to the Clausius–Mossotti law (see
(3.55)). Indeed, the latter follows almost immediately from (2.101). The
Clausius–Mossotti law gives the dielectric constant of an inhomogeneous medium
that consists of a vacuum matrix (εm = 1) with embedded spherical inclusions,
the latter being atoms of polarizability α = (3/4π)(εi − 1)/(εi + 2).

The Garnett rule can be extended to an arbitrary number of components.
One still has to make the distinction between the matrix (subscript m) and the
inclusions (index i = 1, 2, 3, . . .). Putting as before

Ei = βiEm
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we get the following generalization of (2.101),

εav = fmεm +∑ fiβiεi
fm +∑ fiβi

(2.102)

where the sum of the volume fractions is unity,

fm +
∑
i

fi = 1.

Written in the form of (2.102), the restriction that the inclusions are spheres
has been lifted. They may be of any shape, for example ellipsoids, for which
βi can be calculated as outlined in Section 3.3. One can also take a mean over
randomly oriented ellipsoids.

2.6.3 The mixing rule of Bruggeman

Next we suppose that none of the components of the grain is special, like the
matrix in the Garnett theory. Then the components distinguish themselves only
through their permeability and volume fraction; no assumption is made about the
average field E′. Inserting (2.100) into (2.99) yields the Bruggeman rule:

0 =
∑
j

(ε j − εav) f jβ j (2.103)

with
∑

f j = 1. Contrary to the Garnett rule, this formula is symmetric in all
components j . If they consist of spherical entities,

0 =
∑
j

f j
ε j − εav

ε j + 2εav
. (2.104)

Thus for n components, εav is determined from a complex polynomial of nth
degree. When we imagine the interstellar dust to be a democratic compound
of silicate, amorphous carbon, ice and vacuum, the Bruggeman mixing rule is
preferred. However, when ice becomes dirty through contamination by tiny
impurities (metal atoms or PAHs) that amount to only a small volume fraction
( fi � fm ), the Garnett rule is more appropriate.

An illustration of how the dielectric permeabilities of two components
combine to an avarage εav is shown in figure 2.6 for the two mixing rules and for
a very idealized situation. The materials have the optical properties of harmonic
oscillators with different resonance frequencies. In the mixture, the resonances
are damped, broadened and shifted.

2.6.4 Composition of grains in protostellar cores

Likely and astronomically relevant candidates for composite grains are the solid
particles in cold and dense protostellar cloud cores (see section 15.3). Such grains
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Figure 2.6. Let the dielectric permeability of two substances, S1 and S2, be represented
by harmonic oscillators (see figure 1.2) and given by the dotted curves (top, real part ε1;
bottom, imaginary part ε2). The average permeability of a mixture of these two substances
calculated from the Bruggeman mixing rule is shown by the broken curve, that calculated
from the Garnett mixing rule, by the full line. Both components have equal volume and
both averaged permeabilities obey KK’s relations, as do, of course, the dielectric constants
of S1 and S2.

are also expected to be found in the cooler parts of stellar disks or in comets.
We figure them as fluffy aggregates, probably substantially bigger than normal
interstellar grains. They are composed of refractory (resistant to heating) and
compact subparticles made of silicates or amorphous carbon. The subparticles
are enshrouded by a thick sheet of ice as a result of molecules that have frozen
out. The volatile (easy to evaporate) ice balls with their compact cores are loosely
bound together and form, as a whole, the porous grain. In this picture, the frosting
of molecules in ice layers on the surface of the subparticles precedes the process
of coagulation.

Altogether, the grains in protostellar cores have four distinct components:

• compact silicate subparticles,
• compact carbon subparticles,
• ice sheets and
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• vacuum.

The possible diversity of such grains is infinite and their structure can be
extremely complex. The volume fractions of the components, f , add up to one,

f Si + f C + f ice + f vac = 1.

To be specific, we adopt for the volume ratio of silicate-to-carbon material
in the grain

f Si

f C
= 1.4 . . .2

compatible with the cosmic abundances in solids, and for the specific weight of
the refractory subparticles

ρref ≈ 2.5 g cm−3 ρice ≈ 1 g cm−3.

The available mass of condensable material is determined by the gas phase
abundances of C, N and O and their hydrides. Standard gas abundances imply a
ratio of volatile-to-refractory mass of

Mice

Mref
= 1 . . .2.

Consequently, the ice volume is 2.5 to 5 times bigger than the volume of the
refractories.

2.6.5 How size, ice and porosity change the absorption coefficient

These composite grains differ in three fundamental aspects from their compact
silicate and carbon subparticles:

• they are bigger because of coagulation,
• they contain ices because of frosting and
• they are porous, again because of coagulation.

Coagulation, deposition of ice and porosity each affect the absorption
coefficient and we now illustrate how. In the following examples, we fix λ to
1 mm, which is a wavelength where protostellar cores are frequently observed.

2.6.5.1 Grain size

We first investigate the influence of grain size. The mass absorption coefficient
K abs (defined in subsection 2.1.3) is for a fixed wavelength a function of grain
radius a, so K abs = K abs(a). To demonstrate the size effect, we normalize K abs

to its value when the grains are small (a � λ); it is then insensitive to a. We
adopt a = 0.1 µm, which is a typical radius of an interstellar grain and certainly
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Figure 2.7. The influence of grain growth on the mass absorption coefficient K abs for
silicate (Si) and amorphous carbon spheres (aC) at a wavelength of 1 mm. The curves
show the normalized coefficient K abs

n defined in the text. For example, the mass absorption
coefficient K abs of carbon grains increases by a factor K abs

n ∼ 50 when the radius of the
particles grows from 0.1 µm (a/λ = 10−4) to 30 µm (a/λ = 0.03).

smaller than the wavelength (1 mm). The normalized coefficient is denoted K abs
n

and defined as

K abs
n (a) = K abs(a)

K abs(0.1 µm)
.

It gives the relative change with respect to ordinary interstellar dust particles
and it is plotted in figure 2.7 for silicate and carbon spheres. The spikes in
figure 2.7 for silicates are resonances that disappear when the grains are not all of
the same size but have a size distribution. When a � λ, the normalized coefficient
K abs

n equals one and is constant because this is the Rayleigh limit. However, when
a � λ, the normalized coefficient K abs

n ∝ a−1 because Qabs ≈ 1; big lumps
are not efficacious in blocking light. For sizes in between, one has to do proper
calculations. They reveal an enhancement in the mass absorption coefficient K abs

which can be very significant (> 10) and which would strongly boost millimeter
dust emission because the latter is proportional to K abs (see section 8.1.1).

One can create plots like those in figure 2.7 for other wavelengths and optical
constants. The qualitative features stay the same but some details are quite
interesting. For example, if all particles in the diffuse interstellar medium had
a radius of 1 µm (without changing the total dust mass), the extinction optical
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Figure 2.8. The influence of kice, the imaginary part of the optical constant of ice, on the
absorption coefficient Cabs of a grain that consists of silicate and ice with a mass ratio 1:1.
The grain radius a is much smaller than the wavelength; here λ = 1 mm. The ordinate
Cabs

n gives the increase in the cross section with respect to the bare silicate core. The
solid plot refers to a coated sphere with a silicate core and an ice mantle, the broken line
to a homogeneous sphere where ice and silicate are mixed and the optical constant mav

of the mixture is computed after the Bruggeman theory. Both curves are based on Mie
calculations.

depth at 2.2 µm (K-band) would be almost ten times larger than it really is.

2.6.5.2 Ice mantles

Next we illustrate the influence of ice in the grain material, again for a wavelength
λ = 1 mm. We take a silicate sphere of arbitrary radius a � λ and deposit an
ice mantle of the same mass on it; such a mass ratio of ice to refractory core is
suggested by the cosmic abundances in the case of complete freeze–out. The total
grain’s volume is then three and a half times bigger and the mass twice that of the
bare silicate core. The relevant parameter for the absorption coefficient Cabs is
kice, the imaginary part of the optical constant of ice. It depends on how much the
ice is polluted by impurities. Estimates for kice at this wavelength are around 0.01
but uncertain. Defining the normalized absorption coefficient of a single grain by

Cabs
n = Cabs(core+ ice)

Cabs(core)
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Figure 2.9. The influence of porosity on the grain cross section. The normalized cross
section Cabs

n is defined in the text. The mass of the grain is kept constant and does not vary
with the vacuum fraction fvac, while the optical constant of the grain, which is calculated
here after Bruggeman, changes with fluffines. The compact particle has mSi = 3.5+i0.04.

we learn from figure 2.8 that an ice mantle enhances Cabs by a factor Cabs
n ∼ 3 if

kice = 0.01. Note that an ice mantle increases Cabs even when kice = 0 because
the mantle grain is larger than the refractory core and collects more light. We also
show in figure 2.8 the value of Cabs

n when the ice is not in a mantle but mixed
throughout the grain.

2.6.5.3 Fluffiness

A porous grain also has a greater absorption cross sectionCabs than a compact one
of the same mass. We consider, in figure 2.9, silicates with vacuum inclusions;
the normalized cross section Cabs

n is defined by

Cabs
n = Cabs(fluffy grain)

Cabs(compact grain of same mass)
.

When the volume fraction of vacuum, f vac, equals zero, the grain is
compact. Fluffy grains are obviously better absorbers because they are bigger.
A porosity parameter f vac between 0.4 and 0.8, which may or may not be
a reasonable estimate for interstellar conditions, suggests an increase in the
absorption coefficient by a factor of two.



Chapter 3

Very small and very big particles

In sections 2.3 and 2.4, we presented general solutions of the field equations
in the case when a plane wave interacts with a particle with simple geometry;
there we stressed the mathematical aspects. Usually, when we want to extract
numbers from the theory for a specific astronomical application, we have to
deliver ourselves to the mercy of a computer. No matter how efficient such a
machine is, it is wise to retain some mental independence and bring to one’s
mind the physical aspects: computing must not be confused with understanding.
In a few simple configurations, analytical solutions are possible and we turn to
these in this chapter. They illuminate the problem and are useful for checking the
correctness of a computer program.

3.1 Tiny spheres

We derive the efficiencies for small spheres of dielectric material. This is the basic
section for understanding how and why interstellar dust absorbs and scatters light.

3.1.1 When is a particle in the Rayleigh limit?

When a sphere has a radius, a, which is small compared with the wavelength λ,
i.e. when the size parameter

x = 2πa

λ
� 1 (3.1)

the calculation of cross sections becomes easy. The particle itself is not required
to be small, only the ratio a/λ. In fact, a may even be big. So the heading of
this section is suggestive but not precise. With regard to the thermal emission of
interstellar grains, which occurs at wavelengths where the condition λ � a is
usually very well fulfilled, one may use for the computation of cross sections, the
approximations given here. If we additionally stipulate that the product of the size
parameter multiplied by optical constant, m = n + ik, be small,

|m|x � 1 (3.2)

80
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we ensure two things:

• because kx � 1, the field is only weakly attenuated in the particle; and
• because nx � 1, the wave traverses the particle with the phase velocity

vph = c/n in a time τ � nxω−1 which is much shorter than the inverse
circular frequency ω−1.

Grains for which conditions (3.1) and (3.2) hold are said to be in the Rayleigh
limit. This concept can be applied to any particle, not just spheres, if one
understands by the size parameter the ratio of typical dimension over wavelength.

3.1.2 Efficiencies of small spheres fromMie theory

A purely mathematical approach to finding simple expressions for the efficiencies
of small spheres is to develop the first coefficients a1, b1 in the series expansion
(2.50) and (2.51) for Qext and Qsca into powers of x and retain only terms up to
x5:

a1 = − i 2x3

3

m2 − 1

m2 + 2
− i 2x5

5

(m2 − 2)(m2 − 1)

(m2 + 2)2
+ 4x6

9

(
m2 − 1

m2 + 2

)2

+ O(x7)

b1 = − i x
5

45
(m2 − 1)+ O(x7).

• Usually non-magnetic materials (µ = 1) are considered. Then the term with
x3 in the coefficient a1 yields the electric dipole absorption, the one with x6

electric dipole scattering:

Qext � 6

x2 Re{a1} � 4x Im

{
m2 − 1

m2 + 2

}
= 4x Im

{
ε − 1

ε + 2

}

= 8πa

λ

6nk

(n2 − k2 + 2)2 + 4n2k2 =
8πa

λ

3ε2

|ε + 2|2 (3.3)

Qsca � 6

x2
|a1|2 � 8

3
x4

∣∣∣∣∣m
2 − 1

m2 + 2

∣∣∣∣∣
2

. (3.4)

If x is small, both Qext and Qsca approach zero. Because

Qabs ∝ x and Qsca ∝ x4

scattering is negligible at long wavelengths and extinction is reduced to
absorption:

Qabs � Qext.

With respect to the wavelength behavior, this suggests the frequently cited
dependences

Qsca
λ ∝ λ−4 and Qabs

λ ∝ λ−1
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for scattering and absorption. However, they are true only if m(λ) is more or
less constant.

• Because the optical constant m is, from (1.46), symmetric in ε and µ,

m2 = (n + ik)2 = εµ (k > 0)

equation (3.3), which contains only the coefficient a1, is for purely magnetic
material (µ �= 1, ε = 1) replaced by

Qabs
λ =

8πa

λ
· 3µ2

|µ+ 2|2 . (3.5)

The dissipation process refers to magnetic dipole oscillations and is relevant
only at frequencies ω < 1012 s−1.

• The coefficient b1 is discussed in section 3.2 for a non-magnetic conductor
and presents magnetic dipole absorption (see (3.26)).

3.1.3 A dielectric sphere in a constant electric field

Besides cutting off the series expansion in Mie theory after the first term, there is
another approach to obtaining Qsca and Qext for small particles that gives physical
insight. We now restrict the discussion to a dielectric medium. When x � 1 and
|mx | � 1, the electric field in the grain changes in a quasi-stationary fashion.
When we want to calculate the field in such a configuration, we are reduced to an
exercise in electrostatics. The basic equations valid everywhere are

rotE = 0 divD = 0.

They impose the boundary conditions that the tangential component of the
electric field E and the normal component of the displacement D are continuous
on the grain surface. For a homogeneous medium (ε = constant), this leads to the
Laplace equation


ϕ = 0

where ϕ is the potential related to the field through E = −∇ϕ.
When we place a sphere of radius a, volume V and dielectric constant ε into

a constant field E, the field becomes deformed. Let the sphere be at the center of
the coordinate system. We label the field inside the sphere by Ei and outside it
(external) by Ee. For the potential ϕ of the deformed field we make the ansatz

ϕ =
{
−E · r+ c1

E · r
r3

outside sphere

−c2E · r inside sphere
(3.6)

where r is the position coordinate of length r = |r|, and c1, c2 are constants. In
the absence of the sphere, the potential is simply

ϕ0 = −E · r.
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Equation (3.6) reflects the expected behavior of the field. Inside the sphere,
Ei is constant and parallel to E; outside, Ee is the sum of a dipole, which is
induced by E and goes to zero at large distances, plus the constant field E. We
determine c1 and c2 from the conditions on the grain surface. Continuity of
the tangential component of the electric field implies continuity of the tangential
derivative of ϕ, from which it follows that ϕ is itself continuous (parallel and
perpendicular to the surface). This gives c2 = 1 − c1/a3. Continuity of the
normal component of the displacement D yields εc2 = 1 + 2c1/a3. Hence we
derive

c1 = a3 ε − 1

ε + 2
c2 = 3

ε + 2

and, therefore,

Ei = 3

ε + 2
E for r ≤ a. (3.7)

Note that the field is smaller inside the body than outside, E i < E . Because
the polarization is given by (see (1.6))

P = ε − 1

4π
Ei

the induced dipole moment of the grain is

p = PV = a3 ε − 1

ε + 2
E = αeVE (3.8)

and the electric polarizability αe becomes (see (1.8))

αe = 3

4π

ε − 1

ε + 2
. (3.9)

For other grain geometries there would be other dependences of αe on ε.
Equation (3.7) gives the internal field. If e denotes the unit vector in the direction
r, the outer field Ee is the sum of E plus a dipole field:

Edip = 3e(e · p)− p
r3 (3.10)

so

Ee = E− αeV grad

(
E · r
r3

)
= E+ Edip. (3.11)

3.1.3.1 A coated sphere in a constant electric field

It is not difficult to repeat the previous exercise for a sphere covered by a
homogeneous shell. There is then a core (index 1) enveloped by a mantle (index
2) of a different substance. One now has boundary conditions at the interface
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between the two materials and, as before, on the outside. If f denotes the volume
fraction of the inner sphere relative to the total sphere,

f =
(
a1

a2

)3

≤ 1

expression (3.9) for the polarizability becomes a bit lengthy:

αe = 3

4π
· (ε2 − 1)(ε1 + 2ε2)+ f (ε1 − ε2)(1+ 2ε2)

(ε2 + 2)(ε1 + 2ε2)+ f (2ε2 − 2)(ε1 − ε2)
.

3.1.4 Scattering and absorption in the electrostatic approximation

3.1.4.1 Scattering

The field E is not really static but oscillates proportionally to E0e−iωt and so,
synchronously, does the dipole moment p. The oscillating dipole, which is now
the grain as a whole, emits radiation. Its average power integrated over all
directions is W = |p̈|2/3c3 and follows from (1.97). However, W must also
equal the total power scattered from the incident wave by the particle, therefore,

W = 1

3c3 |p̈|2 = S Csca. (3.12)

For the dipole moment, we have to insert p = αeVE and for the time-
averaged Poynting vector S = (c/8π)E2

0 from (1.39), therefore

Csca = 8π

3

(ω
c

)4
V 2|αe|2. (3.13)

The electric polarizability αe for spheres is given by (3.9). It was obtained
in the electrostatic approximation. Can we use it in the case when ω �= 0? Yes,
we can because the variations of the field are assumed to be slow, so the electron
configuration is always relaxed. This means the electrons always have sufficient
time to adjust to the momentary field, just as in the static case. Of course, the
polarization of the medium is not that of a static field. Instead, the dielectric
permeability must be taken at the actual frequency ω of the outer field. Because
ω �= 0, the permeability ε(ω) is complex, which automatically takes care of the
time lag between P and E. We thus find

Csca = πa2Qsca = 24π3V 2

λ4

∣∣∣∣ε − 1

ε + 2

∣∣∣∣2 (3.14)

which agrees with equation (3.4) for the scattering efficiency Qsca.
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3.1.4.2 Absorption

We can find the absorption coefficient of a small dielectric or magnetic grain if
we use (1.55) or (1.57) and set the absorbed power equal to SCabs. This gives

Cabs = 4π

c
ωV Im{α}. (3.15)

But let us be more elaborate and assume that the grain consists of NV
harmonic oscillators excited in phase, V being the volume and N the oscillator
density. The power W absorbed by the oscillators can be expressed in two ways,
either by the dissipation losses of the harmonic oscillators given in (1.69) or via
the Poynting vector S multiplied by the absorption cross section Cabs, so

W = V N γ E
2
0e

2

2me

ω2

(ω2
0 − ω2)2 + ω2γ 2

= SCabs.

When we substitute the dielectric permeability of the harmonic oscillator
after (1.77), we can transform this equation into

Vc

4λ
ε2E

2
0 = SCabs. (3.16)

For the electric field E0 which drives the oscillators, we must insert the field
Ei inside the grain according to (3.7), and not the outer field E. When we do
this, we recover the efficiency for electric dipole absorption of (3.3) but now we
understand the physics:

Cabs = 6πV

λ
Im

{
ε − 1

ε + 2

}
= Vω

c

9ε2

|ε + 2|2 . (3.17)

3.1.5 Polarization and angle-dependent scattering

For small spheres, the scattering matrix given in (2.75) reduces further (we drop
the factor in front of the matrix):

Is
Qs
Us
Vs


 =




1
2 (1+ cos2 θ) − 1

2 sin2 θ 0 0
− 1

2 sin2 θ 1
2 (1+ cos2 θ) 0 0

0 0 cos θ 0
0 0 0 cos θ





Ii
Qi
Ui
Vi


 (3.18)

θ = 0 gives the forward direction. There are several noteworthy facts:

• The scattering pattern no longer depends on wavelength, as the matrix
elements contain only the angle θ .

• Scattering is symmetrical in θ about π/2 and has two peaks, one in the
forward, the other in the backward (θ = π) direction.
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• The matrix element S12 < 0, so the polarization is perpendicular to the
scattering plane.

• If the incident radiation has unit intensity and is unpolarized (Ii = 1, Qi =
Ui = Vi = 0), we have

Is = 1
2 (1+ cos2 θ) Qs = − 1

2 sin2 θ Us = Vs = 0.

The degree of linear polarization becomes

p = sin2 θ

1+ cos2 θ
. (3.19)

• Consequently, the light is completely polarized at a scattering angle of 90◦.
• The intensity of the scattered light, and thus the phase function f (θ, φ), is

proportional to 1 + cos2 θ . As a result, the integral in (2.6) vanishes and
the asymmetry factor becomes zero, g = 0, although scattering by a small
sphere is not isotropic.

3.1.6 Small-size effects beyond Mie theory

A real grain is not a homogeneous continuum but a crystal built up from atoms,
rather regularly spaced and separated by a distance r0, the lattice constant. Mie
theory, which is based on the classical electrodynamics of a continuous medium,
fails when the structure of matter or quantum effects become important. A more
general theory is then needed to describe the optical behavior of particles. We
will consider some quantum effects when we discuss PAHs, a specific kind of
very small carbon grains. Here we only remark on the influence of the surface in
the case of small grains.

Whereas atoms inside the particle are surrounded from all sides, the situation
is different for those on the surface which have bonds only towards the particle’s
interior. This has consequences, for example, for their ability to bind to gas atoms
or for the specific heat of the grain. If the particle has a diameter a, the ratio of
the number of surface atoms Nsurf to all atoms N in the grain is roughly

Nsurf

N
� 6

r0

a
.

As the lattice constant is of order 2 Å, a substantial fraction of atoms is on
the surface only when the particle is small. One way in which the surface affects
the optical grain properties can be understood when we interpret the damping
constant γ in the motion of an electron (see (1.59)) as a collision frequency with
atoms of the crystal. If the particle is small, an additional term must be added to
the damping constant that comes from collisions (reflections) at the surface. Free
electrons in a metal move with the Fermi velocity

vF = �

me

3
√

3π2ne
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which is the threshold speed of fully degenerate (non-relativistic) electrons and
follows from the Fermi energy of (6.54). For example, in graphite with an electron
density ne � 1020 cm−3 and γ = 5 × 1012 s−1, one estimates that noticeable
changes in γ , and thus in the dielectric permeability, occur for sizes a ≤ 50 Å.

3.2 A small metallic sphere in a magnetic field

The case of a small metallic sphere in an electric field is included in the previous
derivation for the dipole moment p by making ε in equations (3.9) very large, then

p = a3E.

The charges on the metal surface become polarized in the outer field but
the electric field does not penetrate into the particle. One might, therefore, think
there would be no absorption and just scattering with an efficiency Qsca = 8x4/3
(because Im{(ε − 1)/(ε + 2)} = 0, one has to use the x6 term in the coefficient
a1 of equation (3.3)). But not quite because we have neglected in our small-size
approximation the magnetic field which is also present in a wave. Let us now
include it; Mie calculations automatically do.

When we place a particle in a constant magnetic field H, there is a formal
identity with electrostatics. There are the same types of equations,

rotH = 0 divB = 0

and the same boundary conditions on the surface: the tangential component of
H and the normal of B = µH are continuous. So there is nothing new in
magnetostatics.

3.2.1 Slowly varying field

The situation becomes interesting when the magnetic field H is slowly alternating,
say, proportionally to e−iωt . Slowly means that H is spatially uniform over the
dimension of the body or, in other words, that the particle is small. The magnetic
field Hi inside the sphere is then also changing and induces an electric field E.
The presence of E in the conductor implies a current and, therefore, ohmic losses;
their time average is σE2. When one knows Hi, one can derive the induced field
E either from the Maxwell equation (1.25),

rotE = i µω
c

Hi

or for a slowly changing field from (1.114),

4πσ

c
E = rotHi.
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But one cannot use the static solution Hstat because it fulfils divHstat = 0 and
rotHstat = 0 and thus gives no electric field at all. Instead, to determine the
internal field Hi, we start with the wave equation (1.34),


Hi + k2Hi = 0 (3.20)

together with divHi = 0. The square of the wavenumber is given by (1.116).
When metallicity dominates (ω|εd | � 4πσ ),

k2 = i 4πσωµ

c2
.

We solve (3.20) by noting that the scalar function

f (r) = sin(kr)

r

is a spherically symmetric solution of


 f + k2 f = 0

(see the Laplace operator in (2.33)). Because H is constant, the vector potential,
A, defined by the function

A = β rot( fH)

also fulfils the wave equation


A+ k2A = 0.

We have used this result before in section 2.3 (see equations (2.26)–(2.28)).
The constant β will be adjusted later. If we now put

Hi = rotA

the equations divHi = 0 and 
Hi + k2Hi = 0 are fulfilled, as required.
To evaluate the somewhat complicated expression Hi = β rot rot( fH), we use
formula (A.6) and the easy-to-prove relations

div( fH) = H · ∇ f ∇ f = e
k cos kr − f

r

( fH) = −k2 fH.

Here e is a unit vector in the direction of r. When one works it out, one obtains
for the magnetic field inside the sphere

Hi = β
(
f ′

r
+ k2 f

)
H− β

(
3 f ′

r
+ k2 f

)
e(e ·H).
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3.2.2 The magnetic polarizability

In analogy to (3.11), the (perturbed) field He outside the sphere, for which
rotHe = 0 and divHe = 0, can be written as

He = H+ Vαm
3e(e ·H)−H

r3 .

αm denotes the magnetic polarizability and

m = VαmH

is the magnetic dipole moment of the sphere of radius a and volume V . The
factors αm and β follow from the boundary conditions on its surface by equating
Hi = He for e ·H = 0 and e ·H = H. We find β = 3/[2k2 f (a)] and

αm = − 3

8π

(
1− 3

a2k2 +
3

ak
cot ak

)
. (3.21)

With αm, we can determine the dissipation rate W in a grain after (1.57), we
do not have to integrate σE2 over the particle volume. When we divide W by the
Poynting vector, we get the absorption cross section of a magnetic dipole.

3.2.3 The penetration depth

Even when the particle is small compared to the scale on which the outer magnetic
field changes, as we assume in this chapter, the magnetic field may not fully
pervade it. To see how far it can penetrate, we apply the wave equation (3.20) to
a simple one-dimensional situation, where a plane wave falls on a metal surface.
Suppose the field vector H is parallel to the x-axis and a function of z only,

H = (Hx(z), 0, 0)
and the (x, y)-plane marks the surface of the metallic body. Then with µ = 1,

∂2Hx
∂z2

+ k2Hx = 0 where k =
√
i4πσω

c
=
√

2πσω

c
(1+ i). (3.22)

At the boundary of the body, H = H0e−iωt and inside it (z > 0), the field
has the form

Hi = H0e
−iωt eikz = H0e

−z/δei(−ωt+z/δ).

It falls off exponentially in the metal and, therefore,

δ = c√
2πσω

= 1+ i
k

(3.23)
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is a characteristic scale for the penetration depth of the magnetic field into the
particle: the lower the frequency, the greater δ becomes. The electric field has the
same penetration depth and follows from (1.114),

E = (1− i)
√

ω

8πσ
Hi × ez (3.24)

where ez is the unit vector in the direction of the z-axis. E is parallel to the y-axis.

3.2.4 Limiting values of the magnetic polarizability

The formula (3.21) for the magnetic polarizability αm of a sphere simplifies
further when the penetration depth δ, which we just introduced, is small or large
compared to the grain radius. At any rate, the grain is always small compared to
the wavelength, a � λ = 2πc/ω.

• If the penetration depth is large (a � δ), we develop the cotangent function
in (3.21) to fifth order in ka, where

ka = (1+ i)a
δ
= (1+ i)a

√
2πσω

c
� 1.

Then the first two terms in the bracket of (3.21) cancel out and we obtain for
the magnetic polarizability in the low frequency limit

αm = − 1

105π

(a
δ

)4 + i 1

20π

(a
δ

)2
. (3.25)

A metallic sphere of radius a and conductivity σ has then at frequency ω the
cross section for magnetic dipole absorption

Cabs = 8π2σ

15c3
ω2a5. (3.26)

• If the penetration depth is small (δ � a � λ), the magnetic polarizability
becomes

αm = − 3

8π

[
1− 3δ

2a

]
+ i 9

16π

δ

a
(3.27)

and

Cabs = 3

√
π

2σ
a2ω1/2. (3.28)

3.3 Tiny ellipsoids

The treatment of a sphere in a constant electric field may be extended to ellipsoids.
In analogy to the previous discussion, we can determine their scattering and
absorption cross section once we have worked out the dipole moment that they
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acquire and the strength of their internal field. An ellipsoid has three principal
axes a, b, c. We use here the convention

a ≥ b ≥ c
and that a is aligned along the x-axis of a Cartesian coordinate system.

3.3.1 Elliptical coordinates

Ellipsoids are naturally handled in elliptical coordinates. They are defined as
follows: For any three numbers a, b, c with

a > b > c > 0

the function

f (u) = x2

a2 + u +
y2

b2 + u +
z2

c2 + u − 1 (3.29)

is of third order in u. It has poles at −a2,−b2,−c2 and for reasons of continuity
must vanish somewhere in each of the intervals (−a2,−b2), (−b2,−c2) and
(−c2,+∞). Therefore, f (u) has three real roots, named ξ, η, ζ , with

ξ > −c2 − c2 > η > −b2 − b2 > ζ > −a2. (3.30)

(ξ, η, ζ ) are called elliptical coordinates because for u = ξ , the equation f (ξ) =
0 describes an ellipsoid that has the same foci as the ellipsoid

x2

a2 +
y2

b2 +
z2

c2 = 1. (3.31)

For u = η or u = ζ , one obtains confocal hyperboloids. The essential point
is that ξ is constant on the surface of an ellipsoid. If a = b = c, we are reduced
to a sphere and f (u) has only one root.

Equation (3.29) constitutes a set of three equationswhen we put u = ξ, u =
η or u = ζ . To transform the elliptical into Cartesian coordinates, one has to solve
this set for x, y and z. This gives, for example,

x = ±
√
(ξ + a2)(η + a2)(ζ + a2)

(b2 − a2)(c2 − a2)

and corresponding expressions for y and z. We will again need the Laplace
equation 
ϕ = 0, this time in elliptical coordinates. Dividing the Laplace
operator
ϕ by 1

4 (ξ − η)(ζ − ξ)(η − ζ ), one gets

(η−ζ )Rξ ∂
∂ξ

(
Rξ
∂ϕ

∂ξ

)
+ (ζ −ξ)Rη ∂

∂η

(
Rη
∂ϕ

∂η

)
+ (ξ−η)Rζ ∂

∂ζ

(
Rζ
∂ϕ

∂ζ

)
= 0.

(3.32)
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The expressions

Ru =
√
(u + a2)(u + b2)(u + c2) (u = ξ, η, ζ )

are related to the length element ds in elliptical coordinates by

ds2 = h2
ξdξ

2 + h2
ηdη

2 + h2
ζ dζ

2

with

hξ =
√
(ξ − η)(ξ − ζ )

2Rξ
hη =

√
(η − ζ )(η − ξ)

2Rη
hζ =

√
(ζ − ξ)(ζ − η)

2Rζ
.

3.3.2 An ellipsoid in a constant electric field

3.3.2.1 The dipole potential

Imagine an ellipsoidal grain with principal axes a > b > c at the center of a
Cartesian coordinate system. Its boundary is given by (3.31) or, equivalently, by
ξ = 0. Let the outer electric field E be directed parallel to the x-axis and thus to
the axis a of the ellipsoid. In analogy to (3.6), we write

ϕ =
{
ϕ0[1+ F(ξ)] outside ellipsoid
c2ϕ0 inside ellipsoid

(3.33)

where ϕ0 = −E · r is the potential of the unperturbed field. The function F
depends only on ξ , and ϕ0F is the perturbation evoked by the grain; c2 is a
constant. When we insert ϕ = ϕ0(1 + F) into (3.32) and take into account that
also for the perturbation
(ϕ0F) = 0, we arrive at the differential equation

0 = F ′′ + F ′
(

1

ϕ2
0

+ Rξ
R′ξ

)
= F ′′ + F ′ d

dξ
ln[Rξ (ξ + a2)]. (3.34)

A prime here and later denotes the derivative with respect to ξ . There are two
solutions to (3.34): F = constant, which applies to the interior of the grain, and

F(ξ) = c1

∫ ∞
ξ

dx

(x + a2)Rx
. (3.35)

Far away from the grain, the perturbation ϕ0F has the form characteristic
of a dipole. At great distance r = √

x2 + y2 + z2, at least one of the Cartesian
coordinates is large, so the terms a2, b2, c2 in (3.29) are negligible and r � ξ1/2.
This allows us to evaluate the integral in (3.35) and one obtains the dipole
potential

F(ξ) � 2c1

3
ξ−3/2 ∝ r−3.
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3.3.2.2 The shape factor

As in the case of a sphere, we derive the constants c1, c2 from the continuity
conditions on the surface where ξ = 0. Continuity of the tangential electric field,
or of ϕ, gives c2 = 1+ F(0). The normal component of the displacement yields

εc2ϕ
′
0(0) = ϕ′0(0) · [1+ F(0)] + ϕ0(0) · F ′(0)

and from there follows

c2 = 2a2 F
′(0)
ε − 1

.

Defining the shape factor

La = abc

2

∫ ∞
0

dx

(x + a2)Rx
(3.36)

we find

c2 = 1

1+ La(ε − 1)
c1 = − abc(ε − 1)

2[1+ La(ε − 1)] .

3.3.2.3 The polarizability of an ellipsoid

With c1 and c2 being determined, we know the electric field in and around an
ellipsoid. The internal field is constant and parallel to E,

Ei = E
1+ La(ε − 1)

. (3.37)

With the same arguments as in (3.8) for a sphere, the dipole moment of the
ellipsoid becomes

p = ε − 1

3[1+ La(ε − 1)]E (3.38)

and its polarizability, when the electric field is parallel to axis a,

αa = ε − 1

4π[1+ La(ε − 1)] . (3.39)

3.3.3 Cross section and shape factor

Because of our experience with spheres, we can immediately write down the
formulae of the scattering and absorption cross section, Csca and Cabs, for
ellipsoids. In the case of scattering, equation (3.12) for dipole radiation is
applicable with the dipole moment p from (3.38). Absorption is still proportional
to grain volume V , so we use (3.16) but now with E0 = |Ei| from (3.37). This
gives

Cabs = 2πV

λ
Im

{
ε − 1

1+ La(ε − 1)

}
(3.40)

Csca = 8π3V 2

3λ4

∣∣∣∣ ε − 1

1+ La(ε − 1)

∣∣∣∣2 . (3.41)
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1 2

a

c a

c

light

Figure 3.1. A cigar rotating about axis b, which is perpendicular to the page in this book.
Light is traveling in the indicated direction. After a quarter of the rotation cycle, the cigar
has changed from position 1 to position 2.

When the electric field is parallel to axis b or c, and not to axis a as we have
assumed so far, the only thing that changes for the cross section is the shape factor
of (3.36). We then have to replace La by

Lb = abc

2

∫ ∞
0

dx

(x + b2)Rx
or Lc = abc

2

∫ ∞
0

dx

(x + c2)Rx

respectively. We can easily check that the sum over all shape factors is one:

La + Lb + Lc = 1

so only two of the three L values are independent. Obviously, with a = b = c,
all Ls are equal to 1

3 and we recover the formulae of the polarizability and cross
sections for spheres.

Only in the Rayleigh limit does the cross section C depend solely on the
direction of the electric field and not on the direction of wave propagation.
Consider, for example, the cigar in figure 3.1 and let the electric vector E swing
parallel to axis c. The cross section is then the same for light that falls in parallel
to axis a or parallel to axis b (which is perpendicular to a and c). In the first case,
the projected surface is a small circle, in the second it is a broad ellipse and much
bigger.

When the small ellipsoid is very transparent (|ε| � 1), the shape factors
loose their importance, the electric field inside and outside are more or less equal,
Ei = E, and the polarizability α = (ε−1)/4π = χ . The absorption and scattering
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coefficient are then independent of the axial ratios and of orientation,

Cabs(λ) = 2πV

λ
ε2(λ) (3.42)

Csca(λ) = 8π3V 2

3λ4
|ε − 1|2. (3.43)

3.3.4 Randomly oriented ellipsoids

When an ellipsoid of fixed orientation in space is illuminated by an
electromagnetic wave, the grand principle of superposition allows us to split
the electric field vector E of the wave into components along the orthogonal
ellipsoidal axes a, b, c:

E = (E cosα, E cosβ, E cos γ ).

Here E = |E| and cos2 α + cos2 β + cos2 γ = 1. Interestingly, for arbitrary
grain orientation the internal field Ei is not parallel to the outer field E, even if
the grain material is isotropic; Ei and E are parallel only when E is directed along
one of the principal axes.

If Ca,Cb,Cc denote the cross sections of the ellipsoid when the principal
axes a, b, c are parallel to the electric vector E of the incoming wave, the total
cross section of the grain can be written as

C = Ca cos2 α + Cb cos2 β + Cc cos2 γ. (3.44)

Without alignment, we expect, in interstellar space, random rotation and thus
random orientation of the grains. For an ensemble of particles, all directions are
equally likely and the mean of cos2 x over 4π is (see (2.2))

〈cos2 x〉 = 1

4π

∫ 2π

0
dy
∫ π

0
dx cos2 x sin x = 1

3
.

As the terms on the right-hand side of (3.44) are independent of each other,
the average cross section for identical ellipsoids under random orientation is equal
to the arithmetic mean:

〈C〉 = 1
3Ca + 1

3Cb + 1
3Cc. (3.45)

Equations (3.44) and (3.45) are true only in the electrostatic approximation.

3.3.5 Pancakes and cigars

When two of the principal axes are equal, the ellipsoid is called a spheroid.

• If then the two equally long axes are larger than the third one, a = b > c,
the body has the shape of a pancake.
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Figure 3.2. The shape factor for oblate (pancake) and prolate (cigar) spheroids. It can be
found by numerically evaluating the integral in (3.36) or by using the analytical expressions
(3.47) and (3.48).

• Otherwise, if a > b = c, it resembles a cigar.

More educated terms are oblate and prolate spheroids. We will see in
chapter 10 that pancakes and cigars, besides being nourishing or fragrant, can
explain why and how stellar light is polarized by dust clouds. The shape factor of
(3.36) now permits an analytical solution (figure 3.2). Defining the eccentricity e
through

e2 = 1− c2

a2
, (3.46)

• cigars have a > b = c, Lb = Lc and

La = 1− e2

e2

[
−1+ 1

2e
ln

(
1+ e
1− e

)]
(3.47)

• pancakes have a = b > c, La = Lb, and

La = g(e)

2e2

[π
2
− arctan g(e)

]
− g2(e)

2
with g(e) =

√
1− e2

e2
. (3.48)
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For very long cigars (needles) and very flat pancakes e = 1 and La = 0, so
Lb = Lc = 1

2 . A sphere is the subcase when e = 0 and all shape factors are equal
to 1

3 .
Figure 3.3 displays, over a broad wavelength band, what happens to the

optical depth when we replace spheres of a fixed radius by randomly oriented
spheroids, identical in shape and of the same volume as the spheres. It turns out,
although not as a strict rule, that ellipsoids have a higher average cross section,
Cav, than spheres and the effect increases with eccentricity. We can understand
this because Cav is, from (3.45), the arithmetic mean over Ca,Cb,Cc. When we
evaluate the Cs assuming a ≥ b ≥ c we find that (mostly) Ca ≥ Cb ≥ Cc in such
a way that the increase in Ca more than offsets the decline in Cb or Cc.

With fixed eccentricity, the cross section is still a function of the optical
constant m and thus of wavelength λ. Any wiggle in m due to a resonance will
be reflected in the curves. We show results for silicate and carbon particles and
we can readily identify the resonances in silicate at 10 and 18 µm by comparison
with figure 7.19. The difference between cigars and pancakes is mild. Overall,
the effect of particle elongation on the optical depth is more pronounced in the far
than in the near infrared. For example, grains with an axial ratio of two, which
implies an eccentricity of 0.866, are at λ ≥ 100 µm by some 30% better emitters
or absorbers than spheres.

As a further sophistication, one can treat optically anisotropic ellipsoids.
Graphite particles are an example. When the carbon sheets are stacked parallel
to the (x, y)-plane, one has εx = εy �= εz . It is also not difficult to extend the
computations of cross sections to coated ellipsoids but for particulars.

3.3.6 Rotation about the axis of greatest moment of inertia

The cross section of spinning particles changes periodically and one has to take
time averages. Suppose a spheroid rotates about the major axis where the moment
of inertia is greatest. For cigars, this is axis b or c, for pancakes it is axis c. The
rotation axis stays fixed in space, while the other two are spinning. Let the light
propagate in a direction perpendicular to the rotation axis and let

CE‖rot CE⊥rot

denote the time-averaged cross sections in the case when the electric vector of the
incident wave is parallel and perpendicular to the rotation axis, respectively.

Figure 3.1 shows such a situation for a spinning cigar with rotation axis b.
Because the mean of cos2 x over a half-cycle is

〈cos2 x〉 = 1

π

∫ π

0
cos2 x dx = 1

2

we find that the average cross sections, CE‖rot and CE⊥rot, depend on the direction
of linear polarization of the incident wave,

CE⊥rot = 1
2

[
Ca + Cc

]
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Figure 3.3. The cross section of spheres over that of randomly oriented spheroids of the
same volume. Calculations are done in the electrostatic approximation implying grains
much smaller than the wavelength. The eccentricity of the spheroids defined in (3.46) is
indicated. The grains consist of amorphous carbon (aC, top) or silicate (Si, bottom); optical
constants for the two materials from figure 7.19.

CE‖rot = Cb < CE⊥rot.

If a pancake rotates about its axis of maximum moment of inertia, which is
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c, and light comes in perpendicular or parallel to c, no averaging is necessary and

CE⊥rot = Ca
CE‖rot = Cc < CE⊥rot.

The effective cross section for incident unpolarized light is

C = 1
2

[
CE‖rot + CE⊥rot

]
.

To calculate in chapter 10 the degree of polarization produced by grains, we
need the difference


C = CE⊥rot − CE‖rot.

• For cigars (a > b = c and Cb = Cc):
C = 1

4Ca + 3
4Cc 
C = 1

2

[
Ca − Cc

]
(3.49)

• for pancakes (a = b > c and Ca = Cb):

C = 1
2

[
Ca + Cc

]

C = Ca − Cc. (3.50)

If the light travels parallel to the rotation axis of the spheroid (axis b for
cigars, axis c for pancakes), there are, on average, no polarization effects.

3.4 The fields inside a dielectric particle

3.4.1 Internal field and depolarization field

We determined in equation (3.7) the field Ei inside a dielectric sphere that sits
in a time-constant homogeneous outer field E. In section 3.3 we generalized to
ellipsoids. In both cases, the polarization P of the medium is constant and the
field inside smaller than outside. Writing the internal field Ei in the form

Ei = E+ E1

defines a new field E1. It arises from all atomic dipoles and is directed opposite
to the polarization P. Because E i < E , one calls E1 the depolarization field (see
figure 3.4). For example, from (3.7) we find for a sphere

E1 = −4π

3
P. (3.51)

It is important to make a distinction between the local field at exactly one
point and macroscopic averages. E1 and Ei are such averages over many atoms,
a hundred or so but at least over one unit cell in a crystalline structure. On a
microscopic level, the field has tremendous gradients. Atoms are not at random
positions but at privileged sites (lattice grid points are loci of minimum potential
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energy) and the local field Eloc acting on an atom is usually different from the
average field Ei, so generally

Eloc �= Ei.

To find Eloc at a specific locus in the grain, say at x0, we have to add to
E the fields from all dipoles. As the dipoles are at discrete lattice points, their
distribution is not smooth, at least, it does not appear to be so close to x0. We,
therefore, imagine a spherical cavity around x0 of such a size that beyond the
cavity the dipole distribution may be regarded as smooth, whereas inside it, it is
discontinuous, so

Eloc = E+
∑

outside

Edip +
∑

cavity

Edip. (3.52)

The field arising from the smooth distribution outside the cavity can be
expressed as a volume integral, the field from the dipoles within the cavity has
to be explicitly written as a sum.

3.4.2 Depolarization field and the distribution of surface charges

A body of constant polarization P has, on its outside, a surface charge σ of
strength

σ = e · P (3.53)

where e is the outward surface normal. This expression for σ follows when
we recall that according to (1.20) a non-uniform polarization creates a charge
ρpol = − divP. Inside the body, the divergence of the polarization vector is zero
and ρpol = 0 but on its surface, P is discontinuous and a charge appears.

There is a theorem which states that for any body of constant polarization
P, the depolarization field E1 is identical to the field that arises in vacuum from
the distribution of surface charges as given by (3.53). Let ϕ(r) be the electrostatic
potential from all dipoles in the body. We prove the theorem by writing ϕ(r) as a
volume integral,

ϕ(r) = −
∫
(P · ∇r−1) dV .

This is correct because a single dipole p has a potential

ϕdip = −p · ∇
(

1

r

)
.

Now we transform the volume integral into a surface integral employing the
relation div( f P) = f divP+ P · ∇ f . With f (r) = 1/r and divP = 0, we get

ϕ(r) = −
∮

1

r
P · dS =

∮
σ

r
dS.

The second integral sums up the potentials from all surface charges and their
total field is thus equivalent to the field of all atomic dipoles.
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3.4.3 The local field at an atom

The ‘outside’ sum in (3.52) may be evaluated by an integral. According to our
theorem, it is equivalent to the field from the surface charges. However, there are
now two boundaries. The outer, S1, gives the depolarization field E1. The inner,
S2, has the same surface charge as a sphere in vacuum of constant polarization P,
only of inverted sign. Comparing with (3.51), we find that the surface charge on
S2 produces the field (4π/3)P.

It remains to include the atoms in the spherical cavity S2. Suppose we have
a cubic lattice, the dipoles are at positions (xi, yi, zi), their moments are all of
strength p and aligned in the z-direction, the point x0 is at the origin. Then the
z-component of the total field from all dipoles at x0 is (see (3.10))

∑
cavity

(Edip)z = p
∑
i

3z2
i − r2

i

r5
i

= p
∑
i

2z2
i − x2

i − y2
i

r5
i

= 0

where ri =
√
x2
i + y2

i + z2
i is the distance of dipole i to the origin. The sum

is zero because of the symmetry of the grid. Likewise the x- and y-components
of the total field vanish. So we can neglect the influence of the nearest atoms
altogether. We expect that we may also neglect it if there is no grid order at all,
i.e. in an amorphous substance. For such a situation, therefore,

Eloc = Ei + 4π

3
P. (3.54)

Given the outer field E, the local field Eloc at an atom depends on the shape
of the particle. For example, for a spherical grain we derive from (3.54) with the
help of (3.7) and (3.8):

Eloc = E.

For a body in the shape of a thin slab with parallel surfaces perpendicular to
E, which is the configuration of a parallel–plate condenser, one finds

Eloc = E− 8π

3
P.

3.4.4 The Clausius–Mossotti relation

The local field Eloc produces in each atom of volume V a dipole moment

p = αV E loc.

Hence α is called the atomic polarizability. The formula is analogous to (1.8)
which we applied to a grain as a whole. If there are N atoms per unit volume, the
polarization of the matter is, in view of (3.54),

P = NV αE loc = NV α

(
Ei + 4π

3
P

)
.
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E

E

E1

i

S1

S2

Figure 3.4. A field E produces on a dielectric grain a surface charge σ . According to
a theorem of electrostatics, σ gives rise to a field E1 that combines with E to form the
average internal field Ei. The latter is not necessarily equal to the local field Eloc at a
particular atom or unit cell (central larger dot in inner circle) in a crystal. To find Eloc, one
has to take into account the regularly but discontinuously arranged dipoles (small dots)
in the vicinity as well as those farther away which can be considered as being distributed
smoothly (shaded area). S1 and S2 denote surfaces.

Because P = χE i (see (1.6)), one can relate the dielectric susceptibility χ
of the medium to the polarizability α of the atoms. This is done in the Clausius–
Mossotti formula:

χ = NV α

1− 4π
3 NV α

. (3.55)

The field exerts forces on an atom and distorts the cloud of electrons; it
attracts them one way and pushes the heavy nuclei the opposite way. This can
be modeled with the harmonic oscillator of section 1.3. When we take for
the amplitude of the electron, x0, the value from (1.67) but without damping
(γ = 0), and equate the dipole moment p = ex0 to αE loc, we get the electronic
polarizability

α(ω) = e2

me(ω
2
0 − ω2)

. (3.56)

It is relevant at optical frequencies because the electrons have little inertia
and can swiftly follow the field. The resonance frequency ω0 of the atom lies
typically in the ultraviolet. The static value of the atomic polarizability in a
constant field is α0 = e2/meω

2
0.
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3.5 Very large particles

A particle is defined to be very large when its size is much bigger than the
wavelength. As in the case of tiny grains, the definition is relative and the same
particle may be both small and large, depending on the wavelength. To quantify
the diffraction phenomena that occur around very big grains, we have to study
basic optical principles.

3.5.1 Babinet’s theorem

For any very large particle the extinction efficiency,

Qext = Qabs + Qsca

approaches two, independently of the chemical composition or shape of the
particle. This important result is called Babinet’s theorem or extinction paradox.
For spheres,

Qext → 2 when x = 2πa

λ
→∞. (3.57)

We illustrate Babinet’s theorem with an experiment carried out in three steps
as sketched in figure 3.5:

(1) When a parallel wavefront falls on an orifice, which is much bigger than the
wavelength, it produces, on a far-away screen, a bright spot with a blurred
rim. Outside the bright spot and the rim, the screen is dark. We restrict the
discussion to this dark area.

(2) If one places a small, but still much bigger than λ, obstacle into the orifice, a
diffraction pattern appears and light is scattered beyond the blurred rim into
the former dark area.

(3) If we cover the orifice with black paper leaving just a hole of the same size
and shape as the obstacle, the diffraction patterns of the hole and the obstacle
are identical. According to Huygens’ principle for wave propagation (this
result will be shown later), the diffraction pattern of the obstacle arises
because each point in the plane of the orifice, except for the obstacle itself,
is the origin of a spherical wave; the diffraction pattern of the hole arises
because each point in the plane of the hole is the origin of a spherical wave.

In the case of the completely uncovered orifice (1), both diffraction patterns
are present simultaneously. Because the region beyond the blurred rim is then
dark, the patterns from the obstacle and the hole must cancel each other exactly,
i.e. they must have the same intensity but be phase-shifted by 180◦. As the hole
scatters all the light falling onto it, the obstacle must scatter exactly the same
amount. Altogether the obstacle thus removes twice as much light than that which
corresponds to its projected geometrical surface: half of it through scattering, the
other half by absorption and reflection,
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2) obstacle

hole3)

dark area
1)

bright spot

Figure 3.5. A diffraction experiment to explain Babinet’s theorem.

Scattering at the edge of a large obstacle is, however, predominantly forward.
Therefore Qext = 2 can only be verified at far distances; it is always valid for
interstellar grains. At short distances, we know from everyday experience that a
brick removes only as much sunlight as falls onto its projected surface and not
twice as much.

3.5.2 Reflection and transmission at a plane surface

3.5.2.1 Normal incidence

A ray of light travels in the positive z-direction and hits, under normal incidence,
a large particle as shown in figure 3.6. We wish to evaluate which fraction of the
incident flux is reflected. This quantity is denoted by r and called the reflectance.
If k1 = √ε1µ1ω/c is the wavenumber from (1.41) in the medium on the left
(z < 0), and k2 = √ε2µ2ω/c in the medium on the right (z > 0), we obtain for
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incident

reflected

0 z

transmitted

optical constant  m

Figure 3.6. Light falls perpendicular on a plane surface, some is reflected and some
transmitted. The medium to the right (z > 0) has an optical constant m = n + ik.

the electric field

E = Eie
i(k1·z−ωt) + Ere

i(−k1·z−ωt) for z < 0 (3.58)

E = Ete
i(k2·z−ωt) for z > 0. (3.59)

To the left-hand side, we have the incident and the reflected wave (indices
i and r), to the right only the transmitted wave (index t). At the surface of the
particle (z = 0), the tangential components of the electric and magnetic field are
continuous. When we express the magnetic field via the rotation of the electric
field (see (1.32)), we find, at z = 0,

Ei + Er = Et

Ei − Er = Et

√
ε2µ1

ε1µ2
.

This immediately allows one to calculate the reflectance r = |Er/Ei|2. The
most common case is the one where there is a vacuum on the left and the grain is
non-magnetic (µ2 = 1). The optical constant of the particle then equalsm = √ε2
and the reflectance is given by

r =
∣∣∣∣1− m1+ m

∣∣∣∣2 = (n − 1)2 + k2

(n + 1)2 + k2
. (3.60)

For a large sphere (x = 2πa/λ � 1), the reflectance equals the backscatter
efficiency Qback of (2.67).

Should n or k be large, the reflectivity is high and absorption low. Metal
surfaces make good mirrors because they have a large optical constant m and
n � k (see (1.117)). However, if k � 0, the reflectivity grows with n. A pure
diamond sparkles at visual wavelengths because k is small and n = 2.4, so the
reflectivity is high (r = 0.17). If the stone in a ring is a fake, of standard glass
which has n = 1.5, it will catch less attention because it reflects only 4% of the
light, not 17%.

We see from (3.59) how the light that enters into a large and absorbing
particle is attenuated. The amplitude of its electric field is weakened
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proportionally to exp(−2πkz/λ), so the intensity It of the transmitted light
diminishes like exp(−4πk/λz). Per wavelength of penetration, the intensity
decreases by a factor exp(−4πk). Unless k is very small, the transmitted light
is removed very quickly and the penetration depth is only a few wavelengths.

One may wonder about the implications of formula (3.60) for a blackbody.
By definition, it has zero reflectance and would, therefore, require the optical
constant of vacuum (m = 1). But a vacuum is translucent. So no real substance
is a perfect absorber. A blackbody can be approximated by a particle with n→ 1
and k → 0; the particle must also have a very large size d such that kd/λ is much
greater than one, despite the smallness of k.

3.5.2.2 Oblique incidence

We generalize the reflectance r of (3.60) to the case of oblique incidence. If the
incident beam is inclined to the normal of the surface element of the particle by
some angle θi > 0, the reflected beam forms an angle θr = θi with the normal.
The angle of the transmitted beam is given by Snell’s law:

sin θt = sin θi

m
. (3.61)

Whereas for a non-absorbing medium, m and θt are real, in the generalized
form of (3.61) m and also θt are complex. One now has to specify in which
direction the incident light is polarized which is not necessary under normal
incidence. For incident unpolarized light the reflectance is

r = 1

2

∣∣∣∣cos θt − m cos θi

cos θt + m cos θi

∣∣∣∣2 + 1

2

∣∣∣∣cos θi − m cos θt

cos θi + m cos θt

∣∣∣∣2 . (3.62)

Using this formula, we can determine the limiting value of Qabs and Qsca for
very large spheres. If the particle is translucent (k = 0), it only scatters the light;
then Qabs = 0 and Qsca = Qext = 2 according to Babinet’s theorem. If k > 0,
any light that enters the grain will, under the assumption of ray optics, eventually
peter out within it. One can define a reflection efficiency Qref for spheres by

πa2Qref =
∫ a

0
2πr(x) dx (3.63)

where r(x) is the reflectance after (3.62) for an incident angle θi = arcsin(x/a)
and a is the grain radius. Qref lies between 0 and 1 and is related to Qabs through
Qabs = 1 − Qref. So the absorption efficiency for large particles can never be
greater than one, only smaller if some fraction of light is reflected off the surface.

3.5.3 Huygens’ principle

In figure 3.7, a point source Q emits isotropically radiation. On any spherical
surface S around Q, the oscillations of the electromagnetic field are in phase
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S’
S

r
r0

Q dσ

Figure 3.7. A spherical wavefront traveling from a point source Q at velocity c.

forming a wavefront. According to Huygens’ principle, each surface element
dσ is the source of an elementary (or secondary) spherical wave. The strength
of the elementary waves is proportional to the amplitude of the primary field
and to the area dσ . It also depends on direction, being greatest radially away
from Q and zero towards the rear; a more detailed description is not given. The
superposition (interference) of all elementary waves of equal radius originating
from the surface S fixes the position of the wavefront in the future and thus
describes the propagation of the primary wave. For instance, if the wavefront
is, at time t , on the surface S of figure 3.7, a time 
t = r/c later it will be again
on a spherical surface but of radius r0 + r . The new surface S′ is the envelope
of all elementary waves of radius r . Outside S′, the field of elementary waves is
extinguished by interference.

Applied to plane waves, which are spherical waves of very large radius,
Huygens’ principle makes understandable why light propagates along straight
lines. It also explains the laws of refraction and reflection in geometrical optics.
To derive them from Huygens’ principle, one just has to assume that all surface
elements on the plane separating two media of different optical constants, n1 and
n2, oscillate in phase and emit elementary waves which propagate with the phase
velocity v = c/n of the respective medium.

If there is an obstacle in the way of the primary wave, some region on the
surface of its wavefront, corresponding in size and shape to the projected area
of the obstacle, does not create secondary waves. Then the superposition of the
remaining elementary waves leads to diffraction patterns. Interesting examples
are the intensity distribution of light behind a straight wire or a slit, or the fuzzy
edges of shadows. Light no longer travels only on straight lines but can bend
around corners.
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S

S’

r
P

Figure 3.8. To evaluate the field u at point P inside a region G when u is known on its
surface S.

3.5.3.1 Kirchhoff’s strict formulation of Huygens’ principle

Kirchhoff put Huygens’ principle in a mathematically rigorous form. He was able
to determine the electromagnetic field u at any point P inside a region G when u
is known on the surface S of the region G (see figure 3.8). The field u must obey
the wave equation:


u + k2u = 0. (3.64)

We have already discussed plane waves, u = ei(k·x−ωt), as a solution to
(3.64) in section 1.2. Spherical waves where u depends only on the distance
r = √x2 + y2 + z2 so that

1

r

d2

dr2
(ru)+ k2u = 0

are another type of solution. By introducing the auxiliary function v = ru, one
finds

u = ei(kr−ωt)

r
. (3.65)

Equation (3.65) describes an outward-going spherical wave; the time factor e−iωt
is again included.

As formula (3.64) is akin to the Laplace equation, 
φ = 0, which is
encountered in electrostatics and where φ is the electric potential, one can use
the familiar formalism of electrostatics to solve it. To determine u at a point
P inside a bounded region G when u is given on its surface S, we use Green’s
identity (see (A.14)),∫

G
(u
v − v
u) dV =

∮
S

(
u
∂v

∂n
− v ∂u

∂n

)
dσ

where the function v is defined as

v = eikr

r
.
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Figure 3.9. A point source Q isotropically emits light. The field u in P at a distance
R = QP is calculated from Huygens’ principle in the form (3.66). It is assumed that u is
known on the spherical surface S around Q with radius r0. To carry out the integration,
one constructs Fresnel zones Z1, Z2, Z3, . . . . They are the intersection of S with shells
around P of inner and outer radius R − r0 + ( j − 1)λ/2 and R − r0 + jλ/2, respectively,
j = 1, 2, 3, . . . .

The radius r counts the distance from the point P where we want to evaluate
the field u. At P , there is a singularity because r = 0. To circumvent it, one
cuts out from G a small sphere around P of surface S′. The volume integral in
Green’s identity is then taken only over the remaining region without the small
sphere; this remaining region is called G. The surface integral in Green’s identity
now extends over S and S′. Because in G, the wave equation is fulfilled for u and
v, i.e. 
u + k2u = 0 and 
v + k2v = 0, the volume integral vanishes and only
the surface integral is left. Letting the radius of the small sphere around P go to
zero, one eventually arrives at an equation that incorporates Huygens’ principle,

4πup = −
∮
S

(
u
∂

∂n

eikr

r
− eikr

r

∂u

∂n

)
dσ. (3.66)

3.5.4 Fresnel zones and a check on Huygens’ principle

To convince ourselves that (3.66) is indeed a strict form of Huygens’ principle,
we show, as had been asserted before (figure 3.7), that the field from a point
source emitting spherical waves can be considered to result from interference of
secondary spherical waves. The new configuration is depicted in figure 3.9. At
P , a distance R from the point source Q, the field is, of course,

up = eikR

R
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We claim to obtain the same result from superposition of all secondary waves
emitted from the spherical surface S. So we calculate u p from (3.66) supposing
that we know the field and its normal derivative on S. On the surface S,

u = u0 = eikr0

r0
�⇒ ∂u

∂n

∣∣∣∣
0
= −e

ikr0

r0

(
ik− 1

r0

)
.

The region G surrounding P , over whose surface one has to integrate,
comprises now all space outside the sphere of radius r0. The contribution to the
integral (3.66) of the surface which is at infinity may be neglected, we only have
to consider the surface S. Because

∂

∂n

eikr

r
= eikr

r

(
ik− 1

r

)
cos(n, r)

where r is the radius vector from P to S and r = |r|, we get

4πup = −
∮
S

eik(r+r0)

rr0

{
(ik− r−1) cos(n, r)+ (ik− r−1

0 )
}
dσ. (3.67)

If the distances are much greater than the wavelength (r, r0 � k−1 = λ/2π),

4πup = −ike
ikr0

r0

∮
S

eikr

r
[1+ cos(n, r)] dσ.

We evaluate this integral as a sum and, for this purpose, divide the surface S
into so called Fresnel zones. These are segments on S lying between constant radii
r and r + λ/2. The surface normal n of a given segment forms an approximately
constant angle cos(n, r) with the radius vector r. The area of a segment is

dσ = 2πrr0

R
dr.

The contribution u j of the j th zone Z j to the field at P follows from a simple
integration over r , in the limits R − r0 + jλ/2 and R − r0 + ( j − 1)λ/2, at fixed
[1+ cos(n, r)],

u j = eikR

R
(−1) j+1[1+ cos(n, r)

]
.

The first zone alone, if all others were covered by some dark material, yields

u1 = 2eikR

R
.

The contributions from the following zones alternate in sign. The first two zones
together produce almost nothing but darkness. The last zone is the one on the far
side of the sphere which, like the first, is intersected by the straight line through
P and Q. It is not difficult to work out the sum

∑
u j over all Fresnel zones. One

really obtains eikR/R, and this strengthens our confidence in Huygen’s principle.
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Figure 3.10. Light falls from Q though an orifice S and is observed at P.

3.5.5 The reciprocity theorem

As very big particles block practically all light that falls onto them, interesting
phenomena occur only through diffraction at their edges. Suppose we have a
source Q behind an opaque plane with an orifice S of arbitrary shape and we want
to determine the intensity u p at a point P in front of the plane (see figure 3.10).
We compute it from superposition of secondary waves from the orifice S.

To first order, geometrical optics is valid and the hole deflects light only by
small angles. Therefore we approximate equation (3.67) under the assumption
r, r0 � k−1 by

up = − i
λ

cos θ

rr0

∮
S
eik(r+r0) dσ. (3.68)

Here cos θ � 1
2 [cos(n, r)− cos(n, r0)], and θ is the angle between QP and

the normal of the plane. The distances r and r0 are also almost constant and may
therefore stand before the integral; however, eik(r+r0) varies of course over the
hole because it is many wavelengths across. The symmetry of formula (3.68)
with respect to r and r0 implies that when a source at Q produces a field up at P ,
the same source brought to the point P produces the same field at Q. This is the
reciprocity theorem of diffraction theory.

3.5.6 Diffraction by a circular hole or a sphere

Equation (3.68) gives the field of an electromagnetic wave that has passed through
an orifice. We now apply it to a circular hole of radius a and remember from the
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Figure 3.11. The source Q is behind a circular hole (dash-dot line) and illuminates the
point P on a screen. The hole is in the (x, y)-plane of the Cartesian coordinate system
with origin C . The x-axis is perpendicular to the page of the book.

subsection on Babinet’s theorem that a spherical obstacle will produce the same
diffraction pattern.

The configuration is shown in figure 3.11. It is assumed that the hole is small
(s � R, R0) and that Q,C and P lie roughly on a straight line so that cos θ (see
figure 3.10) is close to one and may be omitted. R0 and R are the distances from
the center C of the Cartesian coordinate system (x, y, z) to the source Q and
the observing point P , respectively; r is the distance between P and an arbitrary
surface element dσ located at A; r0 is the distance between Q and dσ . The
coordinates of the points marked in figure 3.11 are

A = (x, y, 0) Q = (0, 0,−R0) P = (0, yp, zp) C = (0, 0, 0).

As we have to integrate over the hole, it is advantageous to use cylindrical
coordinates (s, ϕ, z), where

s2 = x2 + y2 x = s sin ϕ y = s cosϕ.

Because

r2
0 = R2

0 + s2 r2 = x2 + (yp − y)2 + z2
p R2 = y2

p + z2
p

it follows that r0 � R0+ s2/2R0 and r � R+ (s2− 2yyp)/2R. Neglecting terms
of order s2 or higher, which implies s � yp, one obtains

r + r0 � R + R0 − yp

R
s cosϕ.
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Because dσ = s · ds dϕ, the integral in (3.68) becomes,∮
S
eik(r+r0) dσ = eik(R+R0)

∫ a

0
ds s

∫ 2π

0
dϕ e−ikαs cosϕ.

We have introduced the deflection angle α = yp/R. To evaluate the double
integral, one uses complex integer Bessel functions Jn(z) defined in (A.21). The
formulae (A.22)–(A.24) yield for the double integral

2π
∫ a

0
ds s J0(kαs) = 2πa2 J1(akα)

akα

and thus

|u p|2 = 4π2a4

λ2r2r2
0

·
(
J1(akα)

akα

)2

. (3.69)

The Bessel function J1(x) is tabulated in mathematical encyclopediae. For
small x , J1(x)→ 1

2 x ; at x = 1, this approximation has an error of roughly 10%.
The intensity |u p|2 drops to half its maximum value at α = 0 at a deflection angle

αhalf � 1.617
λ

2πa
. (3.70)

For example, in the visual bound, for a grain with 1 mm diameter, αhalf is about
1 arcmin.

It may seem puzzling that the intensity of the light which one observes at
P and which is equal to |u p|2 rises with the fourth power of the hole radius a,
although the flux passing through the hole increases only with a2. But as the
hole becomes bigger, the diffraction pattern gets smaller and, in the end, as much
energy as falls onto the hole from the source emerges on the other side; energy is
conserved.

3.5.7 Diffraction behind a half-plane

As a final example, we derive the intensity pattern on a screen behind a half-plane
(wall). This problem affords a nice graphical solution. The situation is depicted
in figure 3.12. To determine the field at P , opposite to S, one has to sum up
all elementary waves from the plane in which the wall lies. Because we assume
yp− y � R, the path T P is approximately equal to R+(yp− y)2/2R. Therefore,
the wave from T has, relative to the wave emitted from S, a phase lag

δ = 2π

λ

(yp − y)2
2R

.

Note that the phase lag δ increases quadratically with (yp−y). At P , the field
vectors E j of all elementary waves have to be added up. They have practically all
the same length but different directions. This leads to the so called cornu-spiral
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Figure 3.12. Light comes in from the left, is blocked by a wall and observed at various
points on a screen. A blurred rim appears near P2.

of figure 3.13. The asymptotic points of the spiral are A and B . If one connects
any two neighboring dots in figure 3.13 by a small arrow, this arrow corresponds
to a particular vector E j . The following vector E j+1 is rotated by an angle that
increases as one approaches the asymptotic points, thus the curvature of the spiral
increases too. The sum of all field vectors E j at the point P has two parts:

• the first includes all E j of elementary waves emitted from points above S,
up to infinity; and

• the second consists of all E j from points below S, down to the edge of the
wall.

Their sum, which is the resulting field at P , is represented in figure 3.13 by a
large arrow. It starts at A and ends at the dot which corresponds to the elementary
wave from the rim of the wall.

If we observe at position P2, opposite to the edge of the wall, the large arrow
in figure 3.13 would end in the middle of the spiral at the fat point. Observing at
P1, a position below the edge of the wall, it ends in the lower half of the spiral.
At point P3, which is far up on the screen, the arrow goes from A almost to B .
Obviously, the intensity at P2 is four times smaller than at P3.

Figure 3.14 also gives roughly the variation of light at the ‘blurred rim’
around the bright spot mentioned in the discussion of Babinet’s theorem (see the
top of figure 3.5); the hole was assumed to be much bigger than the wavelength so
that sections of its rim can be approximated by a straight line. But exactly behind
a sphere at large distances there is, from (3.69), always a maximum intensity
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Figure 3.13. The cornu-spiral. The squared length of the plotted vector gives the intensity
at a point somewhere above P2 in figure 3.12, see text.

Figure 3.14. The normalized intensity around position P2 in figure 3.12. On the bright
side of the screen, the intensity oscillates and approaches unity. On the dark side, it falls
smoothly to zero which is geometrically clear from figure 3.13. At exactly P2 (yp = 0),
the intensity equals 0.25.

because the waves from the circular rim are all in phase on the center line and
interfere there constructively.

The separation between the first two maxima in figure 3.14 is 1.42 in
units

√
λR/π . Here is an astronomical application of this result which can,
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and has been, observationally checked. The silvery moon on its heavenly orbit
(R = 384 000 km) moves relative to the stars with an angular velocity of
0.54 arcsec s−1. If it occults a quasar, which happens to lie on its path, its
intensity will oscillate as shown in figure 3.14. If the quasar is observed at the
radio wavelength λ = 11 cm and if it is much smaller than 1 arcsec and crosses
the rim of the moon at a right angle, the second intensity maximum follows the
first after 5.2 s.

3.5.8 Particles of small refractive index

A grain that fulfils the conditions that

• its optical constant is close to unity,

|m − 1| � 1 or n � 1, k � 0 (3.71)

• and that it is more or less transparent,

d

λ
|m − 1| � 1, (3.72)

is called a Rayleigh–Gans particle. Otherwise it may be of arbitrary shape and
size; it may, therefore, be big compared to the wavelength. Inside such a particle,
the electromagnetic field is only weakly deformed and practically the same as in
the incoming wave. If we imagine the total grain volume V to be divided into
many tiny subvolumes vi with

∑
vi = V , each of them absorbs and scatters

independently of the others. For example, if the subvolumes are ellipsoids, their
absorption and scattering cross sections are given by (3.42) and (3.43), which we
derived in the Rayleigh limit. Consequently, the absorption cross section Cabs of
the total grain is also given by formula (3.42). Therefore, the absorption efficiency
of a Rayleigh–Gans sphere for any x is

Qabs = 8x

3
Im{m − 1}.

To find the scattering cross section or the scattered intensity in a certain
direction, one cannot simply sum the contributions of the subvolumes because
there is a phase difference between them which leads to interference. It is this
effect which, for large bodies, tends to reduce Csca(λ) with respect to (3.43).
The formalism for how waves originating from different points (subvolumes) are
added up is basically the same as that discussed in section 2.2 on the optical
theorem. The analytical computation of the scattering cross section or the
phase function is, however, complicated, even for simple grain geometries (see
examples in [Hul57]). Of course, everything can be extracted from the full Mie
theory but not in analytical form.
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Here are some results for spheres: If x is the size parameter and γ =
0.577 215 66, Euler’s constant,

Qsca = |m − 1|2ϕ(x)
with

ϕ(x) = 5

2
+ 2x2 − sin 4x

4x
− 7

16x2
(1− cos 4x)

+
(

1

2x2
− 2

)[
γ + log 4x +

∫ ∞
4x

cos u

u
du

]
.

For x � 1, we obtain the Rayleigh limit

Qsca = 32
27 |m − 1|2x4

and for x � 1, we get
Qsca = 2|m − 1|2x2.

The latter is much smaller than for large, non-transparent spheres which
always have Qsca ∼ 1. The scattered intensity I (θ) is proportional to

I (θ) ∝ G2(2x sin 1
2θ)(1+ cos2 θ)

with

G(u) =
(

9π

2u3

)1/2

J3/2(u)

where J3/2(u) is a half-integer Bessel function.

3.5.9 X-ray scattering

We now apply the results obtained for particles of small refractive index to X-
rays. At a wavelength of, say 10 Å, interstellar dust particles are always big
because x = 2πa/λ � 1. The value of the dielectric permeability in this range
may be estimated from the high-frequency approximation (1.79), which gives

ε1 = 1− ω
2
p

ω2 � 1 ε2 =
ω2

pγ

ω3 � 1

where ωp is the plasma frequency and γ a damping (not Euler’s) constant. As
the frequency ω is large, we expect ε1 to be close to one and ε2 to be small, so
|ε − 1| � 1; likewise for the optical constant, |m − 1| � 1. The grains are,
therefore, very transparent and even satisfy condition (3.72):

2πa

λ
|m − 1| � 1.
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For big spheres, scattering is very much in the forward direction defined by
θ = 0. Therefore, the angular dependence of the scattered intensity is given by

I (θ) ∝ G2(u) with u = 2x sin 1
2θ.

When one numerically evaluates the function G2(u), one finds that it has
its maximum at u = 0, drops monotonically, like a bell-curve, reaches zero at
about 4.5 and then stays very small. Consequently, there is forward scattering
over an angle such that θx ∼ 2. For grains of 1000 Å radius, this corresponds to
θ ∼ 10 arcmin. One can, therefore, observe towards strong X-ray sources located
behind a dust cloud an X-ray halo of this size. The intensity towards it follows
from the fact that the total scattered X-ray flux is smeared out over the halo.



Chapter 4

Case studies of Mie calculus

We have collected the tools to calculate how an electromagnetic wave interacts
with a spherical grain. Let us apply them. With the help of a small computer,
the formulae presented so far allow us to derive numbers for the cross sections,
scattering matrix, phase function, and so forth. In this chapter, we present
examples to deepen our understanding. To the student who wishes to perform
similar calculations, the figures also offer the possibility of checking his computer
program against the one used in this text.

4.1 Efficiencies of bare spheres

4.1.1 Pure scattering

As a first illustration, we consider the scattering efficiency of a non-dissipative
sphere, i.e. one that does not absorb the incident light. The imaginary part k of
the optical constant m = n + ik is, therefore, zero, the absorption coefficient
vanishes1 and

Qsca = Qext.

The efficiency depends only on m and on the size parameter x = 2πa/λ. To
better interpret the dependence of Qsca on x , we may envisage the wavelength λ
to be fixed so that x is proportional to grain radius a. Figure 4.1 demonstrates two
features valid for any particle:

• When a particle is small, we naturally expect the cross section C to be
small, too. But even the extinction efficiency, which is the cross section
over projected area, goes to zero,

Qext → 0 for x → 0.

1 Astronomers sometimes call a non-dissipative medium, i.e. one with a purely real optical constant,
a dielectric. However, we understand a dielectric to be the opposite of a metal. So a dielectric may
well have a truly complex m, where the imaginary part is not zero.

119



120 Case studies of Mie calculus

Figure 4.1. The extinction efficiency Qext as a function of size parameter x and its inverse
x−1 for an optical constant m = 1.5; this value is appropriate for glass in the visible
part of the spectrum. The left box shows the range 0 ≤ x ≤ 20, the right the range
0.002 ≤ x−1 ≤ 0.05 corresponding to 20 ≤ x ≤ 500. Because in any real material, m
depends on wavelength, whereas we have kept it fixed in the figure, it is best to envisage λ
as constant. Then the abscissa of the left frame is proportional to the grain radius.

• In accordance with Babinet’s theorem, when the grain is very large, the
extinction efficiency approaches two (see the right-hand frame of figure 4.1),

Qext → 2 for x−1 → 0.

There are two interesting aspects pertaining to a pure scatterer or weak
absorber:

• Qext displays an overall undulating character with broad waves on which
semi-regular ripples are superimposed. The phenomenon of ripples and
waves can be traced to the behavior of the coefficients an, bn of (2.50), (2.51)
and is due to interference in the scattered wave (see(2.46)). The ripples
correspond to small denominators in an, bn , the broad crests of the waves to
maxima in the sum an + bn . The first maximum of Qext is achieved roughly
at 8(n − 1), in our particular example this occurs at x � 4; it is followed by
gradually declining maxima around x = 11, 17, . . . . The minima in between
stay more or less all around two.

• The extinction efficiency can be quite large. In figure 4.1, its maximum value
is 4.4 times (!) bigger than the projected surface of the particle.

4.1.2 A weak absorber

Figure 4.2 exemplifies the effects of adding impurities to the material. The
top frame is identical to the left box of figure 4.1 and displays a medium with
m = 1.5. In the middle, the optical constant is complex, m = 1.5+ i0.02. Now
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Figure 4.2. The efficiencies for absorption (dashes), scattering (dots) and extinction (full
line) for three different substances: one is not dissipative, the others are weakly absorbing.
An optical constant m = 1.5 + 0.05i may be appropriate for astronomical silicate around
λ = 6 µm.

the particle not only scatters the light but also absorbs it. Impurities effectively
suppress the ripples and they also lead to a decline in the amplitudes of the waves.
The damping is sensitive to k, as can be seen by comparing the two bottom panels
where k changes from 0.02 to 0.05.

For interstellar grains, the ripples and the waves are irrelevant. For example,
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Figure 4.3. The efficiency for absorption, scattering and extinction, as well as the
asymmetry factor g for a strongly absorbing material with m = 1.5+ 0.5i .

when we measure the intensity of a star behind a dust cloud, the observation is not
monochromatic but comprises a certain bandwidth
λ. The optical constantm(λ)
will change somewhat over this bandwidth and, more importantly, interstellar dust
displays a range of sizes, so the peaks produced by particles of a certain diameter
are compensated by minima of slightly smaller or bigger ones.

4.1.3 A strong absorber

In figure 4.3 we retain the value of n = 1.5 of the previous two plots but choose for
the imaginary part of the optical constant k = 0.5. This implies strong absorption.
The efficiencies change now very smoothly and there are no signs of ripples or
waves left. Because of the strong absorption, Qabs increases quickly with x at
x < 1. We discern, in this particular example, the general features of small-sized
grains. When x → 0:

• Qabs and x are proportional, as predicted by (3.3).
• The scattering efficiency changes after (3.4) as

Qsca ∝ x4

so Qsca falls off more steeply than Qabs (see logarithmic plot of figure 4.5).
• Absorption dominates over scattering,

Qabs � Qsca.
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• The asymmetry factor g of (2.6), which describes the mean direction of the
scattered light, vanishes. Although isotropic scattering implies g = 0, the
reverse is not true.

Figure 4.3 plots only the range up to a size parameter of five but the behavior
for larger x is smooth and can be qualitatively extrapolated. In this particular
example of m = 1.5+ i0.5, a very large particle (x � 1)

• scatters mostly in the forward direction, so g is not far from one; and
• it has a large absorption efficiency and, therefore, a small reflectance Qref =

1 − Qabs, as defined in equation (3.63). The asymptotic values for x → ∞
are: g = 0.918, Qabs = 0.863 and Qref = 0.137.

Surprisingly, the absorption efficiency can exceed unity, which happens here
when x > 0.9. Unity is the value of Qabs of a blackbody and may thus appear to
be an upper limit for any object. Nevertheless, the calculations are correct, only
the concept of a blackbody is reserved to sizes much larger than the wavelength.

4.1.4 A metal sphere

• Ideally, a metal has (at low frequencies) a purely imaginary dielectric
permeability so that n � k goes to infinity (see (1.117)).

• A metallic sphere is, therefore, very reflective and Qabs tends to zero.
• When the sphere is big, Qext is, as always, close to the Babinet limit of two.
• When the sphere is big, of all the light removed, half is scattered isotropically

and it alone would yield an asymmetry factor g = 0. The other half is
scattered at the particle’s rim entirely in the forward direction, which alone
would produce g = 1. The combination of both effects gives g = 1

2 .
• When the sphere has a size comparable or smaller than the wavelength,

backward scattering dominates (g < 0).
• For small values of |mx |, the metallic sphere also obeys the relation Qabs �

Qsca. But as x grows, the scattering increases and soon takes over, whereas
the absorption stays at some low level.

Figure 4.4 illustrates these items in case of large but not extreme metallicity
(m = 20+ i 20).

4.1.5 Efficiency versus cross section and volume coefficient

In figure 4.5, we compare efficiencies, cross sections and volume coefficients
using an optical constantm = 2.7+ i 1.0 which applies to amorphous carbon at a
wavelength λ = 2.2µm. The presentation is different from the preceding figures
as we choose for the abscissa the grain radius a, and not the size parameter x ; the
wavelength is kept constant at 2.2 µm. The logarithmic plots reveal the limiting
behavior of small and large particles. These features, compiled in table 4.1, are
independent of the choice of m or λ.
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Figure 4.4. Same as figure 4.3 but now for a metal for which n and k are large and equal.
The situation applies approximately to amorphous carbon at millimeter wavelengths (see
figure 7.19). Note that g becomes negative.

Table 4.1. The asymptotic dependence of efficiciency, cross section and mass or volume
coefficient on the radius, a, of a spherical grain.

Large radii Small radii
Symbol a � λ a � λ

Efficiency Q Qabs = constant Qabs ∝ a
Qsca = constant Qabs ∝ a4

Cross section per grain C Cabs ∝ a2 Cabs ∝ a3

Csca ∝ a2 Csca ∝ a6

Mass or volume coefficient K K abs ∝ a−1 K abs = constant
K sca ∝ a−1 K sca ∝ a3

4.1.5.1 Spheres of small radii

• The efficiencies depend on wavelength as given by (3.3) and (3.4). If m is
constant, Qabs ∝ λ−1 and Qsca ∝ λ−4. Scattering is, therefore, negligible
relative to absorption.

• As interstellar dust has typical sizes of 0.1µm, one may assume the Rayleigh
limit to be valid at all wavelengths greater than 10 µm.

• The mass absorption coefficient K abs
λ is proportional to the grain volume V ,

irrespective of the size distribution of the particles.
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Figure 4.5. The top frame gives the absorption and scattering efficiency Q; the middle
one the cross section per grain C = πa2Q; and the bottom one the volume coefficient
K referring to 1 cm3 of grain volume. The optical constant m = 2.7 + i1.0, wavelength
λ = 2.2 µm.

• The mass scattering coefficient K sca
λ follows V 2. Although the scattering

process is identical in all subvolumes of a grain, the net effect is not linear
but proportional to the square of the grain volume because of interference of
the scattered waves.
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• The emission coefficient

ελ = K abs
λ Bλ(Tdust)

also depends linearly on the grain volume; Bλ(Tdust) is the Planck function
at the dust temperature (see (8.1)). Provided the infrared photons are not
trapped in the cloud, a condition that is usually fulfilled, the observed flux is
directly proportional to the total dust volume.

4.1.5.2 Spheres of large radii

The efficiencies, Q, reach a finite value with Qext = Qabs + Qsca = 2. The cross
sections per grain, C , increase without bounds proportional to the projected area
of the grain. The mass or volume coefficients, K , decrease inversely proportional
to the radius.

4.1.6 The atmosphere of the Earth

The atmosphere of the Earth presents another instructive example. We can
now understand why the daylight sky is blue. If there were no atmosphere, it
would appear black, except for the stars, Sun and planets. However, the tiny air
molecules scatter the sunlight towards us. Because Qsca ∝ λ−4 and λblue < λred,
the sky is painted blue. An additional requirement is that the air molecules
are randomly moving, as otherwise interference would cancel out the intensity
except in the forward direction. The scattered light is polarized and maximum
polarization occurs 90◦ away from the Sun (see (3.19)), or at night time 90◦ away
from the moon.

As preferentially blue light is removed in scattering, the transmitted light
becomes redder. But this does not explain the occasional romantic sunsets. More
relevant for the reddening towards the horizon is the removal of blue light through
absorption by tiny solid particles. These may arise from industrial exhausts, a
sand storm or a volcano eruption. The dependence of absorption on λ is less
steep than for scattering but qualitatively similar (Qabs ∝ λ−1) and also results in
reddening.

We can also explain why we see the water in the air only when it has liquefied
into clouds, and not as vapor. When on a summer day the solar heating induces
convection and a parcel of air rises we see the parcel only at the moment the water
condenses, although the H2O molecules were there before. This seems puzzling
because upon condensation the water molecules do not drastically change their
properties as radiating oscillators. The reason that they become visible when they
cluster into droplets is the following: The mass scattering coefficient K sca is,
according to table 4.1, proportional to the volume V of a single scatterer (one
H2O molecule or one water droplet). During the phase transition from gas to
liquid, V grows by a factor of ∼ 1010. The size of the water droplets is then still
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Figure 4.6. Diagrams of the intensity distribution of scattered light for three sizes for
parameter x and two optical constants m. Light enters from the left and the grain is at the
position (0, 0). Each diagram is normalized in such a way that the intensity equals one
in the forward direction (θ = 0); its value in any other direction is given by the distance
between the frame center and the contour line. All contours are mirror-symmetric with
respect to the horizontal arrows, see also table 4.2.

smaller than the wavelength of visible light so that the dipoles in the droplet swing
in phase.

4.2 Scattering by bare spheres

4.2.1 The scattering diagram

The pattern of how the intensity of scattered light changes with angle is described
by the phase function of (2.63) and visualized in figure 4.6. In these examples,
the left frame refers to a non-dissipative sphere with m = 1.5. The curve labeled
x = 0.01 represents a dipole pattern which is characteristic for a particle small
compared with the wavelength irrespective of the choice of the optical constant
m. It is symmetric relative to the scattering angle of 90◦ (vertical line in the figure)
and therefore has equal maxima in the forward (θ = 0) and backward (θ = 180◦)
directions. Note that the scattering is not isotropic, although g = 0. The pattern is
sensitive to the size parameter x = 2πa/λ. When x ≥ 1, scattering becomes very
forward and for a grain diameter just equal to the wavelength (x � 3), almost all
light goes into a forward cone.

In the right frame where m = 10 + i10, we are dealing with a reflective
material. The change in m relative to the non-dissipative sphere shown on the
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Table 4.2. Scattering efficiency, asymmetry factor and back scatter for spheres whose
scattering diagram is displayed in figure 4.6.

Asymmetry
x = 2πa/λ m Qsca factor g Qback

0.01 1.5 2.31× 10−9 1.98× 10−5 3.5× 10−9

1 1.5 2.15 0.20 0.19
3 1.5 3.42 0.73 0.53
0.01 10+ i10 2.67× 10−8 1.04× 10−5 4.0× 10−8

1 10+ i10 2.05 0.111 3.31
3 10+ i10 2.08 0.451 0.42

left does not affect the curve x = 0.01. There is also not much difference for
x = 3, although curious tiny rear lobes appear. However, at the intermediate
value x = 1, we now have preferential backscatter and the asymmetry factor is
negative (g = −0.11), whereas in the left-hand panel, at x = 1, the scattering is
mainly forward.

4.2.2 The polarization of scattered light

For the same optical constants and size parameters as previously, figures 4.7 and
4.8 depict the degree of linear polarization p of light scattered by a sphere (see
(2.77)). They display the basic features, although the details are sensitive to size,
shape and optical constant of the particle.

• The polarization curve p(θ) of tiny and weakly absorbing spheres (x = 0.01,
k � 1; dashes in figure 4.7) is symmetric around 90◦ and has the shape of
a bell. The polarization is 100% at a scattering angle of 90◦. For weak
absorbers, p(θ) hardly changes as x grows from 0.01 up to 1.

• Tiny metallic particles (x = 0, 01, m = 10+ i10; figure 4.8) have the same
pattern as tiny dielectrics but at x = 1, the polarization p(θ) is no longer
symmetric and attains a maximum value of only 78%.

• The behavior of p(θ) at intermediate sizes (x = 3) is more complicated
in both materials. The polarization changes sign and there are several
maxima and minima of varying height. In our examples, p vanishes at three
intermediate angles. Here the matrix element S12 switches sign (see (2.75))
and the direction of polarization with respect to the scattering plane changes
from perpendicular to parallel or back. The scattering plane is defined by the
unit vectors in the direction from where the light is coming and where it is
going.

When one measures the linear polarization of scattered light at various
locations around the exciting star of a reflection nebula. the observed values
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Figure 4.7. The degree of linear polarization p of scattered light as a function of scattering
angle for various size parameters x and an optical constant m = 1.5. For intermediate
sizes (x = 3), the polarization at certain scattering angles goes through zero and becomes
negative. At the points where p = 0, the polarization vector flips. The dotted line depicts
a very large sphere (x = 1000) with some slight contamination (m = 1.5+ i0.003).

Figure 4.8. The degree of linear polarization p of scattered light as a function of scattering
angle for various size parameters x and an optical constant m = 10+ i10.
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Figure 4.9. The infrared source IRS4 (at figure center) in the bipolar nebula S106
illuminates its vicinity. Some light is scattered by dust particles producing in the K -band
(2.2 µm) a polarization pattern of wonderful circular symmetry (adapted from [Asp90]).
Reproduced from [Asp90] with permission of Blackwell Science.

are always an average along the line of sight. If the particles are small,
S12 < 0 and the polarization vector is perpendicular to the radial vector
pointing towards the star. However, as the figure suggests, it can happen,
although it is an unfamiliar scenario to astronomers, that the radial and
polarization vectors are parallel.

• Very big dielectric spheres (x � 1000) again show a simple pattern with
no sign reversals. There is 100% polarization in a slightly forward direction
(θ � 65◦). For metals of this size, p(θ) has more structure.

• Polarization is always zero in the forward and backward directions (θ = 0
or 180◦).

An impressive example of a very regular polarization pattern is presented by
the bipolar nebula S106 (figure 4.9). This is a well-known star-forming region.
At optical wavelengths, one observes light from two nebulous lobes separated by
a dark lane that is interpreted as a disk inside which sits the central and exciting
source named IRS4. We are viewing the disk from the side. There is plenty of
visual obscuration towards IRS4 (∼20 mag) but in the near infrared one begins
to penetrate most of the foreground and outer disk material. IRS4 is an infrared
source and its radiation is reflected by the dust particles that surround it. When
looking directly towards IRS4, the angle of deflection is close to 0◦ or 180◦
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Figure 4.10. The term (λ2/a3)S11(cos θ) in equation (4.1) for right angle scattering
(cos θ = 0). It is computed as a function of wavelength for silicate and carbon grains
with radii a = 3 × 10−6, 10−5 and 3 × 10−5 cm (i.e. a = 0.03, 0.1, 0.3 µm). Optical
constants from figure 7.19. The 10 µm feature of silicates is discernible.

and the ensuing degree of linear polarization is small. But at positions a few
arcseconds off, scattering occurs at right angles and the light becomes strongly
polarized. Note that S106 must be optically thin to scattering in the K -band (see
table 7.2) as otherwise multiple scattering would lead to depolarization.

4.2.3 The intensity of scattered light in a reflection nebula

To evaluate the intensity of scattered light, we consider 1 g of dust in interstellar
space, consisting of Nd = 3/4πa3ρd identical spherical grains of radius a and
density ρd = 2.5 g cm−3, which is illuminated by a flux F0λ from a nearby star.
Some of the radiation is scattered under an angle cos θ towards the observer who
is at a distance D. The flux Fλ that he receives is found from formula (2.1), where
we replace �(θ, φ) by the element S11 of equation (2.63),

Fλ = 3

16π3ρd

F0λ

D2
· λ

2

a3
S11(cos θ). (4.1)

The expression (λ2/a3)S11(cos θ) is delineated in figure 4.10 for a scattering
angle θ = 90◦.

In the infrared where a � λ, the matrix element S11(cos θ) is very sensitive
to both grain size and wavelength, roughly S11 ∝ (a/λ)6. The size of the largest
grains, therefore, determines the intensity of the scattered infrared light. Of
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course, the shape of the particle also plays some role. Elongated grains, even
of arbitrary orientation, scatter more efficiently than spheres of the same volume.
For spheres, isotropic scattering at infrared wavelengths is not a bad assumption.

In the ultraviolet, the dependence of S11(cos θ) on the scattering angle is
complicated and the curves in figure 4.10 may only be used if θ is not too far
from 90◦.

As an exercise, we apply figure 4.10 to answer the question: What is the
approximate V -band surface brightness of scattered light in a reflection nebula?
The nebula is D = 1 kpc away and excited by a main sequence star of spectral
type B1 with L = 104 L� and T∗ = 2 × 104 K. We calculate this quantity at a
projected distance from the star of r = 0.1 pc assuming that the extinction along
the line of sight through the nebula equals AV = 0.1 mag.

An extinction of 0.1 mag corresponds after (7.23) to a hydrogen column
density NH = 2 × 1020 cm−2. This gives, with a gas-to-dust mass ratio of 150
and accounting for 10% of helium, a dust mass of 7.0× 1026 g in a column with
a cross section of 1 arcsec2. If the star is approximated by a blackbody, its visual
flux at a distance r = 0.1 pc is F0,V = 9.80× 10−15 erg s−1 cm−2. For a rough
estimate, we neglect that the distance of the scattering dust to the star changes
along the line of sight. Let the particles have radii a = 10−5 cm. Then we
read off from figure 4.10 at a wavelength of 0.55 µm for right angle scattering
that (λ2/a3) × S11 � 8 × 105. With the factor wλ = 3640 to convert Jy into
magnitudes from table 7.2, we find a surface brightness in the nebula at V of
18.5 mag arcsec−2.

4.3 Coated spheres

The mathematical formalism of Mie theory presented in section 2.3 can readily
be extended to coated spheres. Only the appearance of two more boundary
conditions at the interface between the two dust materials is new. The relevance
of calculating coated particles stems from the observational fact that grains in
cold clouds acquire ice mantles. Such particles may be approximated by two
concentric spheres. There is a refractory core of radius acore and optical constant
mcore surrounded by a volatile shell of thickness d and optical constant mshell. So
the total grain radius is

atot = acore + d.
The left box in figure 4.11 shows the absorption efficiency Qabs as a function

of size parameter x for homogeneous particles with optical constants m = 2.7+ i
and m = 1.33 + 0.03i . In the right box, we plot Qabs for coated spheres as a
function of

r = acore

atot
.

For r = 0, the grain consists only of core matter with m = 2.7 + i ; for
r = 1, only of mantle material (m = 1.33 + 0.03i ). The four curves represent
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Figure 4.11. The left frame gives the absorption efficiency as a function of size parameter
for homogeneous spheres. The optical constant m = 2.7+i is representative of amorphous
carbon at λ = 2.2 µm and m = 1.33 + 0.03i is applicable to dirty ice at the same
wavelength. Dotted vertical lines for reference to right box. The right frame shows the
absorption efficiency of a coated sphere, x denotes the size parameter of the total grain.

size parameters x = 2πatot/λ of the total sphere between 0.5 and 8. For easy
comparison, these values are also indicated by dotted lines in the left frame. The
right figure demonstrates how the absorption efficiency of a coated grain changes
when the core grows at the expense of the mantle while the outer radius atot is
fixed.

4.4 Surface modes in small grains

4.4.0.1 Small graphite spheres

When grains display, at some wavelength, an extinction peak, the reason is
generally a resonance in the grain material. However, in the case of grains which
are small compared with the wavelength, the extinction cross section may be large
without an accompanying feature in the bulk matter. As the extinction efficiency
is in the Rayleigh limit after (3.3) proportional to ε2/|ε + 2|2, we expect a large
value for Qext at a wavelength where

ε + 2 � 0.

Because ε = m2, this happens when the real part n of the optical constant is close
to zero and k2 ≈ 2. The phenomenon bears the name surface mode.
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For the major components of interstellar dust, amorphous carbon and silicate,
there is no wavelength where the condition of small ε+2 is approximately fulfilled
(see figure 7.19) but graphite around 2200 Å is a candidate. Graphite is optically
anisotropic and the effect appears when the electric vector of the incoming wave
lies in the basal plane of the stacked carbon sheets; the dielectric constant is then
denoted by ε⊥. The left-hand side of figure 4.12 shows ε⊥ = ε1 + iε2 and
the resulting extinction efficiency for spheres of different sizes. The wavelength
interval stretches from 1670 to 3330 Å or from 6 to 3 µm−1. To underline the
effect of the surface mode, Qext is normalized to one at λ−1 = 3 µm−1. Small
particles (a ≤ 300 Å) clearly display a resonance around 2200 Å, which is absent
in the bulk material because particles with a radius greater than 1000 Å do not
show it. The graphite surface mode is invoked to explain the strong feature around
2200 Å in the interstellar extinction curve (figure 7.8).

For the Rayleigh approximation to be valid, the particles must have diameters
of 100 Å or less. But the position of the resonance contains further information on
grain size. The upper left box of figure 4.12 illustrates how the peak in Qext drifts
towards smaller wavelengths (greater λ−1) with decreasing radius a; it moves
from 2280 to 2060 Å as the radius shrinks from 300 to 30 Å. There is no further
shift for still smaller particles.

In astronomical observations of the extinction curve, the relevant quantities
are, however, not the extinction efficiencies Qext but the extinction coefficients per
cm3 of dust volume, K ext. They are shown in the upper right frame of figure 4.12.
The dependence of K ext on λ−1 is qualitatively similar to that of Qext but the
discrimination against size is more difficult and not possible below 100 Å.

4.4.0.2 Ellipsoids

From comparison of the electric polarizability for spherical and ellipsoidal
particles (see (3.9) and (3.39)), it follows that the condition ε + 2 � 0, necessary
for the appearance of a surface mode in spheres, must for ellipsoids be replaced
by

1+ Lx (ε − 1) � 0

or similar expressions for the y- or z-axis. The form of the particle therefore
influences, via the shape factor Lx , the strength of the surface mode as well as its
center wavelength.

4.4.0.3 Metals versus dielectrics

Figure 4.13 illustrates the interplay between ε and Qext in a surface mode for a
dielectric consisting of identical harmonic oscillators. The variation of ε is, of
course, similar to figure 1.2, only the resonance is here sharper (γ = 0.05). We
see that a surface mode cannot happen far from a resonance in the bulk material
and if it does, only at a higher frequency. We wish to make two points:
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Figure 4.12. The upper left frame gives the extinction efficiency for graphite spheres of
various radii, a, in the 2200 Å wavelength region when the electric vector lies in the basal
plane. The efficiencies are normalized to one at 3 µm−1. The increase for small sizes
is due to a surface mode and not to an intrinsic quality of the bulk material. The lower
left frame gives the dielectric constant ε = ε1 + ε2; the upper right frame the volume
coefficients, not normalized; and the lower right frame the optical constant m = n + ik.

• There is a clear offset between the peaks in ε2 and Qext.
• Although the grain is in the Rayleigh limit (|mx | ≤ 0.1), the extinction

efficiency is around one and, surprisingly, not small. Nevertheless, Q → 0
for |mx | → 0 is always correct.

Not every dielectric material displays a surface mode but for metallic grains
the phenomenon is inevitable when damping is weak. With the dielectric
permeability for metals given in equation (1.123), the denominator in (3.3)
vanishes when [

3(ω2 + γ 2)− 1
]2
ω2 + γ 2 = 0.

Here the frequency ω and the damping constant γ are in units of the plasma
frequency ωp. As γ is usually much smaller than ωp, a surface mode, i.e. a strong
enhancement of Qabs, appears at ω = ωp/

√
3 (see figure 4.14).
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Figure 4.13. For small spheres, the absorption efficieny Qext can be calculated from the
Rayleigh limit (3.3). The dielectric permeability ε of the grain material in the figure is that
of an harmonic oscillator (see (1.77)). When the resonance frequency ω0 and the damping
constant γ are measured in units of the plasma frequency, ω0 = 1 and γ = 0.05. The grain
radius a is determined by the condition that the size parameter equals x = ωa/c = 0.05 at
the frequency ω0. The peak in the absorption efficiency is due to a surface mode, because
Qext attains its maximum, where the denominator |ε + 2| in (3.3) has its minimum. The
dotted curve of |ε+2|2 is not always within the box. For better visibility, Qext is magnified
by a factor of 10.

4.5 Efficiencies of idealized dielectrics and metals

4.5.1 Dielectric sphere consisting of identical harmonic oscillators

The functional form of the dielectric permeability ε of an harmonic oscillator
with resonance at frequency ω0 is given by equation (1.77). We plotted ε in
figure 1.2 for a damping constant γ = 0.2ω0 and a plasma frequency ωp = ω0.
It is instructive to compute in Mie theory the efficiencies of a particle with such
an idealized dielectric constant to see how the complex ε translates into Qabs or
Qext.

Figure 4.15 shows the extinction efficiency Qext when there is a broad
resonance in the bulk material (γ = 0.2ω0, as in figure 1.2). When the grains
are large, Qext is basically constant over the resonance and does not seem to
depend on ε at all. At intermediate sizes, one can discern some correspondence
between Qext and the imaginary part ε2. When the grain is much smaller than
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Figure 4.14. As figure 4.13 but for a metal with a dielectric permeability ε from the Drude
profile (1.123): γ = 0.05ωp, size parameter x = ωpa/c = 2πa/λ = 0.05.

the wavelength, all charges move synchronously in the electromagnetic field.
Scattering is then negligible and one would expect Qabs to mimic ε2 rather closely.
However, as already discussed in figure 4.13, this is not so.

Figure 4.16 shows the same Qext as in figure 4.15 but over a wider frequency
range and on a logarithmic scale. One may wonder why Qext falls and does not
approach two when the particle is much bigger than the wavelength. However,
there is no conflict with Babinet’s theorem. The latter states that Qext → 2 for
a/λ→∞ if the dielectric permeability is kept constant, whereas here ε becomes
smaller and smaller as the frequency rises.

The curve in figure 4.16 labeled big grains (radius a = 10c/ω0)
demonstrates that when there is a resonance in the bulk material at some frequency
ω0, the corresponding signature in the emission or absorption of the grain gets lost
if the particle is very large. For example, silicate grains of a size much exceeding
10 µm will not display the famous 10 µm feature. Another way to swamp a
resonance is by high optical depth; this will be discussed in section 8.3.

When we insert the low-frequency limit of the dielectric permeability ε of
an harmonic oscillator after (1.78) into the Rayleigh approximation (3.3) for the
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Figure 4.15. Broken lines represent the extinction efficiency of spheres with the dielectric
constant ε of a harmonic oscillator given in equation (1.77); here with γ /ω0 = 0.2 and
ω0/ωp = 1, where ω0 is the resonance frequency. Qext is plotted for three grain radii, a.
When a = 10c/ω0, the particle is big (size parameter x = 10 at frequency ω0); the case
a = c/ω0 represents medium-sized grains (x = 1 at ω0) and a = 0.1c/ω0 small ones
(x = 0.05 at ω0); this line is enhanced for better visibility by a factor of 5. The full curves
represent ε = ε1 + iε2.

absorption efficiency, we get

Qabs = 48cπ2 ω2
pγ

ω4
0

(
3+ ω2

p

ω2
0

)2

a

λ2 . (4.2)

The behavior at long wavelengths far away from the resonance is, therefore,

Qabs ∝ ν2 for ν → 0.

This is the reason why one often assumes that optically thin dust emission follows
a modified Planck curve ν2Bν(T ) in the long wavelength limit..

4.5.2 Dielectric sphere with Debye relaxation

The dielectric permeability for Debye relaxation is given by formula (1.146). The
absorption efficiency Qabs is now temperature-dependent and varies with 1/T .



Efficiencies of idealized dielectrics and metals 139

Figure 4.16. The efficiencies of figure 4.15 but now on a logarithmic plot and over a
broader frequency range.

For small ω,

Qabs = 48cπ2 αtrel

(3+ α)2
a

λ2 with α = 4πNp2

3kT
(4.3)

so again
Qabs ∝ ν2.

The inverse of the relaxation time trel is a characteristic frequency denoted
by ωrel = t−1

rel ; it corresponds, in some sense, to the resonance frequency of an
harmonic oscillator. The efficiency Q depends on ω/ωrel and on the grain radius
in a way that is qualitatively similar to what is plotted in figure 4.15.

4.5.3 Magnetic and electric dipole absorption of small metal spheres

We derived in equation (1.57) the average rateW at which a small grain of volume
V and polarizability αm oscillating at frequency ω in a time-variable magnetic
field of amplitude H0 dissipates energy:

W = 1
2Vω Im{αm}H 2

0 .

In section 3.2 we learnt that a piece of metal in an electromagnetic wave
becomes such an oscillating magnetic dipole because circular currents are induced
in its interior which are surrounded by a magnetic dipole field. We also evaluated
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Figure 4.17. The ratio of magnetic dipole absorption over total absorption for metallic
spheres with dielectric permeability ε = i4πσ/ω as a function of the conductivity σ . The
size parameter x = 10−2 is small and kept constant. Therefore, given the particle radius
a, the wavelength follows from x . For example, λ = 62.8 µm for a = 10−5 cm.

in section 3.2 the magnetic polarizability αm of small metal spheres analytically.
We thus have all the tools to calculate the cross section due to magnetic dipole
absorption.

But the metal sphere in the electromagnetic wave is also a variable electric
dipole because its mobile electrons are shifted about by the electric field. The
dissipation rate of the latter is given by (1.55), an expression formally identical
to (1.57). There is also magnetic dipole scattering but it is much weaker in the
Rayleigh limit and we neglect it here.

In figure 4.17, we assess the importance of magnetic dipole absorption for
pure metal spheres by comparing the corresponding efficiency Qmag with the total
Qtot, which also contains electric dipole absorption. Barring quadrupole terms,
we have

Qtot = Qmag + Qel.

We assume that ε has no dielectric contribution and put (see (1.115))

ε = i 4πσ

ω

where σ is the direct-current conductivity of (1.120). We then calculate the total
absorption efficiency Qtot correctly from formula (2.55) of Mie theory. The size
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parameter in figure 4.17 is small and kept fixed, x = 2πa/λ = 10−2. Therefore
we can write

Qmag = 32π2

3

a

λ
Im{αm}; (4.4)

the magnetic polarizability αm is taken from (3.21). An equivalent formula for
the Rayleigh limit of the electric dipole absorption efficiency Qel is not valid
everywhere in figure 4.17; although the particle itself is small, being a metal, the
relevant quantity |mx | is not necessarily so.

Obviously, magnetic dipole absorption increases with the conductivity and it
can be the dominant absorption process. We consider in figure 4.17 the Q’s for
three radii in the likely range of interstellar grains. Because the size parameter is
constant, the implied frequencies ω lie between 3× 1012 and 3× 1014 s−1.

• A large size favours magnetic dipole dissipation.
• At low conductivities, where the curves in figure 4.17 still increase, the

penetration depth of the magnetic field, as defined in equation (3.23), is large
compared with the grain size and (see (3.26))

Qmag ∝ a3/λ2 δ � a (for small σ).

• At high conductivities, where the curves are flat, the penetration depth is
small. Qmag does not depend on radius and is proportional to the wavelength
(see (3.28)):

Qmag ∝ λ−1/2 δ � a (for large σ).

4.5.4 Efficiencies for Drude profiles

We have already computed the efficiency Q of a metal-like sphere in figure 4.4. It
applies to the low frequency limit where ε � i4πσ/ω and σ is the direct current
conductivity. The optical constants n and k are then large and roughly equal.
As m = n + ik is constant in figure 4.4, the plotted values of Q refer to a
fixed frequency, and in the size parameter x only the grain radius changes. In
figure 4.18, however, we use, for ε, the Drude profile from (1.123) and keep the
grain diameter constant. We now plot Q as a function of frequency (in units of
ωp) in the same manner as in figure 4.17 for a dielectric. The damping constant is
the only free parameter (here γ = 0.1ωp).

• At long wavelengths, we get for the electric dipole absorption (see (3.3)),

Qel = 6

x2
Re{a1} = 48π2cγ

ω2
p

a

λ2
(4.5)

• and for the magnetic dipole absorption

Qmag = 6

x2
Re{b1} =

8π2ω2
p

15γ c

a3

λ2
. (4.6)
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Figure 4.18. The left panel shows the extinction and absorption efficiency of a metal
sphere whose dielectric permeability ε follows a Drude profile with a ratio of damping
constant over plasma frequency γ /ωp = 0.1. The grain radius equals a = c/ωp. The
right panel shows the extinction efficiencies for three particle radii, a, for the same ε, as
indicated. They are plotted here on a logarithmic ordinate to demonstrate their low- and
high-frequency behavior. The dotted line gives the scattering efficiency for a = c/ωp; note
that Qsca � Qext holds only at low frequencies (ω/ωp � 1).

• Both decline at low frequencies like ν2; however, their dependence on radius
is different:

Qel ∝ a Qmag ∝ a3.

Figure 4.17 suggests that for graphite grains (σ = 7 × 1015 s−1) of sizes
∼0.1 µm, magnetic dipole absorption is important in the far infrared around
100 µm. We, therefore, repeat in figure 4.19 the calculations of Qmag and Qel

for a metal sphere with damping constant and plasma frequency like graphite
but without a dielectric contribution. The permeability ε(ω) is computed from
the Drude profile and the particle size (a = 0.1 µm) is small enough for the
Rayleigh limit to be valid for both Qmag and Qel. We learn from figure 4.19
that in graphitic particles magnetic dipole absorption dominates at wavelengths
greater than 100 µm.

4.5.5 Elongated metallic particles

The absorption by infinitely long cylinders, which are an extreme version of
elongated particles and are treated in section 10.1, depends on the polarization
of the wave. An example is plotted in figure 4.20 for idealized graphite material
(see previous subsection) and a cylinder radius a = 10−5 cm. When the direction
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Figure 4.19. The magnetic and electric dipole absorption efficiency of a metal sphere of
radius a = 10−5 cm that has the damping constant and plasma frequency of graphite in
the basal plane (γ = 5 × 1012 s−1, ωp = 6.7 × 1014 s−1). The permeability ε is from
(1.123).

of the electric vector is perpendicular to the cylinder axis, the corresponding
efficiency Q⊥ is similar to that of a sphere of the same radius, at least for
ω < ωp. At very low frequencies, Q⊥ is due to magnetic dipole absorption
and proportional to a3.

The behavior of Q‖, when the electric vector is parallel to the cylinder axis,
is radically different. The efficiency does not fall with wavelength but levels off
at some high value. To understand this behavior, we consider a spheroid with
an eccentricity e close to unity so that it resembles an infinitely long cylinder.
In the long wavelength limit, Q‖ is due to electric dipole absorption and can be
computed from equation (3.40). As we keep stretching the cigar, e approaches
one and the shape factor Lx goes to zero, as displayed in figure 3.2. For Lx = 0
and ω→ 0, we indeed find that Qabs is constant:

Qabs = 16πσa

3c

where a is the short major axis. All real cigars are finite, and their efficiency
is, in the long-wavelength limit, proportional to aλ−2. But if the cigars are very
elongated, the steep λ−2-decline sets in only when λ is much larger than the big
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Figure 4.20. The absorption efficiency of an infinitely long cylinder under normal
incidence. The cylinder is purely metallic with damping constant and plasma frequency
like graphite (γ = 5 × 1012 s−1, ωp = 6.7 × 1014 s−1 corresponding to a wavelength
λp = 2.8 µm). For comparison, the dotted curve presents Qabs for a sphere composed of
the same metal and with the same radius. The permeability ε is from (1.123).

major axis of the cigar, i.e. at extremely long wavelengths, outside the observable
range.

The cylinder with Qabs = 16πσa/3c absorbs per unit length from an
electromagnetic wave with Poynting vector S = (c/8π)E2 the power W =
(4/3)a2σ E2. A constant field E in the cylinder, however, leads to a current and
the ohmic losses per unit length are πa2σ E2. So the infinite cylinder is similar to
a wire in which a current flows.



Chapter 5

Particle statistics

This chapter presents purely physical topics selected for our study of the
interstellar medium. They concern the statistical distribution of atoms and
photons, basic thermodynamic relations and the radiation of blackbodies.

5.1 Boltzmann statistics

For a large number of atoms in thermodynamic equilibrium, their distribution in
energy space is just a function of temperature and described by the Boltzmann
equation. We outline the derivation of this fundamental statistical relation and
append a few loosely connected items.

5.1.1 The probability of an arbitrary energy distribution

We first compute the number of ways in which the energy of N identical particles,
for example atoms, can be distributed and then find among them the most likely
distribution. To this end, we divide the energy space, which ranges from zero to
some maximum Emax, into n ordered cells with mean energy Ei so that

E1 < E2 < · · · < En.

Each cell has a size 
Ei which determines its statistical weight gi =

Ei/Emax. The statistical weight gives the fractional size of a cell, so∑

i

gi = 1

Let each level Ei be populated by Ni atoms. If the atoms are labeled from a1
to an , this particular configuration is represented, for example, by the following
sequence:

a1a2 . . . aN1︸ ︷︷ ︸
N1

aN1+1 . . . aN1+N2︸ ︷︷ ︸
N2

. . . aN−Nn+1 . . . aNn︸ ︷︷ ︸
Nn

.

145
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The Ni under the horizontal brackets give the number of atoms in the energy
bins Ei . But there are many others ways in which the same energy distribution can
be realized. According to elementary probability theory, a configuration where N
particles are grouped as shown here can be achieved in

� = N !
N1!N2! . . . Nn ! (5.1)

ways. Here it is assumed that the particles are distinguishable. � is called the
thermodynamic probability and is a very large number. When the N atoms are
arbitrarily distributed over the available cells, the probability that the first N1
atoms fall into cell E1, the following N2 atoms into cell E2, and so forth equals

gN1
1 · gN2

2 · . . . · gNnn .
The probability ω for the particular configuration of the N atoms is,

therefore,

ω = N !
N1!N2! . . . Nn ! · g

N1
1 · gN2

2 · . . . · gNnn . (5.2)

Equation (5.2) is at the heart of classical statistics. ω is, of course, smaller
than one. Summing the probabilities ω of all possible distributions gives the total
probability. In view of the binomial theorem, this sum is (g1 + g2 + · · · + gn)N ,
which equals one, as it should. When all cells are of the same size, each cell has
the same chance that a particular atom will fall into it. Then gi = 1/n for all i
and the probability ω in equation (5.2) becomes

ω = N !
nN

∏
Ni ! .

5.1.2 The distribution of maximum probability

As the numbers Ni in the expression for the probability ω are large, their faculties
are much larger still. To handle them, one uses Stirling’s formula:

ln N ! � N ln N − N + ln
√

2πN + ϑN
N

(0 ≤ ϑN ≤ 1). (5.3)

The accuracy of this formula is quite remarkable (see the error estimate ϑN).
Retaining only the first term, this yields for (5.2)

lnω � N ln N +
n∑
i=1

Ni ln
gi
Ni
.

In the equilibrium distribution achieved by nature, the probability has the
maximum possible value. Because N ln N is constant, we are looking for an
extremum of the function

f (N1, N2, . . . , Nn) =
n∑
i=1

Ni · ln gi
Ni
.
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There are two additional and obvious requirements:

• The total number of particles N should be constant and equal to
∑
Ni ,

φ =
n∑
i=1

Ni − N = 0.

• The mean particle energy 〈Ei 〉 is related to the total energy E of all particles
through

E = N · 〈Ei〉
therefore

ψ = N〈Ei 〉 −
n∑
i=1

Ni Ei = 0. (5.4)

The maximum of f , subject to the conditions expressed by the auxiliary
functions φ and ψ , can be found using the method of Lagrangian multiplicators.
If we denote them by α and β, we get the equation for the differentials

d f + α dφ + β dψ = 0

leading to ∑
dNi

(
ln
gi
Ni
− 1+ α − βEi

)
= 0.

In this sum, all brackets must vanish. So for every i ,

Ni = gieα−1e−βEi .

Exploiting
∑
Ni = N eliminates α and gives the fractional population

Ni
N
= gie−βEi∑

j

g j e
−βE j . (5.5)

5.1.3 Partition function and population of energy cells

We have found Ni/N but we still have to determine β. When we define, in (5.5),

Z =
∑
j

g j e
−βE j

equations (5.1), (5.3) and (5.5) yield

ln� = −
∑

Ni ln
Ni
N
= −

∑
Ni
(

ln gi − βEi − ln Z
)

= βE + N ln Z −
∑

Ni ln gi .
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We now plug in some thermodynamics from section 5.3. The entropy S
of the system equals the Boltzmann constant multiplied by the logarithm of the
thermodynamic probability� of (5.1),

S = k ln�,

and the differential of the entropy is (see (5.51)),

dS = dE + P dV
T

.

This allows us to express the multiplicator β in terms of the temperature. Because
at constant volume V ,

1

T
=
(
∂S

∂E

)
V
= k ∂ ln�

∂E

it follows that

1

T
= kβ + kE ∂β

∂E
− kN ·

∑
gi Eie−βEi∑
g je−βE j

· ∂β
∂E
.

The last two terms on the right-hand side cancel and thus

β = 1

kT
. (5.6)

The expression Z introduced above now becomes

Z(T ) =
∑
j

g j e
−E j /kT . (5.7)

This is called the partition function, which depends only on temperature. The
fractional abundance of atoms with energy Ei is, therefore,

Ni
N
= gie−Ei /kT∑

g je−E j /kT
= gie−Ei /kT

Z
(5.8)

and the abundance ratio of two levels i and j ,

Nj
Ni
= g j
gi
e−(E j−Ei)/kT . (5.9)

Although the population numbers are statistical averages, they are extremely
precise and, practically, important deviations from the mean never occur.
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5.1.4 The mean energy of harmonic oscillators

With some reinterpretation, equations (5.7)–(5.9) are also valid in quantum
mechanics (more general forms are given by (5.26) and (5.36)). For atoms with
internal energy levels Ei , the statistical weight gi denotes then the degeneracy of
the level.

We compute the partition function of a system of N quantized identical
harmonic oscillators in equilibrium at temperature T . The energy levels are non-
degenerate (gi = 1) and equidistant, Ei = (i + 1

2 )�ω for i = 0, 1, 2, . . . (see
(6.25)). With β−1 = kT ,

Z(T ) =
∞∑
i=0

e−βEi = e− 1
2β�ω

∞∑
i=0

e−iβ�ω.

The last sum is an infinite series where each term is a factor e−β�ω smaller
than the preceding one, therefore,

Z(T ) = e− 1
2β�ω

1− e−β�ω . (5.10)

We can also easily compute the mean oscillator energy 〈E〉. If Ni oscillators
have an energy Ei , the average is

〈E〉 =
∑
Ni Ei
N

=
∑

Ei
Ni
N
=
∑

Ei
e−βEi
Z
= − 1

Z

∂Z

∂β
= −∂ ln Z

∂β
.

Because ln Z = − 1
2β�ω − ln(1− e−β�ω), it follows that

〈E〉 = 1

2
�ω + �ω

e�ω/kT − 1
. (5.11)

At high temperatures (�ω � kT ), we get the classical result that the sum of
potential plus kinetic energy of an oscillator equals kT ,

〈E〉 = kT .

At low temperatures (�ω � kT ), the average 〈E〉 is close to the zero point
energy,

〈E〉 = ( 1
2 + e−�ω/kT )�ω.

5.1.5 The Maxwellian velocity distribution

The probability that an arbitrary gas atom has a velocity in a certain range follows
as a corollary from the equilibrium energy distribution (5.8). We substitute in this
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formula for Ei the kinetic energy of an atom, p2/2m. All directions of motion
are equally likely and the square of the length of the momentum vector is

p2 = p2
x + p2

y + p2
z .

For the size of an energy cell, i.e. for the statistical weight, we take

g = 4πp2 dp. (5.12)

In the ratio Ni/N of (5.8), it is the relative not the absolute value of the
statistical weight g that matters;, therefore, the sum over all g need not be one.
When we replace the sum in the partition function Z(T ) of (5.7) by an integral,
we obtain the momentum distribution. Changing from momenta p = mv to
velocities gives the familiar Maxwellian velocity distribution (figure 5.1) which
states that if there are N gas atoms altogether, the number of those whose absolute
velocities are in the range v . . . v + dv equals

N(v) dv = N4πv2
( m

2πkT

)3/2
e−mv2/2kT dv (5.13)

with ∫ ∞
0

N(v) dv = N.

In any arbitrary direction x , the number of atoms with velocities in the
interval [vx , vx + dvx ] is given, except for a normalizing constant, by the
Boltzmann factor e−mv2

x/2kT ,

N(vx ) dvx = N
( m

2πkT

)1/2
e−mv2

x/2kT dvx . (5.14)

N(vx ) is symmetric about vx = 0 and has its maximum there (contrary to
N(v) in (5.13)) because near zero velocity, N(vx ) includes all particles with any
velocity in the y- or z-direction. The total number of atoms, N , follows from
(5.14) by integrating from −∞ to∞.

There are three kinds of averages of the absolute velocity v. To compute
them, we exploit the integrals (A.27)–(A.29) in appendix A associated with the
bell-curve.

• The most probable velocity, vp, is the one at the maximum of the curve N(v),

vp =
√

2kT

m
. (5.15)

• The mean velocity 〈v〉 is relevant for calculating collision rates,

〈v〉 =
√

8kT

πm
. (5.16)
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Figure 5.1. The Maxwellian velocity distribution for hydrogen atoms at 100 K. The
ordinate gives the probability density N(v) after (5.13) with respect to one atom (N = 1).
The vertical dotted lines show from left to right the means vp, 〈v〉 and

√
〈v2〉 according to

(5.15)–(5.17).

• The mean energy of the atoms is given by the average of v2 such that
1
2m〈v2〉 = 3

2kT or

〈v2〉 = 3kT

m
. (5.17)

The averages are ordered (see also figure 5.1),

vp < 〈v〉 <
√
〈v2〉. (5.18)

5.2 Quantum statistics

5.2.1 The unit cell h3 of the phase space

In deriving the energy distribution for an ensemble of particles after Boltzmann,
we divided the energy or momentum space into arbitrarily small cells. The real
coordinate space was not considered. In quantum statistics, one divides the phase
space, which consists of coordinates and momenta, into cells. If V is the volume
and p the momentum, we form cells of size

d� = V · 4πp2 dp
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where 4πp2dp is the volume of a shell in momentum space with radius p and
thickness dp. According to the uncertainty principle, position q and momentum
p of a particle can only be determined to an accuracy
p and 
q such that


p ·
q � �.

This relation results from the wave character possessed by all particles, not
just photons. The wavelength of a particle is related to its momentum (after
de Broglie) by p = h/λ. Because of the wave character, particles in a box of
volume V can only have discrete momenta, otherwise they would be destroyed
by interference. The situation is formally almost identical to standing waves in a
crystal, which we treat in section 8.4. We may, therefore, exploit equation (8.31)
of that section and find that the possible number of eigenfrequencies within the
momentum interval p to p + dp in a box of volume V is

g = V · 4πp2 dp

h3
. (5.19)

The eigenfrequencies are the only allowed states in which a particle can exist
and correspond to standing waves. The quantity g (named dZ in (8.31)) is called
the statistical weight (see also (5.12)). It states how many unit cells, each of
size h3, fit into the phase space element d�. Note that classically the number of
possible (physically different) states is unlimited, which would correspond to a
unit cell of size zero.

To determine the state of a particle with non-zero spin, one needs, besides
place and momentum, the spin direction. Therefore, the number of quantum states
of an electron (spin 1

2 ) is twice the value given in (5.19). The same is true for
photons (spin 1) which, traveling at the speed of light, also have two (not three)
spin directions.

5.2.2 Bosons and fermions

Particles are described by their position in phase space. Any two particles of the
same kind, for example, two photons or two electrons, are otherwise identical.
This means that when we swap their positions in phase space, nothing changes
physically, the particles are indistinguishable.

In quantum mechanics, particles are represented by their wavefunctions. Let
�(x1, x2, . . . , xn) denote the wavefunction of a system of n particles, all of one
kind and not interacting. Their identity then implies that |�|2 stays the same
when any two of the particles are interchanged. So after they have been swapped,
either � itself is not altered, then one speaks of a symmetric wavefunction, or �
is transferred into −� , then the wavefunction is called anti-symmetric.

Let particle i have the coordinate xi , the wavefunctionψi and the energy Ei .
The total energy of the system is then

E =
n∑
i=1

Ei .
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Because the particles are non-interacting, the wavefunction of the whole
system can be factorized into the N wavefunctions ψi of the individual particles.
We, therefore, write �(x1, x2, . . . , xn) as a sum of such terms but with
interchanged arguments; this corresponds to swapping particles. For example,
the first term of the sum is

ψ1(x1)ψ2(x2) · . . . · ψn(xn) (5.20)

and the next, where particles 1 and 2 have been exchanged,

ψ1(x2)ψ2(x1) · . . . · ψn(xn)
and so forth. Each such product is a wavefunction that gives the same total energy
E but fails to fulfil the symmetry condition. Note that in a multi-dimensional
function it does not matter by which symbols the arguments are presented,
what counts is the sequence in which they appear. So f (x1, x2) = x1x2

2 and
g(x2, x1) = x2

1x2 are identical functions but f (x1, x2) and h(x1, x2) = x2
1x2 are

different.

• It can readily be checked that the linear combination

�Bose(x1, x2, . . . , xn) =
∑
P

P̂ψ1(x1)ψ2(x2) · . . . · ψn(xn) (5.21)

and no other, is symmetric and yields the correct energy E . Here P̂ is an
operator that performs a permutation of the coordinates x1, x2, . . . , xn ; the
sum extends over all N ! possible permutations. All coefficients before the
products ψ1ψ1 . . . ψn equal one (we neglect normalization).

• Likewise, the only anti-symmetric wavefunction of the whole system is the
linear combination formed by the determinant

�Fermi(x1, x2, . . . , xn) = det



ψ1(x1) ψ2(x1) . . . ψn(x1)

ψ1(x2) ψ2(x2) . . . ψn(x2)

. . . . . . . . . . . .

ψ1(xn) ψ2(xn) . . . ψn(xn)


 . (5.22)

As indicated by the subscripts on � , if the wavefunction is symmetric,
the particles are called bosons, if it is anti-symmetric, fermions. When two
rows or columns of the matrix (5.22) are equal, ψi = ψ j , they are linearly
dependent and the determinant in (5.22) vanishes. This has the fundamental
consequence, known as Pauli’s exclusion principle, that two fermions cannot have
the same wavefunction, i.e. they cannot occupy the same quantum state or unit
cell. Bosons, however, are not subject to Pauli’s exclusion principle. It is an
experimental fact and is also claimed theoretically that particles with half-integer
spin, like electrons, protons or neutrons are fermions, while particles with integer
spin, like photons, are bosons.
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5.2.3 Bose statistics

5.2.3.1 Counting states

Let us assume N identical particles of mass m in a box of volume V and with a
total energy E . We divide the phase into cells of size d� = V 4πp2

i dp. Each cell
contains Ni particles of energy

Ei = p2
i

2m

and comprises

gi = d�

h3
= V4πp2

i dp

h3
(5.23)

unit cells. A particular distribution of the system is completely determined by
specifying for each cell d� its population Ni , energy Ei and statistical weight gi
(size), i.e. through the three sets of values

N1, N2, . . . Ni , . . .

E1, E2, . . . Ei , . . .

g1, g2, . . . gi , . . . .

(5.24)

The probability of finding this particular distribution is proportional to the
number of ways W in which it can be realized.

First, we consider only one cell, say cell i of size d�. Its Ni atoms constitute
a subsystem. We ask in how many ways can one distribute its Ni particles
over its gi unit cells (quantum states). Let us label the unit cells within d� by
Z1, Z2, . . . , Zgi and the atoms by a1, a2, . . . , aNi . If we write behind each unit
cell the atoms which it contains, one particular distribution is given, for instance,
by the sequence

Z1a1a2a3︸ ︷︷ ︸ Z2︸︷︷︸ Z3a4a5︸ ︷︷ ︸ Z4a6︸︷︷︸ Z5a7︸︷︷︸ . . . .
In this sequence, the atoms a1, a2, a3 are in Z1, cell Z2 is empty, the atoms

a4, a5 are in Z3, and so forth. In boson statistics, there is no limit as to how
many atoms can be squeezed into one unit cell. All such sequences of symbols Zl
and ak , like the one here, start with some Z , because we always first specify the
cell and then the atoms it contains. Therefore the total number of mathematically
different sequences is gi(gi + Ni − 1)!. As permuting the atoms or unit cells does
not result in a new quantum state of the subsystem d�, only

gi (gi + Ni − 1)!
Ni !gi ! = (gi + Ni − 1)!

Ni !(gi − 1)!
of the sequences are physically different. Therefore, when considering the total
phase space, there are

� =
∏
i

(gi + Ni − 1)!
Ni !(gi − 1)! (5.25)
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ways in which the configuration of (5.24) can be achieved. The maximum of �,
which is what nature chooses, is found in the same manner as the maximum of
the probability ω in (5.2) for Boltzmann statistics. One forms the logarithm using
the first two terms of the Stirling formula (5.3),

ln� =
∑
i

[
(gi + Ni − 1) ln(gi + Ni − 1)− (gi − 1) ln(gi − 1)− Ni ln Ni

]
and exploits the conditions for the conservation of energy and number of particles,

E −
∑
i

Ni Ei = 0 N −
∑
i

Ni = 0.

Following the procedure outlined in section 5.1, this leads to

ln
gi + Ni
Ni

= α + βEi .

5.2.3.2 The occupation number in Bose statistics

When, in the last formula, we drop the subscript i , write dn instead of Ni (dn is
the number of particles in the phase space element V 4πp2 dp), and insert (5.23)
for the statistical weight, we get

dn = V 4πp2

h3

dp

eα+βE − 1
= g

eα+βE − 1
. (5.26)

As the g unit cells are, according to this formula, populated by dn particles,
one calls

� = dn

g
= 1

eα+βE − 1
(5.27)

the occupation number, which is the number of particles per unit cell. We still
have to determine the coefficients α and β. Using the same thermodynamic
arguments as for Boltzmann statistics gives (see (5.6))

β = 1

kT
.

α follows from the requirement that the number of particles is conserved, i.e. from∫
dn = 4πV

h3

∫
p2 dp

eα+βE − 1
= NV . (5.28)

The coefficient α is always positive, as otherwise the denominator under the
integral might vanish, so e−α lies between zero and one. We only mention that
α is related to the chemical potential µ by α = −µ/kT . When eα+βE � 1, the
integrand in (5.28) becomes p2e−αe−E/kT , which yields

e−α = N

V

h3

(2πmkT )3/2
(5.29)
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and one recovers the Maxwell distribution (5.13),

dn = N
4πp2 dp

(2πmkT )3/2
e−p2/2mkT .

5.2.4 Bose statistics for photons

For photons, which have a momentum p = hν/c, the statistical weight is

g = 2
V4πν2 dν

c3
. (5.30)

The factor 2 accounts for the two possible modes of circular polarization. As
radiative equilibrium is established through emission and absorption processes,
in which photons are created and destroyed, their number is not conserved.
Consequently, there is no such constraint as

N −
∑
i

Ni = 0

the parameter α in (5.26) is zero and

dn = g

ehν/kT − 1
= V 8πν2

c3

dν

ehν/kT − 1
.

The radiative energy density uν now follows from uν dν = hν dn/V ,

uν = 8πh

c3

ν3

ehν/kT − 1
. (5.31)

Formula (5.31) describes the distribution of photons in equilibrium at
temperature T—the so called blackbody radiation. Although we did not explicitly
prescribe the total number of photons within a unit volume, nphot, the average is
fixed and follows from integrating uν/hν over frequency,

nphot =
∫ ∞

0

uν
hν

dν = 8π

(
kT

hc

)3 ∫ ∞
0

x2

ex − 1
dx

(see (A.17) for an evaluation of the integral). A unit volume of gas in
thermodynamic equilibrium, however, may be filled by an arbitrary number of
atoms.

The occupation number of photons in equilibrium is, from (5.27),

�equil = 1

ehν/kT − 1
. (5.32)

The occupation number equals dn/g and, therefore, also has a value when the
photons are out of equilibrium and no temperature is defined. Because there
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are dn = g� photons in the phase cell d�, which have a total energy g�hν,
the occupation number may be used to specify the radiative energy density at a
particular frequency,

uν = 8πhν3

c3
� . (5.33)

Likewise, � may define the intensity of radiation. We will return to
blackbody radiation in section 5.4 and rediscover the basic equation (5.31) from
less abstract and less strict arguments.

5.2.5 Fermi statistics

Fermi statistics deals with particles that have an anti-symmetric wavefunction and
which, therefore, obey Pauli’s exclusion principle, like electrons. We again divide
the phase space into cells of size d� = V4πp2 dp. Now there can only be one
particle per unit cell h3 with a given spin direction, so the statistical weight is

gi = V · 4πp2
i dp

h3 . (5.34)

However, there may be two particles of opposite spin per unit cell because
their quantum states differ. In counting states, we repeat the steps which we
carried out for Bose statistics. We consider a cell d� consisting of gi unit
cells, each harbouring Ni electrons. A unit cell is either empty or filled with
one electron. The essential difference from Bose statistics is that there are now

gi !
(gi − Ni )!Ni !

ways to distribute Ni electrons over the gi unit cells, thus in all

� =
∏
i

gi !
(gi − Ni )!Ni ! (5.35)

different possibilities. This gives, with the same procedure as before, the
counterpart to (5.26) for the number of particles dn in the phase space element
V 4πp2 dp which contains g unit cells,

dn = g

eα+βE + 1
(5.36)

and for the occupation number (cf. (5.27))

� = dn

g
= 1

eα+βE + 1
. (5.37)

In the denominator, it is now +1, and not −1. Of course, as before β = 1/kT
and the parameter α follows from the condition that the total number of particles
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comes out correctly (cf. (5.28)), ∫
dn = NV .

But now α, which is also called the degeneracy parameter, may be positive as well
as negative (from −∞ to +∞). Degeneracy is absent for large positive α, when
the gas is hot and rarefied (see (5.29)). As in Bose statistics: α = −µ/kT where
µ is the chemical potential, and if eα+βE � 1, we are in the realm of classical
physics.

When the temperature T goes to zero, the occupation number � changes
discontinuously from one for energies below the Fermi limit EF to zero for
E > EF (subsection 6.4.2); in Bose statistics, all particles are in their lowest
(zero momentum) state at T = 0.

In quantum statistics, particles are indistinguishable and states are counted
either after Bose as in (5.25) or after Fermi as in (5.35). The quantum mechanical
way of counting is the right way and takes into account the fact that the phase
space is partitioned into unit cells h3. In Fermi statistics, there is not more than
one particle (of the same spin) per unit cell. In classical statistics, however,
particles are distiguishable and the probability is, from (5.2),

�class = N !
∏
i

gNii
Ni ! .

In accordance with the correspondence principle, the quantum mechanical
probabilities (5.25) and (5.35) approach �class when the Planck constant h goes
to zero and the gi become very large (gi � Ni ).

5.2.6 Ionization equilibrium and the Saha equation

In a hot gas, the atoms of any element X exist in different stages r of ionization.
Denoting the corresponding ion by Xr, there are ionizing and recombining
processes symbolized by

Xr � Xr+1 + e.

Suppose that in 1 cm3 there are Ne electrons and Nr particles of species Xr ,
of which N1,r are in their ground state. The Ns of two neighboring ionization
stages are related in thermodynamic equilibrium by the Saha formula

N1,r+1Ne

N1,r
= 2

(2πmekT )3/2

h3

g1,r+1

g1,r
e−χ/kT . (5.38)

g1,r is the statistical weight of the ground state of ionization stage r, and χ > 0
is the energy difference between the ground state of ion Xr and Xr+1. The
very form of (5.38) suggests that the Saha equation can be derived from the
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Boltzmann equation. For simplicity, we restrict the discussion to pure hydrogen
gas consisting of electrons, protons and neutral hydrogen atoms. Let us consider

• the atom with the electron bound in level n=1 as the ground state
• the proton together with a free electron of momentum p as the excited state.

The energies of the excited states form a continuum because the electrons
may have any velocity. Energies are counted in the following way: for the
hydrogen atom in level n, En is negative. Thus in the ground state,−E1 = χ > 0,
where χ is the ionization potential of hydrogen. At the ionization threshold, the
energy is zero, and for the proton–free-electron system it is positive and equals
p2/2me.

Let N(p) dp be the number density of excited particles (one such particle
consists of a proton and an electron) where the electron has momentum in the
range [p, p + dp]. Let g(p) be the statistical weight of the excited state. If
N1,H, g1,H are the corresponding numbers for the hydrogen atoms in the ground
state, then according to (5.9)

N(p) dp

N1,H
= g(p)

g1,H
exp

(
−χ + p2/2me

kT

)
.

The statistical weight g(p) is the number of quantum states of the proton–free–
electron particle and thus the product of the statistical weight of the proton and
the electron,

g(p) = gp · ge.

After (5.34), ge = 2 · 4πp2 dp V/h3. The factor 2 comes from the two electron
spin directions. Because ∫ ∞

0
N(p) dp = Ne = Np,

one gets
Np

N1,H
= 2

(2πmekT )3/2

h3 e−χ/kT V
gp

g1,H
.

To determine the volume V , we note that the phase space cell of a free electron,
which always pertains to one proton, must contain exactly one electron, so

V = 1/Ne.

The statistical weight of the neutral atom with the electron in level n is equal to
the maximum number of electrons in that level, so gn,H = 2n2 and g1,H/gp = 2,
altogether

NpNe

N1,H
= (2πmekT )3/2

h3
e−χ/kT . (5.39)
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When the partition function of the neutral hydrogen atom Z = ∑
gie−Ei/kT is

approximated by its first term g1e−E1/kT , which is often possible and implies that
almost all atoms reside in the ground state, then N1,H is equal to the number NH
of all hydrogen atoms and

NpNe

NH
= (2πmekT )3/2

h3
e−χ/kT .

We can also immediately calculate the number Nn of atoms in level n under
conditions of thermodynamic equilibrium,

Nn
NeNp

= h3n2

(2πmekT )3/2
e−En/kT . (5.40)

Note that −En is positive and for high levels very small.
The Saha equation goes wrong when the mean distance d between ions

becomes comparable to the size 2r of an atom. This happens in stellar interiors
where the density is high, although LTE (local thermodynamic equilibrium)
certainly prevails. An atom is then closely surrounded by ions and the overlap
of their electric fields disturbs the higher quantum states and lowers the ionization
energy. Atoms in high quantum number n are big. For hydrogen, their radius
is r = a0n2 where a0 is the Bohr radius. In the central region of the Sun
(ρ ∼ 102 g cm−3, T ∼ 15 × 106 K), d is less than the Bohr radius and even
the ground state of hydrogen cannot exist, although the Saha equation predicts
that about half of all atoms are neutral.

5.3 Thermodynamics

This section summarizes the results of thermal and statistical physics. For
the computation of the population of energy levels in the smallest grains (see
section 12.1) we have to recall the definition of temperature, entropy and
number of accessible states. The formulae around the specific heat find their
application mainly in the theory of magnetic dissipation in section 11.2. Some
of the thermodynamic elements presented here are also indispensable in the
discussion of phase transition during the formation and evaporation of grains (see
section 9.5).

5.3.1 The ergodic hypothesis

Boltzmann’s equilibrium population of the energy levels of a system was derived
by determining the energetically most likely distribution. More generally, instead
of energy space one considers the phase space of the system; the path of the
atoms in phase space contains the full mechanical information. A system of f
degrees of freedom is described by the spatial coordinates q1, . . . , q f and the
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conjugate momenta p1, . . . , p f . Usually one needs three coordinates (x, y, z)
for one particle, so if there are N particles,

f = 3N.

Let the system be isolated so that it cannot exchange energy with its surroundings.
The total energy E is, therefore, constant or, rather, it is in a narrow range from
E to E + δE , because in quantum mechanics, E cannot be defined with absolute
precision in a finite time.

At any instant, the system may be represented by a point in the 2 f -
dimensional phase space with the coordinates q1, . . . , q f , p1, . . . , p f . As
the system evolves in time t , it describes a trajectory parametrized by
(q1(t), . . . , p f (t)). If one divides the phase space into small cells Z of equal
size, the microstate of the system at a particular moment is determined by the
cell in which it is found. The cells may be enumerated. All cells (states) Zi
that correspond to an energy between E and E + δE are called accessible. In
equilibrium, the probability to find the system in a certain accessible cell Zr is,
by definition, independent of time.

• The fundamental (ergodic) postulate asserts that when the system is in
equilibrium, all accessible states are equally likely, none has any preference.

Let �(E) be the total number of accessible states (cells), i.e. those with
energy in the interval [E, E + δE]. If there are many degrees of freedom
( f � 1), the function �(E) increases extremely rapidly with the total energy
E of the system. To see how fast �(E) rises, we make a rough estimate. Let
our system consist of identical quantum oscillators, each corresponding to one
degree of freedom. Their energy levels are equally spaced in multiples of �ω.
Each oscillator has on average an energy E/ f . After equation (6.26), it is spread
out in one-dimensional phase space over a region 
x
p = E/ f ω where it thus
occupies E/ f �ω cells of size �. It does not make sense to consider cells smaller
than � because one cannot locate a particle more accurately. The number of states,
Ns, of the total system whose energy does not exceed E is, therefore,

Ns =
(

E

f �ω

)f
. (5.41)

Hence the number of cells,�(E), with energies from [E, E + δE] becomes

�(E) = Ns(E + δE)− Ns(E) � dNs

dE
δE .

We denote by

ρ(E) = dNs

dE
the density of states around energy E . It is independent of the width of the chosen
energy interval δE , contrary to �(E) which obviously increases with δE . As a
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first approximation, one gets ρ(E) � f E f−1/( f �ω) f . If one counts the states
more properly but neglects powers of E with exponents f − 2 or smaller, one
finds

ρ(E) � E f−1

( f − 1)!(�ω) f . (5.42)

If the total energy E of the system is n times greater than the natural energy
unit �ω, the density of states becomes proportional to n f−1/( f − 1)!. Note that
ρ and � rise with E f−1. When we evaluate � for something from everyday life,
like the gas content in an empty bottle, the number of degrees of freedom of the
atoms is ∼ 1024. This, by itself, is a huge number but because f appears as an
exponent,� is so large that even its logarithm ln� is of order f , or 1024.

The probability that all gas atoms in a box are huddled in the upper left-hand
corner and the rest of the box is void is extremely low, one will never encounter
such a configuration. After the ergodic principle, all accessible cells in a phase
space have an equal chance of being populated. The probability of a particular
microstate which actually is encountered and where the atoms are very evenly
distributed must, therefore, be equally low. There is no contradiction because
there is just one cell corresponding to all atoms being clustered in one corner
but a multitude corresponding to a very smooth distribution of atoms over the
available box volume.

5.3.2 Definition of entropy and temperature

In statistical physics, the starting point is the number of accessible states �(E)
with energies from [E, E + δE]; it determines the entropy,

S = k ln�. (5.43)

Of course, �(E) depends on the width of the energy interval δE but because
� is so large, one can easily show that δE is irrelevant in (5.43). The absolute
temperature T is then defined by

1

k

∂S

∂E
= ∂ ln ρ

∂E
= 1

kT
. (5.44)

Let us see what these two definitions mean for a bottle of warm lemonade
(system A) in an icebox (system A′). The two systems are in thermal contact, i.e.
heat can flow between them but the external parameters (like volume) are fixed.
The total system, A + A′, is isolated (we do not have an electric icebox), so the
joint energy Etot = E + E ′ is constant; otherwise E and E ′ are arbitrary. The
number of accessible states of the whole system, subject to the condition that
subsystem A has an energy E , is given by the product�(E)�′(Etot − E), where
� and �′ refer to A and A′, respectively. The probability P(E) of finding the
whole system in a state where A has the energy E is evidently proportional to this
product,

P(E) ∝ �(E) ·�′(Etot − E).
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When �(E) rises, �′(Etot − E) must fall. Because of the extreme
dependence of the number of accessible states � on E , or of �′ on E ′, the
probability P(E) must have a very sharp maximum at some value Eeq. To find
system A at an energy E �= Eeq is totally unlikely. The probability P(E) is
almost a δ-function, the value where it is not zero determines equilibrium. The
energy E where P , or the entropy S + S′, of the whole system has its maximum
follows from

∂ ln P

∂E
= 0.

This equation immediately gives

∂S

∂E

∣∣∣∣
E=Eeq

= ∂S′

∂E ′

∣∣∣∣
E ′=E ′eq

which means that in equilibrium the temperature of the icebox and lemonade are
equal, the lemonade is cool. Note that nothing has been said about how long it
takes, starting from some arbitrary microstate, to arrive at equilibrium.

5.3.3 The canonical distribution

Let a system A be in thermal contact with a much larger heat bath A′ of
temperature T . The energy of A is not fixed, only the joint energy Etot of the
combined system A + A′. Suppose now that A is in a definite state r of energy
Er . The heat bath has then the energy E ′ = Etot−Er and�′(Etot−Er ) accessible
states. The probabity Pr for A being in state r is proportional to the number of
states of the total system A + A′ under that condition, therefore, as A is fixed to
state r ,

Pr = C ′�′(Etot − Er ).
The constant C ′ follows from the condition

∑
s Ps = 1 in which the

sum includes all possible states s of A, irrespective of their energy. Because
Etot � Er , one can develop ln�′ around Etot,

ln�′(Etot − Er ) = ln�′(Etot)− βEr
where β = ∂ ln�′/∂E ′ = (kT )−1 (see (5.44)), and obtains the canonical
distribution

Pr = e−βEr∑
s e
−βEs . (5.45)

The sum in the denominator represents the partition function Z(T ). The
probability P(E) to find system A in the energy range δE around E becomes

P(E) = �(E) e
−βEr∑

s

e−βEs
(5.46)
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where �(E) is the corresponding number of states accessible to A. Formula
(5.46) is in agreement with the Boltzmann distribution (5.9): As the size of system
A has not entered the derivation of P(E), the expression is also correct when A
is a microscopic system. Thermal contact then just means that A can exchange
energy with A′. If A consists of just one atom with discrete energy levels E j ,
there is only one state for which E = E j , so �(E) = 1 and one recovers the
Boltzmann distribution (5.9).

5.3.3.1 Constraints on the system

Sometimes a macroscopic system A may have to fulfil additional constraints,
besides having an energy between E and E + δE . For example, some parameter
Y may have to take up a certain precise value y, or lie in the range [y, y + δy];
we then symbolically write Y = y. The parameter Y may be anything, for
example, the energy of ten selected atoms or the integrated magnetic moment of
all particles. The states for which Y = y form a subclass of all accessible states,
and we denote their total number by �(E; y). In view of the ergodic postulate,
the probability P of finding the system in the desired configuration Y = y is

P(y) = �(E; y)
�(E)

. (5.47)

Likewise the probability P can be expressed by the ratio of the densities of
states,

P(y) = ρ(E; y)
ρ(E)

. (5.48)

5.3.4 Thermodynamic relations for a gas

When one transfers to a system a small amount of heat δQ and does the work
δA on the system, then, according to the first law of thermodynamics, its internal
energyU is altered by the amount

dU = δQ + δA. (5.49)

If the infinitesimal work is due to a change of volume dV ,

δA = −p dV .
So when V is decreased, δA is positive. If U depends on temperature and

volume, U = U(T, V ) and

dU =
(
∂U

∂T

)
V
dT +

(
∂U

∂V

)
T
dV

and because of equation (5.49),

δQ =
(
∂U

∂T

)
V
dT +

[(
∂U

∂V

)
T
+ p

]
dV . (5.50)
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The second law of thermodynamics brings in the entropy S. When the heat
δQ is added reversibly to a system at temperature T , its entropy increases by

dS = δQ
T
= dU − δA

T
. (5.51)

The entropy is a state function and the integral
∫
δQ/T in the (p, V )-plane

along any closed path is, therefore, zero. Because dS is a full differential, i.e.

∂2S

∂T ∂V
= ∂2S

∂V ∂T

we get from (5.51) with δA = −p dV ,(
∂U

∂V

)
T
= T

(
∂p

∂T

)
V
− p. (5.52)

Other common thermodynamic state functions besides U and S are as
follows.

• The free energy or Helmholtz potential

F = U − T S. (5.53)

To connect a physical meaning to F , we note that if, in an isothermal
reversible process, one applies the work δA on a system, for example, by
compressing a gas, the free energy of the system increases by
F = δA.

• The enthalpy
H = U + pV . (5.54)

When one presses gas through a small hole from one vessel to another, as in
the famous Joule–Thomson experiment, it is the enthalpy that stays constant.

• The free enthalpy or Gibbs potential

G = U + pV − T S. (5.55)

As convenient variables one usually uses for G temperature, pressure and
number Nj of atoms of the j th gas component, G = G(T, V , Nj ). With
some elementary calculus manipulations one obtains the full differential

dG = ∂G
∂T

dT + ∂G
∂p

dp + ∂G

∂Nj
dNj = −S dT + V dp +

∑
j

µ j dN j

where

µ j = ∂G

∂Nj
(5.56)

defines the chemical potential. In a homogeneous phase, in which for any α

S(αU, αV , αNj ) = αS(U, V , Nj )
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one finds (without proof but it is not difficult)

G =
∑
j

µ j N j .

Therefore, the free enthalpy of a system consisting of a one-component fluid
and its vapor (only one kind of molecules, i.e. j = 1) is

G = Gfl + Ggas = µflNfl + µgasNgas. (5.57)

5.3.5 Equilibrium conditions of the state functions

Let us recall the conditions under which a system is in equilibrium. For a
mechanical system, all forces Fi acting on the particles must vanish. The forces
derive from a potential φ, so Fi = −∂φ/∂xi . In equilibrium, the potential φ is at
its minimum and the differential
φ = 0.

For an isolated thermodynamic system A of constant energy U and volume
V , the entropy SA attains its maximum. Therefore, the differential 
SA is zero
under small variations of the variables (U, V , Nj ). If A is not isolated but in
contact with a heat bath A′, the equilibrium condition for the total system A+A′
reads:


Stot = 
(SA + SA′) = 0.

System A receives from the environment A′ the heat δQ = −T
SA′ which
increases its internal energy by 
U and does the work δA on the system (see
(5.49)),

δQ = T
SA = 
U − δA.
As all variables here refer to system A, we may drop the index A in the

entropy and get

U − T
S − δA = 0.

In the case of pure compressional work, δA = −p
V and


U − T
S + p
V = 0. (5.58)

Equation (5.58) leads in a straightforward way to the following equilibrium
conditions:

(1) In a system A of constant temperature and volume (
T = 
V = 0) and in
contact with a heat reservoir A′, the differential of the free energy vanishes
under small changes of the variables,


F = 
(U − T S) = 0.

F has then its minimum because Stot of the total system A + A′ is at its
maximum. Note that all variables without an index refer to system A.
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It is reassuring that the condition 
F = 0 is also in line with the
Boltzmann equation (5.9): Suppose the N particles of the system
possess only two levels, 1 and 2. In an equilibrium state a, the lower
level 1 is populated by N1 and the upper level 2 by N2 atoms with
N1+N2 = N . In a nearby, almost-equilibrium state b, the corresponding
populations are N1+1 and N2−1. The thermodynamic probability� for
the two states states is given by (5.1) and the entropy changes between
state a to b by


S = k[ln�b − ln�a] = k ln
�b

�a
= k ln

N1

N2 + 1
� k ln

N1

N2
.

At constant temperature and volume, the condition 
F = 
U −
T
S = 0, where 
U is the excitation energy of level 2, implies
N2/N1 = e−
U/kT , as in (5.9).

Let system A depend on some parameter Y . The number of accessible states
where Y takes up values between y and y + δy is (see (5.43))

�tot(y) = eStot(y)/k

and the probability P(y) of such states is proportional to �tot(y). Likewise,
P(y ′) ∝ �tot(y ′) = eStot(y′)/k for another value y ′ of the parameter Y . As
Y varies from y to y ′ (this need not be a small step), the entropy of the total
system changes by


Stot = T
S −
U + δA
T

where δA is the (not necessarily infinitesimally small) work done on system
A and 
S = S(y) − S(y ′) and 
U = U(y) − U(y ′). As the volume
is constant, there is no compressional work and δA = 0. With 
F =
F(y) − F(y ′), we get, for the population ratio of states where Y = y and
Y = y ′,

P(y)

P(y ′)
= e−
F/kT .

This result follows also from the canonical distribution (5.45).
(2) At constant temperature and pressure (
T = 
p = 0), the differential of

the free enthalpy

G = 
(U + pV − T S) = 0

and G has its minimum. In an analagous manner as for the free energy, one
derives 
Stot = −
G/T and, putting 
G = G(y) − G(y ′), a population
ratio of states where the parameter Y has values y and y ′

P(y)

P(y ′)
= e−
G/kT . (5.59)

(3) At constant pressure (
p = 0) and constant entropy (
S = 0, adiabatic
process),
H = 
(U + pV ) = 0 and the enthalpy has its minimum.
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5.3.6 Specific heat of a gas

The specific heat at constant pressure,CP, and at constant volume,CV , are defined
by

Cp =
(
δQ

dT

)
P

Cv =
(
∂U

∂T

)
V
. (5.60)

Let us determine Cp − Cv. Because at constant pressure (dp = 0)

dp =
(
∂p

∂T

)
V
dT +

(
∂p

∂V

)
T
dV =

(
∂p

∂T

)
V
dT +

(
∂p

∂V

)
T

(
∂V

∂T

)
P
dT

we obtain, using (5.50), (5.52) and (5.60),

Cp − Cv = T
(
∂p

∂T

)
V

(
∂V

∂T

)
P
= −T

(
∂p

∂T

)2

V

(
∂p

∂V

)−1

T
. (5.61)

It follows immediately that

δQ = Cv

(
∂T

∂p

)
V
dp + Cp

(
∂T

∂V

)
P
dV . (5.62)

5.3.7 The work done by magnetization

Consider a magnetic body of unit volume in a field H and with magnetization
M . Its internal energy depends on the temperature and on the magnetic field,
U = U(T, H ). If a field H is needed to produce in the body the magnetization
M , to change the magnetization by dM requires the infinitesimal work

δA = H dM. (5.63)

This follows from the following thought experiment:

xX

coil
Hbody

Y
We move an unmagnetized body of unit volume along the x-axis from a
position X, where there is no magnetic field, to another place Y where there
is some field H0, say, near a coil through which runs an electric current. The
body is attracted by the coil and in the field H0, it acquires the magnetization
M0. Then we pull the body back to X but while doing so, we fix the
magnetization M0 (that is why it is a thought experiment). The force acting
on the body is, at each position, M(dH/dx) as follows from (11.16) for
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the potential energy of a dipole. The total mechanical work A done on the
system over the whole path from X to Y and back becomes

A = −
∫ H0

0
M dH +

∫ H0

0
M0 dH =

∫ M0

0
H dM.

The last equality is obvious when one identifies the integrals with the area
under the curves M(H ) and H (M). So indeed δA = H dM and, therefore,

δQ = T dS = dU − H dM.

5.3.8 Susceptibility and specific heat of magnetic substances

The previously derived formulae for CP and CV now come in handy. To obtain
the relations for the specific heat at constant magnetic field H and at constant
magnetization M , defined by

CH =
(
∂U

∂T

)
H

CM =
(
δQ

dT

)
M

(5.64)

we just have to interchange

M ↔ p and H ↔ V .

In complete analogy to (5.61) and (5.62), we write

CM − CH = T
(
∂M

∂T

)
H

(
∂H

∂T

)
M
= −T

(
∂M

∂T

)2

H

(
∂M

∂H

)−1

T
(5.65)

and

δQ = CH

(
∂T

∂M

)
H
dM + CM

(
∂T

∂H

)
M
dH. (5.66)

The adiabatic and isothermal (or static) susceptibility are defined as

χad =
(
∂M

∂H

)
S

and χT =
(
∂M

∂H

)
T
. (5.67)

As long as magnetic saturation is excluded, one also has χT = M/H . We
compute χad from (5.66) by putting δQ = 0 (S = constant),

χad = −CM

CH

(
∂T

∂H

)
M

(
∂M

∂T

)
H
= CM

CH

(
∂M

∂H

)
T

(5.68)

where we have exploited, after the second equals sign, formula (5.65). Therefore

χad = CM

CH
χT . (5.69)
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5.4 Blackbody radiation

5.4.1 The Planck function

The Planck function gives the intensity of radiation in an enclosure in thermal
equilibrium at temperature T . It is a universal function depending only on T and
frequency ν. Written in the frequency scale,

Bν(T ) = 2h

c2

ν3

e
hν
kT − 1

. (5.70)

The intensity is taken per Hz and has the units erg cm−2 s−1 ster−1 Hz−1.
Bν(T ) is related to the monochromatic radiative energy density uν in the
enclosure by

uν = 4π

c
Bν(T ) = 8πh

c3 ·
ν3

e
hν
kT − 1

. (5.71)

Alternatively, the Planck function may be referred to wavelength and
designated Bλ(T ); its unit is then erg cm−2 s−1 ster−1 cm−1. The two forms
are related through

Bλ(T ) dλ = −Bν(T ) dν. (5.72)

Because of dν = −(c/λ2) dλ,

Bλ(T ) = 2hc2

λ5(e
hc
kT λ − 1)

. (5.73)

In view of the exponential factor, Bν(T ) is usually very sensitive to both
temperature and frequency. The Planck function increases monotonically with
temperature, i.e. at any frequency

Bν(T2) > Bν(T1) if T2 > T1.

Figure 5.2 depicts the plot of the curve

y = x3

ex − 1

from which one can read off the value of the Planck function for any combination
(ν, T ) of frequency and temperature. It starts at the origin (0, 0) with a slope of
zero, culminates at xmax = 2.822 and asymptotically approaches zero for large x .

An object that emits at all frequencies with an intensity Bν(T ) is called a
blackbody. The emergent flux Fν from a unit area of its surface into all directions
of the half-sphere is

Fν = πBν(T ). (5.74)

This expression, for example, is approximately applicable to stellar
atmospheres when T is the effective surface temperature.
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Figure 5.2. The universal shape of the Planck function. As the abscissa x is here in the
unit hν/kT , one has to multiply the ordinate y by the factor (2k3/h2c2)T 3 to get Bν(T ).

5.4.2 Low- and high-frequency limit

There are two asymptotic approximations to the Planck function depending on the
ratio x of photon energy hν over thermal energy kT ,

x = hν

kT
.

• In the Wien limit, x � 1 and

Bν(T )→ 2hν3

c2 e−
hν
kT . (5.75)

With respect to dust emission, where wavelengths are typically between
1 µm and 1 mm and temperatures from 10 to 2000 K, Wien’s limit is never
appropriate.

• In the Rayleigh–Jeans limit, x � 1 and

Bν(T )→ 2ν2

c2 kT . (5.76)

As the photon energy hν is much smaller than the thermal energy kT
of an oscillator, one can expand the Planck function into powers of x
and enter the realm of classical physics where the Planck constant h
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vanishes. The dependence of Bν(T ) on frequency and temperature is then no
longer exponential. The Rayleigh–Jeans approximation is always good for
centimeter radio astronomy, and sometimes also applicable to dust emission.
However, one must check whether

x = 1.44

λT
(λ in cm)

is really small compared to 1.

5.4.3 Wien’s displacement law and the Stefan–Boltzmann law

In the wavelength scale, the Planck function Bλ(T ) reaches its maximum at λmax
given by ∂Bλ/∂λ = 0. Therefore

λmaxT = 0.289 cm K. (5.77)

In the frequency scale, maximum emission is determined by ∂Bν/∂ν = 0
and occurs at νmax for which

T

νmax
= 1.70× 10−11 Hz−1 K. (5.78)

Note that λmax from (5.77), which refers to the wavelength scale, is a
factor 1.76 smaller than the corresponding wavelength c/νmax from (5.78). The
wavelength where the flux from a blackbody peaks depends thus on whether one
measures the flux per Hz (Fν) or per cm (Fλ). The total energy per s over a certain
spectral interval is, of course, the same for Fλ and Fν . If one wants to detect a
blackbody with an instrument that has a sensitivity curve Sν , one usually tries to
maximize

∫
SνBν(T ) dν.

When λmax is known, the displacement law determines the temperature of a
blackbody. Interstellar grains are certainly not blackbodies but the shape of the
spectral energy distribution from a dusty region may at far infrared wavelengths
be approximated by νmBν(T ) (see (8.1) for the correct expression) if the emission
is optically thin and the absorption coefficient has a power-law dependence
Kν ∝ νm . The term

νmBν(T )

is sometimes called the modified Planck function. Maximum emission follows
now from ∂(νmBν)/∂ν = 0. For Kν ∝ ν2, one finds λmaxT = 0.206 cm K,
so the λmax of radiating dust is shifted to shorter wavelengths with respect to a
blackbody emitter of the same temperature.

Integrating the Planck function over frequency, we obtain (see (A.17))

B(T ) =
∫ ∞

0
Bν(T ) dν = σ

π
T 4 (5.79)
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where

σ = 2π5k4

15c2h3
= 5.67× 10−5 erg cm−2 s−1 K−4 (5.80)

is the radiation constant. The total emergent flux F from a unit area of a
blackbody surface into all directions of the half-sphere is given by the Stefan–
Boltzmann law (see (5.74)):

F =
∫
Fν dν = σT 4. (5.81)

Applying this to a star of radius R∗ and effective temperature T∗, we find for
its bolometric luminosity:

L∗ = 4πσ R2∗T 4∗ . (5.82)

For the total radiative energy density u, we get

u =
∫
uν dν = aT 4 (5.83)

with constant

a = 4σ

c
= 7.56× 10−15 erg cm−3 K−4. (5.84)

5.4.4 The Planck function and harmonic oscillators

Because the Planck function is fundamental for the emission processes of dust
and molecules, we wish to understand it well. We, therefore, derive it once more
by representing the atoms as harmonic oscillators. Consider a harmonic oscillator
in an enclosure in thermal equilibrium with its surroundings. According to (1.71),
it loses energy through emission at a rate

−Ė = γ E (5.85)

where γ is the damping constant. In equilibrium, it must pick up the same energy
from the radiation in the enclosure. If we denote the radiative intensity by I (ω),

γ E =
∫ ∞

0
4π I (ω)σ(ω) dω = 4π I (ω0)

∫ ∞
0
σ(ω) dω = 4π I (ω0)

2π2e2

mec
.

(5.86)
The cross section σ(ω) is taken from (1.106). Because the resonance curve is

very narrow, we can take 4πω2
0 I (ω0) out from under the integral. The integrated

absorption cross section is from (1.108). When we substitute for γ the radiative
damping constant from (1.100), remembering that I (ω) = I (ν)/2π , and drop the
subscript 0 in the frequency, we obtain

I (ν) = 2ν2

3c2
E . (5.87)
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In (5.86), the integration extends over the solid angle 4π implying that the
oscillators absorb radiation from all directions. The oscillators must therefore
be able to move freely and have three degrees of freedom, not just one. In the
classical picture, 〈E〉 = kT is the average total energy per degree of freedom, i.e.
potential plus kinetic energy. Inserting

E = 3〈E〉 = 3kT

into (5.87), one recovers the Rayleigh–Jeans formula of (5.76) which is valid for
blackbody radiation at low frequencies,

Iν(T ) = 2ν2

c2
kT .

This formula, however, fails at photon energies hν comparable to or larger
than kT because the intensity would rise infinitely with frequency. Something
is wrong with the classical ideas. The cross section σ(ω) in (5.86) still holds in
quantum mechanics but we have neglected that light comes in packages (photons).
We obtain the correct Planck function if we assume equally spaced energy states
Ei = ihν with i = 0, 1, 2, . . . , for which the average 〈E〉 per degree of freedom
is not kT but, from (5.11),

〈E〉 = kT x

ex − 1
x = hν

kT
.

The quantum mechanical mean energy 〈E〉 is smaller than kT . Only when
x � 1, does one obtain the classical result.

It is also enlightening to apply the first principles of thermodynamics to a
photon gas in equilibrium. A gas of volume V and internal energy U(T ) =
u(T )V has the gas pressure P = u/3. Because dU = u dV + V du, the
differential dS = dQ/T of the entropy is given by

dS = dU + P dV
T

= u dV + V du + (u/3) dV
T

.

As dS is a full differential, we get the equation

∂2S

∂T ∂V
= 1

T

du

dT
= 4

3

d

dT

( u
T

)
= ∂2S

∂V ∂T
.

Solving for the energy density u, we obtain a function that is proportional to
the fourth power of the temperature, u(T ) ∝ T 4, in agreement with the Stefan–
Boltzmann law in (5.83).



Chapter 6

The radiative transition probability

Almost all astronomical information eventually comes from light which we detect
with our telescopes. Photon emission is, therefore, a fundamental process and a
major goal of this chapter is to explain the concept of induced and spontaneous
emission. The final section deals with transmission and reflection of a free particle
at a potential barrier. It helps to understand quantitatively very diverse topics: how
atoms can wander about the grain surface by way of tunneling through a potential
barrier; how protons can fuse to deuteron in the interior of the Sun; how electrons
are energetically arranged in white dwarfs; or how electronic bands appear in
crystallized grains.

6.1 A charged particle in an electromagnetic field

6.1.1 The classical Hamiltonian

Consider a system of particles with generalized coordinates qi and velocities q̇i .
If velocities are small (non-relativistic), one finds the motion of the particles from
the Lagrange function

L = T − V
where T is the kinetic energy of the particles and V the potential, by integrating
the second-order Lagrange equations

d

dt

(
∂L

∂ q̇i

)
= ∂L

∂qi
. (6.1)

Alternatively, using the conjugate momenta

pi = ∂L

∂ q̇i
(6.2)

one constructs the Hamiltonian,

H =
∑

q̇i pi − L (6.3)
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and integrates the first-order equations

q̇i = ∂H
∂pi

− ṗi = ∂H
∂qi

. (6.4)

If H does not explicitly depend on time, it is a constant of motion. Moreover,
in our applications, H equals the total energy E of the system,

E = T + V = H (qi , pi). (6.5)

6.1.2 The Hamiltonian of an electron in an electromagnetic field

We are interested in the equation of motion of one particle of charge e and massm
moving in an electromagnetic field. We now use Cartesian coordinates (x, y, z).
The kinetic and potential energy equal

T = 1
2mv

2

V = eφ − e

c
A · v (6.6)

which leads to the non-relativistic Lagrangian

L = 1

2
mv2 − eφ + e

c
A · v. (6.7)

As usual, φ denotes the scalar potential and A the vector potential. The latter is
connected to the magnetic field through

B = rotA

and the electric field is given by

E = − gradφ − 1

c
Ȧ. (6.8)

Remembering that the full-time derivative of the x-component of the vector
potential is

d Ax
dt
= Ȧx + vx ∂Ax

∂x
+ vy ∂Ax

∂y
+ vz ∂Ax

∂z

with similar expressions for Ay and Az , we may readily convince ourselves that
equation (6.1) with the Lagrangian of (6.7) yields the Lorentz force

F = e
(
E+ 1

c
v× B

)
.

Often the potential V is only a function of coordinates and the force F = mv̇
on a particle is given by the gradient of the potential, F = − gradV . However, in
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the case of an electromagnetic field, V of (6.6) is a generalized potential that also
depends on velocity and the force follows from

Fi = − ∂V
∂xi
+ d

dt

(
∂V

∂ ẋi

)
where we put (x1, x2, x3) = (x, y, z). Using the conjugate momenta

pi = ∂L

∂ ẋi
= mvi + e

c
Ai (6.9)

the Hamiltonian becomes

H = 1

2m

(
p− e

c
A
)2 + eφ.

It equals the total energy E of the system,

E = H = T + eφ. (6.10)

If we think of the motion of an electron in an atom, we may regard φ as
representing the static electric field of the nucleus and, therefore, separate, from
the Hamiltonian, the part

Hstat = p2

2m
+ eφ

which describes the electron without an electromagnetic wave. (In fact, for slowly
moving charges one can always make a transformation of the given potentials to
new ones such that divA = 0 for the new A. The new φ is then constant in time
and refers only to the static field. This is because of the gauge condition (1.85),
div A+ φ̇/c = 0.) The remaining part of the Hamiltonian,

Hwave = e

2mc
(p · A+ A · p)+ e2

2mc2
A ·A (6.11)

describes the perturbation of the electron by an electromagnetic wave.

6.1.3 The Hamilton operator in quantum mechanics

6.1.3.1 The Schrödinger equation

In quantum mechanics, the formulae (6.4) governing the motion of the particles
are replaced by the Schrödinger equation

i�
∂�

∂ t
= Ĥ�. (6.12)

This equation follows from E = H (xi, pi ) of (6.5) by turning the energy
E and the Hamiltonian H into operators using the standard prescription for the
conversion of energy, conjugate momentum and coordinates,

E → i�
∂

∂ t
pi → p̂i = −i� ∂

∂xi
xi → x̂i = xi . (6.13)
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Operators are marked by a hat on top of the letter. One has to keep in mind
the commutation rules, in particular

[x̂i , p̂ j ] = x̂i p̂ j − p̂ j x̂i = i�δi j (6.14)

from which one readily deduces

[x̂i , Ĥ ] = x̂i Ĥ − Ĥ x̂i = i �
m
p̂i . (6.15)

For the Hamiltonian of an electron in an atom perturbed by an
electromagnetic field we write

Ĥ = e

2mec
(p̂ · Â+ Â · p̂)+ e2

2mec2
Â · Â. (6.16)

This follows from (6.11), omitting the subscript ‘wave’.

6.1.3.2 Stationary solutions of the Schrödinger equation

The wavefunction� in (6.12) depends generally on space and time,

� = �(x, t).

Stationary solutions correspond to fixed energy eigenvalues E . In this case,
the wavefunction can be written as

�(x, t) = ψ(x) e−i Et/�. (6.17)

�(x, t) contains the time merely through the factor e−i Et/� which cancels
out on forming the probability density |�|2. The eigenfunction ψ(x) depends
only on coordinate x . The time-independent Schrödinger equation of a particle of
energy E in a potential V (x) follows from (6.12),

�
2

2m

ψ + [E −U(x)]ψ = 0. (6.18)

The eigenfunctions ψn , each to an eigenvalue En , form a complete set so
that an arbitrary wavefunction�(x, t) can be expanded into a sum of ψn :

�(x, t) =
∑
n

anψn(x) · e−i En t/� (6.19)

with expansion coefficients an .
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6.1.4 The dipole moment in quantum mechanics

The Hamiltonian operator Ĥ is Hermitian, which means∫
ψ∗(Ĥφ) dx =

∫
(Ĥψ)∗φ dx

for any ψ and φ and guarantees real expectation values. The asterisk denotes the
complex conjugate. It follows, with the help of equation (6.15), that

e

m

∫
ψ∗j p̂ψk dx = i

e

�
(E j − Ek)

∫
ψ∗j x̂ψk dx

so one can substitute in the left-hand integral for the momentum operator the
coordinate operator (but for a constant). If we put �ω j k = E j − Ek and call

µ j k = e
∫
ψ∗j (x) x ψk(x) dV (6.20)

the dipole moment with respect to the states described by the eigenfunctions ψ j
and ψk , we get

e

m

∫
ψ∗j p̂ψk dx = iω j kµ j k . (6.21)

6.1.5 The quantized harmonic oscillator

We review the solution of the time-independent Schrödinger equation for the
undamped free linear harmonic oscillator. The oscillator obeys the equation of
motion

ẍ + ω2x = 0

whereω2 = κ/m is the square of the frequency of oscillation,m the particle mass,
and −κx the restoring force (see section 1.3). The total energy of the system

E = T + V = p2

2m
+ 1

2
mω2x2

and the time-independent Schrödinger equation is, therefore, (see (6.18))

�
2

2m

∂2ψn

∂x2 +
[
En − 1

2
mω2x2

]
ψn = 0. (6.22)

This second-order differential equation looks much better in the form

u′′n + (λn − y2)un = 0

where we have introduced the function un(αx) = ψn(x) with

α2 = mω

�
(6.23)
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Figure 6.1. The undulating quantum mechanical probability P(x) = |ψ(x)|2 for finding
the particle at locus x when the oscillator is in its third energy level above ground (n = 3).
For comparison, we show the corresponding probability of a classical oscillator (dots) of
the same energy; here the particle is strictly confined to the allowed region. For high n, the
dotted and full curve converge.

and put y = αx and λn = 2En/�ω. An ansatz for un(y) of the form e−y2/2Hn(y)
yields the normalized eigenfunctions of the harmonic oscillator:

ψn(x) = Nne
−α2x2/2Hn(αx) with Nn =

√
α

2nn!√π . (6.24)

Hn are the Hermitian polynomials described in appendix A. The energy levels En
of the harmonic oscillator in (6.22) are equidistant:

En = (n + 1
2 )�ω n = 0, 1, 2, . . . (6.25)

and the lowest level
E0 = 1

2�ω

is above zero. Figure 6.1 displays, as an example, the square of the eigenfunction
|ψn(x)|2 for n = 3 and α2 = 1.

With the help of (A.3) we find that the mean position and momentum of an
oscillator, 〈x〉 and 〈p〉, always disappear for any energy En . So

d〈x〉
dt
= 〈p〉

m
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is fulfilled in a trivial way but 〈x2〉 and 〈p2〉 do not vanish. For the product of the
uncertainties we have


x
p =
√
〈x2〉 − 〈x〉2

√
〈p2〉 − 〈p〉2 = En

ω
= (n + 1

2 )�. (6.26)

6.2 Small perturbations

6.2.1 The perturbation energy

Let us introduce, to a system with Hamiltonian Ĥ and energy eigenvalues En , a
small perturbation, Ĥ ′, so that the Schrödinger equation (6.12) reads:(

Ĥ + Ĥ ′ − i� ∂
∂ t

)
ψ(x, t) = 0. (6.27)

We expand ψ after (6.19) into eigenfunctions ψn but now with time-
dependent coefficients an(t) because of the additional term Ĥ ′ which causes the
system to change:

ψ(x, t) =
∑
n

an(t) ψn(x) e
−i En t/�. (6.28)

Inserting this sum into (6.27) gives∑
n

e−i En t/�
(
an Ĥ

′ψn − i�ȧnψn
) = 0 (6.29)

the dot over an means time derivative. As the eigenfunctions are orthogonal,
multiplication of (6.29) with the eigenfunction ψ∗f and integration over the space
coordinate x yields∑

n

e−i En t/�an(t)H ′f n − i�ȧ f (t)e−i E f t/� = 0 (6.30)

with the matrix coefficients

H ′f n =
∫
ψ∗f Ĥ ′ψn dx . (6.31)

For equal subindices ( f = n), the matrix element H ′nn gives the perturbation
energy. This means when the Hamiltonian Ĥ is replaced by Ĥ + Ĥ ′, the energy
eigenvalues change from En to En + H ′nn.

6.2.2 The transition probability

We consider a transition s → f , from a starting state s to a f inal state f . Suppose
that our system was at time t = 0 in state s,

ψ(x, t = 0) = ψs(x).



182 The radiative transition probability

Then all an(0) in (6.28) vanish, except for as(0) = 1. If the interaction
operator Ĥ ′ is weak and the perturbation time t not too long, we can substitute in
(6.30) the an(t) by their values at t = 0, so

an(0) = δsn
where δsn is the Kronecker symbol. If

�ω f s = E f − Es
is the energy difference between the two states, equation (6.30) yields for the time
derivative of the expansion coefficient a f ,

ȧ f = − i
�
H ′f neiω f s t . (6.32)

After integrating from the starting value a f (0) = 0 and assuming that H ′f s
is not time-variable,

a f (t) = i

�
H ′f s

1− eiω f s t
iω f s

. (6.33)

The probability of finding the system at a later time t in the final state f is

p f s(t) = |a f (t)|2 = 2

�2
|H ′f s |2

1− cosω f s t

ω2
f s

. (6.34)

6.2.3 Transition probability for a time-variable perturbation

When the perturbation varies harmonically with time, we have to write Ĥ ′e−iωt
in equation (6.29) for the perturbation operator, instead of Ĥ ′. The time derivative
of the expansion coefficient, ȧ f , given in (6.32), then becomes

ȧ f = − i
�
H ′f nei(ω f s−ω)t

and

p f s(t) = |a f (t)|2 = 2

�2
|H ′f s |2

1− cos(ω f s − ω)t
(ω f s − ω)2 . (6.35)

One just has to replace ω f s by ω f s − ω and the probability p f s(t) now has
its spike when ω � ω f s .

If the time t in (6.35) is large compared to the oscillation period, t � ω−1,
the function

f (ω) = 1− cos(ω f s − ω)t
(ω f s − ω)2 (6.36)

resembles the δ-function: it has values close to zero almost everywhere, except
around ω = ω f s in the small interval 
ω from −π/2t to π/2t . Integrated over
frequency, ∫ ∞

−∞
1− cos(ω f s − ω)t
(ω f s − ω)2 dω = π t . (6.37)
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Figure 6.2. The transition probability from a starting state s to a final state f under the
influence of a perturbation potential is proportional to a characteristic function given in
(6.36) and shown here for t = 100.

The function f (ω) is plotted in figure 6.2 for t = 100. The probability
p f s(t) in (6.35) is not negligible and transitions from state s to state f occur only
when |ω−ω f s |t ≤ π . If one waits long enough, one has almost exactly ω = ω f s .

6.3 The Einstein coefficients A and B

6.3.1 Induced and spontaneous transitions

6.3.1.1 How A and B are defined

We consider radiative transitions in atoms between an upper level j and a lower
one i of energies E j and Ei such that

E j − Ei = hν.
Let the atoms have number densities Nj and Ni per cm3, respectively, and

be bathed in a radiation field of energy density uν . As atomic energy levels and
lines are not infinitely sharp but have some finite width, let

Ni (ν) dν = Ni�(ν) dν

be the number of atoms in state i that can absorb radiation in the frequency interval
[ν, ν + dν], where, of course, ∫

line
�(ν) dν = 1.



184 The radiative transition probability

Radiative transitions between level j and i may be either spontaneous or
induced. Setting

u =
∫

line
uν�(ν) dν (6.38)

the Einstein coefficients A ji and B ji are defined such that per cm3

• Nj A j i = rate of spontaneous downward transitions,
• Nj uB j i = rate of induced downward transitions and
• NiuBi j = rate of induced upward transitions.

6.3.1.2 How A and B are related

A j i , B ji , Bij are atomic quantities and do not depend on the radiation field. If we
assume blackbody radiation (uν = 4πBν(T )/c) and thermodynamic equilibrium,
we can derive the relations between the As and Bs. The Boltzmann formula (5.9),

Ni
N j
= gi
g j
e−x with x = E j − Ei

kT

yields

A ji + uνB ji = gi
g j
Bi j uνe

x .

If we fix ν and let T go to infinity, we are in the Rayleigh–Jeans part of the
spectrum and uν becomes arbitrarily large so that uνB ji � A ji . As then also
ex → 1, we get the symmetry relation between the Einstein-B coefficients,

g j B j i = gi Bi j . (6.39)

Consequently,

uν = A ji
B j i(ex − 1)

.

If we now let the temperature tend to zero, we are in the Wien part of the spectrum
and

8πhν3

c3
e−hν/kT = A ji

B j i
e−(E j−Ei )/kT .

As this equation holds for any small T , we obtain

hν = E j − Ei .
This looks trivial but expresses the non-trivial fact that the radiation field

stimulates absorption and emission at the frequency corresponding to the energy
difference of the levels. It also follows that

A ji = 8πhν3

c3 B ji (6.40)

which connects the A coefficients with the B coefficients.
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6.3.1.3 The quantum mechanical expression for A

The quantum-mechanical correct expression for the Einstein coefficient A ji for
spontaneous emission from upper state j to lower state i is

A ji = 64π4ν3

3hc3 |µ j i |2 (6.41)

where

µ j i = e
∫
ψ∗i (x) xψ j (x) dV (6.42)

is the dipole moment corresponding to the transition (see (6.20)). ψi and ψ j
are the eigenfunctions of the energy states. A rigorous derivation of formula
(6.41) requires quantum electrodynamics; the non-relativistic limit is discussed
in section 6.3.4.

6.3.1.4 A classical analogy

The essence of formula (6.41) can already be grasped using classical arguments
by equating the emission rate A jihν to the average power radiated by a harmonic
oscillator (see (1.97)). If x = x0e−iωt is the time-variable coordinate of the
electron and p0 = ex0 its dipole moment, then

A jihν = p2
0ω

4

3c3
.

This yields (6.41) exactly if one puts µ = 1
2 p0 and ω = 2πν. Note that

according to equation (6.41), A ji increases with the square of the dipole moment
and with the third power of the frequency. We see from (6.41) that, cum granu
salis, A ji is high for optical transitions and low at radio wavelengths. To get a
feeling for the numbers, we apply the formula:

(1) to an electronic transition in the hydrogen atom. Let x0 be equal to the
atomic radius in the ground state (0.5Å), the dipole moment is then µ =
2.4 × 10−18 cgs = 2.4 Debye. At an optical frequency ν = 6 × 1014 Hz,
corresponding to λ = 5000 Å, the Einstein coefficient becomes A ji ∼
107 s−1.

(2) To the lowest rotational transition of the CO molecule. The dipole moment
in this case is fairly weak, µ = 0.11 Debye, and the frequency low,
ν � 1.15 × 1011 Hz. Now A ji ∼ 10−7 s−1, which is 14 powers of ten
smaller!

6.3.1.5 Transition probability for general forces

Equation (6.41) may also be put in the form

A ji = 8π3

3
α
(c
�

)( p�
h

)3
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where α = e2/�c is the fine structure constant, � = 2x0 the size of the system,
c/ l the inverse crossing time by light, p = hν/c the photon momentum and (p�)3

the volume in the phase space necessary for the creation of photons by the atomic
oscillator. In other words, the transition probability is the product of the coupling
constant of the electromagnetic radiation, α, multiplied by the number of cells in
the phase space divided by the crossing time. When the transition probability is
expressed in this way, it can also be applied to other basic forces in the universe,
besides electromagnetism. The coupling constant is then, of course, different.

6.3.2 Selection rules and polarization rules

Formulae (6.41) and (6.42) incorporate the selection rules because when the
integral (6.42) is zero for two eigenfunctions ψi and ψ j (which is usually the
case), the transition is forbidden. For instance, from that part of the eigenfunctions
of the hydrogen atom which is radius-independent, namely

Pml (cos θ)eimϕ

follow the selection rules


l = ±1 
m = 0,±1.

If they are not fulfilled, no emission is possible. However, a perturbation,
like an electric field, can make an otherwise forbidden line to become observable
because the eigenfunctions are then deformed so that the integral (6.42) no longer
vanishes. One can also derive the polarization rules in the presence of a magnetic
field by separating the dipole moment µ of (6.41) into its Cartesian components,

µx = e
∫
ψ∗i xψ j dV µy = e

∫
ψ∗i yψ j dV µz = e

∫
ψ∗i zψ j dV

and evaluating the expressions. For example, when the field is in the z-direction
and µx = µy = 0 but µz �= 0, the radiation is linearly polarized with its electric
vector parallel to the applied magnetic field.

6.3.3 Quantization of the electromagnetic field

So far we have learnt that radiative transitions occur at a rate given by the Einstein
coefficients. Now we want to understand why they occur and how the As and Bs
are computed. For this end, we have to quantize the electromagnetic field and we
sketch how this can be done.

6.3.3.1 The spectrum of standing waves in a box

Imagine a big box of volume V and length L with an electromagnetic field inside,
consisting of standing waves. The vector potential A is a function only of z. It
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oscillates in the x-direction (Ay = Az = 0) and vanishes at the walls of the box,
which are nodal surfaces. We expand Ax into a Fourier series:

Ax(z, t) =
∞∑
j=1

q j (t) sin
jπz

L
(6.43)

the coefficients q j (t) are time-dependent. With H = rotA and E = −Ȧ/c, and
the orthogonality of the sine function,∫ π

0
sin i x · sin j x dx = δij

π

2

the energy of the field in the box becomes

Efield = 1

8π

∫
(E2

x + H 2
y ) dV =

V

16πc2

∞∑
j=1

(q̇2
j + ω2

j q
2
j )

where the frequencies are

ω j = jπc

L
.

If the box is very big, there is an almost continuous frequency spectrum.

6.3.3.2 Equation of motion of an elastic string

There is a strong analogy between the field and an elastic string. Suppose a string
has a length L, is fixed at its ends and vibrates exactly like the vector potential Ax
of (6.43). As it vibrates, it bends and becomes distorted. Hooke’s law of elasticity
states how strong the internal deformations are: When we pull with a force F
at the end of a rectangular block of length � and cross section σ , the change in
length d�/� is proportional to the force per unit area, F/σ = Y d�/�, where the
proportionality factor Y is Young’s elasticity module. This law implies that the
potential energy stored in the deformation of the volume element goes with (d�)2.

If the shape of the bent string is described by the curve y(z), its local
deformation d� is proportional to the derivative of the curve, d� ∝ y′(z). So
the potential energy of the string that vibrates like the magnetic field Ax is

U = 1

2
κ

∫ L

0

(
∂Ax
∂z

)2

dz = κπ
2

4L

∞∑
j=1

j2q2
j

where κ is some elastic constant. If the string has a mass density ρ, its kinetic
energy equals

T = 1
2ρ

∫ L

0
Ȧ2
x dz =

1

4
Lρ

∞∑
j=1

q̇2
j .
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We can form the Lagrange function L = T − U and find, from (6.1), the
equation of a loss-free harmonic oscillator

q̈ j + ω̃2
j q j = 0

with frequency

ω̃ j = jπ

L

√
κ

ρ
.

The total energy equals the sum of kinetic plus potential energy of all oscillators,

Estring = Lρ

4

∞∑
j=1

(q̇2
j + ω̃2

j q
2
j ).

6.3.3.3 Mathematical identity between field and string

The expressions for the energy of the string and the field, Estring and Efield,
become identical when we put c = √κ/ρ and

m ≡ Lρ = V

4πc2
(6.44)

m may be considered to be the mass of the oscillator. The frequencies of field and
string then coincide, ω̃ j = ω j , as well as their energies. The q j s of the string are
coordinates of an harmonic oscillator of frequency ω j . Such an oscillator has, in
quantum mechanics, discrete energy levels

Enj = �ω j (n + 1
2 ) with n = 0, 1, 2, . . . .

The quantization of the string implies that the electromagnetic field is
quantized, too. Naturally, we associate the oscillator of frequency ω j with
radiation at that frequency and identify the quantum number n with the number of
photons in the box at that frequency, more precisely, with the occupation number
� , which is related to the radiative energy density uν through formula (5.33).
Because the field is, from (6.43), completely described by the coefficients q j (t),
in quantum mechanics one replaces the field Ax by the amplitudes q j ; the q j are
called normal coordinates.

6.3.4 Quantum-mechanical derivation of A and B

6.3.4.1 Coupling between oscillator and field

Emission or absorption must result from the coupling between the oscillator and
the electromagnetic field but how? The trick is to perceive the atom and the field
as one system consisting of two subsystems:

• the atom described by coordinates (1) with Hamiltonian Ĥ1, eigenvalue E1
and eigenfunction ψ1, so that Ĥ1ψ1(1) = E1ψ1(1); and
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• the electromagnetic field for which we use the subscript 2; here Ĥ2ψ2(2) =
E2ψ2(2).

The total uncoupled system has the Hamiltonian Ĥ = Ĥ1 + Ĥ2, the
wavefunction

ψ(1, 2) = ψ1(1) · ψ2(2)

and the energy E1 + E2,

Ĥψ = (E1 + E2)ψ1ψ2.

In reality, the two subsystems couple. For the perturbation operator H ′ we
use the Hamiltonian derived in (6.16),

Ĥ ′ = − e

mc
p̂ · Â (6.45)

and neglect the quadratic term Â2. Note that p̂ · Â commutes with Â · p̂; this
follows from the definition of the momentum operator p̂ in (6.13) and the Lorentz
gauge divA = 0 (see (1.85)).

6.3.4.2 The matrix element H ′f s
Let us consider the process of emission or absorption of the atom as a transition
of the whole system: atom plus field. The transition probability from the starting
state s to the final state f as a function of time is given by (6.35). To compute it,
we have to evaluate the matrix element H ′f s of (6.31) which contains the operator

Ĥ ′ = −(e/mc)p̂ · Â. The integral that appears in the matrix element H ′f s can be
separated into

I1 = e

mc

∫
ψ∗1 f p̂ψ1s dx and I2 =

∫
ψ∗2 f Âψ2s dq

so that H ′f s = I1 · I2. For the first, we get from (6.21)

|I1|2 =
ω2
f s

c2 |µ f s |2.

To evaluate the second integral I2, for ψ2 we insert the eigenfunctions of the
electromagnetic field and thus of an harmonic oscillator. They read ψ2 j = Nj H j ,
where Hj are the Hermitian polynomials of (6.24) and Nj their normalization
coefficients. The field operator Â is replaced by the normal coordinate q . In this
way, we get

I2 = N f Ns

∫
H f (αq) qHs(αq)e

−α2q2
dq = N f Ns

α2

∫
H f (y)yHs(y)e

−y2
dy
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= Ns
2αN f

{δ f,s+1 + 2sδ f,s−1}

=




Ns
2αN f

=
√
s + 1

α
√

2
if f = s + 1 (emission)

Ns
2αN f

=
√
s

α
√

2
if f = s − 1 (absorption).

(6.46)

Here we have exploited formula (A.3). In the event of atomic emission, the
energy of the atom makes a downward jump �ω f s . For the field it is the other
other way round, its final state is higher than the initial state. Therefore in (6.46),
which refers to the field, atomic emission corresponds to f = s+1 and absorption
to f = s − 1. During the transition there is an exchange of energy between the
two subsystems by the amount �ω f s but the overall energy stays constant. With
respect to the parameter α2 = mω/� from equation (6.23), we have to insert the
field mass m after (6.44), so

α2 = Vω

4πc2�
. (6.47)

This gives

|I2|2 = s + 1

2α2 =
2πc2

�

ωV
· (s + 1)

and finally

|H ′f s |2 = |I1|2 · |I2|2 =
ω2
f s

c2 |µ f s |2 · 2πc2
�

ωV
· (s + 1).

6.3.4.3 The transition probability

The transition probability p f s(t) as a function of time from one discrete state to
another, s → f , is given in (6.35). Because of the presence of the field, the
energy levels of the total system are not discrete, like those of the atom alone,
but closely packed, like a continuum. Furthermore, we do not have one final state
but many. If ρ(ω) is the density of these states, there are ρ(ω f s) dω of them in
the frequency interval dω around the energy �ω f s . The density is equal to the
number of unit cells h3 in phase space, from (5.30),

ρ(ω) = Vω2

π2c3
.

To find the total transition probability of our coupled system, we, therefore,
have to multiply p f s(t) by ρ(ω f s) dω and integrate over frequency. The integral
is according to (6.37), proportional to π tρ(ω f s). When we make the time t large,
the total transition probability per unit time becomes

P = 2π

3�2 |H ′f s |2ρ(ω f s). (6.48)
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We introduced the correction factor 1
3 to account for the fact that the

orientation of the dipole with respect to the field is arbitrary. It only remains to
insert the expressions for ρ(ω f s) and |H ′f s |2. When we do this, the volume V of
the box luckily disappears. Here are the final results for the transition probability
per unit time of an atom in a radiation field:

• If exciting radiation is absent (s = 0), the transition probability P equals the
Einstein A coefficient of (6.41),

P = A ji = 4ω3

3�c3
|µ j i |2.

It is puzzling that a seemingly unperturbed atom in an eigenstate (above the
ground state) with energy E j should emit radiation at all. One might expect
it to stay there forever because the only time dependence in the eigenfunction
is, from (6.17), an oscillation of the form e−i E j t/�. However, there are
downward transitions (A ji > 0), even when the atom sits in the dark. The
reason is that the perturbation operator (where the field is represented by
eigenfunctions of an harmonic oscillator) does not vanish when photons are
absent.

• In a radiation field, the radiative density is, from (5.33),

uν = 2�

πc3ω
3s.

When there are many photons flying around, s � s + 1 and the induced
emission rate is

P = 4ω3

3�c3
|µ j i |2(s + 1) � Bji uν .

The same expression holds for induced absorption (if the initial and final
states of the atom have the same statistical weight). Note that the symmetry
of |H ′f s |2 with respect to s and f accounts for the symmetry of the B
coefficients, Bs f = B f s .

The transitions described here involve one field photon because they are
rooted in the perturbation operator p̂·Â, which is linear in Â. When we include the
much weaker operator Â2 in the Hamiltonian of (6.16), it follows, again from the
orthogonality of the Hermitian polynomials which we employed for the derivation
of (6.46), that the Â2-term describes processes involving two photons at a time,
either in emission or absorption, or one in emission and the other in absorption.
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6.4 Potential wells and tunneling

6.4.1 Wavefunction of a particle in a constant potential

Consider in one dimension a free particle of mass m and energy E in a potential
V (x). To facilitate writing, in this section we often put

U(x) = 2m

�2 V (x) ε = 2m

�2 E . (6.49)

In this notation, the wavefunction of a stationary state satisfies the equation

ψ ′′ = [U(x)− ε]ψ. (6.50)

If U is constant, the general solution reads

ψ(x) = A1e
iαx + A2e

−iαx α = √ε −U (6.51)

with complex Ai . There are two cases:

• ε − U > 0. Then α > 0 and the wave has an oscillatory behavior. It could
be represented by a combination of a sine and a cosine.

• ε − U < 0. Then iα is real and the two solutions correspond to an
exponentially growing and declining function. The former is only allowed
in finite intervals because the integral

∫
ψ∗ψ dx must be bounded.

If the potential U(x) is a step function, i.e. if it is constant over intervals
[xi , xi+1] but makes jumps at the connecting points xi , with x1 < x2 < x3 <

. . . , the wavefunction ψ and its derivative ψ ′ must be continuous at these
points; otherwise the Schrödinger equation would not be fulfilled. The boundary
conditions of continuity for ψ and ψ ′ at all xi fully determine the wavefunction.
To find it is straightforward but often tedious.

6.4.2 Potential walls and Fermi energy

If the particle is trapped in an infinitely deep well of length L, as depicted on the
left-hand side of figure 6.3, the wavefunction must vanish at the boundaries. It
cannot penetrate beyond the walls, not even a bit. The situation is reminiscent of
a vibrating string fixed at its ends. If λ = h/p is the de Broglie wavelength and p
the momentum, the condition nλ/2 = L leads to the discrete energies

εn = 2m

�2
En = n2π2

L2
n = 1, 2, . . . (6.52)

and sine-like wavefunctions

ψn(x) = A sin
(nπ
L
x
)
.
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Figure 6.3. The left side shows an electron in a square potential with walls of infinite
height. The stationary states correspond to energies En ∝ n2 (see (6.52)). The right
side shows, for comparison, the parabolic potential and the equidistant energy levels of an
harmonic oscillator.

There is a zero-point energy (ε > 0 for n = 1) because the particle is
spatially localized in the interval from−L/2 to L/2, and so its momentum cannot
vanish. The spacing between energy levels increases quadratically with quantum
number n. This is very different from an harmonic oscillator which has a parabolic
potential and equally spaced energy levels (see figure 6.3).

If a system with N electrons is in its lowest state, all levels n ≤ N/2 are
filled. The threshold or Fermi energy of the topmost filled level is

EF = �
2π2N2

8meL2
(6.53)

and the velocity of those electrons is vF = √2EF/me.
If the walls of the potential well are finite and of height U and the particle

energy ε < U , there is some chance, exponentially decreasing with distance, to
find it outside the well. The energies of the eigenstates depend then in a more
complicated manner on n.

In three dimensions, for a cube of length L and infinite potential barrier, the
eigenfunctions are

ψ(x) = A sin
(nxπ
L
x
)

sin
(nyπ
L
y
)

sin
(nzπ
L
z
)
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with positive integers nx , ny, nz , and the Fermi energy is

EF = �
2

2me

(
3π2N

L3

)2/3

. (6.54)

6.4.2.1 Examples of Fermi energy and Fermi statistics

• White dwarfs are burnt-out stars with extreme densities up to 106 g cm−3.
But only the electrons are degenerate, the more massive atomic nuclei are
not because their degeneracy parameter is much smaller (see (5.29)). When
the Fermi energy is very high as a result of a high density ρ = N/L3, the
electrons are relativistic and

EF = �c(N/V )1/3. (6.55)

If one expresses the Fermi energy as a temperature,

TF = EF

k

one finds TF ∼ 109 K for ρ ∼ 106 g cm−3.
• An even more spectacular case is presented by neutron stars with densities up

to 1015 g cm−3. The neutrons do not disintegrate into protons and electrons,
as one would expect, only a few do, because the energy liberated in the decay
n→ p+e produces only∼106 eV, which is miles below the Fermi threshold
of (6.55) in a fictitious sea of electrons and protons at density 1015 g cm−3.

• The conduction electrons in a metal have values TF between 104 and
105 K, so at temperatures T ∼ 100 K, the energy distribution of the
conduction electrons given by (5.26) is highly degenerate, only few of them
are thermalized. For graphite particles of interstellar dust grains, the Fermi
temperature is somewhat lower, TF ∼ 103 K.

• Observing astronomers use both isotopes of liquid helium to cool their
detectors. The 3He atoms are made of five elementary particles (two protons,
one neutron and two electrons), they have half-integer spin and are fermions.
The main isotope 4He, however, contains one more neutron, has zero total
angular momentum and follows Bose statistics. The two isotopes show
radically different behavior at low temperatures: 4He becomes a superfluid
below 2.2 K, whereas 3He does not. Superfluidity is explicable by Bose
statistics because Bose statistics allows many (even all) atoms to be at the
lowest energy state.

6.4.3 Rectangular potential barriers

6.4.3.1 A single barrier

Let a particle travel from the left to the right and encounter a potential wall,
as in figure 6.4. If its energy ε is greater than U , it can, of course, overcome
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U

L0 x

Figure 6.4. Rectangular potential barrier for a particle coming from the left. Part of the
beam is reflected and part goes through the barrier.

the barrier but contrary to classical physics, part of the wave is reflected. Most
relevant is the case when ε < U . Then the particle can tunnel through the barrier
which is classically forbidden. What happens, as the particle approaches the
barrier, obviously depends on time and therefore stationary solutions may not
seem possible in this scenario. However, one may interpret the infinite wave

e
i
�
(px−Et) of a particle with definite energy E as a stationary particle beam, and

then the time drops out.
The wavefunction is constructed piece-wise:

ψ(x) =


Aeiαx + Be−iαx x < 0
Ceβx + De−βx 0 < x < L
Feiαx + Ge−iαx x > L.

The coefficient G = 0, as there is no wave coming from the right, and

α = √ε > 0 β = √U − ε > 0.

Exploiting the boundary conditions and keeping in mind that (ex +
e−x)2/4 = cosh2 x = 1 + sinh2 x , the transmission coefficient T , which is the
fraction of the particle beam that penetrates the barrier, becomes

T = 4ε(U − ε)
4ε(U − ε)+U2 sinh2(L

√
U − ε) . (6.56)

When the barrier is high compared to the kinetic energy of the particle
(U � ε) and sufficiently broad (LU1/2 > 1), the tunneling probability can be
approximated by

T = 16ε

U
e−2L

√
U . (6.57)
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b x0 a

21

U

−c

Figure 6.5. A periodic square potential of a one-dimensional lattice. The length of the
period is a, the length of one barrier is c = a − b. In region 1, where 0 ≤ x ≤ b, the
potential is zero, in region 2, where b ≤ x ≤ a, it has the value U .

6.4.3.2 Periodic potential

Regularly arranged atoms in a solid (crystal) produce a periodic potential. We
discuss this important case in one dimension. Let the potential be periodic with
period a, as depicted in figure 6.5. The wavefunction ψ of a particle with energy
ε < U is then given by

ψ(x) =
{
Aeiαx + Be−iαx 0 < x < b
Ceβx + De−βx b < x < a

with
α = √ε β = √U − ε.

Two equations for determining A–D are found from the condition that ψ
and ψ ′ must be continuous at x = 0. Another two equations follow from a
result detailed in section 7.2.3: In a periodic potential, any eigenfunctionψk, with
respect to wavenumber k and energy ε = k2, must have the form

ψk = uke
ikx

where uk is periodic such that

uk(x) = uk(x + a).
Therefore, uk(b) = uk(−c) and u′k(b) = u′k(−c), where uk(x) =

ψk(x)e−ikx . Altogether, this gives

A + B = C + D
iα(A − B) = β(C − D)

e−ikb
[
Aeiαb + Be−iαb] = eikc[Ce−βc + Deβc]

ie−ikb
[
Aeiαb(α − k)−Be−iαb(α + k)

] = eikc[Ce−βc(β − ik)−Deβc(β + ik)].
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Figure 6.6. The quasi-sinusoidal variation of the right-hand side of equation (6.58) as a
function of particle energy ε. It is calculated for the periodic potential of figure 6.5 with
U = 100, a = 2, c = 0.04. Energies for which | f (ε)| > 1 are forbidden. This is, for
instance, the case when ε � 4, 11 or 24.

Non-trivial solutions of this linear system of equations, those for which
A = B = C = D does not equal zero, have a vanishing determinant. The
condition Det = 0, after some algebra, leads to

cos ka = β
2 − α2

2αβ
sinhβc · sinαb + coshβc · cosαb. (6.58)

For fixed values a, b,U of the potential in figure 6.5, the right-hand side of
(6.58) is a function of particle energy ε only; we denote it by f (ε). Because of the
cosine term on the left-hand side of (6.58), only energies for which f (ε) ∈ [−1, 1]
are permitted and those with | f (ε)| > 1 are forbidden. The function f (ε) is
plotted in figure 6.6 for a specific set of values U, a, c.

In the potential well on the left-hand side of figure 6.3, which is not
periodic and where the walls are infinite, the energy ε rises quadratically with
the wavenumber, ε = k2. If the length L of the well in figure 6.3 is large, there
will be a continuous spectrum as depicted by the continuous line in figure 6.7.
In a periodic potential, however, the function ε(k) is only aproximately quadratic
and there are now jumps at integral values of |ka/π |. Figure 6.7 is the basis for
explaining why electrons in crystals are arranged in energy bands.
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Figure 6.7. The energy spectrum ε(k) of particles in a periodic potential as in figure 6.5
calculated for U = 100, a = 2 and c = 0.04. The function ε(k) has discontinuties at
integer values of ka/π . The curve without discontinuties is explained in the text. See also
figure 6.6.

6.4.4 The double potential well

6.4.4.1 Splitting of energy levels

Next we consider an atom of mass m and energy ε in a potential U(x) consisting
of two symmetric adjacent wells with a barrier U0 between them as depicted in
figure 6.8. Classical motion is allowed in the intervals [−b,−a] and [a, b], where
U(x) ≤ ε. When the barrier U0 is infinitely large, the particle can only be in the
left- or right-hand well. The corresponding wavefunctions are denoted by ψ− and
ψ+, respectively, and satisfy the Schrödinger equation (see (6.18)):

ψ
′′
+ +

[
ε −U(x)]ψ+ = 0 ψ

′′
− +

[
ε −U(x)]ψ− = 0. (6.59)

If the barrier U0 is finite, there is a certain chance of tunneling from one
well to the other. The particle is now not localized in either of them and its
wavefunction is a symmetric and anti-symmetric combination of ψ+ and ψ−,

ψ1 = ψ+√
2
+ ψ−√

2
ψ2 = ψ+√

2
− ψ−√

2
.
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a b−a−b
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Figure 6.8. A particle in a double potential well with a barrier U0 between the minima.
Because of tunneling, an energy level ε splits into two with a separation
ε given by (6.61).

The probability of finding the particle either in the left or right well is unity
and the integral of |ψi|2 over the whole x-axis equals one. The wavefunctionsψ1
and ψ2 also obey the Schrödinger equations,

ψ ′′1 +
[
ε1 −U(x)

]
ψ1 = 0 ψ ′′2 +

[
ε2 −U(x)

]
ψ2 = 0 (6.60)

but with slightly different energies ε1 and ε2. To obtain the difference ε2 − ε1,
we multiply the left equation in (6.59) by ψ1 and the left equation in (6.60) by
ψ+, subtract the two products, and integrate from x = 0 to x = ∞. Exploiting
ψ1(0) = ψ+(0), ψ ′1(0) = 0 and assuming that the tunneling probability is small
such that ψ1 � ψ+ for x > 0 gives ε1 − ε = −21/2ψ ′+(0)ψ+(0). Likewise we
find ε2 − ε, and finally get

ε2 − ε1 = ψ+(0) · ψ ′+(0).
So the energy difference is determined by the wavefunction ψ+ in the

classically forbidden region at x = 0. If p = �
√
ε −U(x) denotes the

momentum and p0 its value at x = 0, one finds

ψ+(0) = �

p0
ψ
′
+(0) =

√
ν0m

p0
exp

[
−1

�

∫ a

0
|p| dx

]

where ν0 is the classical oscillation frequency, i.e. ν−1
0 is the time for the particle

to go from a to b and back, and, therefore,

ε2 − ε1 = 4mν0

�
exp

[
−1

�

∫ a

−a
|p| dx

]
� 4mν0

�
exp

[
−2a
√

2mV0

�

]
. (6.61)
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The possibility that the particle can tunnel to the adjacent well leads to two
wavefunctions, ψ1 and ψ2. Their space probabilities |ψi |2 are different, although
only in the forbidden region but there they couple differently to the potentialU(x)
resulting in the splitting of the energy ε into two levels ε1 and ε2.

6.4.4.2 Tunneling time

To find the approximate time ttun that the particle needs to tunnel from the left to
the right well or back, we turn to the time-dependent wavefunction

�(t) = ψ1e
− i
�
E1t + ψ2e

− i
�
E2t .

Here we have used again E = (�2/2m)ε and V = (�2/2m)U (see (6.49)).
At time t = 0, the wavefunction has the value �(0) = √2ψ+, so the particle
starts in the right well. It reaches the left well when �(t) = ψ−, which happens
after a tunneling time

ttun = π�

|E1 − E2| . (6.62)

This equation expresses the uncertainty principle
E ·
t � �. A precisely
defined energy means that the particle is fixed in one well and does not tunnel. A
broad energy band 
E , however, implies a high mobility, the particle is then not
localized anywhere.

From (6.61) and (6.62) we see that with increasing potential barrier V0, the
energy splitting E2−E1 becomes smaller and the tunneling time longer. Inserting
the energy difference of (6.61) into (6.62), we find

ttun � ν−1
0 exp

[
2a
√

2mV0

�

]
. (6.63)



Chapter 7

Structure and composition of dust

We study in section 7.1 the way in which atoms are arranged in a solid and in
section 7.2 what holds them together. Then we make our first serious acquaintance
with observations and examine the interstellar extinction curve (section 7.3). Its
interpretation requires a basic knowledge of stellar photometry and the reddening
law. In view of the overall cosmic abundance of elements, the extinction curve
rules out major dust constituents other than silicate and carbon grains. We,
therefore, proceed in section 7.4 to discuss their atomic structure and bonding.
The shape of the extinction curve can only be explained if the grains are not
of uniform dimension but display a size distribution. What kind of distribution
and how it can be achieved in grain–grain collisions is sketched in section 7.5.
Equipped with a quantitative idea about size and chemical composition of
interstellar dust, we present typical and likely grain cross sections based on a
reasonable set of optical constants.

7.1 Crystal structure

7.1.1 Translational symmetry

7.1.1.1 The lattice and the base

Interstellar grains probably contain crystalline domains of sizes 10 –100 Å. In a
crystal, the atoms are regularly arranged in a lattice which means that the crystal
can be built up by periodic repetition of identical cells. A cell is a parallelepiped
defined by three vectors a, b and c such that for any two points r, r′ in the crystal
whose difference can be written as

r′ − r = ua+ vb +wc (7.1)

with integral u, v,w, the environment is exactly the same. If any two points r and
r′ with an identical environment are connected through (7.1), the vectors a,b, c
are said to be primitive and generate the primitive cell. This is the one with the
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smallest possible volume. There is an infinite number of ways how to construct
cells or vector triplets (a,b, c), even the choice of the primitive cell is not unique;
figure 7.3 gives a two-dimensional illustration. Among the many possibilities,
one prefers those cells whose sides are small, whose angles are the least oblique
and which best express the symmetry of the lattice. These are called conventional,
elementary or unit cells.

For a full specification of a crystal, one needs besides the lattice points
ua + vb + wc, a description of the three-dimensional cell structure, i.e. of the
distribution of charge and matter in the cell. The cell structure is called the base.
The spatial relation between the lattice points and the base is irrelevant. So lattice
points may or may not coincide with atomic centers. A primitive cell may contain
many atoms and have a complicated base but it always contains only one lattice
point.

7.1.1.2 Physical consequences of crystalline symmetry

Geometrically, the existence of a grid always implies spatial anisotropy
because in various directions the structures are periodic with different
spacings. Furthermore, the periodic arrangement of atoms are manifest by
the morphological shape of the body; in non-scientific language: crystals are
beautiful. The physical relevance of crystalline order reveals itself, among others,
by

• the appearance of long-range, i.e. intensified, forces which lead to sharp
vibrational resonances observable at infrared wavelengths;

• bonding strengths that are variable with direction: in one or two directions,
a crystal cleaves well, in others it does not; and

• a generally anisotropic response to fields and forces. For example, the
way crystals are polarized in an electromagnetic field or stretched under
mechanical stress depends on direction.

7.1.1.3 Miller’s and other indices

To find one’s way around a crystal and to identify points, axes or planes, one uses
the following notation:

• If the origin of the coordinate system is at a cell corner, a point r =
xa + yb + zc within the cell is designated by xyz with x, y, z ≤ 1. For
example, the cell center is always at 1

2
1
2

1
2 .

• Suppose a plane intercepts the axes of the crystal coordinate system at the
three lattice points u00; 0v0 and 00w. One then denotes, after Miller, the
plane by the triplet in round brackets (hkl) where h, k, l are the smallest
possible integers such that

h : k : l = 1

u
: 1

v
: 1

w
.
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Table 7.1. Lengths and angles in the unit cells of the seven crystal systems. See figure 7.1
for definition of sides and angles. The monoclinic, orthorhombic, tetragonal and cubic
system are further split into lattice types that are either primitive or centered. For the cubic
crystal system, this is shown in figure 7.2. The cells of the triclinic and rhombohedral
system are always primitive, without centring. Altogether there are 14 lattice types or
Bravais cells, only seven of them are primitive.

1. Triclinic: a �= b �= c α �= β �= γ Lowest symmetry
2. Monoclinic: a �= b �= c α = γ = 90◦, β �= 90◦ Not shown in figure 7.1
3. Orthorhombic: a �= b �= c α = β = γ = 90◦
4. Tetragonal: a = b �= c α = β = γ = 90◦
5. Hexagonal: a = b �= c α = β = 90◦, γ = 120◦
6. Rhombohedral: a = b = c α = β = γ �= 90◦ Not shown in figure 7.1
7. Cubic: a = b = c α = β = γ = 90◦ Highest symmetry

For instance, the plane (436) runs through the points 300, 040 and 002. A
plane that is parallel to b and c and cuts only the a-axis at a distance a from
the coordinate center is identified by (100). The plane (200) is parallel to
(100) but cuts the a-axis at 1

2a.
• A direction within the lattice may be specified by an arrow that goes from

the origin of the coordinate system to the point r = xa + yb + zc where
x, y, z are integers. There is an infinite number of such vectors pointing in
the same direction. Among them, let ua + vb + wc be the one with the
smallest integers u, v,w. The direction is then denoted by the triplet [uvw]
in square brackets. In the cubic system (see later), the direction [uvw] is
always perpendicular to the plane (hkl) with h = u, k = v and l = w.

7.1.2 Lattice types

7.1.2.1 Bravais cells and crystal systems

In the general case, the lengths of the vectors a, b, c in the conventional cell and
the angles between them are arbitrary. When lengths or angles are equal, or when
angles have special values, like 90◦, one obtains grids of higher symmetry. There
are 14 basic kinds of translation lattices (Bravais lattices) which correspond to 14
elementary cells. These 14 lattice types can be grouped into seven crystal systems
which are described in table 7.1 and shown in figure 7.1.

The cubic system has the highest symmetry: a, b, c are orthogonal and their
lengths are equal, a = b = c. The polarizability is then isotropic, whereas for
other crystal systems, it depends on direction. Figure 7.2 shows the three lattice
types of the cubic family: simple (sc), body centred (bcc) or f ace centred (fcc)
of which only the sc cell is primitive. The bcc cell is two times bigger than the
primitive cell and the fcc cell four times; furthermore, primitive cells do not have
a cubic shape (see the two-dimensional analog in figure 7.5).
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Figure 7.1. There are seven crystal systems of which five are shown here. The angle
between the vector pair (b, c) is denoted α. If, symbolically, we write α = (b, c), we
define likewise β = (c, a) and γ = (a,b). See table 7.1.

fccsc bcc

Figure 7.2. The three lattices types of the cubic crystal system: simple cubic (sc),
body-centered cubic (bcc) and face-centered cubic (fcc). To avoid confusion, for the
fcc lattice the face-centring atoms are shown only on the three faces directed towards the
observer.

7.1.2.2 Microscopic and macroscopic symmetry

Under a symmetry operation, a crystal lattice is mapped onto itself. A linear
translation by one of the vectors a,b, c is one such operation but it becomes
apparent only on an atomic scale because the shifts are of order 1 Å and thus
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much smaller than the dimensions of a real (even an interstellar) crystal. The
translational symmetry is revealed from X-ray images and is described by the
Bravais lattices. However, there are symmetry operations that also are evident on
a macroscopic scale, such as the following ones.

• Inversion at a center. If the center is in the origin of the coordinate system,
the operation may be symbolized by r = −r′.

• Rotation about an axis. One can readily work out that the only possible
angles compatible with translational symmetry, besides the trivial 360◦, are
60◦, 90◦, 120◦ and 180◦. However, for a single molecule (not a crystal),
other angles are possible, too.

• Reflection at a plane.

In each of these symmetry operations, there is a symmetry element that
stays fixed in space (the inversion center, the rotation axis or the mirror plane,
respectively).

Macroscopically, a crystal has the shape of a polyhedron, like a gem in an
ornament or the grains in the salt shaker. When one subjects it to a symmetry
operation, the normals of the faces of the polyhedron do not change their
directions.

All crystals can be divided into 32 classes where each class represents
a mathematical group whose elements are the symmetry operations described
earlier. These 32 classes completely define the morphological (macroscopic)
appearance of crystals. Macroscopic symmetry is, of course, the result of the
microscopic structure, although the latter is not explicitly used in the derivation
of the 32 crystal classes. Without proof, when the 14 Bravais lattices of the
atomic world are combined with these symmetry elements, including two further
symmetry elements (screw axis and glide plane), one arrives at 230 space groups.

7.1.2.3 Two-dimensional lattices

The classification scheme is much simpler and easier to understand in two-
dimensions. The basic unit of a two-dimensional crystal is a parallelogram. Now
there are only five (translational) Bravais lattices and 10 crystal classes. When the
Bravais lattices are combined with the symmetry elements permitted for a plane
(rotation axis, mirror plane and glide plane), one obtains 17 planar space groups.
The parallelograms of Bravais lattices may be

• oblique (a �= b, γ �= 90◦, figure 7.3);
• hexagonal (a = b, γ = 120◦);
• quadratic (a = b, γ = 90◦);
• rectangular (a �= b, γ = 90◦, figure 7.4); and
• centered rectangular (a �= b, γ = 90◦, figure 7.5).

Any two vectors a′,b′ with lengths a′ = b′ and angle γ between them
describe a centered cell of a rectangular lattice but the cell with vectors a,b
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Figure 7.3. A two-dimensional lattice. There is an infinite number of ways to generate
cells. Here it is done by the vector pairs (a,bi) with i = 1, 2, 3, 4. All define primitive
cells, except a, b2 which has an area twice as large.

b
a

Figure 7.4. A simple rectangular lattice is generated by the primitive vectors a and b.
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1
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γ

Figure 7.5. In a centered rectangular lattice, a primitive cell is generated by a, b1 and has
half the area of a conventional cell generated by a, b. Note that a′, b′ with a′ = b′ are also
primitive vectors.

as in figure 7.5 seems to better convey to us the symmetry. Likewise in three
dimensions, the body-centered (bcc) and face-centered (fcc) cubic type can be
generated from primitive rhombohedra (where all three lattice constants are equal,
a = b = c) but then again, one loses the advantage of a rectangular coordinate
system because the angles are no longer 90◦.
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7.1.3 The reciprocal lattice

Because the structure in a crystal is periodic, it is natural to expand the density
ρ(x) in a Fourier series. If a,b, c form the primitive vectors of the lattice
according to (7.1), then

ρ(x) =
∑
G

ρG e
iG·x. (7.2)

The ρG are the Fourier coefficients and the sum extends over all vectors

G = ua∗ + vb∗ +wc∗ (7.3)

where u, v,w are integers and a∗,b∗, c∗ are the primitive vectors of the reciprocal
lattice. The first, a∗, is defined by

a∗ = 2π
b× c

a · (b× c)
(7.4)

so that a∗ is perpendicular to b and c and a∗ · a = 2π . The unit of a∗ is one over
length. There are corresponding definitions and relations for b∗ and c∗.

Suppose a plane wave of wavevector k falls on a crystalline grain. Any
small subvolume in the grain, let it be at locus x, scatters the incoming light. The
amplitude of the scattered wave is proportional to the electron density ρ(x). Two
outgoing beams with the same wavenumber k′ which are scattered by subvolumes
that are a distance r apart have a phase difference ei
k·r with


k = k′ − k.

The vectors k and k′ have the same length but point in different directions.
To find the total scattered amplitude Es, one must integrate over the whole grain
volume V , so modulo some constant factor

Es =
∫
V
ρ(x)e−i
k·x dV .

With respect to an arbitrary direction k′, the integral usually vanishes as a
result of destructive interference. It does, however, not vanish if 
k is equal to a
reciprocal lattice vector G of (7.3), i.e.


k = k′ − k = G. (7.5)

Equation (7.5) is another way of formulating the Bragg law for reflection in
crystals.

7.2 Binding in crystals

Solids are held together through electrostatic forces. Five basic types of bonds
exist and they are discussed here. All five types are realized in cosmic dust.
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7.2.1 Covalent bonding

In a covalent or homopolar bond between atoms, a pair of electrons of anti-
parallel spin, one from each atom, is shared. The more the orbitals of the two
valence electrons in the pair overlap, the stronger the atoms are tied together.
The bonding is directional and follows the distribution of the electron density
which has a significant high concentration between the atoms. One finds covalent
binding in solids and in molecules.

The wavefunctions in covalent bonding are not extended and only nearest
neighbors interact. We sketch the simplest case which is presented by the H+2 -
molecule, although it contains only one electron, and not an electron pair. A stable
configuration with two protons and one electron is possible only if the protons
have the right distance and the electron cloud is properly placed between them.
The motion of the protons can be neglected for the moment; it may be included
afterwards as a correction and results in quantized vibrational and rotational
states. The Hamiltonian Ĥ of the H+2 -molecule then represents the kinetic energy
of the electron (mass m, momentum p) and the electrostatic potentials among the
three particles (figure 7.3),

Ĥ = p2

2m
+ e2

(
1

R
− 1

R1
− 1

R2

)
. (7.6)

When one assumes the distance R between the protons to be fixed, the
Hamiltonian of the electron, Ĥe(r), has the property that Ĥe(r) = Ĥe(−r) with
r = (x, y, z). Any eigenfunction ψ is then even or odd if there is no degeneracy,
and a linear combination of even and odd functions in the case of degeneracy.
One therefore seeks ψ in the form of the symmetric or anti-symmetric functions

ψs = ψ1 + ψ2 ψa = ψ1 − ψ2.

Here ψ1, ψ2 are the usual hydrogenic wavefunctions with respect to proton
1 and 2 with energies E1 = E2. The electron is either at proton 1 or 2, one cannot
say at which. When the distance R between the protons is very large, there is
degeneracy and the system has zero binding energy (Eb = 0). For smaller R,
the degeneracy is removed. The electron is then in a double potential well and
this leads to a splitting of energy levels. The analysis is completely analogous to
the discussion of the double well in section 6.4.4. There is a binding (ψs) and an
unbinding state (ψa) and their separation increases as R becomes smaller. The
lowering of the potential energy as a function of R is [Lan74]


E = 4χHRe
−R−1

when R is expressed in Bohr radii, a0, and χH denotes the ionization potential
of hydrogen. The qualitative reason for the existence of a binding state (of lower
energy) follows from the uncertainty principle: a hydrogen atom in its 1s ground
state has a radius
x = a0 and a momentum
p = mec/137, so
x
p = �. The
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Figure 7.6. A sketch of the configuration between the two protons and one electron in the
H+2 -molecule. The protons are labeled 1 (right) and 2 (left).

binding energy of the hydrogen atom is Eb = χH = p2/2me. If the electron can
spread out and be at two protons, as in the molecule H+2 , more space is available
to the electron and its momentum and the binding energy will be lower.

The electronic wavefunctions and the electron energies are schemtically
drawn in figure 7.7 for intermediate R. When one includes the repulsion among
the protons and considers the full Hamiltonian (7.6), the binding energy of the
H+2 molecule has its minimum Eb = 2.65 eV at a distance of about two Bohr
radii. This is the stable configuration of the molecule and Eb is the dissociation
energy. When R is further reduced towards zero, repulsion between the protons
dominates and the system is again unstable.

7.2.2 Ionic bonding

In ionic or heteropolar bonds, the adhesion is due to long-range Coulomb forces.
In a crystal, the ions of opposite sign attract and those of the same sign repel each
other but in the end, attraction wins. At short distances, there is an additional
kind of repulsion but it acts only between adjacent atoms. It results from Pauli’s
exclusion principle which restricts the overlap of electron clouds.

Let us take a sodium chloride crystal (NaCl) as an example of ionic bonding.
One partner, the alkali metal, is relatively easy to ionize (5.14 eV) and the other,
the halogen Cl, has a high electron affinity (3.61 eV). Although the transfer of the
electron from Na to Cl requires 5.14−3.61 = 1.53 eV, the Na+ and Cl− ions can
supply this deficit. They can provide even more than that in the form of potential
energy by coming close together. Indeed, at the equilibrium distance of 2.8 Å, the
binding energy per molecule equals 6.4 eV.

As the ions of heteropolar bonds have acquired full electron shells, like
inert gases, their electron clouds are fairly spherical and the charge distribution
between the ions is low. Ionic bonding is, therefore, non-directional and usually
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Figure 7.7. Left: A sketch of the wavefunction ψ in the H+2 molecule. It may be either
anti-symmetric (ψa) and anti-binding, then the electron density is zero midway between
the protons, or it may be symmetric (ψs) and binding, then the electron density is enhanced
at x = 0 reducing the repulsive potential between the protons. Right: As the protons come
closer, the degeneracy is removed and the atomic levels split into an unbinding and binding
state.

found only in solids.
To estimate the binding energy of an ionic crystal, we write the potential ϕi

at the locus of atom i resulting from all other atoms j in the form

ϕi =
∑
j �=i

±q2

ri j
+
∑
j �=i
λe−ri j /ρ. (7.7)

In the first term representing the interaction between ions of charge q , the
plus sign refers to like, the minus sign to unlike charges and ri j is the distance
between them. The second term heuristically describes the repulsive potential
at very close distance. Because its range ρ is only about one-tenth of the
equilibrium separation req between adjacent atoms, one can replace the second
sum by nλe−r/ρ , where n is the number of nearest neighbors and r the nearest-
neighbor separation. The constants λ and ρ have to be determined from quantum
mechanical calculations or from experiment. We put pi j = ri j /r and introduce
the Madelung constant

A =
∑
j �=i

(±)
pi j
. (7.8)

If atom i is negative, there is a plus sign when atom j is positive and a minus
sign when it is negative. For a crystal of N ion pairs, the total potential energy
becomes

�tot = Nϕi = N

(
nλe−r/ρ − q2

r
A

)
.
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The equilibrium distance req follows from d�tot/dr = 0, which yields

�tot = −Nq
2A

req

(
1− ρ

req

)
.

The Madelung constant A is evaluated in special routines. It must obviously
be positive as�tot is negative; for NaCl, A = 1.748.

Pure ionic bonding is, however, an idealization; one finds it neither in
molecules nor in crystals. Even when compounding alkali metals with halogenes,
there is some homopolar component or overlap of orbitals. In the extreme case
of CsF, homopolar binding still amounts to 5%. There are also no pure covalent
bonds, even in H2 or diamond, because of the fluctuations of the electron clouds.
In the real world, there are only blends between the two bonding types.

7.2.3 Metals

Another type of strong binding exists in metals. One may imagine a metal as
a lattice of positive ions bathed in a sea of free electrons; metallic binding is
therefore non-directional.

7.2.3.1 Sodium

As as an example, we consider the alkali metal sodium (Na), the 11th element of
the Periodic Table with an electron configuration 1s2 2s2 2p6 3s1. The two inner
shells are complete and the 3s valence electron is responsible for binding. In
sodium metal, the 3s electrons form the conduction band.

In an isolated sodium atom, the 3s electron is bound to the Na+ ion by
an ionization energy χNa = 5.14 eV. The electron is localized near the atomic
nucleus and its wavefunction ψ goes to zero at large distances from the nucleus.
When, however, the 3s electron is in the potential of a lattice of Na+-ions,
as in a metal, its wavefunction ψ is very extended and subject to a different
boundary condition: symmetry requires that the gradient of the wavefunction
vanishes midway between atoms. The quantum mechanical calculations now
yield a binding energy of the electron to the ionic lattice of 8.2 eV.

Because sodium has a density of 1.01 g cm−3, the concentration of 3s
electrons is 2.65 × 1022 cm−3 and the Fermi energy after (6.54) EF = 3.23 eV.
From (6.54) also follows the density of states,

ρ(E) = dN

dE
= V

2π2

(
2me

�2

)3/2

E1/2.

The average energy 〈E〉 of a conduction electron, is therefore,

〈E〉 = N−1
∫
ρ(E) dE = 3

5 EF � 1.9 eV.

Consequently, in a metal each sodium atom is bound by 8.2− χNa − 1.9 �
1.16 eV.
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7.2.3.2 Conductivity and heat capacity

The free and mobile electrons of a metal are responsible for the high electric
conductivity. In a constant electric field E , they are accelerated but collide after
an average time τ with phonons (thermally oscillating atoms). The resulting
current density J is equal to the charge density ne, where n is the number of free
electrons per cm3, multiplied by their drift velocity v. An electron experiences
an acceleration eE/me over an average time τ , so that v = τeE/me. Because
Ohm’s law (1.112) asserts J = σ E , the conductivity σ is

σ = ne2

me
τ.

At very low temperatures, collisions of the electrons with lattice
imperfections are more important than collisions with phonons.

Because of free electrons, the heat capacity has a peculiar behavior at very
low temperatures. Below the Debye temperature, which is typically several
hundred K and thus not low, the specific heat C due to the lattice falls rapidly,
like T 3 (see (8.39)). The heat capacity of the electron gas, however, declines less
swiftly, it is proportional to T and, therefore, dominates at very low temperatures.
Crudely speaking, when there are n free electrons per cm3, heating of the metal
from zero Kelvin to temperature T thermally excites those conduction electrons
which lie T degrees below the Fermi temperature TF, altogether a fraction T/TF.
Their total mean energy is then U ∼ nkT and, therefore,

C = ∂U
∂T
∼ nkT

TF
∝ T .

For an exact relation, one has to use the Fermi distribution (5.37).

7.2.3.3 Energy bands and Bloch functions

It is a general property of crystals that the electronic states are clustered in bands,
with energy gaps between them. The basics of their formation was explained in
section 6.4.3 on one-dimensional periodic potentials. To derive the energy states
and eigenfunctions of an electron in the three-dimensional potentialU(x), we first
note that as U(x) comes from the lattice ions and is strictly periodic, it may, from
(7.2), be written as

U(x) =
∑
G

UG e
iG·x (7.9)

where the G are the reciprocal lattice vectors of (7.3). The general solution for
the wavefunction ψ(x) is sought in a Fourier expansion,

ψ(x) =
∑
k

Ck e
ik·x (7.10)
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where the wavenumberk fulfils the periodic boundary conditions and is connected
to the momentum p by

p = � k.

The coefficients Ck are found by inserting (7.10) into the Schrödinger
equation:

Ĥψ(x) =
[

p̂2

2me
+ Û(x)

]
ψ(x) = Eψ(x) (7.11)

and solving the resulting set of algebraic equations. In (7.11), the interaction
among electrons is neglected. After some algebra, one is led to Bloch’s theorem,
namely that the eigenfunction ψk(x) for a given wavenumber k and energy Ek
must have the form

ψk(x) = uk(x) eik·x
where uk(x) is a function periodic with the crystal lattice. So if T is a translation
vector as given in (7.1), then

uk(x) = uk(x+ T).

The wavefunction ψk(x) itself does not generally display the periodicity.
It is straight forward to prove Bloch’s theorem in a restricted form, for a one-
dimensional ring of N atoms, where after N steps, each of the size of the grid
constant, one is back to the starting position.

It is instructive to consider the formation of bands from the point of view of
the tightly bound inner electrons of an atom. When we imagine compounding a
solid by bringing N free atoms close together, the inner electrons are afterwards
still tightly bound to their atomic nuclei, only their orbits have become disturbed.
Because of the disturbance, a particular energy state Ei of an isolated atom will
be split into a band of N substates due to the interaction with the other N − 1
atoms. The shorter the internuclear distance, the stronger the overlap of the
wavefunctions and the broader the band; the energetically deeper the electrons,
the narrower the band.

There will be a 1s, 2s, 2p, . . . band. One can determine the energy states of a
tightly bound electron by assuming that its wavefunction is a linear superposition
of the atomic eigenfunctions. In this way, one finds the width of the band and the
average energy in a band. The latter is lower than the corresponding energy in a
free atom, which implies binding of the crystal.

7.2.4 van der Waals forces and hydrogen bridges

The van der Waals interaction is much weaker than the bonding types discussed
earlier and is typically only 0.1 eV per atom. It arises between neutral atoms or
molecules and is due to their dipole moments. The dipoles have a potentialU that
rapidly falls with distance (U ∝ r−6, see section 9.1).
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If the molecules do not have a permanent dipole moment, like CO2,
the momentary quantum mechanical fluctuations of the electron cloud in the
neighboring atoms induces one; its strength depends on the polarizability of the
molecules. This induced dipole moment is usually more important even for polar
molecules. Its attraction holds CO2 ice together and binds the sheets in graphite.

Hydrogen can form bridges between the strongly electron-negative atoms N,
O or F; the binding energy is again of order ∼0.1 eV per atom. For example,
when a hydrogen atom is covalently bound to oxygen, it carries a positive
charge because its electron has been mostly transferred to the oxygen atom. The
remaining proton can thus attract another negatively charged O atom.

The double helix of the DNA is bound this way but so also is water ice.
In solid H2O, every oxygen atom is symmetrically surrounded by four others
with hydrogen bonds between them. Because of these bonds, the melting and
evaporation point of water is unusually high compared, for instance, to H2S,
which otherwise should be similar as sulphur stands in the same Group VI of
the Periodic Table right below oxygen. This thermodynamic peculiarity of water
is crucial for the existence of life.

7.3 Reddening by interstellar grains

Our knowledge of interstellar dust comes from the following measurements:

• Interstellar extinction. The interstellar extinction or reddening curve
specifies how dust weakens the light from background stars as a function
of wavelength.

• Dust emission. We receive this from all kinds of objects: protostars, old stars
with shells, interstellar clouds and whole galaxies.

• Infrared resonances. These are features observed in absorption and emission
which allow us to identify the chemical components of the dust material.

• Polarization. It refers to light from stars behind dust clouds but also to
scattered radiation and dust emission.

• Scattered starlight. Examples are reflection nebulae, the diffuse galactic light
or the zodiacal light of the solar system.

The items in italics are our five observational pillars. In this section, we are
concerned with interstellar extinction and the clues it provides to dust properties,
the other pillars are discussed elsewhere. We first describe the principles of stellar
photometry because it is the basis for the reddening curve.

7.3.1 Stellar photometry

The interstellar extinction curve is obtained from stellar photometry. The
wavelength resolution in such measurements is usually poor, typically λ/
λ �
10 but the broadness of the observational bands enhances the sensitivity. The
standard photometric system is due to H L Johnson and W W Morgan and rooted
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Table 7.2. The standard photometric system. The center wavelengths λc and the
conversion factors wλ between magnitudes and Jansky after (7.14) are averages gleaned
from the literature. The last column gives the conversion factors for a blackbody of 9500 K,
see text.

Historical
Band meaning λc (µm) wλ wλ (bb)

U Ultraviolet 0.365 1810 2486
B Blue 0.44 4260 2927
V Visual 0.55 3640 3084
R Red 0.70 3100 2855
I Infrared 0.90 2500 2364
J 1.25 1635 1635
H 1.65 1090 1116
K 2.2 665 715
L 3.7 277 294
M 4.8 164 184
N 10 37 46
Q 20 10 12

in optical astronomy. It was later expanded into the infrared; there the choice
of wavelengths was dictated by the transmission of the atmosphere of the Earth.
The observational bands are designated by letters: U,B,V,R, I, . . . . Table 7.2
lists their approximate center wavelengths λc and the conversion factors, wλ, for
translating magnitudes into Jansky and back (see (7.14)). The precise effective
observation wavelength follows only after convolving the spectrum of the source
with the transmission of the instrument and the atmosphere.

In photometry, especially at shorter wavelengths, it is customary to express
the brightness of an object in apparent magnitudes. These are logarithmic
quantities and they were appropriate units in the days when the human eye was
the only detector because according to the psycho-physical rule of W Weber and
G T Fechner: the subjective impression of the eye changes proportionally to the
logarithm of the physical flux. But to the pride of many astronomers, magnitudes
are still in use today. As they are laden with five millenia of history, only he who
has thoroughly studied the 5000 year period can fully appreciate their scientific
depth. An exhaustive explanation of magnitudes is, therefore, beyond the scope
of this book.

The brightest star of all, Sirius, has a visual apparent magnitude mV =
−1.58 mag. Capella, Rigel and Vega are around zeroth and Spica (α Virginis) is
only of first magnitude. Generally, a step of one up in magnitude means a factor
of 2.5 down in observed flux. Whereas the apparent magnitude mλ at wavelength
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λ depends on the stellar distance D, the absolute magnitude Mλ, defined by

mλ − Mλ = 5 log10

(
D

pc

)
− 5 (7.12)

does not and thus measures the intrinsic brightness of a star. At a distance of
10 pc, the apparent and absolute magnitude are, by definition, equal. When there
is intervening dust, one adds, to the right-hand side of equation (7.12) a term Aλ
to account for the weakening of starlight through interstellar extinction:

mλ − Mλ = 5 log10

(
D

pc

)
− 5+ Aλ. (7.13)

Aλ is related to the optical depth τλ through

Aλ = 1.086τλ.

The strange conversion factor of 1.086 between the two quantities arises
from their definitions: stellar magnitudes are scaled by a factor of 2.5, the optical
depth by e � 2.718. The term m − M in (7.12) is called the distance modulus.
So ingenious astronomers have contrived a means to express length in stellar
magnitudes.

To convert a flux Fλ in Jy into an apparent magnitude mλ or vice versa, we
use the relation

mλ = 2.5 log10

(
wλ

Fλ

)
. (7.14)

Fλ is expressed in Jy, wλ is given in table 7.2. The formula is simple, the
difficulty lies in the calibration factors wλ. The values in the literature scatter
by about 10% and, furthermore, they do not refer to identical center wavelengths
because of the use of different filters.

The magnitude difference between two bands is called the color. It is
equivalent to the flux ratio at the corresponding wavelengths and thus determines
the gradient in the spectral energy distribution. By definition, the colors of main
sequence A0 stars are zero. The most famous A0V star is α Lyr (= Vega,
D = 8.1 pc, mV = 0.03 mag, L = 54 L�). Such stars have an effective
temperature of about 9500 K and they can be approximated in the infrared by
a blackbody. Indeed, if we calibrate the emission of a blackbody at 9500 K in the
J band and put all colors to zero, we find the conversion factors wλ(bb) listed in
table 7.2. In the infrared, they are not very different from wλ (adjacent column);
however, the discrepancies are large at U, B and V because of the many absorption
lines in the stellar spectrum that depress the emission relative to a blackbody.

7.3.2 The interstellar extinction curve

7.3.2.1 The standard color excess EB−V

The interstellar extinction curve is obtained from photometry at various
wavelengths λ on two stars of identical spectral type and luminosity class, one
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of which is reddened (star No. 1), whereas the other is not (star No. 2). In the
case of pure extinction, without dust emission along the line of sight, one receives
from the stars the flux

Fi (λ) = L(λ)

4πD2
i

· e−τi (λ) i = 1, 2.

L(λ) and τi (λ) are the spectral luminosity and optical thickness. Because the
apparent photometric magnitude m is a logarithmic derivative of Fi (λ),

mi (λ) = ln L(λ)− τi (λ)+ 2 ln Di + constant

and because τ2 = 0, the difference in magnitude 
m(λ) between the two stars
becomes


m(λ) = −τ1(λ)− 2 ln

(
D1

D2

)
.

The difference in 
m at two wavelengths, λ and λ′, gives the color excess

E(λ, λ′) = 
m(λ)−
m(λ′) = −[τ1(λ)− τ1(λ
′)]

which no longer contains the distance D. At λ = 0.44 µm and λ′ = 0.55 µm, the
center wavelengths of the B and V band, the color excess is denoted by

EB−V = E(B, V )

and called the standard color excess. The band symbol is also used for the
apparent magnitude, for example, V = mV or B = mB. The intrinsic color is
denoted (B − V )0 in contrast to the observed color B − V , which includes the
effect of the selective weakening by interstellar dust. With this notation, we can
write

EB−V = (B − V )− (B − V )0 (7.15)

and likewise for any other pair of wavelengths.

7.3.2.2 How the extinction curve is defined

Fixing the wavelength λ′ in the color excess E(λ, λ′) at 0.55 µm and normalizing
E(λ, V ) by EB−V, one arrives at the extinction curve in its traditional form,

Ext(λ) = E(λ, V )

EB−V
= Aλ − AV

AB − AV
= τλ − τV

τB − τV
. (7.16)

Aλ is the extinction in magnitudes at wavelength λ; it is the result of
absorption plus scattering but observationally one cannot separate the two. The
normalization of the extinction curve by EB−V is important because it allows
a comparison of the wavelength dependence of extinction towards stars which
suffer different amounts of reddening. Obviously,

Ext(B) = 1 Ext(V ) = 0.
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The quantity

RV = AV

EB−V
= −Ext(λ = ∞) (7.17)

is called the ratio of total over selective extinction or, simply, RV. The visual
extinction in magnitudes AV, which also appears in the distance modulus of
(7.13), is the most common quantity to characterize the opaqueness of a cloud. It
is not a directly observable quantity. To obtain AV from photometry, one measures
EB−V, assumes an RV value and then uses (7.17).

One can also express the reddening by dust through the mass extinction
coefficient Kλ normalized at the V band. Because Kλ/KV = τλ/τV, one gets

τλ

τV
= Ext(λ)

RV
+ 1 (7.18)

τλ/τV and Ext(λ) are mathematically equivalent. Still other forms, containing the
same information, are sometimes more suitable for displaying certain trends, for
example, Aλ/AJ (the J band is at 1.25 µm) or (Aλ − AJ)/(AV − AJ).

7.3.2.3 Remarks on the reddening curve

The interstellar extinction curve (figure 7.8) is observationally determined from
about 0.1 to 10 µm. At longer wavelengths, the optical depth is small and the
extinction of background light weak; moreover, the dust begins to emit itself. The
reddening curve displays the following salient features:

• In the diffuse interstellar medium, Ext(λ) of equation (7.16) is, at optical
and infrared wavelengths, fairly uniform over all directions in the sky and
RV equals 3.1; deviations occur only in the UV.

• Towards clouds, however, the shape of the curve Ext(λ) varies from one
source to another, even in the infrared. The reduction in UV extinction for
large RV suggests that the small grains have disappeared. Photometric data
exist only for cloud edges, their cores are too obscured.

• The extinction curve refers to broad-band observations but nevertheless it
is remarkably smooth. If one plots instead of Ext(λ) the ratio τλ/τV then,
to first order, all extinction curves look alike for λ ≥ 0.55 µm; at shorter
wavelengths, they can differ substantially. The curves are largely (but not
totally) fixed over the entire wavelength range by the one parameter RV of
equation (7.17). The observed variations of RV range from 2.1 to well over
5, the larger values being found towards molecular, the smaller ones toward
high latitude clouds.

• The only resonance in the extinction curve is the broad bump at 4.6 µm−1

or 2175 Å which is always well fit by a Drude profile. The central position of
the bump stays constant from one star to another to better than 1% implying
that the underlying particles are in the Rayleigh limit (sizes < 100 Å);
however, its width varies (
λ−1 � 1 ± 0.2 µm−1). There is also scatter
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in the strength of the bump. It is correlated with RV in the sense that the
resonance is weak in clouds where RV is large. A plausible explanation is
coagulation of dust particles in clouds as a result of which the small grains
disappear.

• From the infrared to the hump at 2175 Å, the extinction curve rises
continuously. Over this range, stellar light is reddened because extinction
decreases with wavelength. Beyond 2175 Å, the ratio τλ/τV first declines
and here the light is made bluer(!). In the far UV (λ−1 > 6 µm−1), the curve
rises again.

• If one had good albedo measurements (which one does not have), one could
subtract scattering from extinction to obtain a pure absorption curve. This
would provide a touchstone for any dust model.

• The two extinction curves in figure 7.8 suggest that the grains are modified
when they change their environment. This should happen several times
during their lifetime as they pass from dense into diffuse medium and back.
The modifications may be due to energetic photons, condensation of gas
atoms or collisions among grains. The latter would imply fluffy particles
built up of smaller subunits (section 2.6).

At higher spectral resolution, one finds superposed on the extinction curve
diffuse interstellar bands (DIBs but they are not shown in figure 7.8). There are
altogether more than a hundred, mainly between 0.4 and 0.9 µm, of variable
strength, shape and width, the broadest being about 2 Å wide. Although
discovered 80 years ago, the identification of the DIBs is still unclear.

7.3.3 Two-color diagrams

In two-colour-diagrams (TCDs), one plots one color against another. TCDs are
a simple and efficient tool with which to separate distinct or identify similar
astrophysical objects. As an example of a TCD, we show in figure 7.9 the UBV
diagram of unreddened main sequence stars. All luminous stars of type B0 or
earlier cluster in a tight strip with B–V between −0.30 and −0.32 mag. The
position in the UBV diagram of blackbodies with temperatures from 3500 to
40 000 K is always well above the main sequence. So compared to a blackbody
of the same color B–V, a stellar photosphere is much weaker at U . The reason
for this behavior is that photoionization of the n = 2 level in hydrogen falls into
the U-band. As this is the dominant process for the photospheric opacity at this
wavelength, it greatly supresses the stellar flux. The characteristic wiggle in the
main sequence line in figure 7.9 reflects the variation of this supression (called
the Balmer decrement) with effective temperature.

Interstellar reddening with the standard extinction law (RV = 3.1) shifts any
star in the UBV diagram from the main sequence in the direction parallel to the
arrow of figure 7.9. The length of the shift is proportional to the foreground AV
and in figure 7.9, it corresponds to AV = 5 mag. In the case of another extinction
law, say, with RV = 5, the slope and length of the arrow would be different
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Figure 7.8. The observed interstellar extinction curve in the form τλ/τV and as Ext(λ)
according to equation (7.16). The ratio of total over selective extinction, RV = 3.1, refers
to the diffuse medium, RV = 5 to the edges of molecular clouds. Whereas τλ/τV is
normalized at V, Ext(λ) is zero at V and equals one at B.

(for the same AV). If we observe an object somewhere in the right-hand part
of figure 7.9 and know, for some reason, that it is a main sequence star, we can
determine the amount of extinction by moving it up, parallel to the arrow, until it
reaches the main sequence. This dereddening is unique as long as the star is of
type B5 or earlier so that the reddening path does not intersect the wiggle of the
main sequence curve.

7.3.4 Spectral indices

Akin to a color is the spectral index, commonly defined in the infrared as

α = d log(λFλ)

d logλ
. (7.19)



Reddening by interstellar grains 221

Figure 7.9. UBV diagram for unreddened main sequence stars (thick line) and for
blackbodies (thin line). The arrow shows the direction and distance by which a star is
displaced from the main sequence under the standard reddening law with RV = 3.1
(figure 7.8) and AV = 5 mag of foreground extinction. The main sequence locations
of a few spectral types are indicated. The lower tip of the blackbody line refers to a
temperature of 3500 K, the upper to 40 000 K. The data for the main sequence are taken
from the literature, the blackbody and reddening curve have been calculated. The figure is,
therefore, quite accurate and may be used to find the position of a main sequence star that
suffers a certain amount of extinction AV; see text.

Hence, a spectral index depends on wavelength. In practice, α is calculated
not as a derivative but as the slope of λFλ between two wavelengths λ1 and λ2:

α = log(λ2Fλ2)− log(λ1Fλ1)

logλ2 − logλ1
. (7.20)

For a blackbody obscured by a foreground extinction τ (λ), one has, in the
limit of high temperatures,

α = −3− τ (λ2)− τ (λ1)

ln(λ2/λ1)
. (7.21)
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Figure 7.10. The spectral index α in the wavelength interval from 2.2 to 20 µm after (7.20)
of a source at temperature T that is observed through a foreground of visual extinction
AV. In the right box, the object is a blackbody or, to first approximation, a star. In
the left box it is an optically thin dust cloud with the standard mixture of silicate and
carbon grains (see section 12.4). The curves show how the spectral index is modified as
the foreground extinction increases from 0 to 20 mag and 40 mag. Because α is sensitive
to both T and AV, it is used in the classification of protostars. Without extinction, α
of a blackbody approaches −3 at high temperatures. The weak dotted lines are drawn to
alleviate comparison between the two frames. Notice the different temperature ranges right
and left.

An important example is the spectral index between 2.2 and 20 µm which
serves as a classifier for protostellar objects. In this case, for standrad dust (see
figure 7.20 or 12.10)

α→−3+ AV · 0.036 for T →∞.

Of course, other wavelength intervals fulfil the same purpose; for instance,
one also uses the index between 2.2 and 5 µm. Figures 7.10 and 7.11 demonstrate
how the indices change as a function of source temperature.

7.3.5 The mass absorption coefficient

The reddening curve yields only a normalized extinction coefficient, for instance,
Kλ/KV. To obtain the absolute value of the cross section per gram of interstellar
matter, Kλ, one has to know KV. For this purpose, one measures towards a star
the standard color excess EB−V and the total hydrogen column density NH to
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Figure 7.11. As figure 7.10 but for the spectral index α between 2.2 and 5 µm.

which both atomic and molecular hydrogen contribute:

NH = N(HI)+ 2N(H2).

The observations are performed in the far UV from a satellite and consist of
absorption measurements towards early-type stars in the Lyα line of HI and the
Werner and Lyman bands of H2. For technical reasons, one chooses stars that are
only slightly reddened and located in the diffuse interstellar medium. The average
value over a large sample of stars is

NH � 5.8× 1021EB−V cm−2 (7.22)

or with (7.17) and RV = 3.1,

NH � 1.9× 1021AV cm−2. (7.23)

As AV = 1.086× NHKV, one finds KV � 4.9× 10−22 cm2 per H-atom and
a mass extinction coefficient

KV � 200 cm2 per g of interstellar matter. (7.24)

This value is easy to remember. In combination with the interstellar
reddening curve, we know Kλ in the range from about 0.1 to 5 µm. Equation
(7.23) also allows us to estimate the dust-to-gas mass ratio Rd if one makes
reasonable assumptions about the composition of the grains, their shape and sizes.
The amount of dust relative to the gas follows then from the condition (7.22) that
a hydrogen column density of 5.8× 1021 cm−2 produces a standard color excess
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EB−V of 1 mag. Any dust model compatible with the interstellar reddening curve
gives, quite independently of its particular choice,

Rd = Mdust

Mgas
� 0.5 . . .1%. (7.25)

The lower limit may be appropriate for the diffuse interstellar medium, the
higher for dense clouds where grains are ice-coated. Because at least half a
percent of interstellar matter is in the solid phase, the dust can only consist of
the most abundant elements, like C, N, O, Fe, Si, or Mg.

According to equations (7.23) and (7.25), the total dust volume in a column
of 1 cm2 cross section with AV = 1 mag is Vdust ∼ 1.2× 10−5 cm−3, assuming
a bulk density of 2.5 g cm−3. Considering the uncertainties, this is in agreement
with the dust-to-gas ratio derived from the Kramers–Kronig relation in (2.95) but
the method employed here is probably superior.

How dusty is the interstellar medium? Very dusty! If the atmosphere of
the Earth, which has a density ρ ∼ 10−3 g cm−3, had the same relative dust
content, the optical depth τ = �ρKV would become unity over a distance of only
� = 10 cm and we could not see our feet!

7.4 Carbonaceous grains and silicate grains

7.4.1 Origin of the two major dust constituents

Interstellar grains, at least their seeds, cannot be made in the interstellar medium,
they can only be modified there or destroyed. Observational evidence points
towards the wind of red giants on the asymptotic branch of the Hertzsprung–
Russell diagram as the place of their origin (section 9.4). At first, tiny refractory
nuclei are created in the inner part of the circumstellar envelope which then grow
through condensation as they traverse the cooler outer parts (section 9.5). The
type of dust that is produced depends on the abundance ratio of carbon to oxygen:

• If there is less carbon than oxygen, [C]/[O] < 1, as in M-type and in OH/IR
stars, no carbon is available for the solid phase because all C atoms are
locked up in CO which is a diatomic molecule with an exceptionally strong
bond.
In such an environment, mainly silicates form, besides minor solid
constituents like MgS, MgO and FeO. The observational characteristic of
silicates is the presence of an Si–O stretching and an O–Si–O bending
mode at 9.8 µm and 18 µm, respectively. Silicon has a cosmic abundance
[Si]/[H] = 3× 10−5, it is heavily depleted in the gas phase (depletion factor
fdepl(Si) ∼ 30), so almost all of it resides in grains.

• If [C]/[O] > 1, as in C-type stars (these are carbon-rich objects like C, R, N
stars), carbonaceous grains form.
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Carbon has a cosmic abundance [C]/[H] = 4× 10−4, or somewhat less, and
a depletion factor fdepl(C) ∼ 3. Two out of three atoms are built into solids,
one is in the gas phase. There are several forms of carbonaceous grains:
mainly amorphous carbon, graphite and PAHs.

Carbon and silicates are the major constituents of interstellar dust. Other
types of grains, for whose existence there are either observational or theoretical
indications, include metal oxides (MgO, FeO, Fe3O4, Al2O3), MgS and SiC.
The last substance, silicon carbide, is only seen in C-stars through its emission
signature at 11.3 µm but it is not detected in the interstellar medium.

Generally, interstellar grains are beyond the reach of spacecraft, because of
their distance, so they cannot be brought to Earth and studied in the laboratory.
However, as the Sun moves relative to the local interstellar cloud (it is of low
density, nH ∼ 0.3 cm−3), dust particles of this cloud sweep through the solar
system. Some of them were detected by spacecraft at the distance of Jupiter and
identified as belonging to the local interstellar cloud by the direction and value
(∼26 km s−1) of their velocity vector [Grü94]. In the process of detection they
were destroyed. Their masses, which could also be determined, correspond to
µm-sized grains which we think are rather atypical for the interstellar medium.
Smaller grains are probably prevented from penetrating deep into the solar system
by radiation pressure and, if they are charged, by the interplanetary magnetic field.

In interplanetary dust particles and in primitive meteorites which have been
collected on Earth, one can identify inclusions which distinguish themselves by
their isotopic pattern from the solar system. Because the isotopic abundance ratios
are explainable in terms of nucleosynthesis in AGB stars or supernovae, these
subparticles are hypothesized to be of interstellar origin. If so, they have probably
undergone considerable reprocessing in the solar nebula.

7.4.2 The bonding in carbon

Carbon, the sixth element of the periodic system, has four electrons in its
second (n = 2) uncompleted shell: two s-electrons denoted as 2s2 with angular
momentum quantum number l = 0 and two unpaired p-electrons (2p2) with l = 1,
in units of �.

The ground state of carbon is designated 3P0. It is a triplet (prefix 3) with
total spin S = 1, total orbital angular momentum L = 1 (letter P) and total
(including spin) angular momentum J = 0 (suffix 0). In the ground state, there
are only two unpaired p-electrons. However, one 2s-electron may be promoted
to a 2p orbital and then all four electrons in the second shell become unpaired;
this is the chemically relevant case where carbon has four covalent bonds. The
promotion requires some energy (4.2 eV) but it will be more than returned in the
formation of a molecule.

The bonding of carbon to other atoms is of the covalent type and there are
two kinds:
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• In a σ -bond, the electron distribution has rotational symmetry about the
internuclear axis.

• In a π-bond, the wavefunction of the two electrons has a lobe on each side
of the internuclear axis.

The s and p wavefunctions can combine linearly resulting in hybrid orbitals.
The combination of one s and three p electrons is denoted as an sp3 hybrid,
likewise there are sp2 and sp hybrids. Here are examples:

• In methane, CH4, the coupling of carbon is completely symmetric to all
four H atoms and the difference between s and p valence electrons has
disappeared. In the identical hybridized sp3 orbitals, the C–H binding is
through σ -bonds. They point from the C atom at the center of a tetrahedron
towards the H atoms at its corners. The angle α between the internuclear axes
follows from elementary geometry, one gets cosα = − 1

3 , so α = 109.5◦.
• The situation is similar in ethane, H3C–CH3, although the symmetry is no

longer perfect. Each of the two C atoms has again four sp3 hybrid orbitals
connecting to the other carbon atom and to the neighboring three hydrogen
atoms. Because of the σ -bond between the two Cs, the CH3 groups can
rotate relative to each other (see figure 7.12).

• An sp2 hybrid is present in ethylene, H2C–CH2, which is a planar molecule,
where the angle from C over C to H equals 120◦. There are σ -bonds between
C–H and C–C. But the two remaining 2p orbitals in the carbon atoms,
besides the sp2 hybrids, overlap to an additional π-bond, so altogether we
have a C=C double bond (one σ and one π), which makes the CH2 groups
stiff with respect to rotation (see figure 7.13).

• In the linear molecule acetylene, HC–CH, the C atoms are sp hybridized
yielding C–C and C–H σ -bonds. There are two more π-bonds, whose
orbitals are perpendicular to each other and to the internuclear axis; in total,
the carbon atoms are held together by a triple bond, C≡C. Acetylene is
believed to be the basic molecule for the nucleation of carbonaceous grains
in the wind of giant stars (see figure 7.14).

• Benzene, C6H6, is an especially simple and symmetric hydrocarbon (a
so called PAH, see later). In this planar ring (aromatic) molecule, each
carbon atom has three sp2 hybrid orbitals connecting through σ -bonds to
the adjacent two C atoms and one H atom. There is still one unhybridized
2p electron per C atom left. The carbon atoms are sufficiently close together
so that neighboring 2p orbitals can pair to form an additional π-bond; the
p-orbitals are perpendicular to the plane. Because of the complete symmetry
of the ring, the unhybridized electrons in the 2p-orbitals are not localized but
equally shared (resonant) in the ring. So, on average, two adjacent C atoms
are coupled by a σ - and half a π-bond. The binding is therefore intermediate
in strength between a single and a double bond. The more bonds between
two C atoms there are, the stronger they are bound and the shorter their
internuclear distance (see figure 7.15).
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(Csp  ,H1s)σ 3
3(Csp  ,Csp  )σ 3

ethane

Figure 7.12. Four types of carbon binding are exemplified in figures 7.13–7.15. Here
a single bond in ethane (C2H6); big circles, C atoms; small ones, H atoms. σ -bonds are
drawn with full lines, π-bonds with broken lines. In the description of the bond, the type (σ
or π) is followed by the atomic symbol and the participating orbitals, for instance, σ (Csp2,
H1s).
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Figure 7.13. Double bond in ethylene (C2H4).

(Csp,Csp)σ

(C2p,C2p)π

(Csp,H1s)σ

acetylene

Figure 7.14. Triple bond in acetylene (C2H2).

7.4.3 Carbon compounds

7.4.3.1 Diamond

In diamond, a crystalline form of carbon, the bonding is similar to methane. Each
C atom is linked tetrahedrally to its four nearest neighbors through sp3 hybrid
orbitals in σ -bonds. The distance between the atoms is 1.54 Å, the angle between
the internuclear axes again 109.5◦. As a C atom has only four nearest (and 12
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(Csp  ,Csp  )2 2σ

(C2p,C2p)π

σ

benzene

(Csp , H1s)
2

Figure 7.15. Resonance structure in benzene (C6H6) with three π-bonds shared among
six C atoms.

3.
35

A

graphite sheets

Figure 7.16. Graphite is formed by sheets of carbon atoms, each with an hexagonal
honeycomb structure. The side length of the hexagons equals 1.42Å, the distance between
neighboring sheets is 3.35 Å. In analogy to close packed spheres (figure 7.17), besides the
sheet sequence ABABAB . . . also ABCABC . . . is possible and combinations thereof.

next nearest) neighbors, the available space is filled to only 34% assuming that
the atoms are hard spheres. This is to be compared with a close-packed structure,
either face-centered cubic or hexagonal close-packed (see figure 7.17), where
in both cases each atom has 12 nearest neighbors and the volume filling factor
amounts to 74%.
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next higher layer B

bottom layer A

Figure 7.17. A ground layer A of equal balls (dashed), each touching its six nearest
neighbors, is covered by an identical but horizontally shifted layer B (full). There are
two ways to put a third layer on top of B; one only needs to specify the position of one
ball in the new layer, all other locations are then fixed. (a) When a ball is centered at
the lower cross, directly over a sphere in layer A, one obtains by repetition the sequence
ABABAB . . .. This gives an hexagonal close packed structure (hcp). (b) When a ball is
over the upper cross, one gets by repetition a sequence ABCABC . . . and a face-centered
cubic lattice.

The bonding in diamond is strong (7.3 eV per atom) and due to its overall
bonding isotropy, diamond is extremely hard with hardness number 10; diamond
is used for cutting and drilling. The stiffness of the bonds also explains
the exceptionally high thermal conductivity (several times greater than that of
copper). As there are no free electrons, diamond is electrically insulating.

On Earth, diamonds are formed under high pressure and temperature at a
depth of about 200 km. They are mined in Kimberlite pipes which are vents
associated with volcanoes where the deep material is transported upwards so that
it can be reached by man. The upward transport during the volcano eruption
occurs sufficiently rapid without a phase transition. In fact, diamond is not in
equilibrium at the conditions at the surface of the Earth, it is metastable in our
environment but well separated by a large activation barrier from graphite, which
is the energetically lower phase. So diamonds are long lasting presents that will
outlive the affluent donors as well as the pretty recipients of the gems. Big raw
diamonds are cleft parallel to octahedral crystal faces. In the subsequent cutting,
however, into brilliants, which is the standard gem with a circular girdle and 33
facets above and 25 facets below the girdle, the angles between the facets are not
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related to the crystalline structure but to the refractive index n. The angles are
chosen to maximize the fire (brilliance) of the stone.

Diamond grains are also found in meteorites but they are extremely small
(∼30 Å), so that not a negligible fraction of C atoms is at the surface. They
contain many H atoms and their density ρ is considerably lower than in perfect
crystals for which ρ = 3.51 g cm−3. The origin of the meteoritic diamonds is
unclear but probably interstellar (carbon stars, supernovae, interstellar shocks?).

7.4.3.2 Graphite

Carbon atoms combine also to planar structures consisting of many C6
hexagonals. The distance between adjacent C atoms is 1.42 Å, the angle between
them 120◦. The bonding is similar to that in benzene as again the π-bonds are not
localized in the rings and the electrons of the unhybridized 2p orbitals are free to
move in the plane. This mobility endows graphite with an electric conductivity
within the sheets. Graphite consists of such C6 sheets put on top of each another.
The stacking is arranged in such a way that above the center of an hexagon in the
lower sheet there is always a C atom in the upper one. The distance from one
sheet to the next is 3.35 Å (figure 7.16). The sheets are only weakly held together
by van der Waals forces. Therefore, graphite cleaves well along these planes and
owing to this property, its name is derived from the Greek word for writing: when
gently pressing a pen over a piece of paper, tiny chunks peel off to form sentences
of rubbish or wisdom, depending on who is pressing.

Graphite has a density of 2.23 g cm−3 and a very high sublimation
temperature (Tev > 2000 K at interstellar pressures). We reckon that in interstellar
space about 10% of the carbon which is in solid form is graphitic.

7.4.3.3 PAHs

A polycyclic aromatic hydrocarbon, briefly PAH, is a planar compound made
up of not too large a number of aromatic (C6) rings (chapter 12). At the edge,
hydrogen atoms are attached but only sporadically; the coverage need not be
complete, as in benzene. Possibly one finds at the periphery also other species,
besides hydrogen, like OH or more complex radicals. PAHs are unambiguously
identified in the interstellar medium and account for a few percent by mass of the
interstellar dust.

A fascinating kind of PAHs are fullerenes. The most famous, C60, has the
shape of a football. It is made of 12 pentagons (C5), which produce the curvature,
and 20 hexagons (C6). The diameter of the spheres is ∼7.1 Å. Fullerines do not
contain hydrogen. Their existence in interstellar space is hypothetical.

7.4.3.4 Amorphous carbon

Diamond and graphite are very regular (crystalline). If there are many defects and
if regularity extends only over a few atoms, the material is said to be amorphous.
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Si

O

pyroxenes

Figure 7.18. Left: The building blocks of silicates are SiO4 tetrahedra. Middle: In
pyroxenes, which have a chain structure, two adjacent tetrahedra share one oxygen atom;
an example is bronzite, (Mg,Fe)SiO3. The triangles represent the SiO4 units. In interstellar
grains, the chains are probably not very regular and linear, as in crystals but may more
resemble worms because of widespread disorder. Right: Other chain types are realized in
silicates, too; here a double chain where more than one O atom per tetrahedron is shared
(amphiboles).

Most interstellar carbon grains are probably amorphous (aC). These amorphous
particles should also contain hydrogen because it is present in the environment
where they are created (wind of mass loss giants); pure carbon grains could
only come from the hydrogen deficient atmospheres of WC stars or R CrB stars.
We may tentatively think of such hydrogenated amorphous carbon, abbreviated
HAC, as a potpourri of carbon compounds with all types of the bonds discussed
earlier, or as a disordered agglomerate of PAHs, some of them stacked, with many
unclosed rings and an endless variety of carbon–hydrogen connections.

7.4.3.5 The 2175 Å bump in the interstellar extinction curve

The bump at 4.6 µm−1 in the interstellar extinction curve (figure 7.8) is usually
attributed to small graphite-like grains (section 4.4.0.1). As we have seen in
section 7.2.3, the σ - and π-electrons in such grains form the σ - and π-band,
respectively. Since the π-states are weakly bound, the π-band lies energetically
above the σ -band. When the electric vector of the radiation field is parallel to
the plane of the carbon rings, the π-electrons can be excited into the π∗-band,
and this may cause the 4.6 µm−1 hump. The splitting into a π- and π∗-band is
analogous to the splitting into a binding and anti-binding state as illustrated in
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figure 7.7 for the H+2 molecule, only in a solid the levels are broadened because
of the interaction with many lattice atoms. Note that whereas the π-band is filled,
the π∗-band is empty and responsible for electric conduction. The assignment of
the 4.6 µm−1 hump to π → π∗ transitions is, however, controversial because of
the overall messy character of the binding in carbon with its multitude of hard-to-
identify bonds.

7.4.4 Silicates

7.4.4.1 Silicon bonding and the origin of astronomical silicates

Silicon stands right below carbon in Group IV of the Periodic Table. Its inner
two shells are filled, in the third (n = 3) it has, like carbon, two s and two p
electrons (3s2 3p2 configuration). The ground state is also 3P0. There are two
basic reasons why silicon is chemically different from carbon. First, it takes more
energy to promote an s electron in order that all four electrons become available
for covalent bonding. Second, silicon atoms are bigger, so their p orbitals cannot
come together closely enough to overlap and form a π-bond. Therefore, there
are no silicon ring molecules and double bonding (Si=Si) is rare (it involves d-
electrons).

The dust particles formed in oxygen-rich atmospheres are predominantly
silicates. Silicates consist of negatively charged SiO4 groups in the form of
tetrahedra with a side length of 2.62 Å. They are the building blocks which form
an ionic grid together with positively charged Mg and Fe cations. We may idealize
an SiO4 tetrahedron as an Si4+ ion symmetrically surrounded by four O2− ions;
however, there is also substantial covalent bonding in the tetrahedron.

7.4.4.2 Coordination number

It is intuitively clear that the relative size of adjacent atoms in a crystal is important
for the crystal structure. Let us define

r = ratio of the radii of neighboring atoms.

In silicates, the radius of the central Si4+ ion is 0.41 Å and much smaller
than the radius of the O2− ion which is 1.40 Å, therefore, r = 0.41/1.4 � 0.3.
This implies, first, that oxygen fills basically all the volume and, second, that the
coordination number N of a Si4+ ion, which is the number of its nearest equal
neighbors, is four.

In other crystals, r is different. The coordination number and the
coordination polyhedron for the limiting values of r , which assumes that the ions
are hard spheres touching each other, are summarized in table 7.3. For crystals
with 0.23 < r ≤ 0.41, the coordination number N equals 4 and the nearest
neighbors form a tetrahedron; for 0.41 < r ≤ 0.73, one has N = 6 and an
octahedron as coordination polyhedron. The case r = 1 is depicted in figure 7.17.
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Table 7.3. The limiting ratio of the radius of the central ion to that of its nearest neighbors
determines the coordination number and the kind of polyhedron around it.

Ratio r Coordination Polyhedron
of ionic radii number around central ion

0.15 3 flat triangle
0.23 4 tetrahedron
0.41 6 octahedron
0.73 8 cube
1 12 hexagonal or cubic close-packed

7.4.4.3 Silicate types

The (negative) [SiO4] anions and the (positive) metal cations can be regularly
arranged in various ways. The basic silicate types are determined by the following
criteria:

• No oxygen atom is common to two tetrahedrons. The latter are then
isolated islands. The prototype is olivine (Mg,Fe)2SiO4 which belongs to
the orthorhombic crystal family. By writing (Mg,Fe), one indicates that
magnesium is often replaced by iron. To visualize the three-dimensional
structure of this mineral, imagine that each Mg2+ or Fe2+ cation lies between
six O atoms of two independent tetrahedra. These six O atoms are at corners
of an octahedron around the cation. The ratio r of the ionic radius of the
metal cations to that of O2− is about 0.5. Because the O atoms are so big,
they form approximately an hexagonal close packed structure (figure 7.17).

• One, two, three or even all four oxygen atoms are shared with neigboring
tetrahedra. We mention bronzite, (Mg,Fe)SiO3, also of the orthorhombic
crystal family (the form without Fe is called enstatite, MgSiO3). In this
mineral, there are chains of SiO4 tetrahedra in which two O atoms are
common to neighboring units. The repeating unit has the formula [SiO3]2−.

7.4.5 A standard set of optical constants

We have learnt in this section what dust is made of. We can now proceed to
present a reasonable set of optical constants m(λ) for the two major interstellar
solid substances, amorphous carbon and silicate. The wavelength ranges from
0.03 to 2000 µm, which is a sufficiently broad interval for most applications.
We will call these data our standard set and it may be used as a benchmark for
comparison between dust models. For some applications, one also needsm(λ) for
the two minor solid constituents: graphite and PAHs (section 12.4).

Optical constants vary with time; at least, in the literature they are. The
question whether the choice displayed in figure 7.19 is up-to-date or out-of-date



234 Structure and composition of dust

Figure 7.19. Optical constant m = (n, k) and dielectric permeability ε = (ε1, ε2) for
silicate material after [Lao93] and amorphous carbon after [Zub96] (their type BE). The
data fulfil the Kramers–Kronig relations of section 2.5.

degrades to secondary importance in view of our general ignorance about grain
properties.

The absorption and extinction efficiencies resulting from figure 7.19 for a
typical grain size are shown in figure 7.20. For amorphous carbon, the extinction
is basically flat up to λ � 0.7 µm and then falls steadily at longer wavelengths;
in the far infrared, it declines proportionally to ν1.55. For silicate, the wavelength
dependence is more complicated. There is also a flat part in the ultraviolet up to
0.2 µm, very low absorption in the near infrared, two resonances at 10 and 18 µm
and a far IR decline proportional to ν2. For both substances, the albedo is of order
0.5 in the UV and usually negligible beyond 3 µm.

7.5 Grain sizes and optical constants

7.5.1 The size distribution

Because the extinction curve covers a large frequency range, particles of different
sizes must be invoked to explain its various sections. The infrared part requires
large grains, the optical region medium-sized and the UV, the 2175 Å bump and
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Figure 7.20. The absorption (dots) and extinction (full line) efficiency for spherical dust
grains of 0.1 µm radius with the standard set of optical constants from figure 7.19. The
scattering efficiency can be found as the difference between extinction and absorption.
Amorphous carbon = aC, silicate = Si.

the far UV small particles. Qualitatively speaking, we expect that at wavelength
λ, the radii a of the relevant grains are given by 2πa/λ ∼ 1, smaller ones
are inefficient as absorbers or scatterers. To quantify this supposition, one can
ask how the grains have to be distributed in size in order that their wavelength-
dependent extinction follows the observed interstellar reddening curve. Assuming
that they are spheres and defining the size distribution n(a) such that

n(a) da = number of grains per cm3 with radii in the interval [a, a + da]
one obtains a power law:

n(a) ∝ a−q with q � 3.5 (7.26)

which is called the MRN size distribution [Mat77]. The result is widely accepted
and follows from binning the radii into intervals [ai , ai+1] with ai+1 > ai and
optimizing the number of grains ni in each bin until agreement with the extinction
curve is achieved. For the dust composition, one assumes silicate and carbon
material with optical constants similar to those in figure 7.19; composite grains
made of these materials are also possible.
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To fix the size distribution, one must additionally specify its upper and lower
limit, a+ and a−, roughly,

a− � 10 Å and a+ � 0.3 µm (7.27)

but the outcome is not very sensitive to either boundary. Not to a+, because
extinction becomes gray for large grains, and even less to a− because small grains
are in the Rayleigh limit (a− � λ) where only the total volume of the grains
counts, and not their individual sizes. It is, therefore, no wonder that the smallest
grains (a < 100 Å) were detected through their emission and not from studies of
the extinction curve.

For an MRN distribution, which has an exponent q = 3.5, the total mass or
dust volume V is supplied by the big particles and the geometrical surface F by
the small ones:

V ∝
∫ a+

a−
n(a)a3 da ∝ (

√
a+ −√a−) ∼ √a+ (7.28)

F ∝
∫ a+

a−
n(a)a2 da ∝

(
1√
a+
− 1√

a−

)
∼ 1√

a−
. (7.29)

If q were greater than four, the small grains would also contain most of the
volume.

7.5.2 Collisional fragmentation

One can theoretically obtain a size distribution n(a) ∝ a−3.5 by studying grains
undergoing destructive collisions [Hel70, Dor82]. Consider a time-dependent
mass distribution N(m, t) such that

N(m, t) dm = number of particles in the interval m . . .m + dm;

P(m, t) dt = probability that particle of mass m is collisionally

destroyed during time dt;

ξ(µ,m) dµ = number of fragments in the interval µ to µ+ dµ resulting

from the collision of a body of mass m.

If fragmentation is the only process that determines the mass distribution,
N(m, t) is governed by the formula

∂N(m, t)

∂ t
= −N(m, t)P(m, t) +

∫ M

m
N(µ, t)P(µ, t)ξ(µ,m) dµ. (7.30)

M is the maximum mass of the particles and the total mass of the particles is
conserved. To solve (7.30), one separates the variables:

N(m, t) = η(m) · ζ(t).
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The probability P(m, t) for destruction of a particle of mass m is obviously
proportional to an integral over relative velocity vrel of the colliding particles
multiplied by the collisional cross section. If we assume, as a first approximation,
that vrel is constant, we may write

P(m, t) = Q
∫ M

m′
N(µ, t)

[
µ

1
3 + m 1

3
]2
dµ = ζ(t) · γ (m) (7.31)

with

γ (m) ≡ Q
∫ M

m′
η(µ)

[
µ

1
3 + m 1

3
]2
dµ.

Q is some proportionality factor. The lower boundary on the integral, m′, is the
minimum mass for destructive collisions, very small particles are not destroyed.
Equation (7.30) now becomes

ζ̇

ζ 2
= −γ (m)+ 1

η(m)

∫ M

m
η(µ) γ (µ) ξ(µ,m) dµ. (7.32)

The equation is completely separated as there is a pure time dependence
on the left and pure mass dependence on the right. Both sides may be set to a
constant. The solution for ζ(t) is

ζ(t) = ζ0

1+ tCζ0

where ζ0 is the value of ζ at t = 0 and C is a positive constant. To solve
(7.31) with ζ̇ /ζ 2 = −C for η(m), we need to know the mass distribution of
the debris, ξ(µ,m), after each shattering event. One expects that the number of
debris, ξ(µ,m), is related to the ratio of initial mass over fragment mass, m/µ.
When one puts

ξ(µ,m) = θ mx

µx+1

empirical evidence suggests for the exponent that 0.5 ≤ x ≤ 2. The constant θ
follows from the condition of mass conservation:

θ

∫ m

0

mx

µx+1
µ dµ = m.

With a power law ansatz

η(m) = m−y

one finds with a little algebra that y = 1.83 over a wide range of x values
(0.5 ≤ x ≤ 3). Because for spheres m ∝ a3 and dm ∝ a2da, we recover, in
terms of sizes, the MRN distribution n(a) ∝ a3y−2 � a−3.5.
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There are two dissatisfactory aspects to this scenario when applied to
interstellar dust. First, the particles have to be born uncomfortably big, for
example, in the outflow of giants [Bie80], before they can be ground down by
collisions or shocks to the saturation distribution n(a) ∝ a−3.5. Second, the
scenario does not include further modifications in the interstellar medium, such
as accretion or coagulation, which do exist as one observes, for instance, varying
values of RV or ice mantles.



Chapter 8

Dust radiation

We treat, in this chapter, the physical background of dust emission. A single grain
radiates according to Kirchhoff’s law and we strictly derive this law in section 8.1
under the assumption that a grain consists of an ensemble of coupled harmonic
oscillators in thermal equilibrium. In section 8.2, we show how to compute the
temperature to which a grain is heated in a radiation field and add a few common
examples as well as useful approximation formulae. Section 8.3 illustrates the
emission of grains for a typical dust type; it also presents a first example of
radiative transfer, for a dust cloud of uniform temperature. For evaluating the
emission of very small grains, which are those whose temperature does not stay
constant, we have to know the specific heat and the internal energy of the dust
material. We, therefore, investigate, in section 8.4, the calorific properties of dust.
Finally, section 8.5 presents examples of the emission of very small grains.

8.1 Kirchhoff’s law

8.1.1 The emissivity of dust

A grain bathed in a radiation field acquires an equilibrium temperature Td which
is determined by the condition that it absorbs per second as much energy as it
emits. According to Kirchhoff, in local thermodynamic equilibrium (LTE) the
ratio of the emission coefficient εν to the absorption coefficient K abs

ν is a function
of temperature and frequency only. This discovery had already been made in the
19th century; later it was found that εν/K abs

ν equals the Planck function.
Of course, a grain in interstellar space is not at all in an LTE environment.

But whenever it is heated, for example by a photon, the excess energy is very
rapidly distributed among the very many energy levels of the grain and the
resulting distribution of energy states is given by the Boltzmann function and
depends only on the dust temperature, Td. Therefore, grain emission is also only
a function of Td and, as in LTE, given by

εν = K abs
ν · Bν(Td). (8.1)

239
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The emission over all directions equals 4πεν . The quantity εν is called the
emissivity. It can refer to a single particle, a unit volume or a unit mass. The
dimensions change accordingly. For example, the emissivity εν per unit volume
is expressed in erg s−1 cm−3 Hz−1 ster−1.

8.1.2 Thermal emission of grains

To understand how and why an interstellar grain emits according to equation
(8.1), we assume that it consists of N atoms and approximate it by a system
of f = 3N − 6 (see section 8.4.2) weakly-coupled one-dimensional harmonic
oscillators, each of mass mi and resonant frequency ωi . Classically, the total
energy E of the system is

E = Ekin + V + H ′ � 1

2

f∑
i=1

(
p2
i

mi
+ miω2

i q
2
i

)
(8.2)

and consists of kinetic (Ekin), potential (V ) and interaction (H ′) energy. The latter
is small compared to Ekin and V but it must not be neglected altogether. Otherwise
the oscillators would be decoupled and unable to exchange energy at all: starting
from an arbitrary configuration, equilibrium could never be established. In (8.2),
qi and pi denote coordinates and momenta.

In the thermal (canonical) description, the level population of the quantized
harmonic oscillators is described by a temperature T . The i th oscillator has levels
vi = 0, 1, 2, . . . and can make transitions of the kind vi → vi − 1. If the energy
difference is lost radiatively, a photon of frequency νi escapes. The probability
Pi,v of finding the i th oscillator in quantum state v is given by the Boltzmann
equation (5.8):

Pi,v = e−βhνi (v+ 1
2 )

Z(T )
= [1− e−βhνi ]e−vβhνi

with the partition function Z(T ) from (5.10) and β = 1/kT . The sum over all
probabilities is, of course, one:

∞∑
v=0

Pi,v = 1.

To obtain 4πεth(i, v), the radiation integrated over all directions from
oscillator i in the transition v → v − 1 at temperature T , we have to multiply
Pi,v by the Einstein coefficient Ai

v,v−1 (here the superscript i is not an exponent)
and the photon energy hνi ,

4πεth(i, v) = Pi,v A
i
v,v−1hνi =

[
1− e−βhνi ]e−vβhνi Ai

v,v−1hνi . (8.3)

The Einstein coefficient Ai
v,v−1 is calculated according to the general formulae

(6.41) and (6.42). For a harmonic oscillator, the eigenfunctions ψ are the
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Hermitian polynomials Hn(y) of (A.1). We, therefore, have to evaluate the
integral ∫

Hv(y)yHv−1(y)e
−y2

dy

and its solution is given in (A.3). The Einstein coefficient is thus proportional to
the quantum number v and we may put

Ai
v,v−1 = vAi

1,0 (v ≥ 1). (8.4)

All one has to know is Ai
1,0, the coefficient for the ground transition. Note

that for an ideal harmonic oscillator there is no upper limit to its maximum energy
and νi is the same for all levels v, whereas a real oscillator has a maximum energy
above which the system is unbound and only its lowest levels are approximately
energetically equidistant; towards the boundary their spacing decreases. To
compute the total emission per solid angle of oscillator i , we sum up over all
levels v ≥ 1,

εth(i) =
∑
v≥1

εth(i, v).

Because of the mathematical relations (A.16), we obtain

εth(i) = hνi Ai
1,0

∑
v≥1

v
[
1− e−βhνi ]e−vβhνi = hνi Ai

1,0

eβhνi − 1
. (8.5)

This is the total emission of the grain at frequency νi . For the integrated radiation
εth of the particle over all frequencies, one must add up all oscillators,

εth =
∑
i

εth(i).

8.1.3 Absorption and emission in thermal equilibrium

According to the theory of line radiation, the absorption coefficient in the
transition v→ v−1 of the oscillators with frequency νi can be expressed through
the Einstein B coefficients and the level populations (see (13.61)),

K vνi =
[
Pi,v−1B

i
v−1,v − Pi,vB

i
v,v−1

]hνi
c
.

As the statistical weight of the levels is one, B i
v,v−1 = B i

v−1,v and a change from
B to A coefficients, according to (6.40), yields

K vνi =
c2

8πν2
i

Ai
v,v−1

[
1− e−βhνi ][e−(v−1)βhνi − e−vβhνi ].
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Summing over all levels v ≥ 1 gives the absorption coefficient Kνi of the
grain at frequency νi ,

Kνi =
∑
v

K vνi =
c2Ai

1,0

8πν2 . (8.6)

We might drop the subscript i in equations (8.5) and (8.6), but we have to be
aware that the frequency νi refers to a certain oscillator. When we combine the
two formulae, we retrieve Kirchhoff’s law (8.1).

Note that the absorption coefficient K vνi , which is taken with respect to a
particular pair of levels (v, v − 1), still contains the temperature via β = 1/kT .
However, the radiation of frequency νi interacts with all level pairs and in the
total absorption coefficient Kνi the temperature has disappeared. Also note that
Kνi does include stimulated emission because it is incorporated into the formula
for K vνi ; however, the typical factor (1− e−hνi/kT ) has canceled out.

8.1.4 Equipartition of energy

We conclude with remarks on the distribution of energy under equilibrium
conditions. Let us first consider a gas where the atoms are unbound. A gas of
N atoms possesses 3N degrees of freedom and each degree of freedom has an
average energy 〈E〉 = 1

2kT . As the atoms have only kinetic energy, altogether
Etot = Ekin = 3

2NkT .
When the atoms are not free but bound to their neighbors by electric forces,

as in a solid, there is, rather interestingly, the same average kinetic energy 1
2kT .

Furthermore, there is also potential energy V . The total energy Etot is now twice
as large as for a gas and evenly split between V and Ekin:

Etot = Ekin + V = 3NkT .

Quite generally, thermal equilibrium implies equipartition of energy when
for each particle i of the system the kinetic energy is quadratic in its momentum
pi and the potential energy is quadratic in its space coordinate qi , and when the
total energy of the rest of the system, E ′, depends neither on pi nor qi . Then the
total energy E of the system, including particle i , can be written as

E = ap2
i + bq2

i + E ′.
The mean kinetic energy, 〈ap2

i 〉 of particle i is found by averaging ap2
i over

the phase space with the Boltzmann distribution as the weight:

〈ap2
i 〉 =

∫
e−β(ap2

i +E ′)ap2
i dq1 . . . dp f∫

e−β(ap2
i +E ′) dq1 . . . dp f

=
∫
e−βap2

i ap2
i dpi∫

e−βap2
i dpi

= 1

2β
= 1

2
kT .

Likewise, one finds 〈bq2
i 〉 = 1

2kT . This derivation of equipartition
presupposes, however, that energy between the members of the system can
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be exchanged continuously. Therefore, it holds only for classical systems or,
equivalently, at high temperatures. When T is small and the energy levels are
quantized, 〈E〉 �= 1

2kT . Different oscillators, although in thermal equilibrium,
then have different mean energies equal to hν/(ehν/kT − 1) after (5.11).

8.2 The temperature of big grains

8.2.1 The energy equation

Equation (8.1) permits us, in a straightforward way, to calculate the dust
temperature Td from the balance between radiative heating and radiative cooling:∫

K abs
ν Jν dν =

∫
K abs
ν Bν(Td) dν. (8.7)

K abs
ν is the mass (or volume) absorption coefficient of dust at frequency ν, and Jν

is the average of the radiation intensity over all directions. For spherical grains,
our standard case, of radius a and absorption efficiency Qabs

ν (a),∫
Qabs
ν (a) · Jν dν =

∫
Qabs
ν (a) · Bν(Td) dν. (8.8)

If other forms of heating or cooling are relevant, for instance, by collisions
with gas particles, they have to be added in equations (8.7) and (8.8). We neglect
them for now.

It is evident from (8.8) that it is not the absolute value of Qabs
ν that determines

the dust temperature in a given radiation field Jν . Two efficiencies, Qabs
1,ν and Qabs

2,ν ,
that differ at all frequencies by an arbitrary, but constant factor, yield exactly
the same Td. Qualitatively speaking, a grain is hot when Qabs

ν is high at the
wavelengths where it absorbs and low where it emits.

8.2.2 Approximate absorption efficiency at infrared wavelengths

When one wants to determine the dust temperature from equation (8.8), one first
has to compute the absorption efficiency Qabs

ν (a) for all frequencies from Mie
theory and then solve the integral equation for Td. These procedures require a
computer. However, there are certain approximations to Qabs

ν which allow us to
evaluate Td analytically, often with only a small loss in accuracy.

For a quick and often sufficiently precise estimate, one exploits the fact that
dust emits effectively only in the far infrared where the Rayleigh limit is valid.
According to (3.3), the absorption efficiency Qabs

ν of spheres is then proportional
to the size parameter 2πa/λ multiplpied by a function that depends only on
frequency. Simplifying the latter by a power law, we get

Qabs
ν =

8πa

λ
· Im

{
m2(λ)− 1

m2(λ)+ 2

}
= aQ0ν

β. (8.9)
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Figure 8.1. The ratio of absorption efficiency over grain radius, Qabs
ν /a, for amorphous

carbon (aC) and silicate (Si). The curves have been calculated with a = 0.1 µm but
are quite generally valid in the infrared. The optical constants are from figure 7.19. The
broken line shows the approximation from (8.10). See also figure 7.20 which shows Qabs

ν

for a = 0.1 µm.

Estimates of the exponent β range from 1 to 2. Values smaller than 1 are
excluded for very long wavelengths because of the Kramers–Kronig relations
(section 2.5). A blackbody would have β = 0 and aQ0 = 1. When the complex
optical constant m(λ) deserves its name and is truly constant, β = 1. When the
expression Im{. . .} in (8.9) varies inversely proportional to wavelength, β = 2.
This is the value we favour.

We, therefore, propose for quick estimates at infrared wavelengths

Qabs
ν � 10−23aν2 [a in cm, ν in Hz]. (8.10)

Figure 8.1 gives a feeling for the quality of the approximation. The curves
display the ratio of absorption efficiency over grain radius, Qabs

ν /a, for the
particular value a = 0.1µm. At wavelengths λ > 10 µm, which is the relevant
range of emission, they are fairly independent of radius provided the grains are
not very big (a ≤ 0.3 µm). We see that the fit Qabs

ν /a from (8.10) is not bad at
λ > 10µm for both interstellar silicate and amorphous carbon dust.



The temperature of big grains 245

When we follow the suggestion of (8.9) and use a power law for the
absorption efficiency,

Qabs
ν ∝ νβ β ≥ 1

Qabs
ν is, of course, overestimated at high frequencies. But this is irrelevant for

the evaluation of the integral on the right-hand side of (8.8) describing emission,
as long as the grain temperature stays below a few hundred K so that the Planck
function at these frequencies is small. With the power law (8.9) for Qabs

ν , the
energy equation (8.8) becomes

∫ ∞
0

Qabs
ν Bν(T ) dν = aQ0

2h

c2

(
kT

h

)4+β ∫ ∞
0

x3+β dx
ex − 1

.

The right-hand integral is evaluated in (A.17). Approximate values are:

∫ ∞
0

x3+β dx
ex − 1

�
{ 6.494 if β = 0

24.89 if β = 1
122.08 if β = 2.

(8.11)

8.2.3 Temperature estimates

8.2.3.1 Blackbodies

Easiest of all is to find the temperature of a blackbody, a perfect absorber with
Qabs
ν = 1 everywhere. Equation (8.8) then reduces to∫

Jν dν = σ
π
T 4 (8.12)

σ being the radiation constant of (5.80). The temperature is now independent
of particle size. In a given radiation field, a blackbody is usually colder than
any other object. But this is not a law, one can construct counter examples. If
a blackbody is heated by a star at distance r and bolometric luminosity L, its
temperature follows from

L

4πr2
= 4σT 4. (8.13)

For example, we find that a blackbody r astronomical units from the Sun
heats up to

T = 279
( r

AU

)−1/2
K.

For r = 1, this value is close to the average temperature of the surface of the
Earth, although our planet does not emit like a perfect blackbody and its clouds
reflect some 30% of insolation.
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8.2.3.2 Interstellar grains directly exposed to stars

For real grains, we may use, for the absorption efficiency Qabs
ν , the approximation

(8.10) together with the integral (8.11) for β = 2. The energy equation (8.8) then
transforms into∫ ∞

0
Qabs
ν Jν dν � 1.47× 10−6aT 6

d (cgs units). (8.14)

In cgs units, a is expressed in cm, ν in Hz, Td in K, and Jν in
erg cm−2 s−1 Hz−1 ster−1. The equation is applicable as long as the grain
diameter stays below ∼1 µm, which is usually true in the interstellar medium.

According to (8.14), the heating rate of a grain and, in view of
equilibrium, also its total emission rate are proportional to T 6

d .

Consequently, a moderate temperature difference implies a vast change in
the energy budget. For example, to warm a particle, or a whole dust cloud, from
20 to 30 K requires a tenfold increase in flux.

To determine Td in (8.14), it remains to evaluate the integral on the left.
There is a further simplification if the radiation field is hard. For an early-type
star or even the Sun, one may put, at all wavelengths relevant for absorption,

Qabs
ν � 1

so that ∫ ∞
0

Jν dν � 1.47× 10−6aT 6
d (cgs units). (8.15)

If, additionally, Jν is the diluted blackbody radiation of temperature T∗, the
integral over Jν is directly proportional to T 4∗ . Consider a grain at distance r
from a hot star of luminosity L, effective temperature T∗ and radius R∗. From
the position of the grain, the star subtends a solid angle πR2∗/r2 and the intensity
towards it is Bν(T∗). The average intensity over all directions is, therefore,

Jν = Bν(T∗)πR2∗
4πr2 .

When we insert this expression of Jν into (8.15) and use L = 4πσ R2∗T 4∗ after
(5.82), the stellar radius disappears and we find (a, r in cm, L in erg s−1)

L

16π2r2
� 1.47× 10−6aT 6

d (cgs units). (8.16)

So the grain temperature falls off with distance from the star like

Td = 4.0

(
L

a

)1
6

r−
1
3 (cgs units). (8.17)
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If there is extinction along the line of sight, one must replace the
luminosity L by a frequency average over Lνe−τν . In view of the usual
uncertainties regarding radiation field, grain properties and geometry of the
configuration, estimates of this kind are often no less trustworthy than
sophisticated computations.

8.2.4 Relation between grain size and grain temperature

In the estimate (8.17), the dust temperature changes with particle radius a like

Td ∝ a− 1
6 .

However, this relation is valid only for grains of intermediate size. If
the particles are very small so that the Rayleigh limit is applicable to both
emission and absorption, i.e. to either side of (8.8), the radius a in the absorption
efficiency Qabs

ν (a) cancels out (see (3.3)) and all tiny grains of the same chemical
composition have the same temperature. If the grains are big, much bigger than
the particles found in interstellar space, Qabs

ν (a) in (8.8) becomes independent of
size and the grain temperature levels off to some limit, Tlim. This value is similar
but not identical to that of a blackbody, Tbb, because Qabs

ν stays under the integrals
in (8.8) and is not constant.

As an example, we compute grain temperatures near a luminous star and in
the interstellar radiation field (ISRF). By the latter we mean the environment in
the solar neighborhood but outside clouds and not close to any star, rather in the
space between the stars. The radiation field expected there averaged over a solid
angle is depicted in figure 8.2. Its main sources are stars of spectral type A and
F, giants and interstellar dust. The ISRF should be uniform in the galactic disk
on a scale of 1 kpc. One can discern, in figure 8.2, several components. The two
major ones are of comparable strength in terms of ν J ISRF

ν , one is from starlight
peaking at ∼1 µm, the other from interstellar dust with a maximum at∼200 µm.
Integrated over frequency and solid angle,

4π
∫
J ISRF
ν dν ∼ 0.04 erg s−1 cm−2.

Figure 8.3 demonstrates the size dependence of the dust temperature for
these two environments. Generally speaking, small grains are warmer than
big ones. The figure contains none of our previous approximations, the
absorption efficiencies are calculated from Mie theory with optical constants from
figure 7.19. The temperature increases from tiny to huge particles by a factor of
about three. For the size range supposed to prevail in the interstellar medium
(a ≤ 0.3 µm), the maximum temperature ratio is smaller, of order 1.5.

We will see in section 8.6 that really tiny grains may not attain an equilibrium
temperature at all, instead their internal energy fluctuates in response to the
quantum character of the absorbed photons. Then a plot of the kind of figure 8.3
becomes meaningless.
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Figure 8.2. The approximate mean intensity J ISRF
ν of the interstellar radiation field (ISRF)

in the Milky Way at the locus of the Sun. The curve is based on data from [Per87] but
includes the emission of PAHs (spikes). Interstellar dust exposed to a radiation field J ISRF

ν

emits at wavelengths > 3 µm a flux proportional to J ISRF
ν . The underlying dust model is

described in section 12.2.

8.2.5 Temperature of dust grains near a star

The variation in dust temperatures in a reflection nebula, which is typically excited
by a B1V star, is depicted in figure 8.4. The grains have radii of 0.01 and 0.1 µm
and consist either of silicate or amorphous carbon. In the logarithmic plot, the
curves are very smooth, almost linear in the case of carbon, and there is a wiggle
around r = 1015 cm for silicates. Near the star, silicates are warmer, further
away colder than carbon grains. This behavior can be explained with the help of
figure 8.1: at short distances, grains are very hot and emit also below 10 µm. At
these wavelengths, the emissivity of silicate particles is small, so they have to be
hotter than the carbon grains in order to get rid of their energy.

• Writing the dependence of the temperature on distance as Td ∝ r−α , the
slope α is not far from 1/3. Carbon has a very constant α of 0.375.

• Small grains are always warmer than big ones. An increase in grain radius
from 0.01 to 0.1 µm lowers the temperature by ∼30%.

• When we check the accuracy of the approximation formula (8.17) with the
help of figure 8.4, it turns out to be satisfactory in both variables, grain radius
a and distance r .
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Figure 8.3. The temperature of spheres of amorphous carbon (aC) or silicate (Si) as a
function of grain radius: Top, in the interstellar radiation field with mean intensity J ISRF

ν

after figure 8.2. Bottom, at a distance of 1017 cm from a B1V star with L = 104 L�
and T∗ = 2 × 104; here the integrated mean intensity of the radiation field is about 7000
times stronger. The dotted line represents Td from the approximate formula (8.17). In
both boxes, the optical constants are from figure 7.19. For comparison, a blackbody would
acquire a temperature Tbb = 34.2 K near the B1 star and Tbb = 3.8 K in the ISRF.

8.2.6 Dust temperatures from observations

Whereas gas temperatures can often be obtained rather accurately from properly
chosen line ratios, the experimental determination of dust temperatures is always
dubious. After the basic equation of radiative transport (see section 13.1), the
intensity Iν towards a uniform dust layer of optical thickness τν and temperature
Td is

Iν(τ ) = Bν(Td) · [1− e−τν ] (8.18)

so that an observer receives from a solid angle � the flux

Fν = Bν(Td) · [1− e−τν ] ·� (8.19)
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Figure 8.4. Temperature of amorphous carbon (aC, dotted curve) and silicate (Si, full
curve) grains as a function of distance from a B1 main sequence star with 104 L� and
effective temperature T∗ = 2 × 104 K. Particle radii are 0.01 µm for the upper full and
dotted curve and 0.1 µm for the lower ones. Optical constants are from figure 7.19. The
optical depth towards the star is zero, i.e. there is no absorption between the star and the
grain.

ν denotes the frequency. The flux ratio at two frequencies, marked by the
subscripts 1 and 2, becomes

F1

F2
= B1(Td) [1− e−τ1]�1

B2(Td) [1− e−τ2]�2
. (8.20)

It is customary to extract from (8.20) the dust temperature under the
following premises:

• The emission is optically thin (τ � 1), which is usually true in the far
infrared.

• The observational frequencies, ν1 and ν2, do not lie both in the Rayleigh–
Jeans limit of the Planck function. If they did, Td would cancel out because
Bν(Td) ∝ Td.

• The observations at the two frequencies refer to the same astronomical
object, for instance, a certain region in a galactic cloud. This apparently
trivial condition is sometimes hard to fulfil when the source is extended
relative to the telescope beam (see section 13.1.4) and the observations have
to be carried out with different spatial resolution.
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• The dust temperature in the source is uniform.
• The ratio of the dust absorption coefficients, K1/K2, over the particular

frequency interval from ν1 to ν2 is known or, equivalently the exponent β
in (8.9); Kν itself is not needed.

If all requirements are fulfilled, (8.20) simplifies to

F1

F2
= K1 · B1(Td)

K2 · B2(Td)
(8.21)

and yields Td in a straightforward manner. Should the assumed value for K1/K2
be wrong, one gets a purely formal color temperature, without any physical
correspondence. We recall here that the surface temperature of a star can also be
obtained through photometry from an equation like (8.21) but with K1/K2 = 1
because a star is, to first order, a blackbody.

In view of the numerous restrictions and because the exponent β in (8.9) is
debatable, we should always be sceptical about absolute values of Td. However,
we may trust results of the kind

Td (source A) > Td (source B)

and their implications for the energy budget because they depend only weakly on
the ratio K1/K2.

The flux ratio also determines the spectral index α of the energy distribution;
it is defined by

F1

F2
=
(
ν1

ν2

)α
.

The exponentβ in (8.9) and the slope α are, at very long wavelengths, related
through

α = β + 2

independent of temperature. In a double-logarithmic plot of Fν versus ν and when
λ is large, all curves are parallel for any T . The number 2 in this equation comes
from the Rayleigh–Jeans part of the Planck function. A blackbody (β = 0), like
a planet, has a spectral index α = 2.

8.3 The emission spectrum of big grains

8.3.1 Constant temperature and low optical depth

As a first illustration of the spectral energy distribution emitted by dust, figure 8.5
displays, for silicate grains of 600 Å radius, the product Qabs

ν Bν(T ). This quantity
is proportional to the emissivity εν of (8.1). The blackbody intensity (Qabs

ν = 1)
is shown for comparison.

The temperatures chosen in figure 8.5 represent three astronomical
environments:
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Figure 8.5. Emission of a blackbody (full curve) and of a silicate grain of 600 Å = 0.6 µm
radius at different temperatures. The efficiency Qabs

ν of the silicate grain is calculated
from approximation (8.10) (broken curve) and from Mie theory with optical constants after
figure 7.19 (dotted curve). The Planck function Bν(Td) as well as Qabs

ν Bν(Td) have the
units of an intensity.

• 20 K for the bulk of the dust in the Milky Way,
• 60 K for warm dust in star-forming regions and
• 200 K for hot dust close to stars.

Several points deserve a comment:

• A dust particle emits at all wavelengths less than a blackbody, especially in
the far infrared.

• A seemingly unspectacular temperature change by a factor of three, say from
20 to 60 K, can boost emission by orders of magnitude.

• Although the dust optical constants of figure 7.19 have some structure, the
dust emission is very smooth. For instance, only in the hot dust do we see
the 10 µm resonance.

• Unless the dust is hot (�100 K), the power law approximation for the
absorption efficiency Qabs

ν from (8.10) gives acceptable results.
• The spectrum of a dust grain can be crudely characterized by the wavelength

of maximum emission. This is similar to Wien’s displacement law for a
blackbody (see discussion after (5.77)).
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Figure 8.6. Bottom, the normalized optical depth of silicate grains with 600 Å radius. The
wavelength scale starts at 0.55 µm where τλ/τV = 1; Top, The intensity (in units erg s−1

cm−2 Hz−1 ster−1) towards a cloud of temperature T = 600 K filled with such grains.
The visual optical thickness τV varies between 0.1 and 103. The Planck function Bν(Td)

corresponds to τV = ∞.

8.3.2 Constant temperature and arbitrary optical depth

If the dust in a cloud is at constant temperature and the emission optically thin,
the curves Qabs

ν Bν(Td) in figure 8.5 are proportional to the observed intensity Iν
as given by equation (8.18). To obtain the absolute value of Iν , one needs the
optical depth τν . For small τν , the spectral distribution of the intensity is

Iν = τνBν(T ).
In figure 8.6, the intensity has been calculated as a function of wavelength

and arbitrary optical depth (from τV = 0.1 to ∞) for a cloud consisting of
identical silicate spheres of 600 Å radius at a temperature of 600 K. The variation
of the optical depth with wavelength is depicted in the lower part of the figure;
the curve there is normalized at 0.55 µm.

The line with τV = 0.1 approximately reflects the optically thin case and may
be compared with the plots in figure 8.5 but the temperature is now higher. As
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τV increases, Iν asymptotically approaches the Planck function. For instance, the
cloud becomes optically thick at 25µm and emits like a blackbody for λ ≤ 25µm
when τV > 100. Any information about the emitters is then lost. This is
exemplified by the disappearance of the 10 µm feature. At long wavelengths,
the intensity curves for all τ run parallel. They are equidistant and have the same
spectral slope Iν ∝ να with α � 4.

8.4 Calorific properties of solids

To investigate the calorific properties of a a dust particle, we treat the
conglomeration of atoms in the grain as an ensemble of harmonic oscillators,
determine their eigenfrequencies and density of states and evaluate the energy of
the grain under the assumption of thermal equilibrium.

8.4.1 Normal coordinates

In a simple-minded model, the atoms in a grain are replaced by mass points
connected through springs. To find the eigenfrequencies of the oscillators, one
uses normal coordinates. If there are N mass points in the grain, we describe their
positions by one vector in Cartesian coordinates,

x = (x1, . . . , xn) n = 3N.

At the equilibrium position, designated x0, all forces exactly balance, so the
derivatives of the potential V (x) vanish,(

∂V

∂xi

)
x0

= 0.

We introduce coordinates relative to equilibrium,

ηi = xi − xi0
and put V (x0) = 0, which is always possible. If the oscillations are small, one
can approximate the potential by a Taylor expansion. Because V and its first
derivatives are zero, the first non-vanishing term is

V (x) = 1

2

∑
i j

(
∂2V

∂xi∂x j

)
0

ηiη j = 1

2

∑
i j

Vi jηiη j . (8.22)

As the kinetic energy T is quadratic in η̇i ,

T = 1
2

∑
i

mi η̇
2
i (8.23)
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one derives from the Lagrange function L = T − V of (6.1) the equations of
motion

mi η̈i +
∑
j

V j iη j = 0 i = 1, . . . , n. (8.24)

Trying, as usual, a solution of the kind

ηi = aie−iωt

yields a set of n linear equations for the amplitudes ai ,∑
j

(Vji − δ j imiω2) ai = 0.

For non-trivial values of ai , the determinant must vanish,

|Vji − δ j imiω2| = 0. (8.25)

This is an algebraic equation of nth order in ω2. It has n solutions and one
thus finds n frequencies. In fact, six solutions will be zero if there are more
than two (nonlinear) atoms but the remaining frequencies refer only to internal
atomic oscillations. The motion in any coordinate xi will be a superposition of n
harmonic oscillations of different frequencies ωi and amplitudes ai .

It is a standard procedure to obtain from the relative coordinates, ηi , through
a linear transformation new, so called normal coordinates yi , with the property
that each normal coordinate corresponds to a harmonic motion of just one
frequency, and that the kinetic and potential energy are quadratic in yi and ẏi ,
respectively,

T = 1
2

∑
i

ẏ2
i V = 1

2

∑
i

ω2
i y

2
i .

So a grain of N atoms may be substituted by f = 3N−6 independent oscillators,
each with its personal frequency.

8.4.1.1 Oscillators in a linear chain

Instructive and well-known examples are provided by linear chains which present
the simplest configuration in which atoms can be arranged. Let all atoms be of
the same mass m, with a constant distance d between them when they are at rest,
and connected through springs of force constant κ . Let us consider a longitudinal
wave. The force on any mass point depends then only on the distance to its nearest
neighbors on the left and right. It is straightforward to derive the dispersion
relation

ω2 = 2κ

m

[
1− cos(kd)

]
(8.26)

where k = 2π/λ is the wavenumber and λ the wavelength. When there are two
kinds of atoms in the chain of mass m and M > m, in alternating sequence,
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the spectrum splits into what is called an acoustical and an optical branch. For
each wavenumber k, there are now two eigenfrequencies. In the acoustical mode,
adjacent atoms swing in phase, in the optical mode where frequencies are higher,
oppositely and out of phase. The dispersion relation reads

ω2± =
κ

mM

[
M + m ±

√
M2 + m2 + 2mM cos(2kd)

]
(8.27)

where the minus sign refers to the acoustic and the plus sign to the optical branch.

8.4.2 Internal energy of a grain

A point-like unbound atom has three degrees of freedom corresponding to the
three independent spatial coordinates along which it can move. A solid body
consisting of N atoms has 3N degrees of freedom, although there are now forces
between the atoms. When N ≥ 3, the number of vibrational modes in a grain is

f = 3N − 6

because one has to subtract 3 + 3 to account for the translatory and rotational
motion of the grain as a whole. But in most applications, we can put f � 3N .

An atom in a solid can be considered as a three-dimensional harmonic
oscillator. If the body has N atoms, there are f = 3N − 6 one-dimensional
oscillators. We bin oscillators of identical frequencies. Let there be s different
frequencies altogether. If ni oscillators have the frequency νi , then

s∑
i=1

ni = f

and the possible energy levels are

Eiv = hνi (v + 1
2 ) v = 0, 1, 2, . . . i = 1, . . . , s.

At temperature T , the mean energy of the oscillators of frequency νi is, from
(5.11),

〈Ei 〉 = 1

2
hνi + hνi

ehνi/kT − 1
. (8.28)

The zero-point energy 1
2hνi is not necessarily small compared to the second

term in (8.28) but drops out when calculating the specific heat and is, therefore,
disregarded. The total energy contentU of the solid is obtained by summing over
all oscillators:

U(T ) =
s∑
i=1

hνi
ehνi/kT − 1

ni . (8.29)

When N is large, the eigenfrequencies νi are closely packed and one may
replace the sum by an integral:

U(T ) =
∫ νD

0

hν

ehν/kT − 1
ρ(ν) dν (8.30)
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Figure 8.7. Modes have nodes at the walls of the crystal. Here a two-dimensional sketch
for a rectangle with sides of length ax and ay . The wave propagates in the direction
of the wavevector k. The conditions for a standing wave are lλ/2 = ax cos α and
mλ/2 = ay cos β for integer l,m.

where ρ(ν) denotes the number density of oscillator frequencies and νD the upper
integration limit. One has to be on the alert when applying (8.30) to very small
grains, like PAHs (section 12.2), where N is only of order 100.

8.4.3 Standing waves in a crystal

The density of states, ρ(ν), is found by determining first the low-frequency part
(sound waves). This is easy and similar to finding modes in acoustics. Then ρ(ν)
is extrapolated to high frequencies (optical waves) assuming the same functional
dependence of ρ(ν). The extrapolation is convenient but far from accurate.

Consider a rectangular crystal of N atoms with sides ax , ay, az along the
coordinate axes and one corner at the origin r = (x, y, z) = 0 (see figure 8.7). A
plane wave in the crystal of wavelength λ has the form

ei(k·r−ωt) = �(r)e−iωt

k = (kx , ky, kz) = k(cosα, cosβ, cos γ ) k = |k| = 2π

λ
.

At the walls, the wave must have nodes because the atoms cannot move; for
instance, �(0, y, z) = �(ax , y, z) = 0. This implies

±1 = e−ikx ax = cos kxax − i sin kxax

which leads to

l
λ

2
= ax cosα m

λ

2
= ay cosβ n

λ

2
= az cos γ l,m, n = 0, 1, 2, . . . .
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Each triple (l,m, n) of positive integers specifies one mode and can be
represented by a point in a Cartesian coordinate system. The direction into which
the wave travels is given by the angles α, β, γ . Because

cos2 α + cos2 β + cos2 γ = 1

it follows that (
l

2ax/λ

)2

+
(

m

2ay/λ

)2

+
(

n

2az/λ

)2

= 1.

Thus all points (l,m, n) corresponding to wavelengths greater than or equal
to λ lie inside an ellipsoid of volume V = 32πaxayaz/3λ3. Their total number is
approximately

Z ≈ 4π

3 · 8
8axayaz
λ3

= 4πaxayaz
3c3

ν3.

We divided by 8 because l,m, n are positive numbers and fall into the first
octant; c = λν denotes the sound velocity.

8.4.4 The density of vibrational modes in a crystal

8.4.4.1 Longitudinal and transverse waves

A disturbance can travel in a crystal in two ways:

• as a longitudinal (compressional) wave where the atoms move in the
direction of wave propagation or opposite to it; and

• as a transverse wave in which the atomic motion is perpendicular to wave
propagation.

Because the transverse wave has two kinds of polarization corresponding to
motions with perpendicular velocity vectors, there are altogether three types of
waves and we have to make separate counts for all three of them. If cl and ct are
the sound velocities for the longitudinal and for both transverse waves, and if we
define the average c̄ by

1

c̄3
= 1

c3
l

+ 2

c3
t

we find for the frequency density in a crystal

ρ(ν) = dZ

dν
= 4πaxayaz

c̄3
ν2.

The number of eigenfrequencies in the interval ν to ν + dν is then

dZ = 4πaxayaz
c̄3

ν2 dν. (8.31)
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8.4.4.2 The Debye temperature

The cutoff νD that appears in (8.30) for the internal energy of a crystal is the
highest possible frequency. There is a limit because Z obviously cannot exceed
3N , the number of all modes. Therefore the maximum of Z is Zmax = 3N . If

n = N

axayaz

is the density of atoms, we get

νD = c̄ · 3

√
9n

4π
. (8.32)

This is the Debye frequency. The Debye temperature θ is related to νD through

θ = hνD

k
. (8.33)

The frequency density may now be written as

ρ(ν) = 9N

ν3
D

ν2. (8.34)

Actually, the crystal does not have to be rectangular but may have any
shape. What the true frequency density might look like compared to the Debye
approximation is qualitatively illustrated in figure 8.8.

8.4.5 Specific heat

The specific heat at constant volume of a system of f one-dimensional oscillators
follows from (8.29),

Cv =
(
∂U

∂T

)
V
= k

f∑
i=1

x2
i e
xi

[exi − 1]2 ni xi = hνi

kT
. (8.35)

It specifies how much energy is needed to raise the temperature of a body
by 1 K. For a continuous distribution of modes, we insert ρ(ν) from (8.34) into
(8.30) to find the internal energy and specific heat,

U(T ) = 9N

ν3
D

∫ νD

0

hν3

ehν/kT − 1
dν (8.36)

Cv(T ) =
(
∂U

∂T

)
V
= 9kN

(
T

θ

)3 ∫ θ/T

0

x4ex

(ex − 1)2
dx . (8.37)

There are two important limits:
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Figure 8.8. The frequency density ρ(ν) of crystal vibrations. A true distribution might
look like the dotted curve, which is to be compared with the Debye approximation of (8.34)
(full curve). The latter is correct only for sound waves with wavelengths much larger than
the grid size of the crystal (∼1 Å). It yields at low temperatures the famous T 3 dependence
of CV . There is a cutoff at νD because the number of degrees of freedom of all atoms is
finite.

• At low temperatures, the upper bound θ/T approaches infinity and the total
energy of the grain and its specific heat are (see (A.17) for the mathematics):

U = 3π4

5
NkT

(
T

θ

)3

(8.38)

CV = 12π4

5
Nk

(
T

θ

)3

(8.39)

The characteristic feature in CV is the proportionality to T 3.
• At high temperatures, the formulae approach the classical situation where a

three-dimensional oscillator has the mean energy 〈E〉 = 3kT , so

U = 3NkT (8.40)

and the specific heat is constant and given by the rule of Dulong–Petit,

CV = 3Nk. (8.41)

Any improvement over the Debye theory has to take the force field into
account to which the atoms of the body are subjected.
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8.4.6 Two-dimensional lattices

When the analysis of section 8.4.4 is repeated for a two-dimensional crystal of N
atoms, one finds a density of modes

ρ(ν) = 6 N

ν2
D

ν (8.42)

which increases only linearly with frequency, not as ν2. Therefore now CV ∝ T 2

and

U(T ) = 6N

ν2
D

∫ νD

0

hν2

ehν/kT − 1
dν

CV = 6kN
1

y2

∫ y

0

x3ex

(ex − 1)2
dx y = θ

T
. (8.43)

The two-dimensional case is important for PAHs because they have a planar
structure. It also applies to graphite which consists of PAH sheets; however,
only at temperatures above 20 K. Although the coupling between the sheets is
relatively weak, when the temperature goes to zero, CV eventually approaches
the T 3 dependence.

For graphite sheets, one can improve the model of the specific heat by using
two Debye temperatures:

CV (T ) = kN
[
f (θz)+ 2 f (θxy)

]
(8.44)

f (y) = 2

y2

∫ y

0

x3ex

(ex − 1)2
dx .

With θz = 950 K referring to out-of-plane bending and θxy = 2500 K to in-
plane stretching vibrations [Kru53], there is good agreement with experimental
data [Cha85].

Very low vibrational frequencies cannot be excited in small grains. One
can estimate the minimum frequency νmin from the condition that in the interval
[0, νmin] the PAH has just one frequency,

1 =
∫ νmin

0
ρ(ν) dν.

With ρ(ν) from (8.42), this gives

νmin = kθ

h
√

3N
. (8.45)

The bigger the PAH, the smaller νmin becomes. Collisional excitation of the
modes by gas atoms is possible provided kTgas ≥ hνmin. Under normal interstellar
conditions, only the lowest levels are populated.
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Figure 8.9. The specific heat per gram of dust for silicate (full curve, similar to [Guh89]),
graphite (broken curve, after [Cha85]) and PAHs without hydrogen atoms (dotted curve,
after [Kru53] using (8.44)).

Figure 8.9 summarizes the specific heats CV (T ) which we use in the
calculations of the emission by small grains. At low temperatures, graphite and
silicate have a T 3 dependence, for PAHs CV changes like T 2. As the grains
get warmer, the curves flatten towards the Dulong–Petit rule (8.41), CV = 3Nk.
Graphite has 5.0× 1022 and silicate about 2.6× 1022 atoms per gram.

8.5 Temperature fluctuations of very small grains

When a dust particle is very small, its temperature will fluctuate. This happens
because whenever an energetic photon is absorbed, the grain temperature jumps
up by some not negligible amount and subsequently declines as a result of cooling.
We will speak of very small grains (vsg for short) when we have in mind particles
whose temperature is time variable because they are tiny. To compute their
emsission, we need their optical and thermal properties. The optical behavior
depends in a sophisticated way on the two dielectric functions ε1(ω) and ε2(ω)

and on the particle shape. The thermal behavior is determined more simply from
the specific heat.
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8.5.1 The probability density P(T)

Consider a large ensemble of identical grains in some interstellar environment.
Let us arbitrarily pick out one of them and denote by P(T ) dT the chance that its
temperature lies in the interval from T . . . T + dT and call P(T ) the probability
density. It is, of course, normalized:∫ ∞

0
P(T ) dT = 1. (8.46)

In normal interstellar grains of average size, the temperature oscillates only
a little around an equilibrium value Teq and in the limit of large grains, P(T )
approaches the δ-function δ(Teq), where Teq follows from the steady-state balance
between emission and absorption from (8.8),∫

Qabs
ν Jν dν =

∫
Qabs
ν Bν(Teq) dν.

Even for a very small particle we will assume that its radiation, at any time,
obeys Kirchhoff’s law (8.1), so in the case of a sphere of radius a, we can express
its average monochromatic emission per solid angle by

εν = πa2Qabs
ν

∫
Bν(T )P(T ) dT . (8.47)

Although the emission of such a single grain is not constant over time, the
whole ensemble radiates at any frequency at a steady rate. We are faced with
the problem of finding P(T ) and we describe below its solution (an elaborate
treatment can be found in [Guh89] and [Dra01]).

8.5.2 The transition matrix

When a grain absorbs or emits a photon, its internal energy U(T ), which is a
function of temperature only, changes. We bin U(T ) into N states Uj of width

Uj with j = 1, 2, . . . , N . Each state Uj corresponds to a temperature Tj or
frequency ν j = Uj/h with corresponding spreads
Tj and
ν j . The probability
Pj of finding an arbitrary grain in a large ensemble of � particles in state Uj is
equal to the number of all grains in level j divided by� .

An absorption or emission process implies a transition in U from an initial
state i to a f inal state f . They occur at a rate� Pi A f i , where the matrix element
A f i denotes the transition probability that a single grain changes from state i to
f . In equilibrium, for each level j the number of populating and depopulating
events, Npop and Ndepop, must be equal:

Npop = Ndepop.
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Therefore, for each level j ,

Npop/� =
∑
k> j

Pk A jk +
∑
k< j

Pk A jk =
∑
k �= j

Pk A jk

Ndepop/� = Pj
∑
k< j

Akj

︸ ︷︷ ︸
cooling

+ Pj
∑
k> j

Akj

︸ ︷︷ ︸
heating

= Pj
∑
k �= j

Akj .

In both formulae, the first sum after the first equal sign refers to processes
that cool and the second to those which heat the grain. With the purely
mathematical definition

A j j = −
∑
k �= j

Akj

we may write the condition Npop = Ndepop for all j as

∑
k

A jk Pk = 0. (8.48)

Only N − 1 of these N equations are linearly independent. To find the
probability density P(T ) required in equation (8.47), one may first put P1 = 1,
solve (8.48) for P2, . . . , PN and then rescale the Pj by the obvious condition that
all probabilities must add up to one (see (8.46)),∑

i

Pj = 1. (8.49)

A matrix element Akj referring to dust heating ( j < k) is equal to the
number of photons of frequency νk − ν j which a grain absorbs per Hz and second
multiplied by the width of the final bin
νk ,

Akj = 4πCabs
ν Jν
hν


νk ν = νk − ν j j < k. (8.50)

Jν stands for the mean intensity of the radiation field and Cabs
ν is the

absorption cross section of the grain. As it should be, the number of transitions
Pj Akj from j → k is thus proportional to the width of the initial (via Pj ) and
final energy bins. Likewise we have, for dust cooling from state j to a lower one
k,

Akj = 4πCabs
ν Bν(Tj )

hν

νk ν = ν j − νk k < j. (8.51)

Above the main diagonal stand the cooling elements, below those for
heating. The energy balance requires for the cooling and heating rate of each
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level j ,

∑
k< j

Akjνkj =
∫ ∞

0
4πCabs

ν Bν(Tj ) dν︸ ︷︷ ︸
cooling∑

k> j

Akj νkj =
∫ ∞

0
4πCabs

ν Jν dν︸ ︷︷ ︸
heating

with νkj = |ν j − νk |. As cooling proceeds via infrared photons which have low
energy, their emission changes the grain temperature very little. This suggests
that in cooling from state j one needs to consider only the transitions to the levels
immediately below. In fact, in practical applications it suffices to ignore cooling
transitions with j → k < j − 1. One can, therefore, put all matrix elements A f i

above the main diagonal to zero, except A j−1, j . But the latter, in order to fulfil
the energy equation, have to be written as

A j−1, j =
∫ ∞

0
4πCabs

ν Bν(Tj ) dν ·
[
h(ν j − ν j−1)

]−1
. (8.52)

The total matrix A f i has thus acquired a new form where, above the main
diagonal, only the elements A f i with f = i − 1 are non-zero. One now
immediately obtains from (8.48) the computationally rapid recursion formula (but
see the simple trick described in [Guh89] to safeguard against numerical rounding
errors).

Pj+1 = − 1

A j, j+1

∑
k≤ j

Akj Pk j = 1, . . . , N − 1. (8.53)

We mention that heating may not be reduced to transitions j → j + 1. This
would ignore the big energy jumps of the grain after UV photon absorption which
are important for the probability function P(T ). Although heating elements of
the form

A j+1, j =
∫ ∞

0
4πCabs

ν Jν dν ·
[
h(ν j+1 − ν j )

]−1

do not violate energy conservation, they would result in an unrealistically small
spread around the equilibrium temperature Teq of (8.8).

8.5.3 Practical considerations

Calculating the emission of a grain with temperature fluctuations is not
straightforward. Therefore, it is good to know when such calculations are
necessary. Generally speaking, they should be carried out whenever the time
interval between the absorption of photons with an energy comparable to the heat
capacity of the grain is larger than the cooling time. Unfortunately, this is not very
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practical advice. However, we will present examples that give some feeling for
when temperature fluctuations are important and how they modify the spectrum.
Qualitatively, there are three requirements for temperature fluctuations to occur:

• The radiation field is hard to ensure the presence of energetic photons. We
are purposely vague about what is meant by hard but one may think of the
UV range.

• The grains are tiny so that their heat capacity is small.
• The radiation field is weak to make the intervals between capture of energetic

photons long. This point is counterintuitive but is exemplified in figure 8.13.

Evaluating the probability density P(T ) when temperature fluctuations are
small is not only unnecessary but can also incur numerical difficulties. Whenever
the function P(T ) becomes very sharp, it suffices to calculate the radiation of the
particle from (8.1) with a constant temperature from (8.8).

To minimize the computational effort, especially in problems of radiative
transfer, one has to avoid a large transition matrix A f i and properly select the
energy bins. As P(T ) varies strongly with hardness and strength of the radiation
field as well as with particle size, a good grid is sometimes not easy to find. The
boundaries of the grid, Umin and Umax, are hard to determine beforehand and
intuitive values like Umin = 0 and Umax = hνmax are often not adequate. An
iterative procedure is, therefore, recommended: starting with a first choice that
crudely brackets the maximum of P(T ), one can find a better adapted grid by
using as new boundaries those values of T where P(T ) has dropped by some
large factor (for instance, 1012) from its maximum.

An indicator for the computational accuracy, but not a precise one, is the
time-averaged ratio of emitted over absorbed energy which must, of course, equal
one. Generally, a grid of 100 energy bins is sufficient provided they are properly
selected. The simplest grid has a constant mesh size, either in temperature or
energy. Because U ∝ T α with 0 ≤ α ≤ 3, a grid of constant 
T seems to be
better suited than one with constant
U , as the former has at low temperatures a
finer spacing in energy to handle the infrared photons.

8.5.4 The stochastic time evolution of grain temperature

The probability density P(T ) describes the steady-state temperature distribution
of a large ensemble of grains. The temperature of an individual particle, however,
is time variable. Radiative cooling is not balanced at every instant by heating and
so the internal energyU changes for a spherical grain of radius a according to the
first-order differential equation:

dU

dt
= 4π πa2

{∫
Qabs
ν Jν(t) dν −

∫
Qabs
ν Bν(T (t)) dν

}
.

The right-hand side describes the difference between the power absorbed
from the radiation field Jν and the cooling rate. Replacing U by the specific heat
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C(T ) (see (8.35)), we may write

dT

dt
= 4π πa2

C(T )

{∫
Qabs
ν Jν(t) dν −

∫
Qabs
ν Bν(T (t)) dν

}
. (8.54)

Given a starting value T0 at t = 0, this ordinary differential equation yields
the time evolution of the temperature, T (t). One must, however, take into account
that the electromagnetic field is quantized, although its time-averaged flux is
constant. To make equation (8.54) easier, we assume that the cooling rate, i.e.
the flux of emitted low-energy infrared photons, is continuous. Most of the grain
heating, however, occurs sporadically through absorption of individual energetic
photons (>1 eV) and leads to temperature jerks.

To solve (8.54) numerically from t = 0 until t = τ , we proceed as follows.
The total period τ is divided into small time steps
t and the total frequency range
into intervals
ν j = νj+1/2−ν j−1/2. The number of photons with frequency
ν j
that are absorbed within each time step equals

Nj = 
t · 4π πa2 J (ν j )Q
abs(ν j )

hν j

ν j .

For short time steps
t , the Nj are much smaller than one and represent also
the probability for photon capture. Let Ui and Ti be the energy and temperature
of the grain at time ti , at the end of the i th time step. At the beginning of the new
time step i + 1, the particle energy is raised by an amount
Ui that accounts for
the stochastically absorbed photons during the new interval 
t ; the temperature
is increased accordingly by 
Ti . To incorporate the quantum character of the
photons,
Ui is written as


Ui =
∑
j

a j hν j

where the a j are either one or zero. They are computed from Nj with a random
number generator. The chance that a j = 1 is Nj , the probability that a j = 0
equals 1 − Nj . Then we solve for the (i + 1)th time step lasting from ti until
ti+1 = ti +
t the differential equation

dT

dt
= −4π2a2

C(T )

∫
Qabs
ν Bν(T (t)) dν

with the boundary condition T (ti ) = Ti + 
Ti ; this gives Ti+1. For each time
step, one thus gets a temperature.

When the evolution of the temperature, T (t), has been laboriously evaluated
from (8.54), the probability density P(T ) follows from counting how many times
during the period τ the temperature attains values in the interval T . . . T + dT .
These numbers are then normalized according to (8.46). The emissivity εν can be
computed as an average over time τ ,

εν = πa
2

τ

∫ τ

0
Qabs
ν Bν(T (t)) dt .
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8.6 The emission spectrum of very small grains

We illustrate the stochastic temperature fluctuations and their effect on the
spectrum for grains in two environments:

• Near a B1V star. It is luminous (L = 104 L�), has a hot atmosphere
(Teff = 2 × 104 K) and guarantees a copious amount of energetic quanta.
Its monochromatic flux, Lν , is proportional to the Planck function,

Lν = πL

σT 4
eff

Bν(Teff),

and satisfies the condition ∫
Lν dν = L .

• In the interstellar radiation field (ISRF) with a spectral shape as depicted in
figure 8.2.

In figures 8.10–8.13, the emission coefficient εν refers to one grain and
is plotted in the unit erg s−1 Hz−1 ster−1. All examples deal with silicate
grains because of their 10 µm resonance which occasionally shows up. The true
emission (from (8.47)) is displayed as a solid line. For comparison, the emission
under the false supposition of constant temperature from (8.1) is shown dotted.

The probability density P(T ) in figures 8.10–8.13 is also computed in two
ways, either from the stochastic time evolution of the temperature T (t) described
in section 8.5.4 or, more simply, from the formalism developed in section 8.5.2.
In the first case, we depict P(T ) by dots, otherwise by a solid line.

8.6.1 Small and moderate fluctuations

The top panel of figure 8.10 displays the temperature variation T (t) of a single
silicate grain of 40 Å radius at a distance r = 1017 cm from the star. Altogether
we followed T (t) over a time τ = 2 × 104 s partitioned into 105 steps of fixed
length 
t = 0.1 s. We show an arbitrary section of 400 s. The temperature
excursions are small and amount to some 10% around a mean value.

The probability density P(T ) in the lower left panel of figure 8.10 gives the
chance of finding the grain within a temperature interval of 1 K width centered
on T . The full and dotted curves for P(T ) (see previous explanation) practically
coincide; the area under the curves equals one. In the emission spectrum of the
lower right panel the 10 µm feature is indicated. In this example, it does not
matter whether ones takes the temperature variations into account or assumes a
(constant) equilibrium temperature Teq after (8.8). Here Teq = 116.9 K, which
is close to but not identical to the value Tmax = 115.1 K, where P(T ) attains its
maximum.
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Figure 8.10. Small stochastic temperature excursions: top, time evolution of the
temperature of a silicate grain of 40 Å radius at a distance of 1017 cm from a B1V star;
lower left, probability distribution P(T ) of the temperature shown on a linear scale (the
dotted line is computed from section 8.5.4, the solid from section 8.5.2); lower right,
emissivity εν of the grain in erg s−1 Hz−1 ster−1. The dots (hardly discernible) plot the
emission assuming a constant temperature; the full curve includes temperature fluctuations,
however, its effect is negligible here. See text.

In figure 8.11, the same grain is placed at a distance ten times greater
from the star (r = 1018 cm), so the rate of impinging photons is reduced by a
factor 100 and the particle is, on average, colder. As one can estimate from the
figure, it is hit by an energetic photon only once every 100 s and the temperature
excursions are no longer small. There are now discernible diffferences in the
probability P(T ) depending on the way in which it is computed (see previous
explanation). Because the total time interval over which we integrated, although
large, was finite, temperatures far from the mean never occurred. One would
have to wait very long to see the grain, say, at 170 K. Therefore, the dotted
line displays a scatter, although close to the full one, and is determined well
only around the maximum of P(T ) and does not extend to probabilities below
∼10−5. In the bottom frame on the right, when the emission is evaluated under
the false supposition of temperature equilibrium (dotted), the spectrum is a good
approximation only at far infrared wavelengths. In the mid infrared, the errors
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Figure 8.11. Moderate fluctuations. As in figure 8.10 but the same grain is ten times
further away from the star. The temperature fluctuations have increased. The ordinate for
P(T ) is now logarithmic.

are large (two powers of ten at 10 µm) because the grain is occasionally at
temperatures far above the average.

8.6.2 Strong fluctuations

In figure 8.12, the grain is again at a distance r = 1017 cm from the star but has a
radius of only 10 Å. Compared to the two preceding examples where a = 40 Å,
the heat capacity of the particle is now 43 = 64 times lower and photon absorption
thus induces a much larger relative change in energy. The absorption cross section
is also 43 times smaller than before (the Rayleigh limit) and photon capture is,
accordingly, less frequent.

When looking at the temperature evolution T (t), which gives a better feeling
for the scatter than the probability function P(T ), one hesitates to assign an
average temperature at all, although mathematically this can be done. There are
now two disparate regimes: most of the time the grain is cold and cooling is slow
but occasionally the grain is excited to a high temperature from which it rapidly
cools. The probability density P(T ) has turned asymmetric; the maximum is at
Tmax = 51.9 K and far from the equilibrium temperature Teq = 116.2 K after
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Figure 8.12. Strong fluctuations. As in figure 8.10 but the grain is now small (a = 10 Å).

(8.8). The dotted line, representing P(T ) as determined from T (t), is jerky and
inaccurate above 120 K because of the finite time over which we calculated the
evolution; a longer integration time would smooth it. To evaluate the emission
without taking into account the hot excursions no longer makes sense, even in the
far infrared. The dotted line in the bottom right-hand box bears no resemblance
to the real emission (full curve), although the frequency integrated emission is,
in both cases, the same and equal to the absorbed flux. Note the strong 10 µm
silicate feature.

In figure 8.13, the grain has a radius of 40 Å and is heated by the weak light of
the ISRF. Absorption here is a rare event, even with regards to low-energy photons
and occurs approximately every few hours. Note the much larger time scale in this
figure. The probability density P(T ) tapers off gradually from its maximum at
Tmax = 8.3 K to ∼55 K; beyond 55 K a sharp drop sets in. The dotted line shows
the probability P(T ) as calculated from the time evolution T (t).

In these examples, we can follow in detail individual absorption events and
the subsequent cooling. The cooling rate varies after (8.14) with the sixth power
of the temperature. The energy reservoir U(T ) of a grain is proportional to T 4

when it is cold, and above the Debye temperature U ∝ T (see (8.38), (8.40) and
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Figure 8.13. Strong fluctuations. A silicate grain of 40 Å radius in the ISRF.

also figure 8.9). The cooling time is roughly

τcool ∝ U(T )

T 6
.

and, therefore, falls rapidly as T increases. In the spikes of the present examples,
τcool is of order 10 s.

8.6.3 Temperature fluctuations and flux ratios

Very small grains display in their emission another peculiar feature. It concerns
their color temperature or, equivalently, the flux ratio at two wavelengths, λ1 and
λ2. In a reflection nebula, a grain of normal size (>100 Å) becomes colder when
the distance to the exciting star is increased, obviously because it receives less
energy. For a very small grain, the situation is more tricky. Of course, it also
receives less photons farther from the star but its color temperature at shorter
wavelengths is only determined by the hot phases corresponding to the spikes
in figure 8.12. The interesting point is: no matter whether these spikes are rare
or common, as long as they do not overlap, the flux ratio is constant; only the
emitted power in the wavelength band from λ1 to λ2 diminishes with distance.
When multi-photon events occur, i.e. when an energetic photon is absorbed before
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Figure 8.14. Flux ratios for graphite grains of various sizes as a function of distance to
a B1V star. The wavelengths in micrometres are indicated as subscripts in the emissivity.
Small particles undergo strong temperature fluctuations which lead to flux ratios that are
almost independent of the distance from the star.

the grain has had time to cool from a preceding capture, such as that illustrated in
figure 8.10, the ratio of the emission coefficients, ε(λ1)/ε(λ2), is again distance-
dependent.

Figure 8.14 shows the flux ratio for several wavelengths as a function of
distance from the star. The grains are made of graphite and have radii between
5 and 40 Å. For all grain sizes, the near infrared colors, like K–M corresponding
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to ε2.2 µm/ε4.8 µm, first fall as one recedes from the star. But already at distances
smaller than the typical dimension of a reflection nebula, they level off. Near IR
color temperatures do not change across a reflection nebula if the grain radius is
∼10 Å or smaller. For mid and far IR colors, the critical particle size is pushed
up a bit and the flux ratios are constant only at larger distances. They continue to
stay so far away from the star where the stellar UV radiation field resembles that
of the diffuse interstellar medium.



Chapter 9

Dust and its environment

9.1 Grain surfaces

9.1.1 Gas accretion on grains

In the interstellar medium, gas atoms and molecules continually collide with the
dust particles. They may either rebounce from the grain surface or stick. In
equilibrium, the number of accreted atoms per unit time is equal to the number
of atoms leaving the grain. Gas accretion has great astronomical consequences as
the following examples demonstrate.

• The transfer of energy from gas to dust and back which may strongly
influence the temperature of the components.

• A change in the optical properties of the grains and thus their emission
characteristics.

• The depletion of molecular species in the gas phase as they freeze out on the
grains. Such species may not then be observable, whereas otherwise they
would be strong emitters and important coolants.

• The formation of new molecules. Accretion of H atoms is the only way in
which molecular hydrogen can be made at all in relevant quantities.

Consider a gas of temperature Tgas containing a certain species (subscript i )
with particle mass mi , number density density ni and mean velocity (see (5.16))

vi =
√

8kTgas

πmi
. (9.1)

A grain of geometrical cross section πa2, which can be considered to be at
rest, accretes the gas species i at a rate

Racc = ni πa2 vi ηi (9.2)

275
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where ηi denotes the sticking probability. When the grains have a size distribution
n(a) ∝ a−3.5 with lower and upper limit a− and a+, their total cross section F
for gas capture per cm3 is

F = 3nHmHRd

4ρgr
√
a−a+

.

Here Rd is the dust-to-gas mass ratio, nH = n(HI)+ n(H2) the total number
density of hydrogen, either in atomic or molecular form and ρgr the density of the
grain material, and it was assumed that a+ � a−. The lifetime τacc of a gas atom
before it is swallowed by dust may be defined by τaccRacc = 1 and thus becomes

τacc = 1

Fviηi
= 4ρgr

3mHRdηi

√
a−a+
nHvi

. (9.3)

Inserting reasonable numbers (Rd = 0.007, ρgr = 2.5 g cm−3, a− = 100 Å,
a+ = 3000 Å, vi = 0.3 km s−1), we find that an atom that sticks on collision
(ηi = 1) freezes out after a time

τacc ∼ 2× 109

nH
yr. (9.4)

τacc is shorter than the lifetime of a molecular cloud (τcloud ∼ 107 . . . 108 yr),
because such clouds always have densities above 102 cm−3. If the gas density
is high (nH > 104 cm−3), as in clumps, depletion and mantle formation
proceed more quickly (τacc ≤ 105 yr) than the dynamical processes which are
characterized by the free-fall time scale (tff ∼ 2× 107/

√
nH yr).

The growth rate da/dt of the grain radius should be independent of a, as
the impinging atoms do not see the grain curvature. Therefore, the matter will
mostly accrete on the small dust particles as they have the larger total surface area.
Consequently, large grains hardly grow any bigger through accretion, although the
mean grain size, which is the average over the total distribution, increases.

9.1.2 Physical adsorption and chemisorption

9.1.2.1 The van der Waals potential

To describe the collision between an atom on the grain surface and an approaching
gas atom, we first derive their interaction potential. Both atoms are electrically
neutral but have dipole moments: let p1 refer to the surface and p2 to the gas
atom.

A point charge q in an external electrostatic potential φ, which is given by
some fixed far away charges, has at position x0 the electrostatic potential energy
U = qφ(x0). If instead of the point charge q there is, localized around x0, a
charge distribution ρ(x), the energy becomes

U =
∫
ρ(x) φ(x) dV .
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Expanding φ(x) to first order around x0,

φ(x) = φ(x0)+ x · ∇φ(x0) = φ(x0)− x · E(x0)

and substituting the expansion into the volume integral for U , we obtain

U = qφ(x0)− p · E(x0)

where we have used the general definition (1.2) of a dipole p. In our case of
colliding atoms, the effective charge q vanishes. Suppose the field E(x) is due to
the dipole p1 on the grain surface; E(x) is then described by (3.10). Denoting by
r the vector from p1 to p2, we get

U(r) = p1 · p2
r3

− 3(p1 · r)(p2 · r)
r5

. (9.5)

Let us further assume that the dipole p2 of the gas atom is induced by p1 of
the surface atom. The strength of the former depends then on its polarizability α
(see (3.10) and (1.8)):

p2 = 2αp1

r3

and the dipole moments will be parallel (p1 · p2 = p1 p2) so that

U(r) = −4αp2
1

r6
. (9.6)

9.1.2.2 The full potential including repulsion

The absolute value of the van der Waals potential increases rapidly at short
distances, much quicker than for monopoles. But when the two dipoles are very
close, a repulsive interaction sets in because the electrons tend to overlap and
Pauli’s exclusion principle forbids them to occupy the same quantum state. This
potential bears a more empirical character and changes with distance even more
abruptly, like 1/r12. The net result of the combination between repulsion and
attraction is

U(r) = 4D

[(σ
r

)12 −
(σ
r

)6
]

(9.7)

with Dσ 6 = αp2
1. The parameter D defines the strength of the potential and σ

its range. U(r) becomes infinite for r → 0, changes sign at s = σ , reaches its
minimum value −D at r = 6

√
2σ and remains negative as it approaches zero for

r →∞ (figure 9.1).
In a collision of an atom with the grain surface, one has to include the

contribution from all force centers, i.e. atoms on the grain surface. On a regular
surface, the potential attains minima at various locations privileged by symmetry.
For a simple or body centered cubic lattice, these minima are at the mid-points
between four neighboring surface atoms (see figure 7.2).
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Figure 9.1. The potential U(R) between dipoles after (9.7); here with D = 0.25 and
σ = 0.5. The curve is relevant for physical adsorption. The minimum is at r = 6√2σ and
U(r) = −D.

9.1.2.3 Physical and chemical binding

Physical adsorption is rather weak; it needs typically only 0.1 eV to remove the
atom or molecule from the grain surface, corresponding to 1000 K if the binding
energy Eb is expressed as a temperature T = Eb/k. The exact value depends on
the composition and structure of the surface and on the type of gas species.

A much tighter coupling of a gas atom colliding with the grain surface
is possible through chemical binding or chemisorption. It involves a profound
change in the electron structure of the binding partners. The interaction is
therefore much stronger (from 0.5 to 5 eV) and the range of the chemical potential
shorter than in the case of physical adsorption.

As a precondition for chemisorption, the surface must contain chemically
active sites and the gas species should not consist of saturated molecules, like H2
or H2O but atoms, particularly hydrogen. In principle, radicals like OH could also
chemically bind to the grain surface but prior to the reaction an activation barrier
must be surmounted. This is not possible on a cold grain so that the process is
probably unimportant there.

Chemically active sites will have disappeared once the grain surface is
covered by physical adsorption by one monolayer of, for example, H2 or H2O.
Therefore, the mean binding energy of atoms and molecules in an ice mantle
several Å or more thick is less than 0.5 eV. Quite generally, we expect grains in
cold and dense clouds to be covered by a sheet of physically adsorbed ice. The
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sheet may be envisaged to be made either of pure water ice or to be a composite of
different ices, such as H2O, CO2, NH3 and others, mixed in a certain proportion.

9.1.3 The sticking probability

We estimate the probability η that an impinging gas atom stays on the grain
surface; obviously, 0 ≤ η ≤ 1. For the gas atom to stick, it must transfer to
the dust particle in the collision an energy
Es greater than its kinetic energy Ek
far from the surface; otherwise it will rebound. One can approximately evaluate
the process by studying the interaction of the gas atom (subscript g) with just one
surface atom (subscript s). We imagine the surface atom to be attached to a spring
of force constant κ so that it oscillates at frequency

ωs =
√
κ/ms.

For the interactive potentialU(r) between the two atoms we use (9.7), where
r = xg − xs > 0 is their distance and D the binding energy. Such a simple
mechanical system is governed by the equations of motion

ms ẍs = − κxs − F (9.8)

mg ẍg = F (9.9)

if the surface atom of mass ms has its equilibrium position at x = 0. The force
associated with the potential, F(r) = −U ′(r), is attractive and negative when r
is large and repulsive and positive when r is small. The gas atom passes in the
collision first through the attractive potential where its kinetic energy increases,
then encounters the repulsive part, which is almost like a wall (see figure 9.1), and
rebounces at the distance rmin where U(rmin) = Ek.

One finds the energy
Es which is transferred to the surface atom during the
impact by numerically integrating the equations of motion. An analytical solution
under simplifying assumptions is illustrative. Let us neglect the attraction in the
potential and approximate its repulsive part by a parabola [Wat75],

U(r) =
{
−D + D + Ek

4b2 (r − 2b)2 0 ≤ r ≤ 2b

−D r > 2b.

The repulsive potential U is often also written as U(r) = −D + (Ek +
D)e−r/b; the constant b is then called the slope parameter and is of order 0.4 Å. In
the quadratic equation, the force F with which the gas atom is rejected becomes

F(r) =
{
F0 − F0

2b
r 0 ≤ r ≤ 2b

0 r > 2b
with F0 = D + Ek

b
.

To fix the initial conditions, let the gas atom at time t = 0 pass the point
r = 2bwith a velocity ṙ = −√2(D + Ek)/mg. Its equation of motion, F = mgr̈ ,
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then has, for times t > 0, the solution

r = 2b · (1− sinω0t)

where the frequency

ω0 =
√
F0/2bmg (9.10)

is of order 1014 s−1. Its inverse defines the collision time,

ω−1
0 = τcoll.

The infall of the gas atom is reversed at the turning point r = 0 at time
t = π/2ω0 where also ṙ = 0. Altogether the force varies with time like

F(t) =
{
F0 sinω0t 0 < t <

π

ω0
= t1

0 else .
(9.11)

Now consider the collision from the point of view of the surface atom which
is subjected to a force f (t) of equal strength but opposite sign. During the impact,
it undergoes a forced oscillation described by

ms ẍs + κxs = f (t). (9.12)

Putting
ξ = ẋs + iωsxs

where ωs = √κ/ms is the vibration frequency of the surface atom, one can
replace the second-order differential equation (9.12) by one of first order,

ξ̇ − iωsξ = 1

ms
f (t)

which has the solution

ξ(t) = eiωs t
{∫ t

0

1

ms
f (t)e−iωs t dt + ξ0

}
.

In our case, ξ0 = ξ(t = 0) = 0. Because the energy of the surface atom is

Es = 1
2ms

{
ẋ2

s + ω2
s x

2
s

} = 1
2ms|ξ |2

the energy which it receives in the collision becomes


Es = 1

2ms

∣∣∣∣
∫ t1

0
f (t)e−iωs t dt

∣∣∣∣2.
With t1 and f (t) = −F(t) from (9.11), the integrations can be evaluated
analytically because for ω0 �= ωs,∫

e−iωs t sinω0t dt = e−iωs t

ω2
s − ω2

0

(
ω0 cosω0t + iωs sinω0t

)
.
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This can be verified immediately by taking the derivative. For the limiting
cases, we obtain


Es = mg

ms
(D + Ek)




4 ω0 � ωs
π2/4 ω0 = ωs

2ω4
0

(ω2 − ω2
0)

2
ω0 � ωs.

(9.13)

In the evaluation of the integral for ω0 � ωs, it was assumed that the term
cos(πωs/ω0), which then appears, vanishes on average.

• When ω0 � ωs, the collision time τcoll is very short and e−iωs t is practically
constant.

• When ω0 � ωs, the collision time is long compared to the oscillation
period ω−1

s of the crystal. Other atoms will then also absorb energy and
the assumption of just two colliding bodies is inadequate. Nevertheless, one
can get a feeling from (9.13) for whether the energy loss of the gas atom,

Es, is bigger than its initial kinetic energy Ek, implying sticking, or not.

• Two numerical examples for the case ωs = ω0 are presented in figure 9.2.

As under most interstellar conditions Ek � D, we learn from formula (9.13)
that the sticking efficiency is largely determined by the binding energy D for
physical adsorption and by the mass ratio of gas-to-surface atom; this ratio is
generally smaller than one, mg/ms � 1.

This simple theory can be refined in various ways: one can take into account
the reaction of the crystal; use a more suitable interaction potential because a gas
atom generally hits a spot somewhere between several surface atoms; consider
oblique incidence and the possibility that the gas atom repeatedly recoils from
the grain surface. Elaborate estimates suggest that under most astronomically
important circumstances sticking of the atoms is likely. To use a sticking
coefficient between 0.1 and 1 presents an educated guess.

9.1.4 Thermal hopping, evaporation and reactions with activation barrier

The more or less evenly spaced atoms on the surface of a grain act as force centers
and the surface potential has a semi-regular hilly structure. A physically adsorbed
gas atom or molecule finds itself in a potential minimum. It cannot travel freely
along the surface because to move, it has to overcome the surrounding potential
barrier of height U0. The value of U0 is a few times smaller than the binding
energy Eb of the gas atom, typically U0 ∼ 0.3Eb. The atom can jump over the
barrier classically by means of thermal excitation; alternatively, it may quantum
mechanically tunnel through the barrier (see [Tie87] for details).

• The adsorbed atom vibrates and thereby swaps its kinetic and potential
energy with a characteristic frequency ν0. For two states separated by an
energy difference U0, the Boltzmann distribution gives the population ratio
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Figure 9.2. Two examples of the time evolution of a one-dimensional collision along
the x-axis between a gas atom (subscript g) and a surface atom (subscript s). The
forces between the two particles follow from the U12–6 potential of equation (9.7). The
vibrational frequency of the surface atom, ωs, is 1.58×1014 s−1 and equal to the collisional
frequency ω0. The inverse of the latter can be considered as the effective collision time,

τcoll = ω−1
0 . The collisional frequency is defined by ω0 =

√
2(D + Ek)/σ

2mg, slightly
different from (9.10) which contains the range parameter b, whereas here we use the
range parameter σ after (9.7). Full curves denote the surface atom, enlarged 20 times;
the dash-dots, the gas atom. It is evident from the figure that when the gas atom loses
energy in the collision, the elongation of the surface atom increases. Bottom: Rebounce
with mg = mH, ms/mg = 50 and 
Es/Ek = 1.2. Top: Sticking with ms/mg = 20
and 
Es/Ek = 3.0. Both numbers for 
Es/Ek agree qualitatively with the approximate
formula (9.13) according to which the gas atom rebounds for 
Es/Ek < 1, or otherwise
sticks. Further parameters are: range of the repulsive potential σ = 0.2 Å, binding energy
D = 0.05 eV, temperature of grain and gas: Ts = 20 K, Tg = 50 K. Curves are obtained by
integrating the two second-order differential equations (9.8) and (9.9) by a Runge–Kutta
method. The time coordinate on the abscissa is in units of the vibration period of the
surface atom.

of upper over lower level or, equivalently, the time ratio of how long the
system resides, on average, in these two states. For the lower level, the
residence time is also the time thop, which is needed for the atom to overcome
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the energy barrier and move to a neighboring site. If the mean residence time
in the upper level is ν−1

0 , the time scale for thermal hopping is

thop ∼ ν−1
0 eU0/kT (9.14)

where T is the grain temperature. For ν0, one may use the frequency of
lattice vibration of the grain, typically a few times 1013 s−1. A more accurate
expression in the case of a symmetric harmonic potential is

ν0 =
√

2nsEb/π2m

where ns denotes the surface density of sites, m and Eb are the mass and
binding energy of the adsorbed atom. If U0 < kT , thermal hopping is very
quick and thop ∼ ν−1

0 , otherwise thop increases exponentially.
When an adsorbed atom moves on the surface of a grain by thermal hopping,
it has no preferential direction when jumping from one site to the next and its
path is a random walk (see figures 9.4 and 9.5). If the atom takes N steps of
constant length a equal to the distance between two surface atoms, the root
mean square deviation from the starting position is σ = N1/2a. Therefore,
the adsorbed atom needs a time N2thop to move a distance Na from the
starting point.

• Replacing in (9.14) U0 by the binding energy Eb, one gets the evaporation
time scale

tevap ∼ ν−1
0 eEb/kT . (9.15)

• One can argue, as before, that a reaction in which a molecule on the grain
surface is chemically transformed but which requires an activation energy
Ea, occurs on average after a time

tchem ∼ ν−1
0 eEa/kT . (9.16)

9.1.5 Tunneling between surface sites

Because of its exponential dependence on grain temperature in (9.14), thermal
hopping does not work when the grain is cold and kT falls below U0. However,
an atom has the possibility to quantum mechanically tunnel through the potential
barrier as discussed in section 6.4. When the potential barrier U0 is infinite, the
levels are degenerate (the U here is denoted V in section 6.4). For finiteU0, there
is energy splitting with an amount E2 − E1 that increases as U0 is lowered (see
(6.61)). According to (6.63), the tunneling time

ttun ∼ ν−1
0 exp

(
2a

�

√
2mU0

)

is short for small U0. The gas atom on the grain surface then has a high mobility
and is not fixed to any particular site. The time ttun is very sensitive to all numbers
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in the exponent, i.e. to the lattice spacing 2a, the mass of the gas atom m and
the barrier height U0. Obviously, tunneling can only be important for the lightest
atoms, in practice for hydrogen or deuterium. The mobility of other species is
restricted to thermal hopping.

Let us evaluate the separation of the energy levels, E2−E1, and the tunneling
time ttun from (6.61) and (6.63) for a hydrogen atom (m = 1.67 × 10−24 g)
physically adsorbed on an ice layer with a spacing 2a = 2 Å between force
centers and vibrating at a frequency ν0 = 3 × 1012 s−1. Putting the potential
barrier U0 to 0.3 times the binding energy Eb, i.e. U0/k � 100 K, we obtain
ttun � 10−11 s and E2 − E1 � 10 K. Because of the exponential terms, the
estimates are coarse.

The case of a one-dimensional double potential well can be generalized to
a perfectly regularly structured grain surface, where the potential is periodic in
two dimensions [Hol70]. In the earlier expression for ttun, the energy difference
between the two split states |E1 − E2| is replaced by the width 
E of the lowest
energy band. It consists of as many sublevels as there are interacting wells. The
full analysis gives a very similar residence time for an atom in a particular well,

ttun � 4�


E
. (9.17)

When it is applied to a hydrogen atom on ice, the calculations yield
E/k �
30 K and thus ttun � 10−12 s, an order of magnitude shorter than the crude
estimate given here, but this discrepancy does not worry us considering the
uncertainties and simplifications.

9.1.6 Scanning time

For an ideal surface, tunneling to a site n grid spacings away is not a random walk,
but the well is reached after a time tn � n · ttun. A real grain has defects on its
surface, i.e. sites surrounded by a high potential which the atom cannot penetrate
and where it is deflected in its motion, thus leading to a random walk. The defect
sites invariably arise because the grain is bombarded by soft X-rays and cosmic
rays.

Suppose the grid constant of the atomic lattice is of unit length. Let � be the
mean free path before the atom is scattered. The time to reach a site n spacings
away increases from n · ttun without scattering to (n2/�)ttun when defects are taken
into account because one needs (n/�)2 steps of length �. If the surface contains
N sites altogether, its linear dimension is of order N1/2 and the mobile particle
covers in a random walk such a distance in a time

τscan � N

�
ttun. (9.18)

Provided that � � n, one calls τscan the scanning time. Inserting numbers for a
grain of 1000 Å radius, we find tscan � 10−6/� s, so scanning is quick.
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9.2 Grain charge

A grain in interstellar space is not likely to be electrically neutral. Mechanisms
are at work that tend to alter its charge, notably

• the impact of an electron
• the impact of a positive ion and
• the ejection of an electron by a UV photon.

In equilibrium, the processes that make the grain positive and negative
exactly balance.

9.2.1 Charge equilibrium in the absence of a UV radiation field

First we neglect the radiation field. Consider a spherical grain of radius a and
charge Z . Its cross section for capturing electrons of mass me and velocity v is

σe(v) = πa2

(
1+ 2Ze2

amev2

)
.

The term in the brackets determines the change over the pure geometrical
cross section σgeo = πa2. The bracket has a value greater than one when
the dust is positively charged (Z > 0) and less or equal unity otherwise. The
enhancement in the cross section follows immediately from the two equations
describing conservation of energy and angular momentum for an electron with
grazing impact,

1

2
mev

2 = 1

2
meV

2 − Ze2

a
(9.19)

aeffv = aV . (9.20)

V is the actual impact velocity and σe = πa2
eff the effective cross section.

The number of electrons striking and then staying on the grain:

Yene〈vσe(v)〉 = Yeneπa
24π

( me

2πkT

)3/2
∫ ∞
v0

v3

(
1+ 2Ze2

amev2

)
e−mev

2/2kT dv

(9.21)
ne is their density, Ye their sticking probability and the bracket 〈. . .〉 denotes an
average over the Maxwellian velocity distribution (5.13) at the temperature T
of the plasma. In the case of negative grain charge (Z < 0), some electrons
are repelled and only those whose velocity exceeds a critical value v0 reach the
surface at all. This critical value is determined by

mev
2
0

2
= Ze2

a
.
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Otherwise, if Z ≥ 0, we must put v0 = 0. There are corresponding formulae
for ion capture where the quantities m, σ, n,Y bear the subscript i. For a plasma
with equal density and sticking probability for electrons and singly charged ions,
ne = ni and Ye = Yi. In equilibrium, we can write for the brackets that appear in
(9.21),

〈vσ(v)〉e = 〈vσ(v)〉i. (9.22)

On the left, the average refers to a Maxwell distribution for electrons and on
the right for ions. The impact rate of electrons on a grain of charge Z is ne〈v〉σeff,
where

σeff = σgeo

{
(1+ Ze2/akT ) if Z > 0
eZe

2/akT if Z < 0
(9.23)

is the effective cross section and 〈v〉 = (8kT/πme)
1/2 the mean electron velocity.

There is a corresponding equation for ions.
Without photoemission, the grain must be negatively charged (Z < 0)

because the electrons are so much faster than ions. When we evaluate the integrals
〈vσ(v)〉 using the relations (A.26), (A.28) for the ions and (A.30) and (A.32) for
the electrons, we get

exp

(
Ze2

akT

)
=
(
me

mi

)1
2
[

1− Ze2

akT

]
.

Solving this equation for x = Ze2/akT and assuming that the ions are
protons, one finds

Z � −2.5
akT

e2
. (9.24)

Interestingly, the degree of ionization and the density of the plasma do not
appear in this formula. Heavier ions make the grain more negative but only a
little. We see in figure 9.3 that for a fixed temperature, large grains bear a greater
charge than small ones but the potential

U = Ze

a

does not change. As one would expect, Z adjusts itself in such a way that, by
order of magnitude, the mean kinetic energy of a gas atom, kT , equals the work
Ze2/a necessary to liberate one unit charge. We notice that in a hot plasma, the
charge can become very large.

9.2.2 The photoelectric effect

9.2.2.1 The charge balance

In the presence of a hard radiation field of mean intensity Jν , one has to include a
term in the charge equilibrium equation (9.22) that accounts for the fact that UV
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Figure 9.3. The equilibrium charge of a grain (in units of the charge of an electron) in
a hydrogen plasma of temperature T for two particle radii. Photoelectric processes are
absent.

photons can chip off electrons from the bulk material of the grain. This certainly
happens near a star of early spectral type but also in diffuse clouds permeated by
the average interstellar radiation field. If photoemission is strong, the grain will
be positively charged; one can then neglect the impact of positive ions. Putting the
sticking probability Ye of electrons equal to one, we find for the charge balance
with respect to impinging electrons and absorbed photons that

ne〈v〉
(

1+ Ze2

akT

)
= 4π

∫ ∞
νt

JνQabs
ν

hν
yν dν. (9.25)

We divided under the integral by hν because we wanted the number of
absorbed photons. One can immediately solve (9.25) for the charge Z , provided
one knows the parameters νt and yν . The first, νt, represents a threshold frequency
for photon absorption leading to electron emission; the energy hνt is of order
10 eV and includes the work to liberate an electron from the solid (∼4 eV) and to
overcome the potential U of the positively charged grain. The second parameter,
yν , is the yield for photoemission.
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9.2.2.2 The photon yield

The yield yν for photoemission may be estimated from the following physical
picture based on classical electrodynamics [Pep70]. The energy absorbed by a
subvolume dV of a grain is given by (2.52). When one applies the Gauss theorem
(A.13), one gets

dWa = − divS dV

where S is the Poynting vector. Let the subvolume be at a depth x below the
surface. The likelihood P that the absorption leads to emission of a photoelectron
is assumed to have the form

P = C exp(−x/ le).
The factor C incorporates the following two probabilities: for excitation

of an electron to a ‘free’ state and, when such an electron has reached the
surface, for penetrating to the outside and not being reflected. The exponential
term exp(−x/ le) gives the probability that the electron reaches the surface at
all and is not de-excited in any of the scattering processes on the way. The
deeper the subvolume dV below the grain surface, the higher the chance for de-
excitation. The mean free path of electrons in the bulk material, le, is of order
30 Å, possibly shorter for metals and longer in dielectrics. Because of the factor
e−x/ le , it is evident that small grains (radii a ∼ 50 Å) are much more efficient in
photoemission than big ones (a ∼ 1000 Å). From Mie theory, one can compute
the internal field of the grain (the relevant formula is (2.45)) and thus the Poynting
vector.

The yield yν for electron emission induced by photons of frequency ν is now
defined via the equation

yν

∫
V

divS dV = C
∫
V
e−x/ le divS dV (9.26)

where the integrals extend over the whole grain volume V . The material constants
are uncertain but various evidence points towards yν ∼ 0.1 [Wat72].

9.2.2.3 The photoelectric effect and gas heating

Photoemission can also be important for heating the interstellar gas. As the mean
kinetic energy of a photoejected electron, Eν , exceeds the average thermal energy
3
2kT of a gas particle, the excess energy, after subtraction of the electrostatic
grain potential U , is collisionally imparted to the gas. In the end, the electron is
thermalized and its own average energy will then also be 3

2kT . The heating rate
due to one dust grain is therefore

H = 4π πa2
∫ ∞
νt

JνQabs
ν

hν
yν
[
Eν −U − 3

2kT
]
dν. (9.27)
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The photoeffect has to be invoked to explain the fairly high temperatures of
50 . . .100 K observed in HI regions; there it is the dominant heating mechanism.
Of course, the temperature does not follow from the rate H in (9.27) alone but
only from the balance with the cooling processes.

9.3 Grain motion

9.3.1 Random walk

Suppose one makes, in three-dimensional space, starting from position R0 = 0, a
sequence of steps defined by the vectors Li . After N steps, one has arrived at the
position RN = RN−1 + LN . If the vectors Li are of constant length L but in an
arbitrary direction, the mean square of the distance, 〈R2

N〉, grows like

〈R2
N 〉 = NL2. (9.28)

It is straightforward to prove (9.28) by induction because the average of
RN ·LN−1 obviously vanishes. Figure 9.4 shows a two-dimensional random walk
and figure 9.5 the verification of formula (9.28) in a numerical experiment.

9.3.2 The drag on a grain subjected to a constant outer force

Let us consider the one-dimensional motion of a heavy test particle (grain)
through a fluid or gas in more detail. Suppose one applies a constant outer force
F on the test particle of mass M . It then experiences a drag from the fluid or gas
molecules that is proportional to its velocity ẋ = V and the equation of motion of
the test particle reads:

F = Mẍ + µẋ . (9.29)

On the right stands an accelerational term M ẍ and a dissipational term. The
coefficient µ in the latter depends on the properties of both the fluid and the test
particle. In a steady state, ẍ = 0 and F = µV .

We determine the force F in (9.29) needed to move a spherical grain of
geometrical cross section πa2 at a constant velocity V through a gas. The gas has
a number density N at temperature T and its atoms have a mass m � M . Let
the grain advance in the positive x-direction. The velocity distribution N(vx ) of
the gas atoms along this direction with respect to the grain is no longer given by
equation (5.14) but has an offset in the exponent,

N(vx ) dvx = N
( m

2πkT

)1/2
e−m(vx+V )2/2kT dvx .

The y- and z-axes are, of course, unaffected and purely Maxwellian. The
maximum of N(vx ) is now at vx = −V , whereas in the rest frame of the gas it is
at zero velocity. The number of atoms in the velocity range [vx , vx +dvx ] that hit
the grain head-on (vx < 0) equals−πa2vx N(vx )dvx and each atom imparts in an
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Figure 9.4.Random wal k i n t wo di m ensi ons st art i ng at t he coordi nat e cent er( 0 , 0 ) andendi ng aft er 2700 st eps of equal l engt hL = 1 at the big dot near( 5 , − 46) . inelastic collision, the momentumm v x
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Figure 9.5. According to (9.28), in a random walk one travels after N steps a mean distance√
NL (smooth line). The actual distance in the numerical experiment of figure 9.4 is the

jittery line.

The drag is proportional to the geometrical cross section of the grain, πa2,
and the drift velocity V . With the mean gas velocity 〈v〉 = √8kT/mπ , the
friction coefficient becomes

µ = πa2Nm〈v〉.
• When the grain moves highly supersonically, there is only a force acting on

the front side and the momentum transfer is simply

F = πa2NmV 2. (9.32)

F is now proportional to the square of the velocity. In elastic collisions, the
forces would be larger by about a factor of two.

An astronomically important case of an outer force acting on dust particles
is provided by radiation pressure (see formulae (2.7) and (2.8) but there the letter
F means flux). In the case of direct illumination by a star, we may approximately
set the cross section for radiation pressure, C rp, equal to the geometrical cross
section σgeo = πa2, corresponding to an efficiency Qrp = 1. If L∗ is the stellar
luminosity and r the distance of the grain to the star, the drift velocity, for subsonic
motion, is then

V = L∗
4πcr2Nm

( mπ
8kT

)1/2
.
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N,m and T refer to the gas. Evaluating this formula for typical numbers
of L∗, N and T , one finds that in stellar environments supersonic drift speeds
are easily achieved. However, in many configurations grains are not directly
exposed to starlight but irradiated by infrared photons to which the starlight has
been converted through foreground matter. In such circumstances, C rp is much
smaller than the geometrical cross section and V accordingly smaller, too.

Around main sequence stars, the gas density is always low and the gas drag
unimportant. A grain is attracted towards the star of mass M∗ by gravitation and
repelled by radiation pressure. From the balance between the two,

GM∗M
r2

= L∗σgeo

4πcr2
(9.33)

one obtains a critical grain radius independent of the distance:

acr = 3L∗
4πc GρgrM∗

(9.34)

or
acr

µm
� 0.24

(
L∗
L�

)(
M∗
M�

)−1

. (9.35)

Grains smaller than acr are expelled. For instance, a 10 M� star has
acr � 2.4 mm, so all particles with sizes of interstellar grains (∼0.1 µm) are
blown away by radiation pressure. For low mass stars L∗ ∝ M3.5∗ and the critical
radius falls with M2.5∗ . The removal is always rapid as one can show by integrating
the outward acceleration v̇ = 3L∗/16πcρgrar2 (see (9.33)).

9.3.3 Brownian motion of a grain

Under equipartition between dust particles and gas, the grains perform a Brownian
motion. It has a translatory and a rotational part but for the moment we neglect
rotation. It is a fundamental result of thermodynamics that in equilibrium the
mean kinetic energy of a gas atom is equal to the mean kinetic energy Ekin of a
grain. If M and V denote the mass and velocity of the dust particle,

3
2kTgas = Ekin = 1

2MV
2.

The Brownian velocity V follows from

V =
√

3kTgas

M
. (9.36)

Even a small grain of a = 100 Å with bulk density ρgr = 2.5 g cm−3 has
in a 20 K gas only V = 28 cm s−1: it is practically at rest. The kinetic energy
of the grain, Ekin, is, on average, equally distributed among the three degrees of
freedom, so

MV 2
x = MV 2

y = MV 2
z .
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The one-dimensional equation (9.29) is also correct with respect to the
Brownian motion of interstellar grains when the retardation is not due to an
external force but to internal friction. The latter always involves dissipation of
energy. In a quasi-stationary state at constant velocity V , the associated heat loss
FV must be compensated by a permanent acceleration 
p2/2M , where 
p2

is the average change in the square of the momentum, p2, per unit time due
to collisions with gas atoms. Thus we require FV = 
p2/2M and because
MV 2 = kT in equilibrium at temperature T , we get 
p2 = 2µkT . In three
dimensions, when all directions are equal,


p2 = 6µkT . (9.37)

To find the mean distance that a grain travels when there is no external force,
we multiply equation (9.29) by x ,

Fx = Mxẍ + µx ẋ = M

2

d

dt

dx2

dt
− Mẋ2 + µ

2

dx2

dt
.

On taking averages, we note, first, that 〈Fx〉 = 0 because x and F are
unrelated and the force F due to collisions with gas atoms is completely stochastic
in its direction. Second, the rate of change of the mean square distance, d〈x2〉/dt ,
must be constant in time because the particle has no memory about its past. On
averaging, this equation shortens, therefore, to 1

2µ d〈x2〉/dt = M〈ẋ2〉 = kT .
Therefore, in three dimensions, the square of the distance r grows linearly with
time,

r2 ≡ 〈x2 + y2 + z2〉 = 6kT

µ
t . (9.38)

9.3.4 The disorder time

Suppose a grain has, at a certain instant, the momentum p0. After a disorder
or damping time tdis, it will have completely lost its memory about p0. One
impinging gas atom of mass m � M and velocity v changes the momentum of
the grain statistically by mv, and Z atoms by mv

√
Z , as in a random walk. So in

equipartition, when
MV 2 = mv2

the momentum of the grain is profoundly altered after M/m collisions, i.e. when
the mass of the colliding atoms equals the mass of the grain. Therefore, in a gas
of number density N , the disorder or damping time is

tdis = M

Nmvπa2
. (9.39)

Because F = µV = M dV/dt � MV/tdis, the friction coefficient can be
expressed through the damping time tdis,

µ = M

tdis
. (9.40)
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Figure 9.6. Numerical experiment of a two-dimensional Brownian motion: gas
parameters, hydrogen atoms at T = 100 K with number density 104 cm−3; grain
parameters, radius 100 Å, mass M = 1.05 × 10−17 g. The figure shows the x- and
y-component of the velocity; initially 1

2MV
2
x = kT and Vy = 0. Because of the large

time interval displayed in the plot, the actual jitter is graphically not fully resolved.

Figure 9.6 displays a numerical experiment of a two-dimensional Brownian
motion assuming inelastic collisions. The parameters are such that a gas atom
impacts the grain about once every 1000 s. To follow the stochastic evolution, we
bin the velocity distribution of the gas atoms N(vx ) of (5.14) into 100 velocity
intervals, and likewise for N(vy ). Choosing a time step of 103 s, the chance that
during one time step the grain is hit by an atom within a certain velocity interval,
either from the front or back, is small. The actual occurrence of such an event is
prompted by a random number generator. The disorder time according to (9.39)
equals 1.5× 109 s. It is roughly the interval after which there is a change in the
direction of the velocity vector of the grain by 90◦ or in its kinetic energy by more
than 50%.

The computations pertaining to figure 9.6 also yield, of course, the time
evolution of the mean square deviation r2 = 〈x2 + y2〉. Therefore one can
check whether r2(t) fulfils the theoretical prediction of equation (9.38) with the
dissipation constantµ from (9.40). One finds good agreement between numerical
experiment and (9.38) only after integrating over many disorder times tdis because
one disorder time corresponds to one step in the random walk of figure 9.4.
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9.3.5 Laminar and turbulent friction

In this section, we consider gases of sufficiently high density such that the
mean free path � of the atoms after (15.90) is smaller than the dimension of
the body moving through the gas. So the discussion does not apply to grains
in the interstellar medium but is relevant to dust particles in accretion disks
(section 15.4) or planetary atmospheres.

• A laminar flow of velocity v around a sphere of radius a exerts, according to
Stokes law, a force

F = 6πηav (9.41)

where η = ρν, and ρ and ν are the density and kinematic viscosity
coefficient of the gas (see the empirical relation (15.74) and equation
(15.89)). For the coefficient µ in (9.29) we find, by comparison with (9.41),
that

µ = 6πηa.

The retarding force F in (9.41) is linearly proportional to the velocity v but
also to the radius a. This somewhat strange result can be understood from
(15.74), if one writes for a sphere:

F = νρ ∂v
∂a

2πa2

and replaces the derivative ∂v/∂a by v/a. To obtain the coefficient 6π
rigorously is tiresome. A sphere rotating at velocity v at the circumference
is retarded by a torque τ = Fa with F also approximately given by (9.41).

• When the flow is turbulent, the decelerating force becomes

F = cWπa
2ρv2

as in (9.32). F is now proportional to the cross section πa2, the gas density
ρ = Nm and the velocity squared. The coefficient cW depends on the
Reynolds number (15.93) and is of order one.

But even in a turbulent flow there is a laminar surface layer of thickness D,
in which the gas velocity increases from zero, on the surface of the body, to v
at the boundary of the layer. For a rectangle of area A = bl and with normal
perpendicular to the velocity v, the retarding force is

F = ηA v
D
. (9.42)

The work required to renew the kinetic energy of the surface layer
continually is

Fv = ηbl v
2

D
= 1

2
v2bvDρ.
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It is assumed that the side l of the rectangle runs parallel to the flow and b
perpendicular to it. When one takes into account that the velocity in the surface
layer increases linearly from zero to v, one finds by integration for the thickness
of this so called Prandtl layer

D =
√

6ηl

vρ
.

Inserting D into (9.42) gives a force that is in between the purely laminar and
turbulent cases.

9.3.6 A falling rain drop

As an example, we study a falling rain drop. This has the advantage over an
interstellar grain that its properties are known and that it is shaped like a perfect
sphere, almost. Not to be a sphere, i.e. to have (for the same mass) a surface larger
than necessary, would be energetically quite disadvantageous. To create an area
d A of surface takes the work

dW = ζd A (9.43)

where ζ � 75 erg cm−2 is the surface tension of water. It is slightly temperature
dependent; a more precise formula is

ζ(T ) = 116.82− 0.151T erg cm−2. (9.44)

One roughly estimates that to lift a molecule from the interior of the
drop, where it is surrounded by other water molecules on all sides, to the
surface requires a few hundredths eV. By equating the p dV work (here dV =
infinitesimal volume) to the work required to create new surface, it also follows
that the pressure p inside a drop of radius a is given by

p = 2ζ

a
. (9.45)

The pressure can become high, it is more than ten times the atmospheric
pressure at sea level for a rain drop 0.1 µm in radius. Equation (9.45) is needed
when evaluating the evaporation of small grains.

The rain drop is pulled by gravity with the force F = 4πa3gρw/3
(gravitational acceleration g = 981 cm s−2, water density ρw = 1 g cm−3).
With the appropriate numbers for air (kinematic viscosity ν � 0.15 cm2 s−1,
density ρ � 1.2×10−3 g cm−3, η = ρν � 1.8×10−4 g cm−1 s−1), the turbulent
and laminar deceleration become equal, 6πηaV = πa2ρV 2, when the drop has
a radius a ∼ 0.1 mm and sinks at a velocity V ∼ 1 m s−1. The Reynolds number
Re = aV/ν of (15.93) is then slightly below 10. For small Reynolds numbers,
the terminal velocity of the falling drop changes like V ∝ a2, for large ones,
V ∝ a1/2.
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9.3.7 The Poynting–Robertson effect

Consider a grain of mass m, radius a and geometrical cross section σgeo = πa2

circling a star at distance r with frequency ω and velocity v = ωr . The angular
momentum of the grain is

� = mr2ω = mrv.
Let M∗ and L∗ be the mass and luminosity of the star. Because there is

mostly optical radiation, the absorption coefficient of the grain is Cabs � σgeo and
the particle absorbs per unit time the energy


E = L∗σgeo

4πr2
.

In thermal balance, the same amount is re-emitted. Seen from a non-
rotating rest frame, the stellar photons that are absorbed travel in a radial direction
and carry no angular momentum, whereas the emitted photons do because they
partake in the circular motion of the grain around the star. If we associate with
the absorbed energy 
E a mass mphot = 
E/c2, the angular momentum of the
grain decreases per unit time through emission by

d�

dt
= −mphotrv = −
E

c2
rv = − L∗σgeo

4πc2r2

�

m
.

Because for a circular orbit
v2

r
= GM∗

r2

we get v = √GM∗/r and
d�

dt
= �

2r

dr

dt
.

Due to the loss of angular momentum, the distance of the grain to the star
shrinks according to

dr

dt
= − L∗

2πr
· σgeo

mc2 . (9.46)

When we integrate the equation dt = −(2πmc2/L∗σgeo)r dr from some
initial radius r to the stellar radius R∗ � r , we find the time τPR that it takes a
grain to fall into the star,

τPR = mπc2

L∗σgeo
r2 (9.47)

or, in more practical units, assuming a density of ρgr = 2.5 g cm−3 for the grain
material,

τPR

yr
= 1700

(
a

µm

)(
L∗
L�

)−1 ( r

AU

)2
. (9.48)

The Poynting–Robertson effect is an efficient way to remove dust in the solar
system. For instance, during the lifetime of the Sun (∼ 5 × 109 yr) only bodies
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with a diameter greater than 6 m (!) can have survived within the orbit of the
Earth. Particles existing today smaller than 6 m must have been replenished from
comets or asteroids.

The Poynting–Robertson effect may also be described by an observer in a
frame corotating with the grain. In such a reference frame, the stellar photons
approach the grain not exactly along the radius vector from the star but hit it
slightly head-on in view of the aberration of light. This phenomenon arises
because one has to add the velocity of the photon and the grain according to
the rules of special relativity. The photons thus decrease the angular momentum
of the grain and force it to spiral into the star. The Poynting–Robertson effect also
works when the photons are not absorbed but isotropically scattered.

9.4 Grain destruction

9.4.1 Mass balance in the Milky Way

Grains do not live forever but have a finite lifetime. As part of the dynamic,
continually changing interstellar medium, they are born, modified and destroyed
in processes such as

Birth: mainly in old (evolved) stars with extended shells but
possibly also in novae and supernovae (SN).

Accretion: in dark clouds, gas atoms condense onto grain surfaces
to form mantles.

Coagulation: in dark clouds, grains collide, stick and form larger particles.
Destruction: partial or complete, mainly in star formation, hot gas or shocks.

In a steady state, dust formation is balanced by dust destruction. The rates at
which this happens are quite uncertain. Therefore the numbers given here are not
precise at all but they do show the order of magnitude.

As gas and dust are intimately linked, we begin with a few remarks about the
mass balance of all interstellar matter in the Milky Way; four important numbers
are listed in table 9.1. The star formation rate implies that within one billion years,
a short period compared to the Hubble time, all interstellar matter, including dust,
is processed in stars. The continuous mass loss of gas in star formation must be
offset by an equal mass input. It comes mainly from planetary nebulae which
supply about 80% of the gas, red giants (∼20%) and supernovae (∼10%?).

Let us denote the input rates of dust due to planetary nebulae, red giants and
supernovae by IPN, IRG and ISN, respectively, and express them in solar masses per
year. Most grains probably form in the wind of red giants (like M stars, OH/IR
and carbon stars) as high temperature condensates. The total gas input in the
Milky Way from red giants is about 1 M� yr−1 and about 1% of this is expected
to be in the form of dust. So the input rate of dust from red giants is

IRG ∼ 0.01 M� yr−1.
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Table 9.1. Global parameters of the Milky Way relevant to the mass balance of dust.

Total gas mass Mgas ∼ 5× 109 M�
Total dust mass Mdust ∼ 3× 107 M�
Star formation rate τSFR ∼ 5 M� yr−1

Supernova rate τSN ∼ 0.03 yr−1

Planetary nebulae, although they inject more gas into the interstellar
medium, are less effective than giants in forming grains so that probably IPN <

IRG. To estimate the contribution of supernovae to the dust balance, suppose
that 3 M� of heavy elements are ejected per SN explosion. Although this is
all potential dust material, a considerable fraction is locked up in CO, H2O or
otherwise and is unable to form grains. If one assumes that each explosion creates
0.3 M� of dust and if there are three supernova events per century in the Milky
Way (see table 9.1), one gets a dust input rate from supernovae comparable to that
of red giants of

ISN ∼ 0.01 M� yr−1.

For each input rate, one can define a formation time scale t by

t = Mdust

I
.

9.4.2 Destruction processes

Grains are destroyed in various processes (recommended reading [Sea87] and
[McK89]) such as the following ones.

• Evaporation. The solid is heated up to the condensation temperature. This
happens near luminous stars, to a certain extent in HII regions (section 14.4),
also in the diffuse medium (section 14.3) when the grains are extremely small
or have volatile mantles. But by far the greatest sink is star formation and
the destruction rate tSF gives the maximum lifetime of a grain,

tSF = Mgas

τSFR
∼ 109 yr. (9.49)

If grains should live a billion years, they are cycled at least 10 times between
cloud and intercloud medium. The loss rate of dust associated with astration
equals ISF = Mdust/tSF ∼ 0.03 M� yr−1.

• Sputtering. Atoms are ejected from a grain by colliding gas particles, either
neutrals or ions. The threshhold impact energy for liberating an atom from
the solid phase is a few times larger than the binding energy of an atom
(∼5 eV). But even for impact energies above the threshhold, atoms are
chipped off only with an efficiency η smaller than one, possibly η ∼ 0.1.
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• Grain–grain collisions after acceleration in a magnetic field.
• Shattering which is the destruction of a grain into smaller units, usually in

grain–grain collisions.
• Photodesorptionwhich is the ejection of grain atoms by photons.

9.4.2.1 Destruction in shocks

Besides star formation, grains are mostly destroyed in shocks associated with
supernova remnants (SNR). The observational evidence comes from clouds of
high velocity (v > 100 km s−1) where more than half of Si and Fe is in the
gas phase, whereas in normal clouds only a fraction of order 1% of these atoms
is in the gas phase. High-velocity clouds are interpreted to be fragments of an
expanding and shocked supernova shell. The mechanism of grain destruction
depends on the type of shock:

• In a fast shock, cooling is slow. The shock is adiabatic or non-radiative
and has a moderate density jump of four. Sputtering is thermal because the
velocities of the gas atoms are thermal. A shock with v ∼ 300 km s−1

corresponds to a temperature T ∼ 3 × 106 K. If one determines the rate of
impinging protons using (9.1) and adopts a gas density n = 1 cm−3, one
finds that at least small grains are likely to be eroded.

• In a low-velocity shock, the cooling time is smaller than the expansion
time of the supernova remnant. The shock is radiative and the density
jump is much greater than four. A charged grain of mass m will gyrate
in the magnetic field B. As B‖, the component of B parallel to the shock
front, is compressed, the grain velocity vgr increases because its magnetic
moment µ = mv2

gr/2B‖ is conserved and the grain is accelerated (betatron
acceleration). The collisional velocities between the grain and the gas
atoms are now non-thermal and non-thermal sputtering dominates. The
final velocity vgr is limited by drag forces from the gas. The decelaration
is proportional to the inverse of the grain radius, so big grains become faster
than small ones and are more easily destroyed; small grains may survive.
Grains may also collide with one another. A velocity of 100 km s−1

corresponds to ∼1000 eV kinetic energy per atom, whereas the binding
energy is only 5 . . .10 eV for refractory material; grains will be vaporized if
the efficiency for knocking off atoms is greater than 1%.

To estimate the importance of shock destruction, we turn to the theory of
supernova blasts. During the first (Sedov) stage, the remnant of mass MSNR
and velocity v is adiabatic and its kinetic energy E = 1

2MSNRv
2 conserved;

at later times, the momentum vMSNR is constant. According to [McK89], the
shock becomes radiative when v ≤ 200(n2/E51)

1/14 km s−1; E51 is the energy
expressed in units of 1051 erg. In a gas of density n = 1 cm−3 and with the
standard explosion energy E51 = 1, one finds for the mass of the supernova
shell MSNR ∼ 103 M� at the onset of the radiative phase. A supernova rate
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τSN = 0.03 yr−1 then implies that all interstellar material of the Milky Way is
processed in a time

tSNR = Mgas

MSNRτSN
∼ 2× 108 yr.

As the high-velocity clouds indicate an efficiency for dust destruction of 50%,
the associated timescale (∼4× 108 yr) is substantially shorter than the joint dust
injection time scale from supernovae and red giants (∼1.5× 109 yr). In a steady
state, this requires an additional dust source for which accretion in the interstellar
medium, especially in dark clouds, is usually invoked.

9.4.2.2 Sputtering in the coronal gas

Sputtering of refractory grains also occurs in the hot coronal gas (T = 106 K)
where all atoms are very energetic (∼100 eV). Assuming there a gas density
n = 10−3 cm−3, grains of 1000 Å size are eroded in ∼109 yr. For the total dust
in the Milky Way, destruction in the coronal gas is, however, negligible because
it contains only ∼0.1% of all interstellar matter.

9.4.2.3 Sputtering of grain mantles

Similarly simple computations show that volatile grain mantle material which has
low binding energies per atom (∼0.1 eV) is effectively sputtered in the diffuse
interstellar medium (T ∼ 103 . . . 104 K, n > 10 cm−3). Low-velocity shocks
are also efficacious. Therefore the mantle material with a low binding energy is
confined to dark clouds, in agreement with observations.

9.5 Grain formation

We derive approximate equations that describe the nucleation of monomers
into large clusters. The examples refer to water because its properties are
experimentally well established but the physics apply, with some modifications,
also to interstellar grains. There, however, the material constants are poorly
known.

9.5.1 Evaporation temperature of dust

When two phases, like liquid and gas, are in equilibrium at temperature T , the
vapor pressure P changes with T according to the Clausius–Clapeyron equation,

dP

dT
= Q

(Vg − Vf)T
(9.50)
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Figure 9.7. A reversible cycle employing two vessels to find the vapor pressure of a drop
of radius r . The shaded area marks the fluid; see text.

where Vg and Vf are the volume per mol in the gas and f luid phase, respectively,
and Q is the heat necessary to evaporate 1 mol. We remember that 1 mol consists
of

L = 6.02× 1023

molecules. L is Loschmidt’s number, and the gas constant R, the Boltzmann
constant k and L are related through

k = R

L
. (9.51)

The Clausius–Clapeyron equation is, with obvious modifications, also valid
with respect to sublimation, which is the phase transition between the solid and
gas phases, and thus applies to the evaporation of interstellar grains and their
mantles. The fundamental formula (9.50) is derived in a thought experiment from
a Carnot cycle:

• First, one totally vaporizes at constant temperature T one mol of a liquid in
a vessel closed by an adjustable weight (of the kind as depicted on the left-
hand of figure 9.7); this requires heat Q. During the phase transition from
fluid to gas, the substance expands from Vf to Vg and the vapor pressure P
does the work P (Vg − Vf) by lifting a piston.

• Then the vapor is condensed in another heat bath at slightly lower
temperature T − dT and pressure P − dP . In this way, one returns the
latent heat Q′ and the work (P − dP)(Vg − Vf). Finally, one brings the
system back to its initial state (P, T ).

As the internal energy of the system is the same at the beginning and the
end of the cycle, the total effective work done is, in view of the first law of
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thermodynamics (see (5.49) with dU = 0),

dP · (Vg − Vf) = Q − Q′.
The efficiency of converting heat Q into work is

η = dP · (Vg − Vf)

Q
= dT

T
(9.52)

and, according to the second law of thermodynamics, no heat engine can do better.
Because Vf � Vg, we can approximate (9.50) by

d ln P

dT
= Q

RT 2
(9.53)

which has the solution

P = P0 e
−T0/T T0 ≡ Q/R. (9.54)

The affinity to the Boltzmann distribution is not only formal but physical
because atoms in the gas are in an energetically higher state than atoms in a
solid. Equation (9.54) is very general and does not say anything about the
details of a specific phase transition. Therefore, P0 and T0 have to be determined
experimentally. Laboratory data for water ice from 0 ◦C down to −98 ◦C are
displayed in figure 9.8. They can be neatly fit over the whole range by equation
(9.54) with properly chosen constants.

One gram of H2O, in whatever form, has N = 3.22 × 1022 molecules. If
it is ice, it takes 79.4 cal to liquify it at 0 ◦C, then 100 cal to heat it up the water
to 100 ◦C and another 539.1 cal to vaporize the water. In cooling the vapor by

T = 100 K from 100 to 0 ◦C, assuming six degrees of freedom per molecule,
one gains 3Nk
T = 1.37× 109 erg. Because

1 cal = 4.184× 107 erg

the total sublimation energy per H2O molecule at 0 ◦C is, therefore, kT =
8.64 × 10−13 erg corresponding to a temperature of 6260 K. This agrees nicely
with the fit parameter T0 = 6170 K in figure 9.8.

The evaporation temperature Tevap in interstellar space of a species X frozen
out on grain mantles follows by setting its partial pressure in the gas phase, nXkT ,
equal to the evaporation pressure,

P0e
−T0/Tevap = nXkTevap. (9.55)

Because of the exponential dependence of the vapor pressure on temperature,
the result is rather insensitive to the gas density. At hydrogen densities of order
∼106 cm−3, water ice evaporates at T ∼ 120 K as one can read from figure 9.8
assuming an H2O abundance of 10−7. Ammonia and methane go into the gas
phase already at about 90 and 70 K, respectively. A rise in density from 106 to
1012 cm−3 increases the evaporation pressure for H2O, NH3 and CH4 by ∼30 K.
Typical evaporation temperatures of other astronomically important species are:
hydrogen (3 K), CO, CO2 (20 K), silicates (1800 K) and graphites (2500 K).
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Figure 9.8. Vapor pressure of ice. Experimental points (dots) from [Wea77], the full
curve is a fit according to (9.54) with T0 = 6170 K and P0 = 4.0 × 1013 dyn cm−2 or
3.0 × 1010 mm of Hg column. The fit is extrapolated to lower temperatures. The lower
horizontal line shows the partial gas pressure, P = nXkT in mm Hg column for a number
density nX = 0.1 cm−3. Such an H2O pressure prevails in interstellar space when the
total gas density nH = 106 cm−3 and the water abundance (in the gas phase) is 10−7. The
upper horizontal line is for nX = 105 cm−3.

9.5.2 Vapor pressure of small grains

Condensation and evaporation of small interstellar grains has the peculiarity that
the transition surface between the solid and the gas is not flat but curved. As
molecules leave the grain, the surface area shrinks by an amount d A thereby
creating the energy dW = ζd A according to (9.43). Evaporation is, therefore,
easier in grains of small radius r and their vapor pressure pr is higher than that
over a flat surface, p∞. This has fundamental consequences.

To compute pr , one performs an isothermal reversible cycle of four steps.
Here, we write down the work Wi that is being done in each step; the formulae
for Wi are elementary.

(1) In vessel 1 is a small liquid sphere of radius r at temperature T in equilibrium
with its vapor of pressure pr (figure 9.7). The volumes per mol of gas and
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fluid are Vg,r and Vf, respectively. We evaporate the droplet but in such a
way that while evaporating we inject with a syringe into the sphere against
the internal pressure p = 2ζ/r of (9.45) and the outer pressure pr the same
amount of liquid as is being lost to the gas, so all the time r = constant.
When 1 mol has become gaseous,

W1 = prVg,r −
(
pr + 2ζ

r

)
Vf.

(2) Isothermal expansion from pressure pr to p∞ of the 1 mol of gas that has
been vaporized in step (1),

W2 = RT ln(pr/p∞).

(3) The 1 mol of vapor is pressed into vessel 2 where the liquid has a plane
surface and is under its vapor pressure p∞,

W3 = −RT .
(4) To complete the cycle, we take from vessel 2 with a syringe 1 mol of liquid,

W4 = Vf p∞.

As the cycle was isothermal (dT = 0), the sum
∑
Wi must be zero. Let v0

denote the volume of one molecule in the liquid phase. Because RT = pV and
because the pressure in the drop, 2ζ/r , is much bigger than pr − p∞, we obtain

ln
pr
p∞
= 2ζv0

kTr
. (9.56)

This tells us that the vapor pressure pr = p∞·e2ζv0/kT r equals p∞ for big spheres
but increases exponentially when the radius becomes very small. Condensation
of the first seed grains is thus possible only when the partial pressure p exceeds
p∞ or when the saturation parameter s (capital S for the entropy) defined by

s = p

p∞
(9.57)

is greater than one. The vapor is then said to be supersaturated. At pressure pr
given by (9.56), a sphere of diameter 2r is in equilibrium with the vapor, a bigger
drop will grow indefinitely, a smaller one will evaporate, so r is the critical cluster
radius.

9.5.3 Critical saturation

To estimate the critical saturation parameter scr > 1 at which clusters are created,
we calculate the work W needed to form in a reversible cycle a drop of radius



306 Dust and its environment

r . The drop consists of n atoms and is formed in a vessel with vapor at pressure
p and temperature T . The work in each of the four steps is denoted by Wi , so
W =∑Wi .

(1) Remove n gas atoms from the vessel,

W1 = −nkT .
(2) Isothermally expand these n atoms from p to p∞,

W2 = −nkT ln(p/p∞).

(3) Press the n atoms into another vessel, also at temperature T but containing a
liquid of flat surface under vapor pressure p∞,

W3 = nkT .
(4) Form there from the liquid a drop of radius r (and bring it back to the first

vessel),
W4 = 4πζr2.

For the sum we get

W = −nkT ln(p/p∞)+ 4πζr2 = 1
3ζ · 4πr2. (9.58)

The term −nkT ln(p/p∞) is the potential energy of the drop. It is
proportional to the number of molecules n because the molecules possess short-
range forces and, therefore, only connect to their nearest neighbors. For long-
range forces, the term would be proportional to n2. The other term 4πζr2, which
goes as n2/3, introduces a correction because atoms on the surface are attracted
only from one side.

As the energy of the system stays constant over the cycle, one has, according
to the first law of thermodynamics, to subtract from the system the heat Q = W .
Therefore, during formation of the droplet the entropy of the system falls by (see
(5.51))

S = Q/T = 4πζr2/3T .

S decreases because a liquid represents a state of higher order than a
gas. Although the entropy of a macroscopic system can only increase, on a
microscopic level all processes are reversible and S fluctuates. Formation of a
seed grain comes about by such an entropy fluctuation. As the entropy is after
(5.43) equal to Boltzmann constant k multiplied by the logarithm of the number
� of states, S = k ln�, the probability P = 1/� for the formation of a seed is
given by e−S/k. When we insert the saturation parameter s = p/p∞ of (9.57),
simple algebra yields

P = 1

�
= e−S/k = exp

(
−4πζr2

3kT

)
= exp

(
− 16πζ 3v2

0

3k3T 3 ln2 s

)
. (9.59)
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For water (ζ = 75 erg cm−2, v0 = 3.0× 10−23 cm3) at temperature T = 275 K,
the exponent S/k ∼ 116/ ln2 s. For carbon compounds (ζ ∼ 1000 erg cm−2,
v0 = 9× 10−24 cm3) at T = 1000 K, S/k ∼ 500/ ln2 s.

The probability P is most sensitive to ζ/T and, if ζ/T is fixed, to s,
changing from practically impossible to highly likely in a narrow interval 
s.
It is exactly this property which allows us to estimate the critical value scr as
follows.

If N, v and σ denote the number density, mean velocity and collisional cross
section of the vapor atoms, there are, per second, N2vσ atomic collisions each
leading with a probability P to the formation of a seed. So J = N2vσ P is the
rate at which seeds form and the condition

N2vσ P ∼ 1

yields scr. The outcome of the simple calculation depends entirely on the exponent
in (9.59) which has to be of order one; the factor N2vσ has very little influence.
One finds typical values of the critical saturation parameter for water at room
temperature around 10 which implies in view of (9.56) a critical seed radius rcr of
a few ångströms.

9.5.4 Equations for time-dependent homogeneous nucleation

Let us study the creation of seed grains in a kinetic picture. If the gas has only one
kind of atoms or molecules of mass m, one speaks of homogeneous nucleation, in
contrast to heterogeneous nucleation when different molecular species or ions are
present. A small cluster or droplet of n molecules is an n-mer with concentration
cn . The number density of the gas molecules (they are monomers) is, therefore,
denoted c1. A cluster has a radius rn and a surface area An = 4πr2

n . When v0 is
the volume of one molecule, n and rn are related through

nv0 = 4π

3
r3

n .

Consider a gas of constant temperature T and pressure p = c1kT with
saturation parameter s = p/p∞ > 1 after (9.57). If atoms impinge on a drop
at a rate βn An and evaporate from it at a rate αn An , the concentration cn changes
with time like

ċn = −cn
[
βn An + αn An

]+ cn−1βn−1An−1 + cn+1αn+1An+1. (9.60)

This is a very general equation, all the physics is contained in the coefficients for
evaporation and accretion, αn and βn . If we assume that atoms are added to the
grain at a rate πr2

n 〈v〉c1 and leave at a rate πr2
n 〈v〉pn/kT , where 〈v〉 is the mean

velocity of (9.1) and pn/kT from (9.56), then

αn = pn√
2πmkT

β = p√
2πmkT

. (9.61)
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In this case, β is constant for all n and the sticking coefficient is one; pn is the
vapor pressure of an n-mer according to (9.56). One defines a particle flux or
current from n-mers to (n + 1)-mers by

Jn = cnβAn − cn+1An+1αn+1. (9.62)

We can now transform equation (9.60) into the deceptively simple looking form

ċn = Jn−1 − Jn .

Equation (9.60) disregards collisions between clusters, only molecules
impinge on a drop but that is a valid assumption as one can easily verify.

9.5.5 Equilibrium distribution and steady-state nucleation

When the system is in phase equilibrium, detailed balance holds. We will flag
equilibrium concentrations by the superscript 0. In equilibrium, Jn = 0 and

c0
nβAn = c0

n+1αn+1An+1.

The last relation also enables us to write, for non-equilibrium conditions,

Jn = −c0
nβAn

[
cn+1

c0
n+1

− cn
c0
n

]
. (9.63)

The equilibrium concentrations c0
n are given by the Boltzmann formula

c0
n = c0

1e
−
Gn/kT (9.64)

where 
Gn is the work to be expended for creating an n-mer out of monomers
(see (9.58)),


Gn = 4πζr2
n − nkT ln(pn/p∞). (9.65)

In view of the discussion in section 5.3.5 on the equilibrium conditions of
the state functions,
Gn is, for a system at constant temperature and pressure, the
difference in free enthalpy. The function 
Gn is depicted in figure 9.9; it has its
maximum at n∗ where ∂
Gn/∂n = 0. All values at n∗ will, in the following, be
marked by an asterisk. Clusters of size smaller than n∗ are inside a potential well
and fight an up-hill battle when growing. They have to overcome the barrier of
height
G∗. When they have climbed the barrier, their size is n∗ and for n > n∗,
they will grow unrestrictedly. So n∗ is the critical size. Figure 9.10 plots the
dependence of n∗ on the saturation parameter s.

In a steady state (subscript s), nothing changes with time and ∂/∂ t = 0. The
conditions for steady state are less stringent than for equilibrium because Jn need
not vanish, it only has to be a positive constant,

Jn = J s = constant > 0.
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Figure 9.9. The full curve shows 
Gn/kT where 
Gn = 4πζr2
n − nkT ln p/p∞ is the

change in free enthalpy when n water molecules condense into a drop of radius rn (see
(9.65)). The curve reaches its maximum at n∗. The broken curve depicts the equilibrium
concentration c0

n of n-mers on an arbitrary linear scale; the minimum is at n = n∗. In these
plots, T = 300 K, s = p/p∞ = 4 and the surface tension ζ = 75 erg cm−2.

Under this condition, we get, from (9.63),

J s

c0
nβAn

= cs
n

c0
n
− cs

n+1

c0
n+1

� − ∂
∂n

(
cn
c0
n

)
. (9.66)

To realize a steady state in a thought experiment, one has to invoke a
Maxwellian demon who removes large clusters with n ≥ L > n∗ by gasifying
them. The demon supplies the boundary condition for the cluster distribution,

cs
n = 0 for n ≥ L.

One does not have to be very particular about L, it just has to be somewhat greater
than n∗. As a second boundary condition we impose

cs
1/c

0
1 = 1

which means that only a very small fraction of the total mass is in clusters.
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Figure 9.10. The dependence of the critical cluster size n∗, defined in figure 9.9, on the
saturation parameter s = p/p∞ for water vapor at 273 K. For clusters of size n∗, the
difference in the Gibbs potential between gas and droplet, 
Gn , has its maximum and
∂
Gn/∂n = 0.

Consequently, by performing a sum over (9.66),

J s
L−1∑
n=1

1

c0
nβAn

= cs
1

c0
1

− cs
L

c0
L

= 1 (9.67)

we can directly compute the steady-state nucleation rate J s. The latter may also
be appproximated analytically from the relations:

1 � J s

β

∫ L

1

dn

Anc0
n
� J s

βc0
1

∫ L

1

e
Gn/kT

An
dn � J s

βA∗c0
1

∫ L

1
e
Gn/kT dn

which follow from (9.67). Because
Gn has a fairly sharp peak at n∗, the surface
area An = 4πr2

n can be taken out from under the integral and replaced by A∗. A
Taylor expansion of 
Gn around the maximum n∗,


Gn � 
G∗ + 1

2

∂2
Gn
∂n2

(n − n∗)2

with


G∗ = 4πζ

3
r2∗ =

16πζ 3

3

( v0

kT ln s

)2
(9.68)
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and
∂2
Gn
∂n2

= − ζv
2
0

2πr4∗
yields, upon replacing the integration limits (1, L) by (−∞,∞) to obtain the
standard integral (A.25), the steady-state nucleation rate J s. The number of
clusters that grow per unit time and volume from size n to n+1 is then independent
of n and one readily finds

J s = v0

(
2ζ

πm

)1/2

(c0
1)

2 exp

[
− 4µ3

27 ln2 s

]
. (9.69)

The exponent in square brackets equals −
G∗/kT and µ is defined by

µ = 4πζa2
0

kT
(9.70)

where a0 denotes the radius of a monomer, so v0 = 4πa3
0/3. The expression in

(9.69) is quite a satisfactory approximation to the sum in (9.67). The magnitude
of J s is, of course, entirely determined by the exponent. Figure 9.11 illustrates the
immense change in J s, over many powers of ten, with the saturation parameter
s. Figure 9.12 shows the deviation of the equilibrium from the steady-state
concentrations, the latter being calculated from

cs
n = c0

n J
s
L−1∑
i=n

1

c0
i βAi

.

We learn from figure 9.12 that for small n-mers, equilibrium and steady-state
concentrations are the same. Around the critical cluster size n∗, the ratio cs

n/c
0
n

declines with an approximately constant slope b = ∂(cs
n/c

0
n)/∂n evaluated at n∗

over a region of width 
n = −1/b. For large n, the ratio cs
n/c

0
n tends to zero.

9.5.6 Solutions to time-dependent homogeneous nucleation

9.5.6.1 The evolution towards the steady state

The time-dependent system of equations for nucleation presented in (9.60) can
easily be solved when the coefficients for evaporation and accretion, αn and βn ,
are as simple as in (9.61). Let us write the time derivative of the concentration of
n-mers as

ċn = cn − cold
n

τ

where cold
n is the old value of the concentration a small time step τ ago; we want

to find the new one, cn . Equation (9.60) can immediately be brought into the form

Ancn−1 + Bncn + Cncn+1 + Dn = 0 (9.71)
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Figure 9.11. Variation of the steady-state nucleation rate J s (s−1 cm−3) with saturation
parameter s = p/p∞ for water vapor at T = 273 K; surface tension ζ = 75 erg cm−2.
J s is computed from (9.69) and displayed on a linear (top) and logarithmic scale (bottom).
The pressure p∞ is derived from (9.54) and equals 1.92× 1017 dyn cm−2. Below s � 5,
nucleation is negligible, above catastrophic and s � 5 represents the critical value of the
saturation parameter.

where An, Bn,Cn, Dn are known coefficients (so for the moment, An is not the
surface area of an n-mer). Putting

cn = γncn−1 + δn (9.72)

and inserting it into (9.71) yields

γn = − An
Bn + γn+1Cn

δn = −δn+1Cn + Dn
Bn + γn+1Cn

.

We determine the concentrations cn in the size range

g ≤ n ≤ L

with 1 � g � n∗ (as far as possible) and L > n∗. The boundary conditions are
suggested by figure 9.12: At the upper end, we take cL = 0 because cL/c0

L = 0.
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Figure 9.12. The ratio of the cluster abundance in a steady state to the cluster abundance
in equilibrium as a function of cluster size n; here for water vapor at T = 273 K and
saturation parameter s = p/p∞ = 4. At n = n∗, the ratio is about one half.

Therefore, γL = δL = 0, and this allows to compute γn = δn = 0 for
n = L−1, . . . , g+1. At the lower end, the abundance of clusters is very close to
equilibrium and we put cg = c0

g . By choosing g considerably greater than one, we
avoid using the enthalpy 
Gn of (9.65) for the smallest clusters where it cannot
be correct. We then find cn for n = g + 1, . . . , L − 1 from (9.72).

Figure 9.13 presents a numerical experiment for water vapor at constant
temperature T = 263 K and saturation parameter s = 4.9. These two values
imply a monomer concentration c0

1 = 3.5×1017 cm−3 and a critical size n∗ = 71.
At time t = 0, we start with a configuration where only very small clusters exist
and put cn = 0 for n > g. We see that the fluxes Jn , as defined in (9.63), converge
towards their steady state values J s given in (9.69). The steady state is reached
after a relaxation time τrel that can be shown by an analysis of equation (9.66) to
be of order

τrel ∼ r2∗
4βζv2

0

. (9.73)

In the particular example of figure 9.13, τrel ∼ 2 × 10−7 s and J s
n �

1 s−1 cm−3. The asymptotic values of the concentration ratios cn/c0
n are

qualitatively the same as in the steady-state distribution of figure 9.12 (although
the latter is computed for somewhat different values of T and s).
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Figure 9.13. Water vapor at 263 K supersaturated by a factor s = 4.9. Under these
conditions, the critical cluster size n∗ = 71 and the concentration of the monomers
c1 = 3.5 × 1017 cm−3. The smallest clusters for which we compute the time evolution
consist of g = 12 molecules, the largest of L = 120. At time t = 0, the smallest grains
are in equilibrium, cn/c0

n = 1 for n ≤ g = 12, and bigger clusters are absent (cn = 0 for
n > g). The bottom plot shows how the concentrations of various cluster sizes, normalized
to the equilibrium value, evolve in time. The top panel depicts the corresponding particle
fluxes Jn of (9.62).

9.5.6.2 Time-dependent nucleation using steady-state fluxes

As the relaxation time τrel in (9.73) is short compared to the time it takes to grow
big stable drops, the steady-state flux J s represents a good approximation to all
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fluxes Jn after the time τrel when transient effects have died out. The Jn may
then be replaced by J s and this greatly simplifies the further analysis in which we
study nucleation in a cooling gas. Such a situation prevails in the outward flowing
wind of mass loss giants where most interstellar grains are formed.

When the partial gas pressure of the condensible component, P = c1kT ,
reaches the vapor pressure P∞ over a flat surface, the saturation parameter s
equals one. At this instant, the gas temperature is denoted by Te and the time
t is set to zero. As the gas cools further, s increases. At first, the steady-state
nucleation rate J s is negligible because all clusters are below the critical size n∗
(see figure 9.9) and the time it takes to form one critical cluster, roughly given
by the inverse of J s, is unrealistically long. Only when the saturation parameter
approaches the critical value scr at time tcr do clusters become bigger than the
critical size n∗ and catastrophic nucleation sets in.

Let N(t) be the number of monomers in clusters that were formed at time tcr
and and let R(t) be their radius, so 4πR3/3 = Nv0. For t ≥ tcr, these clusters
grow at a rate

Ṙ = πa2
0 〈v〉 c1(t) (9.74)

where a0 and 〈v〉 = √8kT/πm are the radius and mean velocity of a monomer.
The rate at which monomers are depleted through steady-state nucleation is,
therefore,

ċ1(t) = −J s(t) · N(t) (9.75)

which leads to a monomer depletion since time zero of

c1(t)− c1(0) = −
∫ t

0
J s(t ′)N(t ′) dt ′. (9.76)

If the cooling is due to an adiabatic expansion, K = T/cκ−1
1 is a constant,

where κ = Cp/Cv is the ratio of specific heats. One then has to add to the density
decrease ċ1(t) of (9.75) the term γ Ṫ T γ−1/K γ where γ = 1/(κ − 1). The time
dependence of the saturation parameter s follows via P∞ as given by (9.54),

s(t) = T (t)

Te
eT0/T (t)−T0/Te .

To illustrate the formation of grains, we integrate equations (9.74) and (9.75)
with Runge–Kutta asssuming an adiabatic expansion with a cooling rate

T = Te −wt
with Te = 292 K and w = 100 K s−1. Results are plotted in figure 9.14. Until
the moment of crtitical supersaturation, grains do not form and the decrease in the
gas density and temperature and the rise of the saturation parameter are due only
to the adiabatic expansion at the prescribed rate. Then at tcr = 0.247 s, nucleation
rises in a spike as rapidly as shown in figure 9.11, depriving the gas of its atoms
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Figure 9.14. Nucleation in an adiabatically cooling water vapor. At t = 0, the
gas is at Te = 292 K and just saturated (s(0) = 1) with a monomer concentration
c1(0) = 6.6× 1017 cm−3. The gas expands adiabatically cooling by 100 K every second.
We plot as a function of time the saturation parameter s, the number density of the gas
molecules c1, the steady-state nucleation rate J s and the radius R of the largest drops. The
ordinate is for all four variables linear with the zero point indicated. The maximum values
are 7.3 for s, 103 s−1 cm−3 for J s and 280 µm for R. At the maximum of the steady-state
flux J s, the saturation parameter s is near its critical value of 5.0 and the temperature has
fallen to 268 K. At t = tcr = 0.247 s, µ = 9.7 and � ∼ 6× 106.

at an accelerated pace. From that moment on, clusters grow beyond n∗ according
to (9.74) whence they are stable. The radius at which their growth levels off (at
t = 0.65 s) represents the typical final grain size (one can also determine a size
distribution). The saturation continues to increase after tcr because of cooling but
eventually falls for lack of gas atoms.

9.5.7 Similarity relations

The number of variables that enters the nucleation calculations is quite large
(v0,m, c1, ζ, T , 〈v〉, s, p0, T0) but one can drastically reduce the parameter space
to only two variables: µ from (9.70) and � defined below [Yam77]. Therefore,
the models presented here for the condensation of water near room temperature
can be carried over to grain formation in late-type stars (T ∼ 1000 K, c1 ∼
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109 cm−3, ζ ∼ 103 dyn cm−2) as long as µ and � are comparable.
As the gas temperature changes only a little during the brief period of

catastrophic nucleation when T ∼ Tcr, it may be approximated by a linear
function in time,

T (t) = Tcr − at .
When one inserts this T (t) into the evaporation pressure p∞ = p0eT0/T of

(9.54), one finds for the time dependence of the saturation parameter

s(t) = c1(t)

c1(0)
et/τsat

where
1

τsat
� T0

Tcr

∣∣∣∣d ln T

dt

∣∣∣∣ .
The cooling rate d ln T/dt is evaluated at Tcr. By defining

y = c1(t)/c1(0)

x = t/τsat

� = τsat c1(0) πa
2
0 〈v〉

ρ = 3R

a0�

the nucleation formulae (9.74) and (9.76) can be transformed into the new
equations:

dρ

dx
= y (9.77)

1− y = �
4

81

(µ
π

)1/2
∫ x

0
y2ρ(x ′) exp

{
− 4µ3

27(x ′ + ln y)2)

}
dx ′. (9.78)

They contain only the two independent parameters µ and �. The first, µ, is
fixed by the ratio of surface tension over temperature and thus incorporates grain
properties. The second, �, is determined by the conditions in the environment,
such as gas density c1 and cooling rate Ṫ but it also reflects the physics of the
dust via the constant T0 in the expression for the evaporation temperature of the
grain material (see (9.54)). The final grain size is largely influenced by � (see
definition of ρ).

9.5.7.1 Cautioning remarks

The quantitative results of homogeneous nucleation theory outlined here are fairly
speculative because of the intrinsically exponential behavior of the process of
grain formation and a number of dubious assumptions, oversimplifications and
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unsolved problems, such as (recommended reading [Fed66, Abr74]) the following
ones.

• The smallest clusters are not spheres.
• The latent heat of the condensing molecules should not be neglected.
• The surface tension of the smallest clusters is unknown, the concept being

even ill defined. Replacing ζ by ζr = ζ/[1 + δ/r ], where δ is a curvature
correction of atomic length (∼1Å) and r the grain radius, does not solve the
problem.

• The thermodynamics of small clusters, in particular, the proper expression
for the free enthalpy, is still controversial. A drop also has macroscopic
motion but it is not clear how its translation and rotation replaces the internal
degrees of freedom. Because of this uncertainty, immense fudge factors (up
to 1017 for the concentration of the critical clusters) are cited in the literature.
We mention that because of the macroscopic motion, which was neglected in
our derivation of (9.57), the correct formula for the vapor pressure of a drop
is not (9.57) but ln(pr/p∞) = 2ζv0/kTr − 4/n, where n is the number of
molecules in the cluster [Kuh52].

Besides such intrinsic uncertainties in the theory of homegenous nucleation,
astronomical real life is even more complicated. First, nucleation in the wind of
giants is not homogeneous but proceeds in a vast network of chemical reactions
involving many different species for which we do not know the rate coefficients.
Second, stellar photons are present in the wind that create new reaction channels
and the radiation field is not in equilibrium with the gas. So when it comes to the
question of how much one learns by applying homogeneous nucleation theory to
grain formation in the outflow of red giants, an honest answer is sobering.

Another reason for this dissatisfactory state of affairs is the limited
possibility to compare observations with theory. Observations consist of infrared
spectra that do not carry detailed information about the dust. All they tell us is
that silicates do form in M-type stars, as can be inferred from the presence of
the 10 µm band, and where we expect carbon dust, it is there and not graphitic
because of the absence of the 2200 Å feature. However, there is no information
in the spectra about grain size or the dependence of growth on the physical
parameters of the medium.



Chapter 10

Polarization

Electromagnetic radiation can become polarized by interstellar dust in three ways:

• Through scattering, which we have already discussed and illustrated. The
achieved degree of polarization can be very high.

• Through extinction. When starlight passes through a dust cloud, the
weakening of the flux depends on the orientation of the electric vector. Many
reddened stars appear to be polarized, up to 10% or so, although the emission
from the stellar photosphere is certainly not.

• Through emission. The far infrared radiation of some clouds shows a small
degree of polarization.

To explain the latter two phenomena, one has to evoke the presence of non-
spherical grains, for example elongated particles shaped like cigars. They must
also be aligned, otherwise the net polarization would be zero.

10.1 Efficiency of infinite cylinders

As an approximation to elongated particles, we can treat dust grains as infinite
circular cylinders. Although interstellar grains are certainly neither exactly
cylindric nor infinitely long (at best they are elongated), such an idealization
provides quantitative estimates for the real particles. The problem of computing
the electromagnetic field in the interaction of light with an infinite cylinder for any
ratio of cylinder radius over wavelength was first solved by Rayleigh [Ray18] for
normal incidence and by Wait [Wai55] for oblique incidence. It is also possible
to handle coated or multi-layered cylinders. We skip the mathematical derivation
of the cross sections, the numerical code is still fairly simple.

10.1.1 Normal incidence and picket fence alignment

Consider a very long circular cylinder of length L much longer than its radius,
a, or the wavelength λ. We call the cylinder infinite when on halving its length

319



320 Polarization

L, the cross section C is also halved; C/L is then constant. When light impinges
under normal incidence, the cylinder axis is perpendicular to the direction of wave
propagation. In this case, there are two extinction cross sections depending on the
polarization of the incident light:

• Cext‖ : the cylinder axis is parallel to the electric and perpendicular to the
magnetic vector of the incident electromagnetic field.

• Cext⊥ : the cylinder axis is perpendicular to the electric and parallel to the
magnetic vector of the incident electromagnetic field.

They are not equal and, therefore, unpolarized light becomes slightly linearly
polarized after interaction with the cylinder. What counts is the difference


Cext = Cext‖ − Cext⊥ .

When there are many such cylinders with their axes all parallel, one speaks
of picket fence alignment. The efficiency Q is defined as the cross section over
projected area,

Q = C

2aL
. (10.1)

In this section, we mostly talk about extinction efficiencies and sometimes
omit the superscript ‘ext’. In figure 10.1 we present Qext‖ and Qext⊥ for infinite
cylinders with circular cross section. We adopt m = 1.7 + i0.03, which is
about the optical constant of silicate material between 0.3 and 2 µm, i.e. over
the whole visible region and part of the near IR. Carbon, the other major chemical
component of interstellar dust, is often disregarded in the context of polarization
because, without any magnetic inclusions, it is hard to align. However, we will
also consider in this chapter examples of carbon particles. By comparing the top
of figure 10.1 with figure 4.2, we see that the extinction efficiency of a cylinder
mimics, in every aspect that of a sphere, except that we now have two Qs differing
by an amount
Qext = Qext‖ − Qext⊥ . Note that
Qext may be negative.

The efficiencies Qext‖ and Qext⊥ reach their first maximum at size parameter
x � 2.5, whereas the difference
Qext has a flat peak near x � 1. In the bottom
frame of figure 10.1, the display of 
Qext is rearranged. It refers to the same
optical constant m = 1.7 + i0.03 but we now keep the wavelength λ fixed and
vary the radius. We choose λ = 0.55µm, which is the center of the visual band V,
because there the observed interstellar polarization typically attains its maximum.
The figure informs us that in polarizing visible light, silicate grains of cylindrical
shape are most efficient when their radii are about 0.1 µm and that much thinner
or thicker cylinders are ineffective. Because for a given dielectric permeability,

Qext is only a function of the size parameter x = 2πa/λ, we further learn that
there is a direct proportionality between the cylinder radius and the wavelength
λmax of maximum polarization.

To derive from figure 10.1, which shows the efficiencies Q‖ and Q⊥, the
volume coefficients K‖ and K⊥, taken with respect to 1 cm3 of dust material (see
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Figure 10.1. The top frame shows the extinction efficiencies Q‖ and Q⊥ and their
difference, 
Qext = Q‖ − Q⊥, as a function of the size parameter x = 2πa/λ for
infinite cylinders of radius a and optical constant m � 1.7 + i0.03. The bottom frame
shows the dependence of 
Qext on radius a for a wavelength λ = 0.55 µm and the same
m. The data for 
Qext are exactly the same as in the top box, only rearranged.

section 2.1), one has to multiply Q by the geometrical cross section 2aL under
vertical incidence and divide by the cylinder volume πa2L. This gives K ∝ a−1.
Therefore, if at some wavelength 
Qext is equal for thin and thick rods, the thin
ones are more efficient polarizers (with respect to the same total dust mass).
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10.1.2 Oblique incidence

If the cylinder is oriented arbitrarily, its axis can form any angle θ with the
wavevector k. Normal incidence corresponds to θ = 90◦, whereas at θ = 0,
k is parallel to the cylinder axis. It is also, in the case of oblique incidence,
customary to call the quantity Q = C/2aL the efficiency, although this is not
in accord with the definition for Q in (2.9), where C is divided by the projected
geometrical cross section 2aL sin θ . Anyway, with Q = C/2aL,

Q(θ)→ 0 for θ → 0.

Furthermore, when the cylinder has a very large radius, the efficiency reflects
the geometrical contraction, so

Q(θ) ∝ sin θ for a � λ.

Formulae to compute Q for normal incidence are found, for instance, in
[Boh83], for oblique incidence in [Lin66].

Figure 10.2 shows the efficiences Q‖ and Q⊥ as a function of orientation
angle θ for size parameters x = 2πa/λ in the range where polarization has
its maximum. Around normal incidence down to orientation angles of 40◦, the
efficiencies Q‖ and Q⊥ as well as their difference
Q are rather constant. When
the cylinder is tilted further, Q‖ and Q⊥ converge and for extremely oblique
incidence they tend to zero. There is a sharp resonance for the curve with the
size parameter x = 0.6 that peaks at an orientation angle of 0.55◦. The sinusoidal
dependence of Q on θ for large size parameters is already indicated in the curve
with x = 2.

10.1.3 Rotating cylinders

Grains in interstellar space are knocked about by gas atoms and rotate. Therefore
we also have to evaluate the cross section of a spinning cylinder. The incidence is
generally oblique but we have just learnt how to handle this. During rotation the
incident angle θ varies, so one has to form an average over a rotation cycle.

Suppose the cylinder circles in the (x, y)-plane of a Cartesian coordinate
system, presented by the page of this book, and its momentary location is
characterized by the angle φ (see figure 10.3). Let the cylinder be illuminated
by an unpolarized flux whose wavevector k lies in the (y, z)-plane and makes an
angle 90− � with the z-axis. At � = 90◦, light falls directly from above on the
page and then, for reasons of symmetry, there will be, on average, no polarization.
At an angle � = 0◦, the wavevector lies in the (x, y)-plane; then cross sections
are different for electric vectors along the x- and z-axes.

While the cylinder spins, the angle θ between k, the direction of wave
propagation, and the cylinder axis changes. We can figure out in a quiet moment
that θ is given by

cos θ = cos� cosφ. (10.2)
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Figure 10.2. The top frame shows the extinction efficiencies for polarized light of
obliquely illuminated infinite cylinders. An orientation angle θ = 90◦ corresponds to
normal incidence. There are three pairs of curves for three size parameters; the upper
curve gives Q‖ when the electric vector E, the wavevector and the cylinder axis are in one
plane; the lower shows Q⊥ when E is perpendicular to the plane defined by the wavevector
and the cylinder axis. The bottom left panel is a magnification for x = 0.6. Where Q‖ and
Q⊥ (dots) cross over, the polarization reverses. The bottom right panel gives the relevant
quantity for polarization, Q‖ − Q⊥, for a size parameter x = 1.2.
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x

y

φ

Figure 10.3. An infinite cylinder rotating in the (x, y)-plane. The direction of the
incident light, given by the wavevector k, makes an angle 90−� with the z-axis which is
perpendicular to the (x, y)-plane.

Now, as before, let Q‖(θ) be the efficiency of the cylinder for oblique
incidence under the angle θ , i.e. when the electric vector, the cylinder axis and
k lie all in one plane. Let Qx be the efficiency when the electric field swings in
the plane containing k and the x-axis; equivalent definitions hold for Q⊥(θ) and
for Qy . Then

Qy = Q‖ cos2 ϕ + Q⊥ sin2 ϕ

Qx = Q‖ sin2 ϕ + Q⊥ cos2 ϕ

so that

Qy + Qx = Q‖(θ)+ Q⊥(θ)
Qy − Qx = [Q‖(θ)− Q⊥(θ)] cos 2ϕ.

The angle ϕ is just the projection of φ onto a plane perpendicular to k,

tanϕ = tan φ

sin�
. (10.3)

Denoting by 
Q the time average of Qy − Qx , we get


Q = 〈Qy − Qx 〉 = 2

π

∫ π/2

0

{
Q‖(θ)− Q⊥(θ)

}
cos 2ϕ dφ.


Q is proportional to the degree of linear polarization that the rotating cylinder
produces. In the integral, θ and ϕ are both functions of φ as specified in (10.2)
and (10.3).

An example is shown in figure 10.4. This again applies to silicate at optical
wavelengths. We see that the picket fence, which refers to rigid cylinders, agrees
qualitatively with the more sophisticated models that include rotation. Naturally,

Qext is greatest for the picket fence, by some 30% compared to rotation with
� = 0 and by more when � is larger. Polarization will become weak when the
rotation axis begins to point towards the observer.
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Figure 10.4. The difference in the extinction efficiency, 
Qext = 〈Qext‖ − Qext⊥ 〉, of
a rotating infinite cylinder with refractive index m = 1.7 + i0.03 as a function of size
parameter for various inclinations of the rotation axis. The curve labeled picket fence can
also be identified in the top frame of figure 10.1; here the cylinders do not rotate but are
fixed in space and their axes are parallel to the electric vector and perpendicular to the
direction of wave propagation given by the wavenumber k. When the cylinder is spinning,
� denotes the angle between k and the plane of rotation.

10.1.4 Absorption efficiency as a function of wavelength

When cylinders have a diameter 2a � 0.1 µm, which is a typical size of
interstellar grains, their efficiencies Q‖ and Q⊥ and the efficiency of a sphere
of the same radius a are, at optical wavelengths, quite similar. Within a factor of
two,

Q‖ � Q⊥ � Q (sphere).

In the mid and far infrared at wavelengths λ � a, the situation is radically
different. This is demonstrated in figure 10.5, where we have calculated the Qs
over a broad wavelength region for cylinders as well as spheres. The particles
consist of our standard dust materials, amorphous carbon and silicate, with
frequency-dependent dielectric permeabilities from figure 7.19. Whereas for both
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Figure 10.5. The absorption efficiencies, Q‖ and Q⊥, of infinite cylinders (full lines)
under normal incidence of light. The cylinder radius is a = 10−5 cm. The left panel is
for silicates, the right, amorphous carbon. The efficiency of a sphere (dotted) of the same
radius is shown for comparison.

substances, Q⊥ and Q(sphere) are comparable at all λ, the efficiency Q‖, where
the electric vector of the light is along the cylinder axis, is in the far infrared much
larger than Q(sphere). This has consequences for the temperature of dust, its
emission and the degree to which the emission is polarized; extinction is usually
irrelevant at these wavelengths.

When the cylinders in a cloud are randomly oriented or randomly rotating in
space, one has to take an average over the solid angle and over the polarization
direction. The mean efficiency is given by

〈Qν〉 = 1
2

∫ π/2

0

[
Qν‖(θ)+ Qν⊥(θ)

]
sin θ dθ (10.4)

where θ equals 90◦ when the light falls at a right angle on the cylinder. 〈Qabs
ν 〉 is

plotted in figure 10.6. It must be plugged into equation (8.8) when one wants to
determine the temperature of the cylinders in a radiation field Jν . In figure 10.7,
we have computed, from equation (8.1), the emission εν of cylinders near a B1V
star and compare it with that of spheres. There are tremendous differences in
the dust temperature, a factor of three (!) for amorphous carbon and a factor of
1.5 for silicate. Despite the fact that cylinders are much colder than spheres,
they are much stronger emitters in the far infrared, especially if they consist
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Figure 10.6. The average 〈Qν〉 of (10.4) for randomly oriented rotating cylinders and for
spheres (dots); otherwise as figure 10.5.

of amorphous carbon which has a large absorption efficiency because of its
metallicity. Infinite cylinders are, of course, an extreme example but particles
with realistic elongations also show considerable enhancement in their far infrared
emission (one may consult figure 3.3).

10.2 Linear polarization through extinction

10.2.1 Effective optical depth and degree of polarization p(λ)

In a cloud with anisotropic grains that are aligned to some degree, the extinction
of a linearly polarized wave depends on the orientation of the electric field
vector. Let τmax be the optical depth in the direction of maximum attenuation,
perpendicular to it, the optical depth has its minimum, τmin. When the unpolarized
light from a background star traverses the cloud, the initial stellar intensity I∗ is
weakened to the observed intensity

Iobs = 1
2 I∗(e

−τmax + e−τmin) = I∗e−τeff

where τeff defines the effective optical thickness,

τeff = − ln
[ 1

2 (e
−τmax + e−τmin)

]
> 0. (10.5)
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Figure 10.7. Emission in erg s−1 ster−1 Hz−1 of 1 cm3 of amorphous carbon (right) and
silicate dust (left). The grains are at a distance of 1018 cm from a B1V star (L = 104 L�,
Teff = 20 000 K) and are either spheres (dots) or randomly rotating cylinders (full curve)
but always of radius a = 10−5 cm. The total volume of the cylinders equals also 1 cm3,
so they are not infinite, just very long. The dust temperatures are: T (aC,sphere) = 56.3 K,
T (aC,cyl)= 19.3 K, T (Si,sphere)= 44.4 K, T (Si,cyl)= 30.9 K. See also previous figure.

In the case of weak extinction (τmax � 1),

τeff = 1
2 (τmax + τmin).

The (positive) degree of polarization is (see (2.71) and (2.77))

p = e−τmin − e−τmax

e−τmin + e−τmax
. (10.6)

The difference in optical depth, τmax − τmin, is usually small (although τmax and
τmin themselves need not be so) and the polarization may then be approximated
by

p = 1
2 (τmax − τmin) for τmax − τmin → 0. (10.7)

However, when τmax − τmin is large, the polarization goes to unity,

p = 1 for τmax − τmin →∞.
The more foreground extinction there is, the higher the degree of

polarization. The observed percentage of polarization rarely exceeds 10%. The
upper limit is set by the difficulty of observing faint, strongly reddened stars.
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Figure 10.8. Linear polarization of the star HD 161056 [Som94]. Dots represent
measurements, the full curve is the best fit Serkowski curve. Reproduced from [Som94]
with permission of the American Astronomical Society.

10.2.2 The Serkowski curve

A central question is how the polarization, p(λ), varies with wavelength as stellar
light is extinguished by aligned grains in foreground clouds. Figure 10.8 presents,
as an example, multi-wavelength observations of the star HD 161056 in the
spectral interval from 0.13 to 3.6 µm. The data are nicely fitted by the expression

p(λ)

pmax
= exp

[
−k ln2

(
λ

λmax

)]
. (10.8)

This functional form of p(λ) is called the Serkowski curve after one of
the pioneers in the field. As the logarithm in (10.8) is squared, it does not
matter whether we write λ/λmax or λmax/λ in the exponent. The Serkowski
curve approximates polarization measurements of most stars quite well. It has
three parameters: λmax, pmax and k. The meaning of λmax is obvious—it is the
wavelength where the degree of polarization reaches its maximum pmax. It is also
easy to see that the parameter k determines the width of the curve. Equation (10.8)
is just a mathematical construct to fit empirical data, nothing more and certainly
not a law. Nature also takes the liberty of behaving otherwise.

In section 10.1, we calculated, from Mie theory, the cross sections of
infinite cylinders. We now apply these results in an attempt to give a theoretical
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explanation to the Serkowski curve. For this purpose, we go back to figure 10.4
which displays the difference 
Qext = Q‖ − Q⊥ in the extinction efficiency
of rotating cylinders as a function of size parameter x = 2πa/λ, and also for
various inclination angles � of the rotation axis. We infer from equation (10.7)
that 
Qext(λ) is generally proportional to the polarization p(λ) and thus has the
same wavelength dependence. The refractive index of the cylinder material in
figure 10.4 is m = 1.7 + i0.03, representative of silicate at optical and near IR
wavelengths.

When we use exactly the data of figure 10.4 but rearrange them by fixing the
cylinder radius to some typical size, say a = 0.1 µm, so that only λ appears in the
abscissa, the plots already look quite similar to a Serkowski curve. Figure 10.9
shows two alignment scenarios. On the left, the cylinders form a picket fence, on
the right, they rotate with the rotation axis inclined by an angle� = 45◦. In either
configuration, the Serkowski curve gives a remarkably good fit. This quick result
is gratifying and guides us in understanding why interstellar polarization has the
functional form of equation (10.8). It also testifies that such artificial geometrical
bodies, like infinite cylinders, are, in their polarizing capabilities over a wide
wavelength interval, from a tenth to a few micrometres, akin to real interstellar
grains.

Of course, the agreement in figure 10.9 between model and Serkowski curve
is not perfect, locally it is far from it. There are broad and deep wiggles. Their
maxima are spaced by
x � 0.7 but as the difference in the extinction efficiency,

Qext, depends only on x = 2πa/λ, we know that a spread in cylinder radii by
only 50% will effectively smear out the wiggles. Therefore, for a size distribution
of cylinders, p(λ) will be smooth and close to the Serkowski curve everywhere.
Indeed, to achieve good agreement it takes only a few cylinder radii with proper
size steps. For modeling polarization, the size distribution is not nearly as
important as it is for modeling the extinction curve.

We also conclude from figure 10.9 that rotation, as opposed to the picket
fence, does not change the shape of the wavelength dependence of polarization
greatly. Rotation mainly reduces the height of the curve (degree of polarization),
whereas the parameters λmax and k are not much affected.

When one observes the wavelength dependence of polarization towards a
large and diverse sample of stars, and then fits the measurements for each star by
a Serkowski curve, one gets a continuous range of values for the three parameters
(pmax, k, λmax). Naturally, we expect strong fluctuations in pmax. Their origin
is trivial as this quantity must depend on the degree of grain alignment and is
at small optical depth proportional to the number of particles, Ng, in the line of
sight.

The variations in the other two parameters, k and λmax, are more subtle. We
do not expect them to be related to Ng and the influence of alignment is uncertain
and probably slight. If interstellar grains were the same everywhere, which is
not a bad assumption for many purposes, we would be at a loss to explain the
observed variations in k and λmax. As variations are common, we conclude that
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Figure 10.9. The wavelength dependence of linear polarization produced by aligned
infinite cylinders with optical constant m = 1.7 + i0.03 (full curve). Also shown are
Serkowski curves after (10.8) (dotted lines) with parameters λmax = 0.6 µm and k = 1.2;
they fit more or less. In both frames, the cylinder radius a = 0.1 µm. The left panel
shows rigid cylinders under normal incidence, the right, rotating cylinders with rotation
axis inclined 45◦ to the line of sight. The full curve is a rearrangement of the curve in
figure 10.4 for � = 45◦ and is obtained by putting a = 0.1 µm.

intrinsic differences exist among the polarizing grains in various environments.
For field stars, λmax has a large scatter from approximately 0.35 to 0.9 µm

but values cluster at 0.55 µm. We will argue in the discussion of figure 10.10
that, for cylinders, the maximum wavelength λmax is proportional to grain size. A
dependence of k on cylinder radius a is not evident. Nevertheless, there exists an
interesting statistical correlation between k and λmax [Whi92],

k � 1.66λmax.

A good explanation for this formula is still missing.

10.2.3 Polarization p(λ) of infinite cylinders

Figures 10.10 and 10.11 display how, for infinite cylinders, the difference in the
extinction efficiency,
Qext = Q‖−Q⊥, which is proportional to the polarization
p(λ), changes with wavelength. The plots refer to picket fence alignment. If we
allow for rotation and an inclined rotation axes, nothing essentially changes. The
computations are performed for two materials, silicate and amorphous carbon,
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Figure 10.10. 
Qext(λ) for infinite silicate cylinders in picket fence alignment.
Computations were done for three cylinder radii, a, as indicated. The optical constant
m(λ) is from figure 7.19. The dotted line represents a least–square fit by a Serkowski
curve with λmax = 0.6 µm and k = 1.2.

and cover a wide wavelength range. The cylinder radii change from 0.025 to
0.2 µm, which should comprise the astrophysically relevant sizes.

10.2.3.1 Silicate cylinders

Both silicate and amorphous carbon grains have their peculiarities. Let us first
look at the polarization curve of silicate cylinders with radius a = 0.1 µm. This
is the full curve in figure 10.10. It has three bumps (at about 0.6, 12 and 23 µm).
The one around 0.6 µm is very similar to the bump in the left frame of figure 10.9,
only there the optical constant m(λ) was fixed and the wavelength display linear,
whereas in figure 10.10, m(λ) is variable and the wavelength scale logarithmic.
In least–square fits to p(λ) by a Serkowski curve, the parameters k and λmax are,
in both cases, almost identical (dots in figures 10.9 and 10.10).

When one smooths the oscillations in the curves of figure 10.10 and
determines the location of the first peak (the one at λ < 2 µm), one finds that the
relation between λmax and the cylinder radius a is roughly linear. Consequently,
if the polarizing dust particles in interstellar space are silicate cylinders, they must
have diameters of ∼0.2 µm, or a bit less, to yield the Serkowski curve with the
standard λmax = 0.55 µm.

Besides the bump at 0.6 µm, there appear in figure 10.10 two other peaks
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Figure 10.11. As figure 10.10, but now for cylinders of amorphous carbon (aC). For
cylinder radius a = 0.025 µm, the optical constant m(λ) = 1.85 + 1.23i is fixed and
has the value of aC at 0.55 µm; for the other cylinder radii, m(λ) is from figure 7.19
and variable. Dots show Serkowski curves. For cylinder radius a = 0.025 µm, the fit
parameters are λmax = 0.81 µm, k = 1.2; for a = 0.1 µm, they are λmax = 2.5 µm,
k = 0.8.

in the mid infrared which are not predicted by the Serkowski curve. Their origin
is of an entirely different nature and due to resonances in the bulk material (see
figure 7.19). If m(λ) were constant, these bumps would vanish. The first, sharper
peak is associated with the 9.7 µm silicate absorption feature but its position is
substantially offset by about 2 µm to the red. The location of the polarization
bump is independent of the cylinder radius; however, its strength increases with
a.

10.2.3.2 Carbon cylinders

Carbon grains are depicted in figure 10.11. The bumps in the mid infrared have
disappeared, nevertheless the polarization at these long wavelengths is several
times stronger than for silicates. The curve p(λ) now has only one peak that
occurs, for the same cylinder diameter, at much larger λmax compared to silicates.
Extremely thin carbon rods (a ≤ 200 Å) are required to produce a hump at
0.55 µm, where most polarization curves peak.

But even when carbon rods of a certain radius produce the right wavelength
of maximum polarization, λmax, the overall shape of p(λ) does not agree with
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observations. For example, in the plot of p(λ) for a = 0.025 µm, we can fit only
the peak of the Serkowski curve. Likewise grains with a = 0.1 µm, which does
not seem to be an unreasonable size, can be excluded not only because λmax is far
off in the near infrared but also because p(λ) overshoots on the red side and is
much too broad (k = 0.8). On these grounds, amorphous carbon is not likely to
be the prime polarizing agent.

10.2.3.3 The ratio C‖/C⊥ at optical and infrared wavelengths

In the optical region, polarization is well described by the Serkowski curve which
can be quantitatively reproduced by applying Mie theory to infinite cylinders.
Maximum polarization occurs when the cylinder radius is comparable to the
wavelength. The cylinder cross section C‖ is about 25% greater than C⊥ (see
figure 10.1). So the ratio C‖/C⊥ is not far from unity and the cross sections
are not very sensitive to the direction of the electric vector. In the infrared
region, however, where the particles are small compared to wavelength, the
ratio C‖/C⊥ can be large. For instance, silicate cylinders at 10 µm (optical
constant m = 1.36 + i0.95) have C‖/C⊥ = 2.61. At λ = 1.3 mm, where
m = 3.41+i0.034, this value goes up to 39.9 and for amorphous carbon cylinders
the ratio approaches 104 (see figure 10.5). These numbers are independent of
cylinder radius as long as a � λ.

10.2.4 Polarization p(λ) of ellipsoids in the Rayleigh limit

Although infinite cylinders can reproduce the basic features of optical
polarization, it is unsatisfactory that their shape is so artificial. We can improve
the infinite cylinder model by treating ellipsoids as a more realistic alternative.
They allow an investigation of a much greater variety of shapes. Cigars, a subclass
with major axes a > b = c, include cylinders in the limit of infinite axial
ratio a/c. In the infrared, the computation of cross sections is easy because the
interstellar particles are then small compared to wavelength and we may apply the
electrostatic approximation of section 3.3.

It is also straightforward to compute coated ellipsoids, although we will not
do so. They further widen the parameter space: one can then vary the axial ratio
of the ellipsoids, their mantle thickness and the optical constants of core and
mantle. Coated ellipsoids will thus be superior in fitting observations. However,
a fit to observations becomes astronomically relevant not by its mere agreement
with the data but by its ability to predict and to constrain our conception about
dust. One must, therefore, critically ask whether a refinement of the dust model
in the direction of complicating shape and composition deepens or muddles our
understanding of dust.

Figure 10.12 depicts how the optical depth τ (λ) and the polarization p(λ)
produced by small silicate cigars change with wavelength. The particles are
spinning with their rotation axis perpendicular to the line of sight (� = 0 in
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Figure 10.12. Optical thickness τ and degree of polarization p in the infrared as a function
of wavelength for small rotating silicate cigars; no other grains are asumed to be present.
The rotation axis is perpendicular to the line of sight. The dielectric permeability εSi(λ) is
taken from figure 7.19. The left box shows moderate elongation with axial ratio a/c = 3,
the right box, weak elongation, a/c = 1.5. The optical depth is one at 9.5 µm. The curve
p(λ) gives the degree of polarization one would observe in a column with τ9.5 µm = 1
under perfect spinning alignment.

the nomenclature of section 10.1). τ (λ) is the effective optical depth after (10.5)
and p(λ) is defined in (10.6). The size of the particles is irrelevant as long as they
are in the Rayleigh limit. In this particular example, τ is one at 9.5 µm (curve
maximum). At low optical depth, which is approximately true outside the peak at
9.5 µm, τ (λ) is proportional to the time-averaged cross section C = 1

2 (C⊥+C‖),
and p(λ) to the difference 
C = C⊥ − C‖ (see formulae (3.49) and (3.50)).
The results for silicate pancakes are practically identical. When the spheroids
are made of amorphous carbon (not shown), the curves are less interesting and
display a monotonic decline with wavelength.

A different presentation of the polarization produced by perfectly aligned
spinning spheroids is given in figure 10.13. It allows us to read off p(λ) if the
optical depth τ (λ) at wavelength λ equals 1 or 3. The polarization p(λ) for other
optical depths may be estimated from interpolation remembering that p(λ) goes
to zero for τ (λ)→ 0 and approaches one for τ (λ)� 1.

From figure 10.13 we conclude that if interstellar dust is made entirely of
weakly elongated particles (a/c = 2/3, about the shape of an egg), a cloud
with an optical depth of three at 20 µm, corresponding to τV ∼ 100 mag,
would produce a polarization of 50% under perfect grain alignment. The optical
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Figure 10.13. The percentage of polarization due to perfectly aligned spinning spheroids
of silicate and amorphous carbon. Note that in contrast to figure 10.12, here the degree
of polarization p(λ) is plotted for fixed effective optical depth τ(λ), so p(λ) always refers
either to τ(λ) = 1 (lower pair of curves in each box) or τ(λ) = 3 (upper pair of curves).
Full curves are for cigars, dotted ones for pancakes. Optical constants are from figure 7.19.

polarization p(V ) is then close to one but could not be observed because of
the large extinction. Although alignment in real clouds will not be perfect, one
nevertheless expects a considerable degree of infrared polarization in those cases
where there is a suitable infrared background source.

From figures 10.12 and 10.13 and similar calculations for small amorphous
carbon spheroids (not shown) we learn that polarization through extinction
and extinction itself are qualitatively similar in their wavelength dependence.
However, there exist significant offsets in the resonance peaks, as can be checked
by scrutinizing figure 10.12, if necessary with the help of a ruler. Furthermore,
one finds that a small or moderate axial ratio (a/c ≤ 3) has little affect on
extinction (see figure 3.3) but has a great influence on polarization.
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Figure 10.14. 
Qext(λ) for prolate spheroids (full curves) and a cylinder (dashed curve)
under normal incidence in picket fence alignment. The numerical code was kindly
provided by N V Voshchinnikov [Vos93]. The cigars have principal axes a > b = c
with uniform c = 0.1 µm but various axial ratios a/c ranging from 1.41 to 8. The optical
constant is fixed and appropriate for silicate in the visual band.

10.2.5 Polarization p(λ) of spheroids at optical wavelengths

Unfortunately, in the visual band, interstellar grains of spheroidal shape are not
small relative to wavelength and computing their cross sections entails some
numerical effort [Asa75]. We restrict the discussion to cigars, which have
principal axes a > b = c, and demonstrate how their axial ratio influences the
polarization. Results for silicates under normal incidence are displayed in figures
10.14 and 10.15. When all axes are equal, the body is a sphere and there is no
polarization. If we keep the small axes b = c fixed and increase a, the cigars begin
to resemble cylinders. To be specific, we assume constant values c = 0.1 µm and
λ = 0.55µm (visual band) and vary the axial ratio a/c ≥ 1. The results depend,
of course, only on the size parameters a/λ, and c/λ, and on the refractive index
m.

For an axial ratio of a/c = 8, the polarization, expressed through the
difference in extinction efficiency 
Q, is similar to that of an infinite cylinder,
as it should be. When a/c decreases, the maxima of the curves shift to shorter
wavelengths and the degree of polarization (
Q) falls; the curves also become
narrower. By and large, the response in amorphous carbon particles to a change
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Figure 10.15. This is a derivate of figure 10.14. A Serkowski curve (k = 1.15,
λmax = 0.6 µm) is added to study the shape of the polarization curves better. The
Qs for
cigars with axial ratio 4 and 8 have been omitted, those for a/c = 1.41 and 2 are enhanced
so that the maxima of all curves are about equal.

in the ratio a/c is similar. Naturally, spheroids of variable axial ratio show a
greater diversity in their polarizing properties than infinite cylinders but it also
becomes harder to infer from the shape of the Serkowski curve size and chemical
composition of the grains, assuming that they are spheroids. For instance, the
width of the curve p(λ) is influenced by the optical constant and the particle
shape, and it is hard to tell one from the other.

If we want to know how much polarization we get from a unit volume of
spheroidal dust particles, we must convert 
Q into a mass coefficient, 
K . To
determine
K , we multiply
Q by the geometrical cross section πac and divide
by the volume of one grain, 4πac2/3. So 
K is proportional to 
Q/c. In
order that the cylinders also refer to a unit volume, we have multiplied 
Qcyl
in figure 10.14 by 8/3π . This enables direct comparison of all polarizing
efficiencies.

10.2.6 Polarization and reddening

It is instructive to combine photometric with polarimetric observations. The
former yield the effective optical depth τeff of (10.5), the latter the degree of
polarization p. Both are produced by the extinction of dust particles and both
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depend on wavelength.
The ratio of pmax over standard color excess EB−V as defined in (7.15)

combines photometry and polarimetry, or τeff and p, and gives the polarization per
unit reddening. It is a measure of the polarizing efficiency at visual wavelengths
along the line of sight. There is an important empirical upper limit,

pmax

EB−V
� 9%. (10.9)

Because the highest polarization is generally reached in the visual,

pmax � p(V )

and the visual extinction in magnitudes, AV, is related to EB−V, from (7.17),
through

AV = RVEB−V = 1.086τV

where τV is the corresponding optical depth, we can express the condition (10.9)
also as p(V )/τV ≤ 0.031, which gives, using equation (10.7),

β ≡ τmax

τmin
− 1 � 0.062. (10.10)

This inequality implies that the optical depth at visual wavelengths in two
perpendicular directions never differs in interstellar space by more than ∼6%.
However, in those cases, where pmax/EB−V � 9% is observed, the quantity β
must attain this maximum value of 6%.

We can determine a theoretical upper limit to β by assuming that all grains
are cylinders and optimally aligned. Without pretending to be precise, we can
read from figures 10.1 and 10.4 that the maximum value of β = 
Q/Q is about
25%. This number is only four times greater than what actually is observed under
favorable conditions and thus surprisingly low when one considers that some of
the real grains do not polarize at all and those that do are not infinite cylinders but
only weakly anisotropic; furthermore, the orientation is never perfect and possibly
changing along the line of sight.

10.3 Polarized emission

Figures 10.10 to 10.12 present the theoretical wavelength dependence of
polarization due to extinction by silicate cylinders and ellipsoids. These plots
include the Serkowski curve but also cover the mid infrared region. When
extended further into the far infrared, no detectable effect is expected because
the extinction optical depth becomes too small.
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10.3.1 The wavelength dependence of polarized emission for cylinders

However, dust not only absorbs but also radiates and polarized emission of aligned
grains can be observed in the far infrared and millimeter spectral region. Towards
a uniform cloud of optical depth τν , temperature Td and intensity

Iν = Bν(Td) · [1− e−τν ]
the degree of polarized emission, p(λ), becomes

p = e−τmin − e−τmax

2− (e−τmin + e−τmin)
. (10.11)

We abide by the nomenclature of section 10.2 where τmax and τmin denote
the optical depth at the position angle of maximum and minimum attenuation. In
most cases and certainly at submillimeter wavelengths, the optical depth is small.
The (positive) degree of polarization can then be written as

p � τmax − τmin

τmax + τmin
. (10.12)

p depends on wavelength but not on τ . Even for arbitrarily small τ , the
polarization is finite. As the optical depth increases, the polarization can only
decrease. This is quite contrary to polarization by extinction which grows with τ
and vanishes for τ → 0.

We start the discussion of polarized dust emission according to equation
(10.12) with cylinders. Their cross sections for light when the electric vector lies
along or perpendicular to the cylinder axis, C‖ and C⊥, can differ by orders of
magnitude, as is evident from figure 10.5. Even for a dielectric, the ratio C‖/C⊥
may be above 10. We, therefore, expect a very high degree of polarization in the
case of complete alignment (see figure 10.16). Rotation of the cylinders roughly
halves the value of C‖/C⊥ with respect to picket fence alignment but C‖/C⊥
is still large, so p(λ) does not change much. It also turns out that when the
rotation vector is inclined towards the observer, the degree of polarization drops
less swiftly than in the case of extinction (see figure 10.4).

10.3.2 Infrared emission of spheroids

At low frequencies, one can also easily compute spheroids in the small particle
limit as outlined in section 3.3. Let the grains have major axes a ≥ b ≥ c with
corresponding cross sections Ca,Cb,Cc. If they rotate about their axis of greatest
moment of inertia and are fully aligned, the emission in a direction perpendicular
to their rotation axes is polarized to a degree:

p = τmax − τmin

τmax + τmin
=



Ca − Cc
Ca + 3Cc

cigars (Ca > Cb = Cc)
Ca − Cc
Ca + Cc pancakes (Ca = Cb > Cc) .

(10.13)
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Figure 10.16. The percentage at which thermal emission by dust is polarized in the far
infrared. The particles consist of silicate (Si, left box) or amorphous carbon (aC, right
box) with optical constants from figure 7.19. They are either infinite cylinders (the two top
curves in each frame), cigars (all other full curves) or pancakes (all other dotted curves)
of varying axial ratios a/c. There is perfect spinning alignment for cylinders, cigars and
pancakes and the rotation axis is perpendicular to the line of sight. Only the dotted top
curves in each frame show cylinders arranged in a picket fence.

Some results are shown in figure 10.16 and we point out that

• even spheroids of small elongation (a/c = 1.40) produce very substantial
polarization (∼20%);

• the polarization curves are flat at long wavelengths.

10.3.3 Polarized emission versus polarized extinction

Sometimes towards a dust cloud one detects polarized submillimeter radiation
and simultaneously polarized light at much shorter wavelengths from embedded
or background stars. It is easy to see that the polarization vectors associated with
these two processes, emission and extinction, are perpendicular to each other.

A polarization vector is defined by its length, which is equal to the degree of
polarization, and by the direction where the electric field vector has its maximum;
the associated angles have values between 0◦ and 180◦.

If psub is the submillimeter polarization due to emission and pV the visual
polarization due to extinction, the two are given by (10.7) and (10.11) and are
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related through
pV

psub
= τV

βsub

βV

where at both wavelengths we use the quantity β = τmax/τmin − 1 defined in
equation (10.10), which specifies the maximum change in the optical depth with
direction. As pV, psub and τV can be determined observationally, one obtains
βsub/βV. Because the influence of grain elongation on β is markedly different at
visual and far infrared wavelengths, this ratio contains, in principle, information
on the particle shape.

10.4 Circular polarization

In some media, the propagation of a linearly polarized wave is sensitive to the
orientation of polarization because the building blocks of matter are anisotropic
as, for example, in all crystals of the non-cubic lattice or substances consisting of
long and aligned fibrous molecules. The optical constant, m = n + ik, depends
then on orientation, too. This produces a number of interesting phenomena which
can all be understood if the molecules are treated as harmonic oscillators. The
particular structure of the molecules in the medium has the effect that the motions
of the charges, which determine m or ε after (1.77), depend on the direction of
the electric field vector.

• When the real part of the refractive index, n, is anisotropic, one speaks of
birefringence. Calcite, CaCO3, is the best known example. It splits an
incident unpolarized beam into two polarized waves with different refraction
angles (this is actually a special kind of birefringence known as anomalous
refraction).

• When the imaginary part of the refractive index, k, differs in two directions,
the phenomenon bears the name dichroism. The gem tourmaline is renowned
for this property.

We will be dealing with birefringence only. Imagine a slab filled with a
medium that has unequal indices n‖ and n⊥ in two perpendicular directions and
thus unequal phase velocities. Let us shine linearly polarized light through the
slab. The light is oriented in such a way that it can be decomposed into two
equally strong waves, E‖ andE⊥, linearly polarized along the principal directions.
At the front of the slab, E‖ and E⊥ are in phase, inside they will fall out of phase.
When the phase difference amounts to π/2, the initially linearly polarized wave
presented by the sum E‖ + E⊥ has been converted into a circularly polarized
wave; a slab with the right thickness to do just that is called a λ-quarter plate.
Quite generally, when light that is linearly polarized (but not along a principal
direction) enters a birefringent medium, it leaves with some degree of circular
polarization.
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There is another related phenomenon, optical activity, which we mention for
completeness. Here the phase velocity of the medium is different for circularly
polarized waves with opposite senses of rotation. A linearly polarized wave
entering an optically active medium exits it still linearly polarized but with its
orientation shifted by some angle. The electric vector is rotated to the right when
the left-circular wave is faster and to the left otherwise.

10.4.1 The phase shift induced by grains

When a dust cloud is traversed by a plane wave, the grains not only reduce the
intensity of radiation but may also change the phase of the wave. To understand
this, we exploit the complex scattering function S(θ, φ) discussed in section 2.2.
Its value in the forward direction, S(0), can formally be interpreted as the optical
constant of the interstellar medium, m = n + ik. The imaginary part, Im{S(0)},
determines, according to (2.22), the index of refraction, n−1, which is responsible
for the phase velocity.

A wave of wavenumber k = 2π/λ that passes through a plate of unit
thickness and refractive index m = n + ik is phase-shifted with respect to a
wave traversing a vacuum by


φ = k · (n − 1).

Let us define the volume coefficient for phase lag, K pha, by putting K pha =

φ. If there are N particles per cm3, each with a cross section for phase lag Cpha,
so that K pha = NCpha, we get, from (2.22),

Cpha = λ2

2π
Im{S(0)}. (10.14)

When the wave has crossed a distance l, the componentsE‖ and E⊥ of the electric
vector E are out of phase by an angle


φ = l(K pha
‖ − K pha

⊥ ) = l N
Cpha.

The optical thickness over this distance l equals NlCext. Therefore, an optical
depth τ produces a phase lag


φ = τ 
C
pha

Cext .

Near the wavelength λmax of maximum linear polarization in the Serkowski
curve, the ratio 
Qpha/Qext = 
Cpha/Cext (see (10.1)) is for silicate cylinders,
very roughly, one tenth. Consequently, the phase lag in a cloud of visual optical
depth τ due to perfectly aligned cylinders is of order
φ ≈ τ/10. If there are also
non-polarizing particles in the line of sight, 
Qpha/Qext and 
φ will be smaller.
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Figure 10.17. Linear and circular polarization and phase lag of infinite cylinders in picket
fence alignment as a function of size parameter x = 2πa/λ. The optical constant m is
fixed. The curve 
Qext (full curve) is identical to the one in figure 10.1.

10.4.2 The wavelength dependence of circular polarization

Interstellar circular polarization proceeds in two stages:

• One needs linearly polarized light to start with, the more the better. This is
provided by a cloud with grains aligned in one direction. The percentage of
linear polarization is usually small.

• One needs another cloud where the particles are aligned in some other
direction to produce the phase shift.

Therefore circular polarization is a second-order effect and weak. Its
wavelength dependence, pcirc(λ), is given by the product of two first-order effects,

pcirc(λ) ∝
[
Qext‖ (λ)− Qext⊥ (λ)

] · [Qpha
‖ (λ)− Qpha

⊥ (λ)
]
. (10.15)

The first factor stands for the linear polarization, the second for the phase
lag. As usual, the Qs are the efficiencies. Circular polarization contains also
information how the alignment changes along the line of sight but it is buried and
to find it one has to dig deep.
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Figure 10.18. Linear and circular polarization and phase lag of infinite silicate cylinders
with 0.1 µm radius in picket fence alignment. Optical constants from figure 7.19.

The indices n and k of the interstellar medium as given in (2.22) and (2.23)
as well as the differences n‖−n⊥ and k‖−k⊥ are connected through the Kramers–
Kronig relations. Because of the proportionalities

(n‖ − n⊥) ∝ (Cpha
‖ − Cpha

⊥ ) (k‖ − k⊥) ∝ (Cext‖ − Cext⊥ )

there is, in principle, nothing new in circular polarization or in its dependence on
wavelength, pcirc(λ). It suffices to know the linear polarization, which is given via
the index k. When one computes the index n with the help of the Kramers–Kronig
relation, one arrives at circular polarization. This whole section might, therefore,
seem superfluous. However, such a point of view is too academic because, in
reality, we do not know the linear polarization at all wavelengths.

Figures 10.17–10.19 illustrate the behavior of circular polarization for
infinite cylinders in picket fence alignment. The figures display the following
quantities, either as a function of size parameter or of wavelength:


Qext = Qext‖ − Qext⊥ , the difference in the extinction efficiency which is
proportional to linear polarization;

Qpha = Qpha

‖ − Qpha
⊥ , the difference in the phase lag efficiency; and
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Figure 10.19. Linear and circular polarization and phase lag of infinite carbon cylinders
with 0.05 µm radius in picket fence alignment. Optical constants from figure 7.19.

Qcirc = 
Qext
Qpha, the product describing after (10.15) circular
polarization.

We summarize the noteworthy points about the figures:

• The efficiency for circular polarization, Qcirc(λ), can have several local
extrema.

• Where Qcirc(λ) reverses sign, the sense of rotation changes and either
Qext

or 
Qpha vanish. This occurs, for example, in silicate cylinders of 0.1 µm
radius at 0.55 µm wavelength and in carbon cylinders of 0.05 µm radius
at 1.4 µm. In either case, although the optical constants are completely
different, the sign reversal of pcirc is close to but not exactly at the maximum
of linear polarization.

• The curves for silicate are rather jittery. However, in a size distribution the
spikes would disappear.

• The 10 µm silicate resonance is very weakly discernible in circular
polarization, accompanied by a change of sign.



Chapter 11

Grain alignment

To produce polarization by extinction, interstellar grains must be elongated or
flattened and aligned, at least, some of them. As they are not sitting still
but receive stochastically angular momentum in collisions with gas atoms, they
spin and it is their rotation axes that have to be aligned somehow, not the
grains themselves. Take, for example, a long cylinder spinning about an axis
perpendicular to its symmetry axis. If the rotation vector points towards the
observer, there will obviously be no preferential direction and the time-averaged
polarization vanishes. However, if the rotation axis is at a right angle to the line
of sight, one gets maximum polarization.

The question of how alignment works has not been settled satisfactorily. One
usually assumes the Davis–Greenstein mechanism which involves cumbersome
details and is rather speculative. Although the impact of alignment studies
on the rest of astronomy is humble, it is a delightful topic because of its
physical richness. We summarize in the first two sections the tools necessary for
understanding the mechanical and magnetic processes. Afterwards we describe
them emphasizing the ideas behind them and not the final numbers which are
rather vague.

11.1 Grain rotation

11.1.1 Euler’s equations for a rotating body

Rotating bodies seem to misbehave in the sense that their motion evades intuition:
we push a spinning top one way and it goes the other. However, a child can ride a
bicycle with ease, so somehow we can cope with rotation, at least in praxi.

A freely rotating body, like an interstellar grain, rotates about its center of
mass. The moment of inertia, I , depends on the axis about which it rotates. One
can always find a rectangular coordinate system, fixed to the body, in which I
is greatest about the z-axis and smallest about the x-axis. The moments along
these principal axes are labeled Ix , Iy, Iz . If we plot, from the coordinate center,

347
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the moment of inertia in any possible direction as an arrow whose length is given
by the value of I , the tips of the arrows form the inertia ellipsoid. This is a very
regular figure, no matter how irregular the body. For example, the inertia ellipsoid
of a cube or a regular tetrahedron must, for reasons of symmetry, be a sphere.

When we resolve the angular velocity with respect to the instantaneous
values along the principal axes,

ω = (ωx , ωy, ωz).

the total angular momentum L, its square and the kinetic energy of the body are:

L = (Ixωx , Iyωy, Izωz)
L2 = I 2

xω
2
x + I 2

yω
2
y + I 2

z ω
2
z (11.1)

Erot = 1
2 (Ixω

2
x + Iyω2

y + Izω2
z ). (11.2)

The equation of motion of a rotating body describes how its angular momentum
L changes when a torque τ is applied:

τ = dL
dt
. (11.3)

It corresponds to the equation for translatory motion, F = ṗ, if we replace τ by
the force F and L by the momentum p. Likewise, the time variation in kinetic
energy E of a freely spinning top is given by

dE

dt
= τ · ω. (11.4)

This equation is analogous to Ė = F · v for translational motion, where v is
the velocity. The product τ · ω also gives the power needed to sustain rotation at
constant angular velocity ω against a torque τ due to friction.

Without a torque, the angular momentum L stays constant in space and the
tip of the vectorL marks there a certain fixed point, let us call it Q. With respect to
a coordinate system connected to the rotating body, Q is not constant but moving
and the vector L as seen from the rotating body varies like(

dL
dt

)
body
= L× ω.

If there is a torque, L changes in space according to (11.3). As viewed from
the rotating body, L, therefore, changes like(

dL
dt

)
body
= L× ω + τ (11.5)



Grain rotation 349

or in components

τx = Ix ω̇x − ωyωz(Iy − Iz)
τy = Iyω̇y − ωzωx (Iz − Ix) (11.6)

τz = Izω̇z − ωxωy(Ix − Iy).
Formulae (11.5) or (11.6) are known as Euler’s equations.

11.1.2 Symmetric tops

The kinematics of free rotation, which means without a torque, are not trivial,
quite unlike the translation analog, where F = 0 implies boring uniform linear
motion. For our purposes, it suffices to consider symmetric tops, i.e. bodies where
the moments of inertia about two principal axes are equal, say Ix = Iy . The body
is then symmetric about the z-axis, which is called the figure axis.

The solution of (11.6) is easy for τ = 0 and Ix = Iy . Obviously, ω̇z is then
zero. Taking the time derivative of the first equation of (11.6) to eliminate ω̇y
gives ω̈x ∝ ωx and likewise for the y-component ω̈y ∝ ωy , altogether

ωx = A sin�t ωy = A cos�t (11.7)

where A is a constant and

� = ωz Ix − Iz
Ix

. (11.8)

During the rotation, ω and the figure axis describe circular cones around L.
The length of the angular velocity vector ω and its component ωz are constant
but ω changes its direction in space as well as in the grain. It precesses around
the figure axis with angular velocity �. This implies time-variable stresses and,
consequently, dissipation.

In the general torque-free case, where all momenta Ix , Iy, Iz are unequal,
equation (11.3) can still be solved with pencil and paper but the rotation axis and
the principal axes perform complicated wobbling motions around L.

• Formula (11.8) applies to the wandering of the pole of the Earth. For our
planet, 2π/ωz = 1 day and Iz/(Iz − Ix) = 305. The moment of inertia
Iz around the polar axis is greater than Ix around an axis that lies in the
equatorial plane because the Earth has a bulge at the equator. From (11.8)
one finds � � 1 yr, in qualitative agreement with the Chandler period.

• The axis of the Earth is inclined against the normal vector of the ecliptic by
ψ = 23.5◦. Its rotation is not really free because the Sun and the moon
exert a torque τ on the equatorial bulge of the Earth which causes the polar
axis to slowly precess. To estimate the effect, we use equation (11.3) as we
want to derive the change of the rotation axis with respect to the stars. The
precession velocity ωpr follows immediately from (11.3), ωpr = τ/L, where
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Figure 11.1. Rotation of a symmetric top with figure axis z and moments of inertia
Ix = Iy . In the plane defined by the figure axis and the momentary rotation axis, the
angular velocity vector ω can be decomposed into ωz , which is constant, and into a
perpendicular component ω1 with moment of inertia I1 = Ix . The angular velocity ω,
the figure axis and the angular momentum vector L all lie in one plane; the latter two form
an angle θ .

L = Izωz is the angular momentum of the Earth. The torque is a tidal effect
inversely proportional to the third power of the distance r . One easily finds

ωpr = τ

L
= 2 sin 2ψ

G

ωz

Iz − Ix
Iz

[(
M

r3

)
�

+
(
M

r3

)
�

]

whereG is the gravitational constant and M/r the ratio of mass over distance
for the Sun or moon. When one corrects for the fact that the torque oscillates
as the Sun and the moon apparently orbit the Earth, the factor sin 2ψ changes
into 1.5 cosψ . Inserting numbers yields for the period T of the Platonic
year, T = 2π/ωpr ∼ 26 000 yr; about two-thirds of the effect are due to the
moon, the rest to the Sun.

Nowadays the polar axis is directed towards the Northern Star and gives



Grain rotation 351

guidance to nocturnal wanderers. In future millenia, the polar star will no
longer point north and one will have to be more careful when walking away
far from home at night.

11.1.3 Atomic magnet in a magnetic field

An atomic magnet in a field B is another example for a rotation which is not
force-free. If one applies the classical formula (1.13) (in which the vector J is the
current density) to an electron in circular motion of angular momentum L, one
gets

m = g e

2mec
L (11.9)

with the Landé factor g = 1. This result is also true in quantum mechanics with
respect to the orbital momentum L of the electron. However, in the case of pure
spin momentum (S), g = 2. So the magnetic moment m associated with the spin
of an electron (S = 1

2�) equals Bohr’s magneton:

µB = e�

2mec
= 9.27× 10−21 [cgs]. (11.10)

Quantum electrodynamics gives an upward correction; to first order in the fine
structure constant α, it amounts to 0.116% � α/2π . When S and L couple to
form the total angular momentum J = S + L, the latter is usually not parallel to
the net magnetic moment m because of the different Landé factors for S and L.
We will mainly be concerned with pure spin angular momentum where J = S.

The field B exerts on the dipole m a torque

τ = m× B. (11.11)

Because τ stands perpendicular to the angular momentum J, the torque changes
only its direction, not its length J . Therefore J precesses around B with angular
frequency

ωpr = mB

J
. (11.12)

11.1.4 Rotational Brownian motion

The results of section 9.3 on translatory Brownian motion may, in a
straightforward way, be carried over to rotation. When there is equipartition
between dust particles and gas, the grains perform translatory and rotational
Brownian motion. The average kinetic energy of a gas atom is then equal to
the average rotational energy Erot of a grain:

3
2kTgas = Erot = 1

2 Iω
2
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Table 11.1. Moment of inertia for spheres, cylinders and disks of mass M .

Sphere of radius r Isphere = 2
5Mr

2

Thin cylinder of length l with rotation axis through the Icyl⊥ = 1
12Ml

2

mass center and perpendicular to the symmetry axis
Cylinder of radius r rotating about its symmetry axis Icyl ‖ = 1

2Mr
2

Disk of radius r with rotation axis through the Idisk⊥ = 1
2Mr

2

mass center and perpendicular to the disk
Flat disk with rotation axis through the mass center Idisk ‖ = 1

4Mr
2

and parallel to the disk

and Erot is, on average, equally distributed over the three degrees of rotational
freedom:

ω2
x Ix = ω2

y Iy = ω2
z Iz . (11.13)

The angular momentum L tends to point along the axis of greatest moment
of inertia. Indeed, we see from the condition of equipartition (11.13) that
Ix < Iy < Iz implies Lx < Ly < Lz . For example, in the case of a thin
rod (Ix = Iy � Iz ), almost all angular momentum will reside in rotation
perpendicular to the symmetry axis z.

The rotational velocity of a dust particle in Brownian motion is

ωBrown =
√

3kTgas

I
. (11.14)

Moments of inertia are given in table 11.1 for a few relevant configurations.
Note that Idisk ‖ = 1

2 Idisk⊥, and that the ratio Icyl⊥/Icyl ‖ = l2/6r2 can take up
any large value. If we adopt grains of moderate elongation, volume 10−15 cm−3

and bulk density 2.5 g cm−3, we get, for their Brownian motion, from (11.14) in
a gas of 20 K

ωBrown ∼ 3× 105 s−1.

For real interstellar grains, this may be a gross underestimate if they rotate
suprathermally (see later). The disorder time tdis of equation (9.39) stays
practically the same with respect to angular momentum. The gas atoms that
collide with the spinning grain retard its rotation by exerting a torque τ . In a
likewise manner, one defines a friction coefficient ζ through

τ = ζω
where τ is the torque needed to sustain a constant angular velocity ω and

ζ = I t−1
dis .
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Again, in a stationary state, the heat loss rate ωτ (see (11.4)) must be
compensated by a spinup
L2/2I , where
L2 is the average change in the square
of the angular momentum per unit time due to collisions:

ωτ = Iω2

tdis
= 
L

2

2I
. (11.15)

In thermal equilibrium at temperature T , we get Iω2 = 3kT and 
L2 =
6ζ kT .

We mention another randomizing process, besides grain collision, that is
always at work: infrared radiation. Each photon carries off a quantum � in an
arbitrary direction. After N emission processes, the angular momentum of the
grain has changed in a random walk by an amount

√
N�. If the grain emits per

second NIR infrared photons, the associated disorder time is

tdis = 8πkTρgra5

5�2NIR
.

The expression follows from
√
NIRtdis� = Iω with Iω2 = 3kT . This

process may dominate over collisional randomization for small grains. Usually
the dust is heated by the UV field. In thermal balance, the number of UV photons
absorbed per second, NUV, is typically 50 times smaller than NIR. If one can
estimate the mean intensity of the radiation field, for example, from the dust
temperature, NUV follows from

NUV = 4π πa2
∫

UV

JνQν
hν

dν.

Inside a molecular cloud, where only a few energetic photons fly around, the
discrepancy between NUV and NIR is less severe.

11.1.5 Suprathermal rotation

An interstellar grain is probably not in energy equilibrium with the gas, as
assumed earlier, and its rotational energy may be orders of magnitude greater
than 3

2kTgas. It then rotates much faster than estimated in (11.14) from Brownian
motion [Pur79].

To see why, imagine S-shaped grains of mass Mgr (figure 11.2) that are
cooler than the gas,

Tdust < Tgas

and have a uniform sticking coefficient η over their surface. A fraction η of the gas
atoms, where 0 < η < 1, stays after the collision for a while on the grain before
it leaves with a lower temperature (momentum) than it had before the impact.
Because of the particular form of the grain, gas atoms approaching from the right
and hitting the top of the S may collide twice and their chance for an inelastic
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Figure 11.2. A grain in the form of the letter S, colder than the gas and with a
constant sticking probability η, is accelerated clockwise (left). The same holds for a less
fancy-shaped particle if η is not uniform but displays in its distribution rotational symmetry
(right). The fat stretches on the bar indicate places of enhanced sticking probability.

collision is higher. As a result, they impart, on average, less momentum to the
grain than those striking the bottom half of the S. Therefore, the S will rotate
clockwise. Should the grain be hotter than the gas, it will rotate anti-clockwise
and, without a temperature gradient, the mechanism does not work at all.

The process leads to a spinup. The dust particle rotates faster and faster
and a limit is set only by friction when the lateral velocity of points on the
grain surface becomes comparable to the velocity of gas atoms. Then each atom
transfers approximately the angular momentum mavaa to a grain of radius a. If
we use the formula (11.15) for the frictional loss and put 
L2 � 2L
L ∼
2Iω·nvaπa2·mavaa, we find indeedωa ∼ va. Consequently, the grain’s rotational
energy Erot is not 3

2kTgas but

Erot � 3

2
kTgas

Mgr

ma

i.e. � 109 times greater. The particle is said to rotate suprathermally.
Suprathermal spinup does not really require the dust particles to be S-

shaped. A sticking probability η that varies the way as shown on the right-
hand of figure 11.2 will also do. Because of the immense factor 109, minor
inevitable irregularities, like unevenly distributed cavities over the surface or
small variations in η, are sufficient to boost Erot by powers of ten.

There are two other possibilities for spinup that do not need a temperature
difference between dust and gas.

• One is the formation of molecular hydrogen. If there are certain favorable
(active) sites on the grain surface, where an H atom gets trapped until
another comes by so that they can leave together as H2, the ejection of the
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H2 molecule imparts angular momentum to the grain. The sites will not
be exactly balanced over the surface and they endow the grain with a net
rotation.

• Another mechanism is the ejection of electrons by UV photons. The kinetic
energy of the ejected electron is typically∼1 eV and thus less than the energy
hν of the UV photon but the momentum of the electron is a hundred times
greater than hν/c. Here again one gets suprathermal rotation if the yield for
this process changes over the surface.

Even when the accommodation coefficient is perfectly uniform, random
excitation, some clockwise and some anticlockwise, speeds up the rotation in the
same way as a randomly kicked ball moves with each kick, on average, farther
away from its starting position.

11.2 Magnetic dissipation

11.2.1 Diamagnetism

When a diamagnetic particle moves in a static inhomogeneous magnetic field in
the direction of growing field strength, it experiences a repulsive force. According
to the classical explanation, the magnetic flux through the electronic orbits of
the atoms in the particle increases during the movement and thus induces an
electric field. The field leads to an additional electronic current and to a magnetic
moment which points, from the Lenz law, in the opposite direction to the outer
magnetic field. The explanation applies to all atoms and, therefore, all matter is,
in some way, diamagnetic; however, other effects may override it. The magnetic
permeability µ, defined by the relation B = µH of (1.16), is for a diamagnetic
particle a little smaller than one. We will not come across diamagnetism any
more.

11.2.2 Paramagnetism

Paramagnetism is relevant astrophysically and shows up when atoms have a
permanent intrinsic magnetic moment as a consequence of unfilled inner electron
shells. The electrons of an unfilled outer shell usually pair in binding and give
no effect. A paramagnetic substance is pushed in the direction of increasing field
strength, i.e. in the opposite way to a diamagnet and its µ is a little bit greater than
one. The atoms with the strongest paramagnetism are the lanthanides.

The paramagnetism of interstellar dust is probably due to iron. This element
has a high cosmic abundance and must be mostly solid because of its heavy
depletion in the gas phase. It can easily be built into silicates, for example olivine,
Mg2−xFexSiO4, with x not far from one (see section 7.4.4). The amount of
silicate grains is presumably limited by the cosmic abundance of Mg, which is
some 20% higher than that of iron. If all iron in the interstellar medium is in
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Table 11.2. Parameters of iron pertaining to the magnetic properties of interstellar grains,
from [Kit96]. For the value of Npm it is assumed that all iron is condensed into silicate
particles.

Abundance:
cosmic abundance [Fe]/[H] = 3.2× 10−5

depletion in gas phase >90%
number density in Npm � 6.2× 1021 cm−3

paramagnetic silicates
Bulk iron:
crystal structure cubic
γ -form 1183K≤ T ≤1674K face-centered (fcc)
α-form T ≤ 1183K body-centered (bcc)

Curie temperature Tc = 1043 K
density ρ = 7.87 g cm−3

number density Nbulk = 8.50× 1022 cm−3

lattice constant (bcc) 2.87 Å
nearest neighbor distance 2.48 Å
saturation magnetization Msat = 1750 G
effective magnetic moment m � 2.22 µB per atom
static susceptibility χ0 � 12
Electron configuration:
Fe atoms ground state 5D4 n = 4 shell: 2s electrons

n = 3 shell: 2s, 6p and 6d
Fe2+ ions ground state 5D4 eff. mag. moment: m � 5.4 µB
Fe3+ ions ground state 6S5/2 eff. mag. moment: m � 5.9 µB

silicate particles, Fe atoms constitute some 10% of all atoms in such grains and
their number density there should then be Npm � 6.2× 1021 cm−3.

The electron configuration of iron, together with some of its other
parameters, is summarized in table 11.2. The two inner shells of iron are
complete. The third (n = 3, M-shell) could accommodate 2n2 = 18 electrons but
contains only 14. There are two more electrons in the 4s subshell, totalling 26.
The magnetic moments of the electrons in the third shell do not balance resulting
in a net moment and thus paramagnetism. The ground state of atomic iron, as of
Fe2+, is 5D4 (D stands for orbital angular momentum L = 2�, the multiplicity
is 5 and the total angular momentum J = 4�). The ion Fe3+ has a ground term
6S5/2 (L = 0, multiplicity 6, J = 5

2�).
An atom of magnetic dipole moment m, oriented under an angle θ to a field

B, has a potential energy (see (1.133))

U = −m · B = −mB cos θ. (11.16)

Suppose a grain has N such atoms per unit volume. Its magnetization M in
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the direction of B is then

M = NmL(x) with x = mB

kT
. (11.17)

The Langevin function L(x) is defined in equation (1.137); for small
arguments, L(x) � x/3. Equation (11.17) corresponds to (1.136) and its
derivation was given in section 1.6. In weak fields, as in interstellar space,
mB � kT and the susceptibility χ = M/B depends on temperature according to
Curie’s law,

χ = M

B
= C

T
with C = Nm2

3k
. (11.18)

So far we have neglected the quantization of space. When taken into account,
only those directions for which the projection of the angular momentum along the
direction of B differs by multiples of � are allowed. The magnetic susceptibility
is then slightly modified. We mention two cases for a system with spin angular
momentum S only. It has 2S + 1 equally spaced energy levels.

• If S = 1
2 and the field is arbitrary, the magnetic moment equals twice Bohr’s

magneton, m = 2µB, and

M = Nm tanh x with x = mB

kT
. (11.19)

• If the field is weak and S arbitrary, the constant C in (11.18) becomes

C = NS(S + 1)m2

3k
. (11.20)

There are some minor changes if there is also orbital momentum L.

11.2.3 Ferromagnetism

Ferromagnetism appears in certain metals, like Fe, Co and Ni but also in alloys
of these elements and some of their oxides. It only shows up below the Curie
temperature TC. Iron, the relevant element for us, has a Curie temperature
TC = 1043 K, well above any common dust temperature. Crystalline iron
possesses a cubic grid. Below 1183 K, the grid is body-centered (α-form), above
face-centered (γ -form) but this form is, of course, never ferromagnetic.

The magnetization M in a ferromagnet is very strong even when the applied
magnetic field Ha is weak or absent. This is the result of a collective, non-
magnetic effect of the electrons. A single iron atom is not ferromagnetic, only
a cluster of atoms can show this property. Whereas in paramagnetism only the
applied field acts on the electrons and tries to align them, in ferromagnetism there
is an additional interaction among the electrons themselves formally described
by an exchange field He. This is a fictitious field insofar as it does not appear
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in Maxwell’s equations. It exerts on the electrons an apparent force which
makes their spins parallel. Ferromagnetism can only be understood quantum
mechanically. At its root is Pauli’s exclusion principle. One gets an idea of how
the exchange field comes about from Heisenberg’s theory for just two electrons:
The relevant quantity is the exchange integral which occurs because the electrons
are indistinguishable and which determines whether the spins are parallel or anti-
parallel.

The conception of an exchange field He is useful. Let us assume that it is
proportional to the magnetization,

He = λM.
The exchange field is much stronger than the applied field,

He � Ha

so the total effective field is

Ha + λM � λM.

Any attempt to explain the huge magnetization M by the interaction of the
magnetic dipoles associated with the electron spins fails by orders of magnitude.
Indeed, at the Curie point (∼1000 K), where ferromagnetism begins to fail, the
kinetic energy of the atoms must be comparable to the potential energy of a Bohr
magneton in the exchange field,

µBHe � kTc.

Therefore we estimate that He to be of order 107 G. However, the dipole field of
a Bohr magneton at the distance r ≈ 2.5 Å between neighboring iron atoms is
2µB/r3 ≈ 103 G, or ten thousand times weaker.

11.2.4 The magnetization of iron above and below the Curie point

Above the Curie point, iron is paramagnetic and the dependence of the
magnetization M on the total field, He + Ha, follows Curie’s law,

M = C

T
(Ha + λM).

As the magnetic susceptibility χ combines the applied field Ha with the
magnetization,

M = χHa

it follows that

χ = C

T − Tc
with Tc = λC. (11.21)
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Here C is the same as in (11.20). We now have a relation between the Curie
temperature Tc and the magnification factor λ. When the temperature approaches
Tc from above, the susceptibility rises steeply. Equation (11.21), known as the
Weiss law, is only approximate.

To evaluate the magnetization below the Curie point, we use (11.19), which
expresses M as a function of mB/kT but replace B by Ha + λM . We then have
an equation for M . Solving it, one gets values of M which are different from
zero even without an applied field (Ha = 0). This phenomenon is known as
spontaneous magnetization. With Ha = 0, the spontaneous magnetization M as a
function of T has its maximum at zero temperature given by the saturation value

Msat = Nm

when all moments are perfectly aligned. With rising temperature, M falls,
first gradually, then rapidly and goes to zero at T = Tc. For bulk iron, the
effective magnetic moment per atom is m � 2.22 µB, the number density
N = 8.50× 1022 cm−3, so the saturation magnetization

Msat(Fe) � 1750 G. (11.22)

This scenario of spatially constant magnetization applies to single domains
and thus only to very small particles. In a mono-crystal of iron of only 0.1 µm
size, the magnetization below the Curie point is not uniform over the crystal
but divided into small domains. Within each domain, there is almost perfect
alignment and the magnetization is close to its saturation value. But in an adjacent
domain the magnetization has a different orientation so that the effective M over
the whole crystal may be much lower than Msat, although the susceptibility χ
is still large. The crystal is partitioned into domains because its total energy,
which includes the magnetic field outside the crystal, is then lowest; if the crystal
were one big single domain, the total energy would be higher. In a ferromagnet
consisting of several domains, χ has a complicated behavior depending on the
applied field Ha and also on the magnetic history.

Akin to ferromagnetism is ferrimagnetism, except that the saturation
magnetization is much lower. To explain it, one proposes that neighboring
electron spins are not parallel, as in a ferromagnet but anti-parallel without fully
compensating each other. Some iron oxides that might be found in interstellar
grains, like magnetite (Fe3O4) or maghemite (γ –F2O3), are ferrimagnetic.

11.2.5 Paramagnetic dissipation: spin–spin and spin–lattice relaxation

After these preliminary remarks about magnetism, we discuss and quantify
processes of magnetic damping. The one most frequently evoked for the
alignment of interstellar grains is paramagnetic relaxation [Cas38, Dav51, Jon67,
Spi79].

There are two thermodynamic systems in a grain:
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(1) The spin system. The ensemble of magnetic moments arises from the
electrons of the paramagnetic atoms. The magnetic moments may be due to
electron spin as well as orbital angular momentum. In a constant magnetic
field of strength H , there is some net orientation of the dipoles. Equilibrium
is characterized by a Boltzmann distribution e−U/kTS at temperature TS,
where after (11.16) U = −mH cos θ is the potential energy of a dipole of
moment m aligned with the field at an angle θ .

(2) The lattice system. It consists of the vibrating atoms or ions in the grid of
the solid body. It is at temperature TL, has much more energy than the spin
system, serves as a heat reservoir and is always relaxed.

In equilibrium, the temperatures of the two systems are equal, TS = TL.
When the field is suddenly increased from H to H ′ > H , while keeping its
direction, the spin system gets disturbed. Associated with the two systems are
two damping constants:

• The spin system comes to equilibrium very quickly at a new temperature
T ′S after the spin–spin (ss) relaxation time τss ∼ 10−10 s. This process is
adiabatic; there is no heat exchange with the lattice, the level populations of
the dipoles stay the same so that mH/kTS = mH ′/kT ′S.

• Equilibrium with the lattice system is established much more slowly after the
spin–lattice (sl) relaxation time τsl ∼ 10−6 s. The coupling between spin and
lattice is mediated via phonons; they correspond to changes in the quantum
numbers of the lattice vibrations.

The above numbers for τss and τsl are very crude but certainly τss � τsl.
While τsl varies inversely with temperature, τss is more or less independent of it.
For TS �= TL, heat flows from the lattice to the spin system at a rate

−α(TS − TL) (α > 0).

The heat flow is proportional to the temperature difference dT = TS − TL.
It stops when the two temperatures are equal. If the spin system was initially
hotter, it will lose energy. Once equilibrium has been established (TS = TL), the
dipoles are better aligned in the new stronger field H ′ and their potential energy
U is, therefore, lower than before the disturbance. The excess energy has been
transferred to the lattice.

11.2.6 The magnetic susceptibility for spin–lattice relaxation

We next calculate the susceptibility for spin–lattice relaxation using the
thermodynamic relations for magnetic materials of section 5.3.8. Suppose a
bias field H0 has produced a constant magnetization M0 and superimposed onto
H0 there is a small periodic perturbation so that the total field and the total
magnetization are:

H (t) = H0 + he−iωt M(t) = M0 + hχe−iωt . (11.23)
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The perturbations dH = he−iωt and dM = hχe−iωt imply a heat input δQ
to the spin system given by (5.66). When the time derivative of the heat input,

dδQ

dt
= −iωCH

(
∂T

∂M

)
H
dM − iωCM

(
∂T

∂H

)
M
dH

is equated to the heat flow −α dT , where

dT = TS − TL =
(
∂T

∂H

)
M
dH +

(
∂T

∂M

)
H
dM

one obtains the complex susceptibility

χ(ω) = dM

dH
= −α + iωCM

α − iωCH

(
∂T

∂H

)
M
·
(
∂M

∂T

)
H
.

CH andCM are the specific heat at constant field and constant magnetization,
χad and χT denote the adiabatic and isothermal value of the susceptibility. The
product of the two brackets in the expression for χ(ω) yields −χT according to
(5.68) and (5.69). Therefore the susceptibility for spin–lattice relaxation is:

χ1(ω) = χad + χT − χad

1+ ω2τ 2
sl

χ2(ω) = (χT − χad)
ωτsl

1+ ω2τ 2
sl

. (11.24)

The imaginary part χ2 stands for the dissipational loss. It is positive, as it
should be, because

χT = χ(0) > χad = χ(∞).
At low frequencies, χ2 is proportional to ω. A look at the permeability of

(1.146) confirms that we are dealing with some kind of Debye polarization. After
a sudden disturbance, the return of the spin system to equilibrium with the lattice
proceeds exponentially on a characteristic time τsl which is related to the constant
α and the specific heat CH through

τsl = CH

α
.

The power W which has to be expended for the magnetization of a body in
a variable field of the kind given by (11.23) follows from equation (5.63),

W = 1
2ωVχ2h

2.

Here V is the grain volume. The formula is correct whether a bias field H0
is present or not. It also agrees with the energy dissipation rate (1.55) which we
derived before, because in the case of a small susceptibility, χ approaches the
polarizability α.

However, the very process of dissipation by spin–lattice relaxation does
not work for purely paramagnetic interstellar grains. The reason being that the
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bias field H0 is absent. The spinning particles only feel the time-variable part,
dH = he−iωt , where h is now the interstellar magnetic field. As the grains rotate,
the magnetic dipoles have to adjust their precession to a field that changes its
direction but not its strength. So their potential energyU in the field and the level
populations remain the same. Consequently, the spin temperature TS does not
oscillate, dT = 0, and there is no interaction with the lattice.

Nevertheless, our troubles are not in vain. In section 11.3 we will revive
spin–lattice relaxation by proposing an internal bias field in the grain material
due to ferromagnetic inclusions.

11.2.7 The magnetic susceptibility in spin–spin relaxation

The rotation of paramagnetic dust particles may be damped via spin–spin
relaxation. The dissipation comes about because the alignment of the dipoles
always lags behind the new field direction (see figure 11.5). The underlying
microscopic processes are very complex and their treatment is beyond the scope
of this text. We merely mention that there is:

• a magnetic dipole–dipole interaction (the paramagnetic atoms are the source
of a magnetic field in which other magnetic dipoles precess);

• Stark splitting of the magnetic sublevels (arising from the electric field of the
crystal);

• a quantum-mechanical exchange interaction (which tends to make spins
parallel as in ferromagnetism); and

• a hyperfine splitting interaction (accounting for the influence of the magnetic
moments of the nuclei of the paramagnetic atoms).

We wish to estimate the values of χ(ω) for magnetic grain material at
the frequencies at which interstellar grains may rotate, i.e. in the range from
ω = 105 s−1 for Brownian motion up to 109 s−1 in the case of suprathermal
spinup. It is, of course, also of interest to know χ(ω) at all frequencies and with
respect to all dissipation processes so that one can check whether dust absorption
or emission due to para- or ferro-magnetism can ever become important (see
second term in (3.5)).

The magnetic susceptibility χ(ω) for spin–spin relaxation must have the
functional dependence of the Debye permeability after equation (1.147) because
the magnetization of the grain is due to orientational alignment of the dipoles in a
time-variable field, as discussed in section 1.6. The imaginary part χ2(ω), which
is responsible for dissipation, has, therefore, the form

χ2(ω) = χ0
ωτ

1+ ω2τ 2
. (11.25)

To extract numbers, one must know χ0 and τ . The former is inversely
proportional to temperature and follows from Curie’s law (11.18):

χ0 = Npmm2

3kT
. (11.26)
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When the volume density of parmagnetic atoms, Npm, and the effective
magnetic dipole moment of an iron atom are taken from table 11.2, the static
susceptibility becomes χ0 = 0.045/T . Because spin–spin relaxation is so fast,
χ0 is equal to χad in equation (11.24) (see also (5.69)).

The electron spins precess around the applied field at frequency ωpr. To get
a handle on the spin–spin relaxation time τ , one sets it equal to ω−1

pr because
this is the characteristic time for a change in the magnetization perpendicular to
the applied field. Note that the electrons do not precess in the weak interstellar
magnetic field but in the much stronger local field B loc created by all paramagnetic
atoms (see section 3.4). This field is, of course, violently fluctuating because
the spin directions are tossed about in collisions with phonons. In contrast to
the perfect cubic lattice discussed in section 3.4, the paramagnetic atoms are
dispersed irregularly over the grain. Their average contributions to B loc cancel
but the root mean square deviation does not vanish. As fields from dipoles fall
off quickly and proportionally to r−3, only the nearest matter. To first order,
we assume the field to come from a dipole at a distance r = N−1/3

pm , which is
the average separation between Fe atoms (see table 11.2). When its moment is
directed towards the precessing electron, it produces a field B loc � 2mNpm �
700 G.

As the ground state of Fe3+ is classified as 6S5/2, we assume that the
outermost five electrons in the 3d shell have only spin momentum and put g = 2
in (11.9) and (11.12) so that

τ � ω−1
pr �

�

2µBB loc
� 8.4× 10−11 s.

It is remarkable that in the product χ0τ the density of paramagnetic atoms in
the grain, Npm, cancels out and, therefore, does not appear in the expression for
χ2(ω). One thus finds χ0τ = 0.49�/kT and

χ2(ω) = χ0
ωτ

1+ ω2τ 2
� 4× 10−12ω

T
. (11.27)

The approximation on the right holds at low (rotational) frequencies. The
full expression should be used for magnetic emission at wavelengths λ = 1 cm or
shorter.

Interestingly, neither does the Bohr magneton show up in the product χ0τ .
So the mechanism is independent of the strength of the magnetic moments and,
therefore, includes, besides electronic paramagnetism which we have had in mind
so far, nuclear paramagnetism. In particular, hydrogen nuclei, which are building
blocks of the otherwise non-magnetic H2O molecules, have unsaturated nuclear
moments. They are a grain constituent when the grain has an ice mantle.

Another form of the susceptibility for spin–spin relaxation uses the fact that
the frequency distribution function defined by

f (ω) = χ2(ω)

ω
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is mathematically fully determined by all its moments:

〈ωn〉 =
∫

f (ω)ωndω ·
[ ∫

f (ω)dω

]−1

.

For plausible reasons, f (ω) is related through Fourier transformations to the
relaxation function ϕ(t), which describes how the magnetic moment M decays
when a constant magnetic field H is suddenly switched off. We encountered
an example of ϕ(t) in equation (1.143) of section 1.6, where the decay was
exponential. When, in line with experiments, one approximates the relaxation

function by a Gaussian, ϕ(t) = χ0 e−
1
2 〈ω2〉t2 , and keeps only the second moment

〈ω2〉, one obtains

χ2(ω) = χ0ωτ
(π

2

)1
2
e−ω2τ 2/2 (11.28)

with τ = 〈ω2〉− 1
2 . But for a factor of order unity, χ2(ω) resembles Debye

relaxation at frequencies ω � τ−1.

11.3 Magnetic alignment

The polarization surveys of the Milky Way, which comprise several thousand stars
both in the southern and northern hemisphere, revealed that the polarization vector
from interstellar extinction runs predominantly parallel to the galactic plane. This
is exemplified, for example, in the figures of [Mat70] for stars with a large
distance modulus. One should also note in these figures, however, the large
local excursions. As the magnetic field, derived from the polarization of radio
synchrotron emission, has the same direction (projected on the sky) as the electric
field vector of polarized starlight, it seemed natural to propose that magnetic fields
are somehow responsible for the grain alignment.

When one compares the magnetic field lines with the optical polarization
vectors in other spiral galaxies, the coincidence is less impressive. This is
demonstrated in figures 11.3 and 11.4 for M 51, a galaxy which has beautiful
spiral arms and is viewed face-on. The magnetic field follows the arms nicely but
the optical polarization vectors, especially in the lower right of the figure, match
the magnetic field vectors only poorly. The reason that their orientation is not
as uniform as in the Milky Way is probably due to the fact that one also sees
scattered light in external galaxies. The polarization resulting from scattering by
dust is usually strong, especially when it occurs at right angles, and is completely
unrelated to magnetic fields. In extinction measurements of the Milky Way,
however, scattered light is absent and cannot contaminate the polarization.
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Figure 11.3. Radio and optical polarization in M51. The magnetic B-vectors at 2.8 cm
[Nei90] are overlaid on the electric polarizarion vectors at the center wavelengths of
0.85 µm (adapted from [Sca87]). The radio polarization is fairly high (∼20%) and the
corresponding vectors are shown by the large dashes; they follow the spiral arm pattern.
The electric polarization is small (∼1%) and represented by short (unfortunately, also
black) dashes.

11.3.1 A rotating dipole in a magnetic field

A particle of volume V acquires, from (1.18), in the constant interstellar magnetic
field B a magnetization M and a dipole moment

m = VM.
The field exerts, on the dipole, a torque (see (11.11))

τ = m× B

directed perpendicularly to m and B. If the grain spins, its magnetization M
changes. For simplicity, we consider, as in figure 11.5, a cylinder with its
angular velocity and momentum vectors, ω and L, pointing the same way but
perpendicular to the cylinder axis. The torque tries to line up the dipole with the
field. To determine τ , we need the magnetization M and, because M = χB, the
susceptibility χ taken at the rotation frequency ω, which is assumed to be small.

If χ were real, the magnetization would adjust instantaneously to the
direction of B and the torque would vanish because of the term B × B = 0 (see
(11.11)). But χ is complex and the magnetization M stays a small angle χ2/χ1
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Figure 11.4. An optical picture of the spiral galaxy M51 from the Palomar Sky Survey
shown in the same orientation and on approximately the same scale. The companion on top
is NGC 5195. Use of this image is courtesy of the Palomar Observatory and the Digitized
Sky Survey created by the Space Telescope Science Institute, operated by Aura Inc. for
NASA, and is reproduced here with permission from AURA/ST Scl.

behind the field B (see (1.12)). Therefore, as viewed by an observer in the rotating
grain, the magnetization responds as if there were two magnetic field components:
a major one, B1 � B, producing a magnetization M1 = χ1B and a small one, B2,
perpendicular to the first and to ω and of length B2 = (χ2/χ1)B sin θ . This
produces the magnetization

M2 = χ2

ω
ω × B

which does not disappear in the vector product with B. This leads to the following
equations of motion for the rotating magnetic dipole:

dL
dt
= τ = VM× B = V χ2

ω
(ω × B)× B (11.29)

dErot

dt
= τ · ω = −V χ2

ω
(ω × B)2. (11.30)

The rotational energy decreases, it is wasted into heat. Because of the double
vector product in (11.29), the torque τ and the change in angular momentum dL
are perpendicular to B and lie in the same plane as B and ω (see figure 11.5).
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ω

B

θ

L,

τ

Figure 11.5. A paramagnetic cylinder rotating in a magnetic field B acquires a dipole
moment that is not fully aligned with B. This leads to a torque τ on the grain. All vectors
τ , ω, B, L are in the same plane, ω and L lie parallel to each other and perpendicular to
the axis of the spinning cylinder.

As a result, the cylinder lines up with its long axis perpendicular to the field B.
When the alignment is complete (ω ‖ B), there will be no more losses. This is the
Davis–Greenstein mechanism, the standard scenario for magnetic alignment.

11.3.2 Timescales for alignment and disorder

We estimate a relaxation time trel for magnetic alignment from the condition
L/trel = dL/dt from (11.29):

trel = Iω

Vχ2B2
. (11.31)

A typical number is 106 yr. The inverse t−1
rel is, by order of magnitude, the

rate at which the angle θ between the field and the angular momentum vector
changes. We see that magnetic alignment is favoured by a low ratio of moment
of inertia over volume, I/V , and a strong magnetic field. But there are limits to
these numbers. A minimal value of I/V is given by a sphere and, from diverse
independent evidence, B does not exceed several times 10−6 G in low density
clouds (nH < 103 cm−3). Note that a higher rotation speed, although it implies
enhanced dissipation, does not decrease the relaxation time trel because χ2 ∝ ω
at low frequencies.

When we compare trel with the time tdis after which disorder is established
through collisions with gas atoms and assume Brownian motion so that tdis is
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given by (9.39), we find

trel

tdis
= 3

10

(
8kma

π

)1
2 T

1
2

gasan

B2

ω

χ2
� 7.3× 10−21 T

1
2

gas an

B2

ω

χ2
. (11.32)

ma and n are the mass and density of the gas atoms. For alignment to be effective,
trel/tdis must be smaller than one. The rotation speed ω does not appear in this
formula. Pure paramagnetic spin–spin relaxation with χ2 from (11.27) yields

trel

tdis
� 2× 10−9an

TdustT
1
2

gas

B2
.

Because the Serkowski curve mandates a typical grain size a of order
10−5 cm, one can readily check that in the environment where we actually observe
optical polarization, trel/tdis would be substantially above unity. This implies
that the grains change their angular momentum chaotically before paramagnetic
relaxation has had time to do its job and they would not be aligned. Therefore one
has to search for a more effective magnetic alignment mechanisms. Suprathermal
rotation, supra–paramagnetism and ferromagnetic inclusions can bring the ratio
of relaxation time over collisional disorder time, trel/tdis, down and thus point a
way out of the dilemma [Jon67].

11.3.2.1 Magnetic alignment in suprathermal rotation

Should the grains be rotating suprathermally with angular velocity ω � 105 s−1,
as discussed in section 11.1, they have a very high kinetic energy and the time to
create disorder, tdis, will be much increased and no longer be given by (9.39).
As the relaxation time trel of (11.31) is not altered by the spinup as long as
χ2 ∝ ω, effective grain alignment according to the Davis–Greenstein mechanism
with damping from paramagnetic spin–spin relaxation seems possible. Of course,
the angular momentum of the fast rotating particle must stay stable in space over
a time greater than trel, otherwise orientation is poor. Because inhomogeneities
on the grain surface drive the suprathermal spinup, disorientation will set in when
the surface properties change. This may occur, for example, when new layers are
deposited or active sites are destroyed or created. Time scales for these processes
are debatable.

11.3.3 Super-paramagnetism

Interstellar dust may contain not only isolated iron atoms, which would only
produce paramagnetism of possibly insufficient strength but also tiny pure iron
subparticles in which the collective effect of the electron spins dominate. The
subparticles are possibly synthesized in supernova explosions and somehow built
into interstellar grains. Even if they contain only a few tens of iron atoms, they
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already behave like ferromagnetic single domains, i.e. they show spontaneous
magnetization. A grain with such ferromagnetic inclusions may then display
super-paramagnetism. The phenomenon is halfway between ferro- and para-
magnetism in the sense that the clusters are ferromagnetic single domains but
their magnetization changes spontaneously by thermal perturbations so that the
grain, as a whole, behaves like a paramagnet.

Suppose the grain has Ncl iron clusters, each consisting of n atoms of
magnetic moment ma. The magnetic moment of each cluster is at its saturation
valuemcl = nma but the whole particle is paramagnetic because its magnetization
follows equation (11.17) with the Langevin function L(x). However, in the
expression for the static susceptibility (11.26) the momentma of a single Fe atom
has to be replaced by the cluster momentmcl and the volume density of magnetic
atoms Npm by the number of clusters Ncl in the grain. As obviously Npm = Ncln,
the static susceptibility of the grain as a whole becomes

χ0 = n
(
Npmm2

a

3kT

)
.

Therefore χ0 increases by a factor n over the static susceptibility with
isolated iron atoms. When a cluster changes its magnetization, it must overcome
a potential barrier Ubar, because not all directions of magnetization are equal.
There is an easy one and a hard one (for iron, these are the cube edges [100]
and the body diagonals [111], respectively) separated by Ubar. The more atoms
there are in the cluster, the higher the barrier, Ubar(= nkθ) becomes. It may be
overcome by thermal excitation and the rate at which this happens is proportional
to e−Ubar/kT . Therefore the relaxation time has the form

τ � γ eUbar/kT

with θ = 0.11 K and γ = 10−9 s determined experimentally. It is very sensitive
to the number n of iron atoms per cluster. As n increases, χ2(ω) after (11.25) can
become very large for small frequencies.

11.3.4 Ferromagnetic relaxation

In a more general way, not restricted to paramagnetic relaxation, one assumes
that the magnetization M is forced by a periodic outer field H to oscillate
harmonically,

M̈ + γ Ṁ + ω2
0M = ω2

0χ0H. (11.33)

In a static field, M = χ0H . Equation (11.33) implies with τ ≡ γ /ω2
0 (see (1.77))

χ2(ω) = χ0
ωτ[

1− (ω/ω0)2
]2 + ω2τ 2

. (11.34)

For small frequencies (ω � ω0), the expression again approaches Debye
relaxation (11.25). If τ is small, corresponding to weak damping, a pronounced
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resonance appears at ω0. Equation (11.34) says nothing about the dissipation
mechanism. The difficulty is to associate χ0, τ and ω0 with physical processes
and to determine their values from a combination of experimental data and theory.
If the system is critically damped, γ = 2ω0 after (1.63). Then there are only two
parameters, χ0 and τ , and

χ2(ω) = χ0
ωτ

[1+ (ωτ/2)2]2 . (11.35)

For a grain with ferromagnetic inclusions, two scenarios exist:

• If the iron clusters are big enough to be divided into several domains,
the changing magnetic field causes the transition layer between adjacent
domains (Blochwalls) to rearrange and the wandering of the walls dissipates
energy. The moving walls can phenomenologically be described by a
harmonic oscillator, as in (11.33). With the static susceptibility χ0 = 12
from table 11.2 and an estimate for τ of order 10−8 s from the laboratory,
the low-frequency limit of χ2(ω)/ω becomes∼10−7 which is four orders of
magnitude greater than for spin–spin relaxation. The effect on the damping
of the grain as a whole depends, of course, on the volume fraction fFe of
the iron inclusions but even fFe = 0.1% would increase the susceptibility
tenfold.

• If the iron clusters have sizes below∼200 Å, they are stable as ferromagnetic
single domains. One can squeeze out some semi-theoretical number for
χ2 supposing, as we did for paramagnets, that dissipation comes from
precession of the magnetic moments in the local field. The latter is equal
to 4πMsat/3 (see the electric analog in (3.54)). Putting the saturation
magnetization Msat = 1750 G and χ0 = 12 (table 11.2), the precession
frequency ωpr � τ−1 � (4πMsat/3)(e/mec) � 1.3 × 1011 s−1. As now
χ2(ω)/ω ∼ 10−10, particles with single-domain iron inclusions seem not to
be terribly effective in damping.

However, the presence of single-domain ferromagnetic inclusions has
the interesting consequence that it provides a bias field H0 for the adjacent
paramagnetic material [Dul78]. This enables paramagnetic dissipation by spin–
lattice relaxation to operate in the otherwise paramagnetic grain material. This
mechanism, which we had so far discarded, is much more efficacious in enhancing
the ratio χ2(ω)/ω than spin–spin relaxation, especially at low frequencies as
evidenced by figure 11.6. The field produced by the inclusions must, of course, be
as strong as the fluctuating field from the isolated iron atoms in the paramagnetic
grain material, for which we estimated above 700 G, in order for the resulting
field to be considered at a constant bias. A spherical single domain of radius a
has, at a distance r from its center, a field (see table 11.2)

4πa3

3r3 Nbulk 2.22µB � 7000
(a
r

)3
.
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Figure 11.6. A sketch of the magnetic susceptibility, χ = χ1 + iχ2, as a function
of frequency in paramagnetic dissipation for spin–spin (ss) and for spin–lattice (sl)
relaxation. For the relaxation times it is assumed that τsl = 100τsl; we further adopt
χad = χss

2 (0) = 0.25χT. The dots show the total dissipational loss rate W ∝ χ2ω when

both processes are activated (here χ2 = χsl
2 + χss

2 ); the broken line depicts for this case
χ2/ω which determines the alignment efficiency after (11.31). The ordinate is arbitrary.

Therefore, each ferromagnetic inclusion provides a bias field for spin–lattice
relaxation in the paramagnetic material over a volume which is about ten times
bigger than its own.

11.3.5 Alignment of angular momentum with the axis of greatest inertia

There is likely to be damping within the particle independent of the outer magnetic
field. The rotational energy Erot of the grain then decreases and is turned into
heat, while the angular momentum vector L stays constant in the absence of an
external torque. Assuming, for example, Ix < Iy < Iz , it follows readily from
(11.1) and (11.2) that the angular velocity ωz grows at the expense of ωx and ωy .
Consequently, the axis of maximum inertia (the z-axis) tends to become parallel
to L. When such grains are then magnetically aligned, their orientation will be
almost perfect and they will, therefore, be most effective polarizers.

With the help of (11.7) and using the angle θ between the figure axis and L
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(see figure 11.1), the rotational energy Erot of (11.2) can be written as

2Erot = L2

Ix
+ L2A cos2 θ A = Ix − Iz

Ix Iz
.

If one knows the dissipation rate W = dErot/dt , one can work out the time t‖
which it takes until the z-axis and the angular momentum L are parallel:

t‖ ∼ t‖
θ
∼ dt

dθ
= W−1 dErot

dθ
= −W−1L2A sin θ cos θ ∼ −W−1L2A. (11.36)

For the alignment to work, it is necessary that t‖ be shorter than the disorder time
tdis (see (9.39) for its value for Brownian motion).

11.3.6 Mechanical and magnetic damping

We discuss two further dissipation mechanisms: one mechanical, the other
gyromagnetic.

11.3.6.1 Mechanical damping via variable stresses

Interstellar dust particles are not perfectly rigid bodies and the centrifugal forces
in a spinning grain change the distances among the atoms. When rotation is
not about a principal axis, the rotation vector ω moves with respect to the grain
coordinates and so the stresses arising from the centrifugal forces are time variable
with frequency of order ω (see (11.8)).

A perfect and cold crystal is very elastic with hardly any loss but a real
grain has imperfections and mechanical deformations inevitably drain some of
the rotational energy into heat. The previously introduced time t‖ depends on the
stiffness of matter, the mechanical damping constant of the grain material and,
crucially, on the rotational velocity. It turns out that for suprathermally spinning
inelastic grains, t‖ is much shorter than tdis, so they will always rotate about
their axis of greatest moment of inertia. Interstellar grains in Brownian motion,
however, will probably not show such alignment.

11.3.6.2 Magnetic damping via the Barnett effect

More efficient is a gyromagnetic mechanism which is based on the coupling
between the spin system and the macroscopic rotation of the body. To see how
it works, we first recall the famous experiments by Einstein and de Haas and its
counterpart by Barnett.

• When an unmagnetized iron cylinder with inertia I is suddenly magnetized
by an outer field, the atomic magnetic moments and their associated angular
momenta line up. Suppose that in the process of magnetization, N electrons
flip their spin direction from up to down. As the total angular momentum of
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the cylinder is zero before and after the magnetization, the cylinder acquires
an angular momentum L = N� and rotates afterwards at a speed ω = N�/I
(Einstein–de Haas effect).

• When an unmagnetized cylinder is rotated at angular velocity ω, it feels a
magnetic field B, which is parallel to ω and has the absolute value

B = ω 2mec

e
. (11.37)

The field B then produces, in the cylinder, a magnetizationM = χB (Barnett
effect).

To understand the linear relation (11.37) betweenω and B , we mention, first,
that in a rotating frame K ′ the acceleration ẍ′ of a point mass is different from the
acceleration ẍ as seen in an inertial frame K :

ẍ′ = ẍ + 2ω × ẋ′ + ω × (ω × x). (11.38)

The prime refers to the uniformly rotating system in which there additionally
appear a Coriolis and a centrifugal term (second and third on the right). When
ω is small, the centrifugal force may be neglected and one may put v = ẋ � ẋ′.
Therefore, when we take an atom and apply a magnetic field and furthermore
slowly rotate the atom, each of its electrons is subjected to the additional force:

2mev× ω + (e/c)v× B.

The first term is due to rotation and the other represents the Lorentz force of
the magnetic field. The sum of the two is zero when ω + (e/2mec)B = 0.
Rotating the atom is thus equivalent to exposing it to a magnetic field of strength
B = (2mec/e)ω; this is Larmor’s theorem.

When we apply this result to an interstellar grain of volume V and compute
the dissipation rate W = χ2ωB2 after (11.30) with χ2 from (11.27) and B from
(11.37), we find that the alignment time t‖ in (11.36) is inversely proportional to
ω2 and much shorter than the disorder time tdis.

11.4 Non-magnetic alignment

We discuss two other ways in which grains may be aligned in the interstellar
medium. They are interesting in themselves but except for special configurations,
not likely to be responsible for polarization.

11.4.1 Gas streaming

When gas streams with a velocity v past a dust particle, for example, in a stellar
wind, each atom of mass m endows the grain upon collision with a small angular
momentum

dLgas = r× mv. (11.39)
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Figure 11.7. An observer (right) views a star (left) through a cloud of cylindrical grains.
Perpendicular to the line of sight, gas streams at supersonic velocity v relative to the grains.
Directions are given in the spherical polar coordinates (θ, φ). Cylindrical grains will rotate
in planes φ = constant and this results in a net orientation of their rotation axes and in
polarization of the starlight [Gol52].

If the grain is a rod of length l, we have, approximately,

dLgas = 1
2 lmv.

The situation is depicted in figure 11.8. Let us choose spherical polar
coordinates (θ, φ) so that the direction of streaming is given by θ = 0 and the
direction towards the observer by θ = π/2 and φ = 0 (figure 11.7). Because of
the vector product, dLgas lies in the plane θ = π/2 which is perpendicular to v.
If the grain is hit by N atoms, all changes in angular momentum, dLgas, lie in this
plane but are randomly distributed there. So the final angular momentum Lgas is
also in the plane θ = π/2 and its length is the result of a random walk:

Lgas =
√
N · dLgas.

When the number N of collisions is large, Lgas will be limited by friction
with the gas.

If the grain is very elongated, the vector r in figure 11.8 falls almost along
the x-axis. Therefore the angular momentum is perpendicular to the x-axis which
implies that the grain rotates in a plane with φ = constant. When there are many
particles, all such planes are equally likely, there is no favorite φ. The observer
in figure 11.7 finds that the starlight is polarized. The net polarization is due
mostly to grains with φ � 0, while those with φ � π/2 do not contribute. An
observer who looks at the star from below in the direction of the velocity vector v
in figure 11.7 would detect no polarization.
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Figure 11.8. An impacting atom of momentum mv causes the cylinder to rotate in the
plane of the drawing, indicated by the curved arrow. The same is true for a photon coming
from the same direction as the atom; its momentum is hν/c. But the photon also transfers
angular photon momentum � and this leads to rotation out of the plane of the drawing.

The thermal motion of the gas has a disordering effect as it introduces
random velocities between gas and dust particles. But such disorientation may
obviously be neglected when the streaming motion is supersonic.

11.4.2 Anisotropic illumination

When the grains absorb radiation exclusively from one side, as in the vicinity of
a star, the situation is similar to gas streaming. Only now the impinging particles
are photons and not gas atoms, and their momentum is hν/c instead of mv. So
each transfers the angular momentum

dLabs = 1

2
l · hν

c
.

There is another effect related to photons that creates independent additional
alignment [Har70]. Photons have, on top of their momentum hν/c, an intrinsic
angular momentum � that is imparted to the grain in each absorption event. It is
directed along the line of photon propagation, either in a positive or negative
direction, and not perpendicular to it, as dLabs before. The average (root
mean square) angular momentum of the grain after the capture of N photons
becomes

√
N�. There are two alignment processes through photons, one transfers

momentum hν/c, the other angular momentum �. The latter dominates when
� > dLabs. This condition is fulfilled when the grain is smaller than the
wavelength.
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Each emitted photon carries off a quantum � in an arbitrary direction. In the
end, the grain will acquire from this process an angular momentum Lemis. As
the energy budget of heating and cooling is always balanced very well, a grain in
the diffuse medium, which is heated by few UV and cooled by many IR photons,
emits, very roughly, a hundred times more photons than it absorbs. So Lemis will
be some

√
100 = 10 times larger than Labs. But the associated vector Lemis has

no preferential orientation. Inside a molecular cloud, where only a few energetic
photons fly around, the discrepancy between Lemis and Labs is less severe.



Chapter 12

PAHs and spectral features of dust

Gas atoms or molecules emit and absorb narrow lines, from the UV to the
microwave region, by which they can be uniquely identified. Because of their
sharpness, the lines also contain kinematic information via the Doppler shift in
their radial velocity. Observing several transitions simultaneously allows us to
infer the conditions of excitation, mainly gas temperature and density.

The spectroscopic information from dust, however, is poor. Being a
solid, each grain emits very many lines but they overlap to give an amorphous
continuum. Moreover, the emission is restricted to infrared wavelengths. The
smallest grains, PAHs, which show very characteristic bands are a fortunate
exception. Resonances are also observed from silicate material and ice mantles.
These features are the topic of the present chapter. Because of the strong
disturbance of any oscillator in a solid, the transitions are broad and do not allow
us to extract velocity information. Precise chemical allocation is also not possible
but individual functional groups partaking in the transition can be identified and
exciting conditions may occasionally be derived.

12.1 Thermodynamics of PAHs

12.1.1 What are PAHs?

These are planar molecules, made of a number of benzene rings, usually with
hydrogen atoms bound to the edges. The smallest consist of barely more than
a dozen atoms, so they are intermediate between molecules and grains and
constitute a peculiar and interesting species of their own. The first observation
of PAHs, without proper identification, dates back to the early 1970s when in
the near and mid infrared a number of hitherto unknown features were found
[Gil73]. Although their overall spectral signature was subsequently observed in
very diverse objects (HII regions, reflection nebulae, planetary nebulae, cirrus
clouds, evolved stars, star burst nuclei and other external galaxies), their proper
identification took place only in the mid 1980s. PAHs is a short form for
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Figure 12.1. The phase space accessible to a one-dimensional oscillator with energy
between E and E + δE is, according to equation (8.2), given by the shaded annulus.
The ellipses correspond to total (kinetic plus potential) energy E and E+ δE , respectively.
The unit phase cell has the size δqδp = �.

Polycyclic Aromatic Hydrocarbons and they are called this way even when the
hydrogen atoms are missing. In interstellar space, PAHs are excited by the
absorption of a single ultraviolet photon upon which they emit their characteristic
infrared lines.

12.1.2 Microcanonic emission of PAHs

Let us investigate the possible states of a PAH of total energy E . It is given in
equation (8.2) as the sum of kinetic and potential energy of all atoms which are
approximated by harmonic oscillators. The accessible states are in a narrow range
from E to E + δE . Figure 12.1 illustrates the locus of the states in phase space
when the system has only one degree of freedom ( f = 1). There are then two
coordinates, position q and momentum p, and all states lie in an annulus around
an ellipse. The oscillating particle is most likely to be found near the greatest
elongation, which is at the left and right edge of the ellipse. There the velocity is
small and, for a given 
q , one finds the highest density of cells. For f > 1, the
situation is multi-dimensional but otherwise analogous.

The population of the cells in phase space is statistical and the probability of
finding the i th oscillator of a PAH in quantum state v is, in view of (5.48),

Pi,v = ρ(E; i, v)/ρ(E).
ρ(E) is the density of states at energy E and ρ(E; i, v) is the density of states at
energy E subject to the condition that oscillator i is in quantum state v. When
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one extends expression (5.42) for ρ(E) to the case when the oscillators are not
identical but each has its own frequency νi , and further refines the expression
by adding to E the zero-point energy E0 of all excited oscillators, one obtains
[Whi63]

ρ(E) � (E + aE0)
f−1

( f − 1)!
f∏
j=1

hν j

(12.1)

with
a � 0.87+ 0.079 ln(E/E0) E0 = 1

2

∑
j

hν j .

The fudge factor a is of order unity. ρ(E; i, v) is also calculated after (12.1) but
now one has to exclude oscillator i . There is one degree of freedom less and E , as
well as the zero-point energy E0, have to be diminished accordingly. This gives

ρ(E; i, v) = [(E − vhνi )+ a(E0 − 1
2hνi )

] f−2
[
( f − 2)!

∏
j �=i

hν j

]−1

.

Hence the relative population of level v is

Pi,v = ρ(E; i, v)
ρ(E)

= ( f −1)ξ
[
1−

(
v + a

2

)
ξ
] f−2

ξ = hνi
E + aE0

. (12.2)

The i th oscillator emits in the transition v→ v − 1 the power

εmic(E; i, v) = Pi,vhνi A
i
v,v−1

and the total microcanonic emission from oscillator i is, therefore,

εmic(E; i) = hνi Ai1,0
∑
v≥1

vPi,v . (12.3)

12.1.3 The vibrational modes of anthracene

As an illustration, we consider the PAH anthracene, C14H10, which has a simple
and fairly symmetric structure (see insert in figure 12.2) and is, therefore, easy to
handle theoretically. The PAH is built up of three benzene rings; all bonds at its
edges are saturated by hydrogen atoms. There are altogether f = 3 · (14+ 10)−
6 = 66 degrees of freedom. The vibrational modes can be computed if one knows
the force field (force constants) or the potential in the molecule. In the model on
which figure 12.2 is based seven vibrational types are considered. Besides the
four obvious ones,

• CC stretching,
• CH stretching,
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Figure 12.2. The polycyclic aromatic hydrocarbon anthracene has 66 degrees of
freedom. They correspond to 66 oscillators (modes), each having its eigenfrequency. The
wavenumbers are tabulated in [Whi78] and grouped here into intervals of 100 cm−1 width.

• CC out-of-plane bending and
• CH out-of-plane bending,

three mixed modes in which several atoms take part in the oscillation are also
included. These are CCC and CCH bending as well as CCCC torsion. The
frequencies of the 66 oscillators by which the molecule is replaced are found
by introducing normal coordinates (section 8.4) and solving equation (8.25).
Despite the simplicity of the model, the achieved accuracy is good, the theoretical
frequencies agree well with laboratory data.

Some vibrational modes lie very close together because of the symmetry of
the molecule. It is clear that atoms in similar force fields must swing in a similar
manner. For instance, all CH stretches of the ten hydrogen atoms in anthracene
are crowded between 3030 and 3040 cm−1. For reasons of symmetry, at most four
of these CH frequencies can be different but these four are really distinct because
they correspond to sites where the surroundings of the H atoms have different
geometries. The distribution of the number of modes over energy is displayed in
figure 12.2. It contains several noteworthy features:

• The modes strongly cluster around 3035 cm−1. This range is completely
isolated and due to CH stretching. When κ is the force constant of CH
binding and m the mass of an H atom, the frequency is roughly ω =√
κ/m (see (12.8)). Hydrogen atoms are also involved in the modes around

1000 cm−1 which are due to a CH bend.
• The rest of the histogram is due to the skeleton of carbon atoms and

surprisingly smooth.
• In section 8.4, we gave the Debye temperatures, θz = 950 K and θxy =

2500 K, for a graphite plane. Excluding the CH bend at 3000 cm−1, the
high frequency cutoff, which, by definition, is the Debye frequency, is at
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1800 cm−1 and corresponds nicely to θxy (see (8.33)).
• At long wavelengths, the modes extend into the far infrared. The lowest

energy is 73 cm−1 (137 µm) and again in qualitative agreement with the
estimate for the minimum frequency νmin from (8.45) if one uses θz = 950 K.

12.1.4 Microcanonic versus thermal level population

We have learnt how to compute the microcanonic population of levels; this is
always the statistically correct way. We now apply our skills to anthracene and
check whether, for this PAH, the assumption of thermalization, which when
fulfilled makes life so much easier, is permitted. Let the PAH absorb a photon
of energy E . When the levels are thermalized, E is equal to the sum of the mean
energies of all 66 oscillators (see (5.11)),

E =
66∑
i=1

hνi
ehνi/kT − 1

.

Because all νi are known, we can calculate from this equation the
temperature of a thermalized anthracene molecule of energy E . Figure 12.3
demonstrates that if the PAH has absorbed a typical stellar photon of hν � 4 eV,
we may indeed use the Boltzmann formulae (dotted lines) for the level population,
and thus also for line emission. For higher photon energies, things only improve.

We also learn from the microcanonic results of level populations that those
oscillators in the PAH which correspond to the major bands (table 12.1) are mostly
found in the lowest quantum numbers, v ≤ 1. This implies that effects produced
by the anharmonicity of the oscillator potential are, to first order, not important.
However, if one looks closer, they have to be taken into account. Because of
anharmonicity, the spacing between the upper levels decreases and the lines from
higher v-states are shifted towards the red. The best example is presented by
the C–H stretches at 3.28 µm (v = 1 → 0, see table 12.1) and at 3.42 µm
(v = 2 → 1). The shift is sufficiently large so that the v = 2 → 1 line
can occasionally be seen well detached from the v = 1 → 0 transition. The
v = 2 → 1 line is always weaker because of low level population but note
that the Einstein A coefficient increases proportionally with v. If the shift due to
anharmonicity is small, as for the C–H out-of-plane bend at 11.3 µm, the high-
v lines blend with the ground transition producing an overall broadening of the
band.

To estimate how big PAHs behave, we consider a fictitious molecule with
330 degrees of freedom but with the same relative mode distribution as in
figure 12.2. There are now for each energy interval five times more modes. We
see, from figure 12.4, that for such a big PAH, when it is excited by a photon
of 4 eV, the thermal assumption is usually bad. It is acceptable only for low-
frequency vibrations, whereas it grossly underestimates the population numbers
at short wavelengths. If the photons are more energetic (E > 10 eV), the situation
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Figure 12.3. Level population Nv in anthracene for three oscillators (their wavelengths are
indicated) after absorption of a photon with E = 4 eV from the ground state. Dots show
the microcanonic fractional population as approximated by (12.2); always

∑
Nv = 1. The

dotted lines, which only have a meaning at integral quantum numbers v, give the thermal
results at a temperature T = 1325 K; see also text.

improves towards thermalization. Note that while such a highly excited PAH
cools, the assumption of thermal emission gets poorer.

Of course, if the size of the PAH is further increased, it must eventually
be thermalized like a normal grain. As the PAH gets bigger, the threshold for
collisional and photoexcitation, νmin after (8.45) and νcut after (12.5), steadily
declines.

12.1.5 Does an ensemble of PAHs have a temperature?

The concept of temperature is only valid if the system has many degrees of
freedom. To an ordinary grain made of N = 105 . . . 1010 atoms, one may
certainly assign a temperature but it is doubtful whether one can do so in the
case of a PAH, which may bear more affinity to a big molecule than to a solid
body. For example, for a PAH with f = 100 degrees of freedom that is excited
to an energy of E = 10 eV and emits IR photons of 0.1 eV (13 µm wavelength),
the number of states whose energy does not exceed E is, from (5.41), roughly
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Table 12.1. Approximate numbers for PAH resonances. The cross sections integrated over
the band, σint =

∫
σ(λ)dλ, are per H atom for C–H vibrational modes, and per C atom

for C–C modes. The space divides, somewhat artificially, major (top) from minor bands
(bottom). See also figure 12.5.

Center Damping Integrated
wavelength constant cross section vibrational
λ0 (µm) γ (1012 s−1) σint (cm2 cm) type

3.3 20 12 C–H stretch
6.2 14 14 C–C stretch
7.7 22 51 C–C stretch
8.6 6 27 C–H bend in-plane

11.3 4 41 C–H bend out-of-plane
11.9 7 27 C–H bend out-of-plane
12.8 3.5 47 C–H bend out-of-plane
13.6 4 12 C–H bend out-of-plane

5.2 12 1.1 C–C vibration
7.0 5.9 12 ?

14.3 5 2.5 C–C skeleton
15.1 3 1.2 C–C skeleton
15.7 2 1.2 C–C skeleton
16.4 3 1.7 C–C skeleton
18.2 3 1.0 C–C skeleton
21.1 3 2.0 C–C skeleton
23.1 3 2.0 C–C skeleton

Ns � (E/ f �ω) f . This is not a fantastically large number, as it should be for a
good temperature but one of order unity. So one has to check in a microcanonic
treatment, as before, whether the PAH is approximately thermalized or not.

If one cannot assign a temperature to a single PAH, maybe one can to an
ensemble of PAHs in the way one assigns a temperature to the level population
of an ensemble of gas atoms? At least this is possible when the atoms are in a
blackbody radiation field or when their density is high. The excitation then carries
the signature either of the Planck function or of Maxwell’s velocity distribution
and it is completely described by the Boltzmann formula (5.8). However, when
exciting events are rare, for example, at low gas density, the levels are not
thermalized. The kinetic temperature of the gas does not then describe the
population of the internal levels of the atoms.

For PAHs, excitation through energetic photons is much too rare an event
and gas collisions are negligible altogether. Furthermore, prior to absorption
of a photon, the PAH is usually in its ground state. If the photons were
monoenergetic, so would the energies of the PAHs freshly excited from the
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Figure 12.4. Level population Nv of a PAH with f = 330 degrees of freedom. It has
the same relative mode distribution as anthracene (see figure 12.2). The energy of the
absorbed photon equals 4 and 12.6 eV. The dotted lines are calculated under the assumption
of thermalization at T = 545 K (left box) and T = 1000 K (right box). Otherwise as
figure 12.3.

ground state be. Their distribution in energy would not show the spread typical of
thermal systems but resemble a δ-function. Although the actual exciting photons
are not monoenergetic but come from the interstellar radiation field and have a
considerable spread, their frequencies do not mimic thermal conditions.

12.2 PAH emission

12.2.1 Photoexcitation of PAHs

In the diffuse interstellar medium, a neutral PAH molecule is almost all the time in
its electronic ground state, a singlet S0. Collisions with gas atoms are rare and the
gas temperature is too low anyway to thermalize the PAH. The vibrational modes
are, therefore, also in their lowest level. Emission of infrared lines from the PAH
molecule is initiated by absorption of a UV photon of energy EUV, say, once a
day. Afterwards the molecule is highly excited and in a new electronic singlet
state Si . Then various and complicated things happen, very fast, some on time
scales of 10−12 s. But by and large, the outcome is that the ultraviolet energy
is thermalized, i.e. distributed over all available vibrational modes, and then
degraded into infrared photons, mainly by emission in the fundamental modes
(see table 12.1). The emission lasts typically for 1 s.

Before the IR photons are emitted, immediately after the UV photon has been
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absorbed, the PAH may change from the electronic state Si without radiative loss
to another singlet state. Or it may undergo intersystem crossing to a triplet state.
In this case, because the triplet system has a metastable ground level T1, some of
the energy EUV will eventually go into phosphorescence from the triplet T1 to S0
and thus be lost for the IR features.

For a singly photo-ionized PAH, the excitation scheme is similar; only the
electronic ground state is then a doublet because of the unpaired electron. A PAH
may also be negative or bear multiple charges. The degree and kind of ionization
depends on the radiation field, the gas temperature, the electron density and, of
course, on the UV cross sections of the PAH; some of the basic ideas are outlined
in section 9.2. The ionization details may not be decisive for evaluating the IR
emission of PAHs but probably have an influence on the cutoff wavelength and
thus on the conditions for excitation (see later).

12.2.2 Cutoff wavelength for electronic excitation

There is a minimum photon energy for electronic excitation of a PAH
corresponding to a cutoff wavelength λcut. Light from wavelengths greater than
λcut is simply not absorbed and thus cannot produce the infrared resonances. For
PAHs of circular shape and size 〈a〉, one finds empiricallly, in the laboratory, the
crude relation

λcut = 1630+ 370
√
NC = 1630+ 450〈a〉 [Å]. (12.4)

Here 〈a〉 is measured in Å and NC is the number of carbon atoms in the molecule.
Small PAHs (NC < 50) are only excited by UV radiation, larger ones also by
optical photons. One can understand the existence of the threshold by considering
a free electron in a linear metallic molecule of length L. The electron is trapped
in the molecule and its energy levels are given by (6.52),

En = h2n2

8meL2
n = 1, 2, . . . .

The phase space available to electrons with energy E ≤ En is hn/2, so
if there are s free electrons, all levels up to n = s are populated; a denser
population is forbidden by Pauli’s exclusion principle. A transition with 
n = 1
has, therefore, the energy

hνcut = dEn
dn

∣∣∣∣
n=s


n = h2s

4meL2 =
h2

4me(
L
s )L

.

If the atoms have a size of∼2 Å and if there is one optical electron per atom,
then L/s = 2 Å and

λcut = 4me(
L
s )Lc

h
∼ 330L [Å]. (12.5)
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This qualitative and simplified model of a linear metallic grain already yields
the right order of magnitude for the cutoff.

12.2.3 Photo-destruction and ionization

Because the PAHs are so small, absorption of a UV photon can lead to
dissociation. In a strong and hard radiation field, PAHs will not exist at all.
Because of the anharmonicity of the potential of a real oscillator, an atom detaches
itself from the PAH above a certain vibrational quantum number vdis. The chance
P(E) of finding, in a PAH with f degrees of freedom and total energy E , the
oscillator i in a state v ≥ vdis is given by equation (12.2), and P(E) is proportional
to the dissociation rate kdis(E) of the molecule. In slight modification of (12.2),
one, therefore, writes

kdis(E) = ν0

(
1− E0

E

)f−1

. (12.6)

ν0 has the dimension of a frequency, E0 may be loosely interpreted as the
bond dissociation energy. The two factors, ν0 and E0, can be determined
experimentally. For example, with respect to hydrogen loss, E0 = 2.8 eV and
ν0 = 1016 s−1; with respect to C2H2 loss, E0 = 2.9 eV, ν0 = 1015 s−1 [Joc94]. If
hydrogen atoms detach, the aromatic cycles are unscathed, if however acetylene
evaporates, the carbon rings are broken.

After UV absorption, the excited PAH is hot and has a certain chance
to evaporate. When relaxation through emission of IR photons is faster than
dissociation, the PAH is stable. The infrared emission rate of PAHs, which is of
order 102 s−1, can thus be considered as the critical dissociation rate, kcr. When
kdis(E) > kcr, evaporation will occur. kcr is associated, from (12.6), with a critical
internal energy Ecr and because Ecr > E0, one has, approximately,

ln kcr � ln ν0 − ( f − 1)
E0

Ecr
.

So there is a rough linear relationship between the degrees of freedom of the
PAH and the critical energy. As kcr enters logarithmically, an exact value is not
required. The critical temperature Tcr can be found from Ecr via equation (5.11),

Ecr =
f∑

i=1

hνi
ehνi/kTcr − 1

.

Ionization after absorption of an energetic UV photon is another reaction
channel, besides dissociation and infrared emission, and it has the overall effect
of stabilizing the molecule against destruction. Big PAHs are easier to ionize than
small ones; the ionization potential of benzene is 9.24 eV and declines to ∼6 eV
for molecules with 100 carbon atoms.
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For the astronomically relevant question, i.e. under what conditions do PAHs
survive in a given, harsh radiation field, one has to balance their destruction rate
with the rate at which they are built up by carbon accretion. In the interstellar
radiation field (figure 8.2), we estimate that PAHs with only 30 carbon atoms can
survive; near an O star (distance r = 1016 cm, L = 105 L�), NC should be above
200.

As the physical processes connected with PAH destruction are most
complicated, one may be tempted to use a purely phenomenolgical approach and
simply assume that PAHs evaporate if the fraction of PAHs above some critical
temperature Tcr exceeds a certain value fevap, i.e. when∫ ∞

Tcr

P(T ) dT ≥ fevap.

The probability function P(T ) of (8.46) has to be computed anyway for the
evaluation of PAH emission. fevap ∼ 10−8 and Tcr ∼ 2500 K do not seem to
be unreasonable numbers and one may use such an approach to decide whether
PAHs evaporate or not.

12.2.4 Cross sections and line profiles of PAHs

A PAH has several hundred vibrational modes but one typically detects only half
a dozen major resonances around the frequencies where the strong modes cluster.
Table 12.1 compiles their vibrational type, center wavelength and integrated line
strength but it also lists some of the weaker or minor resonances which are,
however, more variable in intensity from source to source and their origin is
less clear. The most prominent representative of the minor features is the band
at 3.4 µm which was mentioned in section 12.1.4. It is not listed in table 12.1
because it is an overtone.

There are two classes of bands: one involves hydrogen atoms, which are
all located at the periphery of the PAH; the other only carbon atoms. The
strength of the emission is, therefore, proportional either to NH or NC, the number
of hydrogen and carbon atoms, respectively. As the total amount of absorbed
and emitted energy is determined solely by the carbon skeleton, a PAH without
hydrogen atoms will have weaker C–C bands than one with hydrogen atoms (and
the same NC).

We approximate the line shapes by Lorentzian profiles (see (1.106)),

γ ν2

π2[ν2 − ν2
0 ]2 + [γ ν/2]2

(12.7)

where ν0 = c/λ0 is the center frequency, σint =
∫
σ(λ) dλ the cross section of the

particular band integrated over wavelength, and N the number of C or H atoms,
respectively. The damping constant γ determines the band width and is probably
the result of an overlap of many transitions with frequencies clustering around ν0.
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Figure 12.5. In a PAH, hydrogen atoms are attached to the edge of the carbon skeleton.
The exact frequency of the C–H out-of-plane bend depends on whether the hydrogen
atoms are isolated (mono positions) or whether there are two (duos), three (trios) or four
(quartets) adjacent H atoms. Due to the coupling between the vibrating H atoms, the center
wavelength increases from approximately 11.3 to 13.6 µm (see table 12.1). The number
of neighboring H atoms is indicated for each (peripheral) carbon ring.

12.3 Big grains and ices

A few infrared resonances can also be observed in grains of normal size. They
allow us to identify certain characteristic groups in molecules of which the grains
are made, for example OH in water molecules when water has frozen out. The
features are grain-size independent and serve as a tool to unravel the chemical
composition of interstellar dust.

Let us consider the vibrations in a characteristic group that consists of just
two molecules. In a simplified picture, the fundamental frequency ω between two
atoms of mass m1 and m2 connected by a spring of force constant κ is given by

ω = 2πν = √κ/µ (12.8)

where the reduced mass is
µ = m1m2

m1 + m2
. (12.9)

The frequency is high when the molecules are strongly coupled and the
masses of the involved atoms small. For example, the stretching mode of the light
CH molecule occurs at ∼3 µm, for the heavier CN, the resonance is at ∼10 µm.
Likewise, in a single C–C bond, the stretching band lies at ∼10 µm, in a triple
C≡C bond at ∼5 µm.

The resonance is broad in an amorphous material, and fairly sharp in a
crystal where high structural order leads to long-range forces. Its width and
center frequency depend weakly on temperature: when the solid cools, the force
constant κ and thus the frequency ν in (12.8) increase because the lattice shrinks.
At the same time, the feature becomes narrower because collisional damping with
neighboring atoms is reduced.
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12.3.1 The silicate features and the band at 3.4 µm

The most prominent and widely studied resonance is the one at 9.7 µm due to
an Si–O stretching vibration in silicates. It is the strongest indicator of silicon
in space. Towards star-forming regions, it is observed in absorption, towards
oxygen-rich mass loss giants it is seen in absorption and occasionally in emission.
At around 18 µm, there is an O–Si–O bending mode which is weaker and much
more difficult to observe from the ground because of atmospheric attenuation; the
absorption coefficient ratio κ18/κ10 � 0.5.

To derive the ratio of the visual to the 9.7 µm optical depth, τV/τ9.7, one
measures the extinction through a cloud that lies in front of a carbon star. In these
stars, all oxygen is bound in CO and silicate grains are absent. The stars have
shells of carbon dust that produce a smooth 10 µm emission background with a
temperature of ∼1000 K and without the 9.7 µm feature. On average,

τV

τ9.7
� 18 (12.10)

with a scatter of about 10%. Knowing the ratio τV/τ9.7, one can determine the
visual extinction AV from the 10 µm absorption, provided there are no hot grains
along the line of sight that emit themselves at 9.7 µm. The method still works
when stellar photometry is no longer possible. For example, from the depression
of the 10 µm feature in figure 12.6 we estimate that the object IRS9 in NGC 7538
suffers about 35 mag of visual extinction corresponding to τ9.7 � 2.

Another feature that is widely observed in absorption in the diffuse medium
but, quite interestingly, absent in molecular clouds is the one at 3.4 µm. It is
usually attributed to an aliphatic (the carbon atoms are arranged in a chain, and
not in a ring) C–H stretching mode, for example, in CH3 but its exact identification
has not yet been settled.

12.3.2 Icy grain mantles

Ice mantles form in cold and dense molecular clouds as a result of gas accretion
onto refractory cores (section 9.1). To stay on the grain and not to become
photodesorbed, they have to be well hidden from the UV radiation field. For
instance, the 3.1 µm feature due to OH stretching seems to require shielding
by more than 8 mag of visual extinction. The mantles consist of a mixture of
molecules like H2O, CO, CO2, CH3OH, NH3, CH4, . . . in varying abundance
ratios. An impressive example of absorption by ice mantles is presented in
figure 12.6.

The vibrational spectrum of diatomic molecules in an ice mantle has several
peculiarities. For free molecules, in a gas, there is generally an R- and a P-branch,
each consisting of many rotational lines (see section 14.2.1 and figure 14.1). In
a solid, the atoms are squeezed in by other molecules and cannot rotate freely,
so these branches are supressed. Only hindered rotations may be possible in
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Figure 12.6. The infrared spectrum towards the infrared object IRS9 in the star-forming
region NGC 7538. The resonances at 10 and 18 µm are due to refractory silicate cores.
The other features come from molecules that have frozen out onto refractory grains and
are now in ice mantles. Reproduced from [Whi96] with permission of EDP Sciences.

which the molecule switches from one position to another, which is energetically
different, by rotating. The center frequency is also influenced by the composition
of the matrix into which the molecule is embedded.

12.4 An overall dust model

We are now in a position to present a tentative but complete model of interstellar
dust with respect to its interaction with light. It will be applied in chapter 16
to compute the spectral energy distribution of dusty astronomical objects. A
dozen of rival dust models can be found in the literature. They are all capable
of explaining the basic data on extinction, polarization, scattering and infrared
resonances and, if employed in radiative transfer calculations, yield successful
matches to observed spectra. Our model certainly does not produce superior fits,
its advantage, if any, lies in its relative simplicity. It uses published sets of optical
constants, without modifying them at certain wavelengths to improve fits. The
grains have the simplest possible structure and shape: they are uncoated spheres.
(Therefore, to account for the interstellar polarization, we have to turn some of
the spheres into infinite cylinders, see chapter 10.) Altogether, only 12 types of
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Figure 12.7. The mass absorption coefficient, Kλ, of a mixture of two kinds of PAHs, each
with an abundance YPAH

C = 3%, in the wavelength range where the infrared resonances are
observed. The PAH parameters are described in the text and in table 12.1. Kλ refers to 1 g
of interstellar matter. Below 3 µm, Kλ slumps but increases again when the wavelength
falls below the cutoff for electronic excitation, λcut.

dust particles are needed, including PAHs, where one particle type differs from
another either by its size or chemical composition.

All major dust models agree, in principle, on the solid state abundances, the
approximate grain sizes and the minimum number of dust components: one needs
PAH–ike particles, very small grains with temperature fluctuations and big grains
consisting mainly of silicate and carbon. Such concensus on important issues
does, however, not insure against common error. None of the models is certain
because hard checks on their validity are missing. Interstellar grains are not within
our reach and we cannot verify our assumptions in the laboratory.

Differences between models show up mostly in the details of the chemical
composition (mixing of components, coating, degree of fluffiness, fraction of built
in refractory organic compounds). All models can be refined by varying the shape,
size and optical constants of the grains. This further enhances the agreement with
observational data but does not necessarily bring new insight. A more promising
attempt is to increase the internal consistency of the models. Steps in this direction
have been undertaken with respect to the smallest particles (PAHs and vsg) by
computing grain properties, such as enthalpy and vibrational modes, under the
assumption of a likely grid structure for the atoms ([Dra01] and [Li01]).
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Figure 12.8. The total extinction coefficient (MRN+vsg+PAH, broken curve) as a
function of wavelength for the dust model of the diffuse medium. It refers to 1 g of
interstellar matter adopting a dust-to-gas ratio Rd = 140. Also shown are the extinction
(full curve) and absorption (dotted curve) coefficients for big silicates (Si, a− = 300 Å,
a+ = 2400 Å) and big amorphous carbon grains (aC, a− = 150 Å, a+ = 1200 Å). One
can read the amount of scattering as the difference between extinction and absorption. The
bumps at 2200 and 700 Å are due to very small graphite particles (a− = 10 Å, a+ = 40 Å).

12.4.1 The three dust components

Our dust model for the diffuse interstellar medium consists of three components
with the following properties:

• Big grains. Most of the solid matter in the interstellar medium resides in big
grains, also called MRN grains (section 7.5). They consist of amorphous
carbon (abundance in solid [C]/[H] = 2.5 × 10−4) and silicate particles
([Si]/[H] = 3× 10−5), both with bulk density∼2.5 g cm−3. Their chemical
structure has been discussed in section 7.4. They are spheres and their radii
range from ∼200 to 2400 Å with an a−3.5 size distribution (section 7.5).
Absorption and scattering cross sections are calculated from Mie theory
employing optical constants from figure 7.19. Big grains attain a constant
temperature in any radiation field.

• Very small grains (vsg). A few percent of the solid matter, we adopt 5–10%,
form a population of very small grains (vsg) with radii less than 100 Å. They
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Figure 12.9. The interstellar extinction curve: observations (dots) and model (curves).
The extinction coefficient of our dust model is displayed in figure 12.8. The fit could be
substantially improved by modifying the abundance, sizes and UV properties of vsg and
PAHs but it would then lose some of its simplicity.

may be regarded as the small-size extension of the big particles. Optical
cross sections are still calculated from Mie theory, although the concept of
a continuous solid medium may no longer be fully valid. We adopt, for
them, a size spectrum n(a) ∝ a−4, which is somewhat steeper than for
MRN grains (but this is an arguable minor point); and assume that the carbon
component is graphitic, and not amorphous, so optical constants of graphite
are appropriate. The main reason why one has to include vsg is their time-
variable temperature, as demonstrated extensively in sections 8.5 and 8.6.

• PAHs. Finally, we add PAHs to the dust mixture. Although there must be a
plethora of different species, we consider only two: small ones with NC = 40
carbon atoms; and big ones with NC = 400. Such a restriction, besides
speeding up the computations, makes it easier to elucidate the influence of
the PAH size on the spectrum. The temperature of the PAHs also fluctuates
violently and has to be calculated according to the recipes of section 8.5.
In estimating PAH properties, we widely follow [Sch93]. For the
hydrogenation parameter, fH/C, which is the ratio of hydrogen-to-carbon
atoms, we put, for NC > 30,

fH/C = 2.8/
√
NC. (12.11)
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Figure 12.10. Mass extinction coefficient per gram of interstellar matter (IM) as a function
of wavelength for composite grains which are fluffy aggregates of silicate, carbon, ice and
vacuum. The lower limit a− of the size distribution is in all curves 0.03 µm, the upper limit
a+ is indicated. The line labeled MRN shows the diffuse medium for reference; there the
dust consists of pure (unmixed) silicate and amorphous carbon grains with a− = 0.02 µm
and a+ ∼ 0.3 µm. The MRN curve is more or less identical to the broken curve of
figure 12.8, except in the far UV due to slight differences in the vsg abundance.

fH/C is thus proportional to the number of carbon atoms at the periphery
of the PAH, where the H atoms are found, over the total number NC. The
formula gives fH/C = 0.44 (0.14) for NC = 400 (40). In reality, there is
probably a large scatter in the hydrogenation parameter due to variations in
the radiation field.

Each of the two PAH types has an abundance Y PAH
C of 3–6% relative to

the big grains. Y PAH
C gives the mass fraction of all solid carbon that is in

a certain kind of PAHs. For the absorption cross section of a single PAH,
CPAH, we disregard differences between neutral ond ionized PAH species,
although this is a severe simplification. Ionized PAHs can be excited by
less energetic photons and have greater infrared absorption coefficients than
neutral ones [Li01]. At wavelengths shorter than λcut, which is usually in the
UV (see (12.4)), we put CPAH = NC×10−17 cm2, so CPAH does not depend
on frequency and is proportional to the number of carbon atoms, irrespective
of their geometrical arrangement. The cross sections in the resonances are
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taken from table 12.1. In the far infrared, at λ > 25 µm, one expects a
continuum (see the smooth frequency distribution in the modes of even a
small PAH in figure 12.2) and Cλ should fall off like λ−m with m between
one and two. However, this continuum is usually swamped by the emission
from big grains and not observable. The absorption coefficient of PAHs per
gram of interstellar matter is displayed in figure 12.7.

Assuming that helium accounts for 28% of the gas mass, these cited
abundances for all three dust components (big grains, vsg, PAHs) imply a total
dust-to-gas mass ratio in the diffuse medium of Rd = 1 : 140.

12.4.2 Extinction coefficient in the diffuse medium

Figures 12.8 and 12.9 further quantify our dust model. We use only four particles
sizes for the big aC grains, four for the big Si grains and two for the very small
grains. Nevertheless, the reproduction of the interstellar extinction curve is not
bad. The deficit in the far UV is irrelevant for all models of infrared sources
where the observer does not receive far UV radiation.

12.4.3 Extinction coefficient in protostellar cores

We extend our dust model to cold protostellar clouds. There grains are modified
with respect to the diffuse interstellar medium by coagulation and by ice mantles.
Consequently, their size increases and the dust mass doubles (Rd = 1 : 70),
possibly even triples (see discussion on icy and fluffy grains in section 2.6).
The effect of all three processes (fluffiness, frosting and grain growth) on the
particle cross sections is investigated in section 2.6.4 and 2.6.5. In figure 12.10,
we compute the mass extinction coefficient of dust that consists of such icy and
porous grains. The particles are spheres and have a size distribution n(a) ∝ a−3.5

with lower limit a− = 0.03 µm = 300 Å; the upper limit a+ is varied. All
grains are fluffy and composed of four components: silicate (Si), amorphous
carbon (aC), ice and vacuum. Average optical constants are calculated from the
Bruggeman mixing rule (section 2.6). In all grains, the ice mass is equal to the
mass of the refractory components, Si plus aC, whereas the ice volume is 2.5 times
bigger than the volume of Si plus aC. The vacuum fraction is always constant,
f vac = 0.5. Silicate has twice the volume of carbon, f Si/ f aC = 2. The PAHs
have disappeared and are dirty spots in the ice mantles. Without UV radiation,
the vsg are irrelevant. The optical constants of silicate and amorphous carbon
are from figure 7.19, for ice from the tables of [Ber69] and [Leg83]. Several ice
resonances are visible, for instance, the one at 3.1 µm.

The curve marked a+ = 0.3 µm is an educated guess for dust in protostellar
clouds before it is warmed up by the star and the ices evaporate. When the grains
are very big, as in stellar disks, the lines with a+ = 30 µm or 3 mm might be
appropriate.



Chapter 13

Radiative transport

This chapter deals with the transfer of radiation in a dusty medium. For example,
when one observes a star-forming region, most photons created within it do not
reach us on a straight path but are scattered, absorbed and re-emitted before they
are collected in the telescope. To extract from the observational data the full
information on the physical conditions in the star-forming region, one has to
understand how the photons propagate within the source.

We summarize the elements of radiative transfer, discuss the general transfer
equation and sketch how to derive, for a homogeneous medium, estimates on
temperature, density and masses. We present a set of equations for spherical dust
clouds that treats radiative cooling and heating in an energetically consistent way
and outline how to solve it numerically. We append solution strategies of radiative
transfer for two other astronomically relevant geometries: dusty accretion disks
and a dust-filled star clusters, both of which can, under minor assumptions,
be handled in one dimension. Finally, we also discuss the radiative transport
in molecular lines because line observations are always complementary to dust
observations when investigating stars in their making.

13.1 Basic transfer relations

13.1.1 Radiative intensity and flux

The intensity Iν (x, e) is the fundamental parameter describing the radiation field.
It is defined in the following way (see figure 13.1): Consider a surface element dσ
at location x with normal unit vector n. It receives, within the frequency interval
ν . . . ν + dν, from the solid angle d� in the direction e, which is inclined by an
angle θ against n, the power

dW = Iν(x, e) cos θ dσ d� dν. (13.1)

Iν(x, e) has the dimension erg s−1 cm−2 Hz−1 ster−1 and is a function of

396
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Figure 13.1. Defining the radiative intensity Iν .

• place x,
• direction e and
• frequency ν.

Imagine an extended astronomical source in the sky of solid angle �S. The
direction e towards it can be expressed by two angles, say, θ and φ. Let Iν(θ, φ)
be the intensity distribution over the source. The total flux which we receive on
the Earth is given by

Fobs
ν =

∫
�S

Iν(θ, φ) d� (13.2)

where
d� = sin θ dθ dφ

is the element of solid angle. In practice, the integration may be performed by
mapping the source with a telescope of high spatial resolution. If the intensity is
constant over the source, Iν(θ, φ) can be taken out of the integral and then

Fobs
ν = Iν �S. (13.3)

Note that Iν is independent of the distance D of the source because the solid angle
�S and the flux Fobs

ν are both proportional to D−2. If we recede in a space ship
from the Sun, we receive less light but the intensity in the direction of the Sun
stays the same.

• The mean intensity Jν is defined as the average of Iν over the total solid
angle 4π ,

Jν = 1

4π

∫
4π
Iν d� = 1

4π

∫ π

0
dθ
∫ 2π

0
dφ Iν(θ, φ) sin θ. (13.4)
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• The net flux Fν through a unit surface follows from (13.1):

Fν =
∫ π

0
dθ
∫ 2π

0
dφ Iν(θ, φ) cos θ sin θ. (13.5)

13.1.2 The transfer equation and its formal solution

13.1.2.1 The source function

When a light ray propagates in the direction e along an axis s, its intensity Iν
changes. It is weakened by extinction and reinforced by emission and by light
that is scattered from other directions into the direction e. This is written in the
following way:

d Iν
ds
= −K ext

ν Iν + εν. (13.6)

K ext
ν is the coefficient for extinction, and εν comprises emission and scattering.

Note that the coefficient εν defined in (8.1) stands for ‘true’ emission only and is
thus different. We see from (13.6) that per unit length, the intensity Iν decreases
by an an amount K ext

ν Iν and increases by εν . Both K ext
ν and εν refer to unit volume

and their dimensions are cm−1 and erg s−1 cm−3 Hz−1 ster−1, respectively.
A fundamental quantity in light propagation is the optical depth or optical

thickness, τν . It depends on frequency. When light travels from point S1 to point
S2, its value is given by the integral

τν =
∫ S2

S1

K ext
ν ds, (13.7)

so along the line of sight
dτν = K ext

ν ds.

An object of low optical depth (τ � 1) is transparent and radiation reaches
us from any internal point. An object of large optical depth (τ � 1) is opaque
and we can only look at its surface and do not receive photons from its interior.
When we introduce the source function

Sν = εν

K ext
ν

(13.8)

we can rewrite (13.6) as
d Iν
dτν
= −Iν + Sν . (13.9)

This equation tells us that the intensity increases with optical depth as long as
it is smaller than the source function (Iν < Sν) and decreases when it is stronger.
The source function is thus the limiting value of the intensity for high optical
thickness.
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In a dusty medium, the intensity of a light ray decreases because of
extinction, which is the sum of absorption and scattering, and increases because
the grains radiate thermally and scatter light. If scattering is isotropic and the
grains are at temperature T , the source function becomes

Sν = K abs
ν Bν(T )+ K sca

ν Jν
K ext
ν

(13.10)

where Jν is the mean intensity of the radiation field after (13.4).

13.1.2.2 Analytical solutions to the transfer equation

We solve equation (13.6) for three scenarios:

• Pure extinction without emission (εν = 0). An example is starlight weakened
on the way to us by an intervening dust cloud. The obvious solutions to
(13.6) and (13.9) are:

Iν (s) = Iν(0) exp

[
−
∫ s

0
Kν(s

′) ds′
]

(13.11)

Iν(τ ) = Iν(0) · e−τν . (13.12)

Iν(0) is the intensity of the background star if it were not attenuated. The
observed intensity diminishes exponentially with optical depth.

• Pure emission without extinction (K ext
ν = 0). This situation applies quite

well to submillimeter radiation from an interstellar dust cloud, now

Iν(s) = Iν(0)+
∫ s

0
εν(s

′) ds′. (13.13)

Without a background source (Iν(0) = 0), which is the standard scenario,
and for constant emission coefficient εν , the observed intensity grows
linearly with the path length s.

• Emission plus absorption. In this most general case, we multiply (13.9) by
eτ and integrate by parts which leads to

I (τ ) = I (0)e−τ +
∫ τ

0
S(τ ′)e−(τ−τ ′) dτ ′. (13.14)

The index for the frequency has been dropped for convenience of notation.
Although it appears as if we had mastered the radiative transfer problem, in
reality, we have not. Equation (13.14) is only a formal solution to the transfer
equation (13.9). The hard part is to find the source function Sν(τ ) in formula
(13.14). If Sν(τ ) is constant, it may be taken out from under the integral
yielding

Iν(τ ) = Iν (0)e−τ + Sν (τ ) · [1− e−τ ]. (13.15)
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13.1.2.3 A dust cloud of uniform temperature

In a dust cloud, emission occurs only in the infrared. At these wavelengths, grain
scattering is practically absent. For dust at temperature T , the source function is
then equal to the Planck function at that temperature,

Sν = Bν(T ).

Towards a uniform cloud of optical depth τν , one, therefore, observes,
according to (13.15), the intensity

Iν(τ ) = Iν(0)e−τν + Bν(T ) · [1− e−τν ]. (13.16)

If the background is a point source of flux Fν(0), one receives, out of a solid
angle �, the flux

Fν (τ ) = Fν (0)e−τν + Bν(T ) · [1− e−τν ]�. (13.17)

When the background is absent or its spectrum known and multi-frequency
observations are available, equation (13.17) yields an estimate of the source
temperature and its optical depth, and thus its mass. The limiting solutions to
(13.16) are:

Iν(τ ) =
{
Bν(T )τν + Iν(0) for τν � 1
Bν(T ) for τν � 1.

(13.18)

They imply that without a background source and if the cloud is translucent
(τ � 1), the intensity is directly proportional to the optical depth: doubling
the column density, doubles the strength of the received signal. In this case,
the intensity Iν carries information about the amount of dust but also about the
spectral behavior of the grains via the frequency dependence of the optical depth.
However, if the source is opaque (τ � 1), all information about the grains is
wiped out and the object appears as a blackbody of temperature T .

13.1.3 The brightness temperature

Observations at wavelengths greater than 100 µm fall in the domain of
radioastronomy. There it is common to replace the intensity Iν by the brightness
temperature Tb which is defined through

Iν = Bν(Tb). (13.19)

Bν(T ) is the Planck function. Because Tb expresses an intensity, it depends,
of course, on wavelength, the only exception is a blackbody for which Tb is
independent of ν. Although Tb is not a direct physical quantity, its use offers
practical advantages:

• One now has for the intensity handy numbers in a simple unit (Kelvin),
instead of weird numbers in awkward units.
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• When the source is optically thick, Tb generally, but not always, indicates its
physical (thermodynamic equilibrium) temperature.

• At low frequencies (hν/kTb � 1), in the Rayleigh–Jeans approximation, the
brightness temperature Tb is directly proportional to the observed intensity,
Tb = Iνc2/2kν2. When we put in equation (13.15) Sν(τ ) = Bν(T ), the
brightness temperature of a source of optical thickness τ becomes

Tb(τ ) = T0 e
−τ + T (τ ) · [1− e−τ ]. (13.20)

In the case of dust, T is the grain temperature Td, in the case of line radiation,
T is the excitation temperature Tex (see (13.66)).

13.1.4 The main-beam-brightness temperature of a telescope

The quantity in which radioastronomers express the strength of a signal,
especially in the case of line radiation, is the main-beam-brightness temperature
Tmb. To understand it, we have to briefly discuss the standard measuring apparatus
in radioastronomy. It consists of a parabolic antenna with a detector at its focus.
For the moment, we replace the detector at the focus by an emitting device, as in a
radar antenna. Let P(ϑ, φ) denote the flux emitted by the antenna in the direction
of the sky coordinates (ϑ, φ). The normalized function

Pn(ϑ, φ) = P(ϑ, φ)

Pmax

is called the antenna pattern and determines the telescope beam. In the direction
(ϑ0, φ0), which is parallel to the normal of the antenna surface, P(ϑ, φ) attains
its maximum value Pmax; one may, of course, always use sky coordinates such
that (ϑ0, φ0) = (0, 0). The antenna pattern is the result of diffraction phenomena.
Fortunately, most of the power is emitted into the main beam, in directions close
to the normal of the antenna surface; however, some radiation is spilled into the
side lobes. In a one-dimensional analog, the situation can be compared to the
diffraction pattern on a screen behind an illuminated slit: the intensity has a
central maximum and the range around it down to the first zero points on both
sides corresponds to the main beam of a telescope.

The total solid angle of the antenna is defined by

�A =
∫

4π
Pn(ϑφ) d� (13.21)

with d� = sinϑ dϑ dφ (see (2.2)). Likewise one defines the solid angle of
the main beam, �mb, where the integral extends only over the main beam, and,
therefore,�mb < �A.

Now we return to the common occupation of astronomers: they do not send
messages into space but receive radiation from there. Note that, according to the
reciprocity theorem of section 3.5.5, the spatial distribution of the electromagnetic
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field does not change when one switches from emission to reception. Let B(ϑ, φ)
be the intensity distribution on the sky and let us assume that the influence of
the atmosphere of the Earth on B(ϑ, φ) has been eliminated, either because the
telescope is flying on a satellite or, if it stands on the ground, by way of calibration.
The observed brightness Bobs is then the following mean over the main beam:

Bobs =
∫
�mb

B(ϑ, φ)P(ϑ, φ) d�∫
�mb

P(ϑ, φ) d�
.

It is converted into the main beam brightness temperature, Tmb, by setting it equal
to the Planck function,

Bobs = Bν(Tmb)

or to its Rayleigh–Jeans approximation, Bobs = Tmb2kν2/c2. It is often necessary
to state explicitly which conversion is used.

The main-beam-brightness temperature Tmb is also called the antenna
temperature, denoted TA, although historically the definition of TA was somewhat
different. It is justified to say that the antenna temperature constitutes the high-
tech counterpart to stellar magnitudes (section 7.3), equally fathomless in its
subtleties. The major reason why TA evades a precise determination lies in the
fact that the telescope picks up a little bit of radiation from everywhere, even
from the kitchen of the observatory. To account for it, any ambitious calibration
attempt, therefore, requires the introduction of an efficiency ηkitch, on top of a
dozen other ηs. In practice, astronomers do not worry about this and pretend to
have all ηs under control. Nevertheless, one should be aware that the absolute
calibration accuracy at 1 mm wavelength is, at best, 5% and in the submillimeter
range, at best, 10%.

The main-beam-brightness temperature Tmb and the brightness temperature
Tb are related, as they should be when names are so similar. When a source of
constant brightness temperature Tb subtends a solid angle �S much bigger than
the solid angle�A of the antenna, one measures Tmb = Tb. If, however the beam
is much larger than the source (�A � �S),

Tmb = �S

�mb
Tb

and then the antenna temperature increases when one uses a smaller beam,
although the received physical power does not change with �mb.

13.2 Spherical clouds

The dust emission of a cloud is observed at various wavelengths with the goal of
deriving its internal structure. The observational data consist either of maps or
of single point measurements towards different positions on the source obtained
with different spatial resolution. When the cloud is heated from inside by a star,
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it is obviously inhomogeneous and estimates of the dust column density and
temperature based on the assumption of a uniform cloud (see (13.17)) are no
longer acceptable. A more refined model is needed.

Easy-to-model geometrical source configurations are infinite slabs, infinite
cylinders and spheres. The structure of the medium then depends only on one
spatial coordinate, the problem is one-dimensional. The radiative transfer may
be solved in many ways and fast and efficient public computer codes exist. In
practice, however, one may encounter difficulties using a public code because
it usually has to be modified to meet the demands of a specific astronomical
problem. It may then be better to write a code oneself, even at the expense of less
professionality. We now present the equations and sketch the numerical strategy
for such an endeavour in spherical symmetry.

13.2.1 Moment equations for spheres

In a spherical cloud, the dust density ρ(r), the dust temperature T (r), the mean
radiative intensity Jν(r) and the flux Fν (r) are only functions of distance r to the
cloud center. However, the basic quantity, the frequency-dependent intensity I ,
also depends on direction θ , where θ is the inclination angle to the radial vector,
so altogether

I = Iν(r, θ).

Putting µ = cos θ , we obtain, from (13.4) and (13.5), for the mean intensity and
the flux:

Jν = 1
2

∫ 1

−1
Iν(µ) dµ (13.22)

Fν = 2π
∫ 1

−1
Iν (µ)µ dµ. (13.23)

(4π/c)Jν is the radiative energy density. Jν and Fν are the zeroth and first
moment of the intensity. The second moment reads1

Kν = 1
2

∫ 1

−1
Iν(µ)µ

2 dµ. (13.24)

In the case of an isotropic radiation field, Iν = Jν and the net flux is zero,
Fν = 0. Then the ratio

fν = Kν
Jν

which is called the Eddingon factor, equals 1
3 and the quantity (4π/c)Kν gives

the radiation pressure. It is a simple exercise to show that for spherical symmetry

1 Note that volume coefficients for absorption, scattering and extinction are denoted by the slightly
different symbol Kν .
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equation (13.6) becomes

µ
∂ Iν
∂r
+ 1− µ2

r

∂ Iν
∂µ
= −K ext

ν Iν + εν. (13.25)

Multiplying (13.25) by µ0 = 1 and integrating over all directions gives

1

r2

d

dr
(r2Fν) = −4π JνK ext

ν + 4πεν. (13.26)

This equation looks much simpler than (13.25) because there is no dependence
on the angle µ. However, we cannot solve it for Jν(r) because it contains the
new variable Fν(r). One could try to find an additional equation by multiplying
(13.25) with µ1 and integrating over 4π yielding

dKν
dr
+ 3Kν − Jν

r
= − FνK

ext
ν

4π
(13.27)

but the problem of having one more unknown than equations remains because
now Kν comes into play. The introduction of the next higher moment
(multiplication of (13.25) by µ2) will not remedy the situation, either. Instead,
to be able to use formulae that do not depend explicitly on the direction angle µ,
one needs physical guidance. For instance, for low optical depth, the radiation
field is streaming radially outwards and Jν = Kν = Fν/4π . For high optical
depth, the radiation field is isotropic and fν = 1

3 .

13.2.2 Frequency averages

One can radically simplify the numerical problem by taking frequency averages.
Mean values for the extinction coefficent Kν in the case of low and high optical
depth are found in the following way:

• In an optically thick configuration, where the mean intensity Jν is close to
the Planck function Bν(T ), one uses the Rosseland mean KR(T ) defined
through

1

KR(T )
=
∫ 1
Kν
∂Bν(T )
∂T dν∫

∂Bν(T )
∂T dν

. (13.28)

As
∫
Bν(T ) dν = σT 4/π , where σ is the radiation constant of (5.80),

the denominator in (13.28) equals 4σT 3/π . The Rosseland mean gives
the greatest weight to the lowest values of Kν , as in a room darkened by
thick curtains: it is not their thickness but the open slits between them that
determine how much light enters from outside. If Fν is the energy flux at
frequency ν per unit area and time, the definition of KR in equation (13.28)
must be, and indeed is, although not evident at first glance, equivalent to

KR

∫
Fν dν =

∫
KνFν dν.
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For example, the equation for the radiative energy transport in the stellar
interior may be approximated by using the average opacity KR and assuming
Jν = Bν(T ) and fν = 1

3 . Then the total flux F = ∫ Fν dν is, from formula
(13.27), determined by the temperature gradient in the star:

F = − 16σT 3

3KR(T )

dT

dr
. (13.29)

We point out that because Pr = aT 4/3, with a from (5.84), is the radiation
pressure; equation (13.29) corresponds to Fick’s first law of diffusion,
applied to a photon gas.

• In a tenuous cloud, one takes, as a frequency average, the Planck mean KP.
It is now not a question of which frequency penetrates deepest, they all do.
Instead one has to take the average over the emitted energy,

KP(T ) =
∫
KνBν(T ) dν∫
Bν(T ) dν

. (13.30)

Using the approximation Kν = K0ν
m , which is fine for interstellar dust

(section 8.2), one may compute the coefficients analytically. For m = 2, one
gets a quadratic increase with temperature,

KP = 8.14× 1021K0T
2 KR = 1.08× 1022K0T

2. (13.31)

The two values are astonishingly close. When we put for the absorption efficiency
Qν = 10−23aν2 after (8.10), where a is the grain radius in cm, and let KR refer to
1 g of interstellar matter, K0 = 7.5× 10−24R/ρgr. A dust-to-gas ratio Rd = 0.01
and a matter density ρgr = 2.5 g cm−3 leads to

KR ∼ 3× 10−4T 2 cm2 per gram of interstellar matter. (13.32)

The Rosseland mean opacity may be acceptable in protostellar cocoons or
accretion disks, the Planck mean KP may be used to assess the effective optical
depth of clumps in a molecular cloud. As grains in early-stage protostellar
condensations are probably fluffy and possess ice mantles (section 2.6), it may
be better under such conditions to use the enhanced estimate

KP ∼ 10−3T 2 cm2 per gram of IM. (13.33)

13.2.3 Differential equations for the intensity

We give here a set of equations for the intensity that retains the full information
on frequency and direction. Our choice of coordinates is illustrated in figure 13.2.
Light is propagating at constant impact parameter p parallel to the z-axis either to
the left (I−ν ) or to the right (I+ν ). The coordinates p and z, which are used instead
of r and µ, are connected to the radius by

r2 = p2 + z2
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Figure 13.2. The coordinate system for the intensity in a spherical cloud of outer radius
R. Light rays at constant impact parameter p are directed either to the left (I−) or to the
right (I+). The ray I+ enters the cloud at (p,−ze) and leaves at (p, ze). The cloud is
immersed into a radiation field of isotropic intensity I0.

and the intensities obey the differential equations (see (13.9))

d I+ν
dz
= −K ext

ν · [I+ν − Sν] (13.34)

d I−ν
dz
= K ext

ν · [I−ν − Sν ]. (13.35)

If the dust particles scatter isotropically, the source function is given by
(13.10). K abs

ν , K sca
ν and K ext

ν are the volume coefficients for absorption, scattering
and extinction referring to 1 cm3 of interstellar space. In view of the symmetry of
the spherical cloud, (13.34) and (13.35) have to be solved only in the right-hand
quadrant of figure 13.2, i.e. for z > 0. The equations must be complemented by
two boundary conditions:

• The first states that at the cloud’s edge, where z = ze, the incoming intensity
I−ν is equal to the intensity of the external radiation field I0ν :

I−ν (p, ze) = I0ν with ze =
√
R2 − p2. (13.36)

• The formulation of the second boundary condition depends on whether there
is a central star or not. Without it or when there is a star but the impact
parameter p is larger than the stellar radius R∗, one has, for reasons of
symmetry,

I+ν (p, z) = I−ν (p, z) at z = 0. (13.37)

With a star of stellar surface flux F∗ν and when p ≤ R∗ (see (5.74)),

I+ν (p, z∗)− I−ν (p, z∗) =
F∗ν
π

with z∗ =
√
R2∗ − p2. (13.38)
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13.2.4 Integral equations for the intensity

Instead of solving the differential equations (13.34) and (13.35), it is, for reasons
of numerical stability, advisable to use the corresponding integral equations (see
(13.14))

I+(τ ) = e−τ
[
I+(0)+

∫ τ

0
S(x)ex dx

]
(13.39)

I−(t) = e−t
[
I0 +

∫ t

0
S(x)ex dx

]
. (13.40)

The boundary conditions stay the same. In (13.39), the optical depth τ
increases from left to right, so τ (z = 0) = 0 and τ (z > 0) > 0. In (13.40),
the optical depth t equals zero at the cloud surface (t (ze) = 0) and grows from
right to left, so t (z < ze) > 0.

Solving (13.39) and (13.40) is not eneough, one still has to determine the
dust temperature. One arrives at a full solution to the radiative transfer problem
iteratively. Suppose that after iteration cycle i we approximately know the grain
temperature T (r), the mean intensity of the radiation field Jν(r), and thus after
(13.10) the source function Sν (r). We find improved values of T (r), Jν(r) and
Sν(r) in the following way: First, we determine for each impact parameter p the
intensity I−ν from (13.40). Using the inner boundary condition, we then calculate,
for all p, the intensity I+ν from (13.39). From I+ν and I−ν we form the quantities

uν(p, z) = 1
2

[
I+ν (p, z)+ I−ν (p, z)

]
(13.41)

vν(p, z) = 1
2

[
I+ν (p, z)− I−ν (p, z)

]
. (13.42)

From the first, uν , one gets an updated mean intensity

Jν(r) = 1

r

∫ r

0

puν(p, r)√
r2 − p2

dp. (13.43)

It is not difficult to see that this agrees with the definition of Jν from from
(13.22). The new Jν(r) is then inserted into equation (8.8) or into∫

Jν(r)Kν(r) dν =
∫
Bν(T (r))Kν(r) dν

which yields new temperatures when solved for T . Updating the source function
Sν(r) (see (13.8)) finishes iteration cycle i + 1.

13.2.5 Practical hints

• As starting values for the first cycle (i = 1), an initial mean intensity Jν(r) =
0 should be acceptable. For the temperature, one may put T (r) = constant if
there is no central star and the outer radiation field is not too hard and strong.
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With a star, T (r) ∼ 20(L∗/r2)1/6 should work when r and L∗ are expressed
in cgs units (see (8.17)).

• Use linear interpolation (trapezium rule) for evaluating integrals. The
accuracy is then proportional to the square of the step size h. In Simpson’s
rule (quadratic interpolation), it is proportional to h4 and that is worse when
the grid is coarse.

• The iterations converge when the changes of the temperature
T (r) become
smaller with each new cycle. As a check on the accuracy of the calculations,
one can compute, for each radius r , the net flux

Fν(r) = 4π

r2

∫ r

0
p vν(p, r) dp. (13.44)

This formula can be derived from (13.23) and (13.42). The integrated flux
through a shell of radius r is

L(r) = 4πr2
∫
Fν dν.

If the cloud has a central star of luminosity L∗, the condition L(r) = L∗
should be numerically fulfilled everywhere to an accuracy of ∼1%.

• Without an embedded source, heating comes from an outer isotropic
radiation field of intensity I0ν . The integrated flux L(r) is then zero because
what enters at the cloud surface must also leave. Nevertheless, the dust may
be quite hot, especially in the outer envelope. Numerically, |L(r)| should
now be small compared to

4πR2π

∫
I0ν dν

which is the total flux from the external radiation field through the cloud
surface.

• To select a sufficiently fine radial grid which is also economical in terms of
computing time, the number of points and their spacings must be adapted
during the iterations. For example, in a cloud of 50 mag of visual extinction
with a central hot star, the dust column density between neighboring grid
points must be small near the star because UV radiation is absorbed very
effectively. At the cloud edge, however, there are only far infrared photons
and the grid may be coarse. Generally speaking, as one recedes from the star,
the radiation field softens and the mean free path of the photons increases.
At each radius r , there therefore exists a cutoff frequency with the property
that only photons with ν < νcut are energetically relevant, whereas those
with ν > νcut, whose mean free path is, as a rule of thumb, shorter, are
unimportant. νcut may be defined by and computed from∫ ∞

νcut

Jν(r) dν = α
∫ ∞

0
Jν(r) dν (α ∼ 0.2).
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Choosing the radial step size in such a way that the optical depth at the
cutoff frequency is of order 0.1 automatically ensures that the grid is fine
only where necessary.

• Very close to the star, dust evaporates. The exact radius revap is part of the
solution of the radiative transfer; it depends, of course, on the grain type. To
account for dust evaporation, one may evaluate the grain temperature Td in
the local radiation field and add a flag at all radii to each grain type indicating
whether Td is above or below the evaporation threshold Tevap. The flag then
controls whether the grain contributes in the next cycle to the extinction and
emission or not. For heavily obscured sources (AV > 20 mag), the exact
value of the evaporation radius has little influence on the spectrum, if at all,
only in the near infrared.

• For N radial grid points r1 = R∗, r2, r3, . . . , rN = R, there are N+1 impact
parameters pi = ri with i = 1, . . . , N and p0 = 0. Because to first order the
intensity over the stellar disk does not change, one needs only two impact
parameters (p = 0 and p = R∗) for the star. The second radial grid point r2
should only be a tiny bit (0.1%) bigger than r1.

• The dust temperature Td is computed from (8.8). Let Tj be the value of the
grain temperature in iteration cycle j . Writing (8.8) in the form∫

Qabs
ν Jν dν = Q(T )

σ

π
T 4

where σ is the radiation constant of (5.80) and Q(T ) is defined by

Q(T ) =
∫
Qabs
ν Bν(T ) dν∫
Bν(T ) dν

one gets an improved estimate Tj+1 for the new iteration cycle j + 1 from

T 4
j+1 = T 4

j

∫
Qabs
ν Jν dν/Q(Tj ).

The sequence Tj , Tj+1, Tj+2, . . . quickly converges towards Td.

13.3 Passive disks

13.3.1 Radiative transfer in a plane parallel layer

All stars are surrounded during their early evolution by an accreting disk. A disk
is passive when it is only heated by the star and internal dissipational losses are
negligible. Imagine a flat and thin disk with density structure ρ(r, z) given in
cylindrical coordinates (r, z). Let it be illuminated by a central star of luminosity
L∗, radius R∗ and temperature T∗ whose mid-point is at (r = 0, z = 0). To
determine the disk emission, we consider, in figure 13.3, a small section at radius
r from the star.
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Figure 13.3. A small portion of a thin disk. The star is far away to the left at a distance
r and its light falls on the disk under some small grazing angle αgr. The basic transfer
equation (13.9) is solved under all inclination angles θ for incoming (I−) and outgoing
(I+) radiation. The situation is symmetric with respect to the mid-plane which is indicated
by the dotted line at z = 0. The position of the observer is also shown.

The formalism of the radiative transfer developed for spheres can be carried
over to the slab geometry. Again one starts by solving the pair of equations (13.39)
and (13.40) for I+ and I−, which are now the intensities along straight lines
under various angles θ with respect to the z-axis. Then one calculates from these
intensities a new vertical temperature run T (z); the procedure is iterated until
T (z) converges.

The starlight falls on the disk under a small effective grazing angle αgr,
which is evaluated in equation (13.49) for a flat disk and in (13.53) for an inflated
disk. Viewed from the disk surface (figure 13.3), the upper hemisphere of the star
subtends, at large distances, a solid angle

�∗ = 1

2
π
R2∗
r2
.

In order not to break the slab symmetry, the stellar hemisphere is replaced
by a luminous ring of the same intensity and solid angle. This ring encircles the
whole sky at an elevation αgr, its width is �∗/2π � αgr.

The first boundary condition of the transfer equations states that at the top
of the disk the incoming intensity I− is zero except towards the ring where it is
equal to Bν(T∗). The second boundary condition, I+ = I− at z = 0, follows
from symmetry requirements.
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The radiative transfer at radial distance r0 yields the temperature structure
T (r0, z) and the intensities I+ν (r0, z, θ), I−ν (r0, z, θ) for all frequencies ν, heights
z and angles θ . One thus also obtains I+ν at the top of the disk, for all directions θ .
To obtain the total flux that an observer receives when he views the disk under a
certain angle θobs, one has to solve the radiative transfer at all radii r and then sum
up the contributions. Furthermore, one has to include the direct emission from the
star, and possibly apply a correction for foreground extinction.

13.3.1.1 Disks of high optical thickness

When the opacity in the vertical direction is large, as happens in young stellar
disks where AV is 104 mag or greater, one may encounter numerical difficulties.
We then recommend the following strategy: Divide the disk in its vertical
structure into a completely opaque mid layer sandwiched between two thin top
layers (figure 13.4). The optical depth of the top layer in the z-direction is chosen
to be sufficiently large for all starlight, including the scattered part, to become
absorbed but small enough so that all re-emitted radiation, which has infrared
wavelengths, can leave; a typical value would be AV ∼ 5 mag. Let fν be the
monochromatic stellar flux that falls in z-direction on the disk (see (13.47)). The
integrated incident flux in the z-direction is then

f∗ =
∫

fν dν.

Without scattering, all the flux f∗ is absorbed in the top layer and then re-
emitted. Half of it will penetrate into the mid layer, the other half will leave the
top layer into space.

The mid layer is assumed to be isothermal at temperature Tmid, so that the
radiative transfer inside it is very simple (see (13.16)). One can immediately
write down the intensity that enters the top layer from below under the direction
µ = cos θ ,

I+ν (z = 0, µ) = Bν(Tmid) ·
[
1− eτν(µ)]. (13.45)

Here τν(µ) is the optical depth of the mid layer. The monochromatic flux received
by the top layer from below is, therefore, (see (13.23)),

2πBν(Tmid)

∫ 1

0

[
1− eτν (µ)]µ dµ.

Defining the last integral as

Eν ≡
∫ 1

0

[
1− eτν (µ)]µ dµ

the temperature Tmid can be numerically evaluated from the condition

f∗ = 4π
∫
Bν(Tmid)Eν dν. (13.46)
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Figure 13.4. A small portion of a geometrically thin but optically very thick disk. The UV
light from the star on the left is completely absorbed in the top layer. About half of the
re-emitted IR photons heat the mid layer which is assumed to be isothermal at temperature
Tmid. One calculates the radiative transfer for the top layer (z ≥ 0) using the boundary
condition (13.45) for I+. Note that the zero point of the z-axis is different here from that
in figure 13.3.

The assumption of isothermality of the optically thick mid layer is valid
because a temperature gradient would imply in the diffusion approximation of
(13.29) a net energy flux. However, there can be none because there are no internal
sources and the disk is symmetric about its mid plane.

13.3.1.2 The grazing angle in a flat disk

We compute the monochromatic flux fν that falls in the z-direction on the disk and
heats it. If the disk is flat and thin or if it has a constant opening angle, a surface
element of unit area receives out of a solid angle d� pointing towards the star
the flux Bν(T∗) d� sin θ sinφ (figure 13.5); Bν(T∗) denotes the uniform stellar
intensity. By the whole upper half of the star, the surface element is illuminated
by the flux

fν = Bν(T∗)
∫ θmax

0
sin2 θ dθ

∫ π

0
sinφ dφ = Bν(T∗) ·

[
θmax − 1

2 sin 2θmax
]

= Bν(T∗)
[

arcsin(R∗/r)− (R∗/r)
√

1− (R∗/r)2
]
. (13.47)
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Figure 13.5. At position P on the disk, a unit area is illuminated by an infinitesimal surface
element S of the star by the flux Bν(T∗) d� sin θ sinφ. Seen from P, the surface element
S subtends the solid angle d� = sin θ dθ dφ, where θ is the angle between the lines PM
and PS. The factor sin θ sinφ takes into account the inclination of the disk towards the
incoming light. In the figure, S is drawn near φ = 90◦ and the dotted line near S is a circle
with θ = constant.

We express fν through an effective grazing angle, αgr, defined by

fν = �∗ · Bν(T∗) · αgr (13.48)

where �∗ is the solid angle of the star. At large distances (x ≡ R∗/r � 1),
arcsin x − x√1− x2 � 2x3/3 and, therefore, fν = 2

3 x
3Bν(T∗) and

αgr = 4

3π

R∗
r
. (13.49)

To obtain the total flux Fν falling on an infinite disk, we integrate (13.47)
over the entire plane outside the star,

Fν =
∫ ∞
R∗

2πr fν dr

= 2πBν(T∗)
∫ ∞
R∗


r arcsin

R∗
r
− R∗

√
1− R2∗

r2


 dr = 1

2π
2R2∗Bν(T∗).

The integrals are solved using formulae (A.18) and (A.19). To evaluate the
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expressions at the upper bound r = ∞, we set x = 1/r , expand around x = 0
and let x go to zero.

Summing Fν up over all frequencies, one finds that each side of an
infinite disk intercepts exactly one-eighth of the stellar luminosity L∗ =
4πR2∗ σT 4∗ .

If the disk is a blackbody, it will have a surface temperature

T 4
disk(r) =

T 4∗
π

[
arcsin(R∗/r)− (R∗/r)

√
1− (R∗/r)2

]
. (13.50)

For r � R∗, the radiative heating rate has a r−3/4-dependence,

Tdisk(r) = T∗
(

2

3π

)1/4 ( R∗
r

)3/4

. (13.51)

13.3.2 The grazing angle in an inflated disk

In a Kepler disk, when the gas is in hydrostatic equilibrium in the z-direction, the
disk height H increases with the distance r from the star (subsection 15.4.3); the
disk is said to be inflated or flared. Assuming that the gas and dust are well mixed,
the dust disk is then not flat nor is the ratio H/r constant. To derive the grazing
angle αgr for this general case, we define the height H by the condition that the
visual optical depth AV from there towards the star is one. If ρ(z) denotes the dust
density distribution in vertical direction and KV the visual absorption coeffcient,

1 = KV

αgr

∫ ∞
H
ρ(z) dz. (13.52)

The level z = H represents the photosphere of the dusty disk and it is the
approximate place where stellar photons are absorbed. The disk thickness is 2H .
A flared disk intercepts more stellar light than one with constant H/r . Indeed, the
effective grazing angle αgr of the incident radiation increases over the expression
(13.49) by an amount

β − β ′ = arctan
dH

dr
− arctan

H

r
� dH

dr
− H

r
= r d

dr

(
H

r

)
so that now we have to use in (13.48)

αgr = 4

3π

R∗
r
+ r d

dr

(
H

r

)
. (13.53)

The second term in (13.53) is usually greater than the first, so it is desirable
to have a good estimate for H and its derivative dH/dr . The surface temperature
of a blackbody disk, whether it is inflated or not, has the form

T 4
disk(r) = �∗

αgr

π
T 4∗ . (13.54)
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Figure 13.6. For a surface element P on a flared disk, the effective grazing angle αgr of
stellar light is enhanced with respect to the flat disk by β − β′. The bold line marks the
top of the flared disk atmosphere; r and H are the radial distance and height above the
mid-plane. The small shaded sphere represents the star.

13.4 Galactic nuclei

13.4.1 Hot spots in a spherical stellar cluster

Another class of objects whose infrared appearance one is eager to model and
which possess a fair degree of spherical symmetry are galactic nuclei, like the
center of the Milky Way. Many galactic nuclei have large infrared luminosities
as a result of internal activity. Its origin may be either rapid star formation or
accretion onto a massive black hole. In both cases, the hard primary radiation,
from the star or the black hole, is converted into infrared photons by dust.

When the luminosity of the black hole dominates, one may, to first order,
approximate it by a spherical central source with a power-law emission spectrum
and use the formalism outlined in section 13.2 for single stars. However, when
the luminosity comes from a star cluster, the configuration is intrinsically three-
dimensional because the dust temperature varies not only on a large scale with
galactic radius r , which is the distance to the center of the stellar cluster but also
locally with the separation to the nearest star. This circumstance must be taken
into account in some approximate manner. Loosely speaking, the temperature of
a grain located in the immediate vicinity of a star is determined by the distance to
and the properties of that star, whereas a grain at the same galactic distance but not
very close to any star, absorbs only the mean interstellar radiation field J ISRF

ν (r)
and will thus be cooler. The spherical symmetry is broken on a small scale
because the surroundings of a star constitute a hot spot (abbreviated HS) in the
interstellar medium. Their presence significantly changes the spectral appearance
of a galactic nucleus.

Let us assume that the hot spots are spheres, each with a star of
monochromatic luminosity Lν at the center. It turns out that their total volume
fraction is small, so they are distributed over the galactic nucleus like raisins in a
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cake. The radius RHS of a hot spot is determined by the condition that outside,
a dust grain is mainly heated by the interstellar radiation field (ISRF), whereas
inside, heating by the star dominates. If τν is the optical depth from the star to the
boundary of the hot spot, RHS follows from∫

Qν J
ISRF
ν dν = 1

(4πRHS)2

∫
QνLνe

−τν dν. (13.55)

This equation can readily be generalized to a mixture of dust grains. The
radius RHS of a hot spot is a function of galactic radius r , but it depends, of
course, also on the monochromatic stellar luminosity Lν , the dust distribution
within the hot spot, and on the grain type via the absorption efficiency Qν .

13.4.2 Low and high luminosity stars

It is useful to divide the stars in a galactic nucleus into two categories, each
containing identical objects. Stars of the first class have small or moderate
luminosity, a space density n∗(r) and a monochromatic and bolometric luminosity
L∗ν and L∗, respectively, where

L∗ =
∫
L∗ν dν.

They represent the population of old stars. Stars of the second class are of spectral
type O and B. They are young and luminous and were formed in a starburst. The
corresponding values are denoted nOB(r), LOB

ν and LOB.

• The low luminosity stars are very numerous, altogether typically 109, and
the contribution of their hot spots to the overall spectrum may be neglected.
To see why, consider a nucleus of integrated luminosity Lnuc containing N
identical stars of luminosity L∗. When we fix Lnuc = NL∗ but increase
N and thus lower L∗, the intensity of the interstellar radiation field in the
galactic nucleus is, to first order, independent of N . In view of the definition
for RHS in (13.55), one finds that RHS ∝ √L∗ ∝ N−1/2. Therefore, the total
volume N(RHS)3 of all hot spots decreases as N−1/2. A large population of
low-luminosity stars may be smeared out smoothly over the galactic nucleus
and the structure of their hot spots need not be evaluated. To account for
the radiation of these stars, one only has to introduce in the numerator of the
source function (13.56) the volume emission coefficient

�∗ν (r) = n∗(r) · L∗ν .
If the stellar atmospheres are blackbodies of temperature T ∗, one may put
L∗ν ∝ Bν(T ∗). Note that L∗ν need not be specified, only the product
�∗ν (r) = n∗(r) · L∗ν .

• The OB stars, however, are very bright and not so numerous. There are
rarely more than 106 in a galactic nucleus and their space density nOB(r)
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is moderate, typically one star per pc3 or less in the starburst region. The
emission of their hot spots is not negligible and has to be evaluated explicitly.
Before solving the radiative transfer on a large scale in the galactic nucleus,
one has to determine the luminosity LHS

ν (r) emerging from a hot spot. The
frequency integral

∫
LHS
ν dν is, of course, equal to the luminosity LOB =∫

LOB
ν dν of a single OB star but LOB

ν and LHS
ν are different because much

of the hard stellar UV flux is converted by dust into infrared radiation.
To obtain LHS

ν (r), we calculate for each galactic radial grid point the
radiative transfer of a spherical cloud centrally heated by an OB star. The
cloud radius RHS is determined from (13.55). The hot spot is illuminated
at its edge by an interstellar radiation field (ISRF), which fixes the outer
boundary condition (13.36); at the inner boundary, we use (13.38) with the
flux from the surface of the OB star. The volume emission coefficient due to
the hot spots is

�HS
ν (r) = nOB(r) · LHS

ν .

Altogether, the source function in a spherical galactic nucleus with isotropic
dust scattering becomes (see (13.10))

Sν = �
HS
ν (r)+ �∗ν (r)+ K abs

ν Bν(Td)+ K sca
ν J ISRF

ν

K ext
ν

. (13.56)

It is straightforward to generalize to a dust mixture with different
temperatures Td and to include small grains with temperature fluctuations. One
then solves with this source function the integral equations (see (13.39) and
(13.40))

I (τ ) = I (0)e−τ +
∫ τ

0
S(x)e−(τ−x) dx (13.57)

for the spherical nucleus as a whole. This is done along lines of constant impact
parameter for the intensities in positive and negative direction, I+ and I−. They
yield the mean intensity J ISRF

ν (r). The inner boundary condition is now always
I+ = I− and, at the outer edge, I− = 0 (see (13.36) and (13.37)).

As the galactic nucleus in this model consists of two phases, a dusty medium
interspersed with hot spots, equation (13.57) is not strictly correct. It gives,
however, a good approximation as long as the volume fraction γ of the hot spots,

γ (r) = 4π

3
nOB(r) · [RHS(r)

]3
is small; γ (r) shrinks when nOB(r) becomes large. For typical space densities of
OB stars in starburst nuclei, γ is of order 10−3.
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13.5 Line radiation

13.5.1 Absorption coefficient and absorption profile

In a gas of atoms or molecules, line radiation arises from transitions between
discrete energy states. Consider the levels j and i with statistical weights g j , gi ,
energies E j > Ei , and population numbers n j , ni . The center frequency ν j i of
the line is at

hν j i = E j − Ei .
The basic equation of radiative transfer (13.6),

d Iν
ds
= −Kν Iν + εν

is still valid but Kν refers now only to absorption. Scattering of the kind that an
atom absorbs a photon from level i to j and then returns to the same i is treated
as two independent processes: one of absorption, the other of emission. The
molecules absorb radiation not only at exactly the center frequency ν j i but over
some interval. How effectively they absorb away from the line center is described
by the absorption profile �(ν) (see section 6.3.1). This is a normalized function,∫

line
�(ν) dν = 1 (13.58)

which for a Gaussian of half-width 2H has the form

�(ν) =
√

ln 2

H
√
π
· exp

[
− (ν − νi j )

2

H 2 ln 2

]
. (13.59)

In our applications, the energy levels are rather sharp and the line broadening
is due to the Doppler shift arising from the motion of the molecules (relative to
their local standard of rest). In other environments, like stellar atmospheres, the
levels themselves are broadened by collisional perturbations.

The emission and absorption coefficient can be expressed through the
Einstein coefficients A ji and B ji for spontaneous and induced emission.
Following the discussion in subsection 6.3.1, a beam of light of intensity Iν , solid
angle d� and frequencies in the interval [ν, dν + dν] induces, per unit length,

IνBij Ni�(ν)
d� dν

c

upward transitions. The frequency-dependent absorption coefficient results from
the difference between upward and downward induced transitions and can be
written as

Kν =
[
ni Bi j − n j B j i

]hν
c
�(ν). (13.60)
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The term −n j B j i gives the correction for stimulated downward transitions
and (without proof) is linked to the same �. The integrated line absorption
coefficient is

K =
∫
Kν dν = hν

c

[
niBij − n j B j i

]
(13.61)

and the optical depth element

dτν = Kν ds = K�(ν) ds. (13.62)

Likewise, the emission coefficient εν may be expressed as

εν = n j A j i�′(ν) hν
4π

(13.63)

with the profile function �′(ν). Usually one may put �(ν) = �′(ν). Note that
spontaneous emission is isotropic, whereas the induced photons fly in the same
direction as the photons in the incident beam.

13.5.2 The excitation temperature of a line

When the radiative transfer equation is written as

d Iν
dτν
= −Iν + Sν

it describes the variation of the intensity Iν with optical depth τν . The source
function Sν becomes, in view of (13.60) and (13.63),

Sν = εν

Kν
= 2hν3

c2

[
g jni
gin j

− 1

]−1

(13.64)

and the profile function has canceled out. The ratio of the level populations defines
an excitation temperature Tx,

n j
ni
= g j
gi
e(E j−Ei )/kTx . (13.65)

When we insert Tx into the Planck function, we see from equation (13.64)
that the source function is just the Planck function at temperature Tx,

Bν(Tx) = Sν . (13.66)

Different transitions of the same molecule have usually different excitation
temperatures. Only in thermodynamic equilibrium does one have one value of
Tx, equal to the kinetic temperature of the gas T , and then (13.65) is equivalent
to the Boltzmann equation (5.9). When for a particular transition Tx = T ,
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the corresponding levels are said to be thermalized. Employing the excitation
temperature and setting

K0 = g j
gi

c2

8πν2 A ji (13.67)

the integrated absorption coefficient of (13.61) becomes

K = ni K0
[
1− e−hν/kTx

]
. (13.68)

The brackets contain the correction for stimulated emission. One uses the so
called bi -factors to indicate the deviation of the population of a level i from its
LTE value denoted n∗i ,

bi ≡ ni
n∗i
. (13.69)

Thus, if we replace in equation (13.68) the excitation temperature Tx by the
kinetic temperature T ,

b j
bi
e−hν/kT = e−hν/kTx . (13.70)

Because the brightness temperature Tb is defined by (13.19) from the
intensity,

Iν = Bν(Tb) (13.71)

the transfer equation (13.9) can be written as

dBν(Tb)

dτν
= −Bν(Tb)+ Bν(Tx). (13.72)

The Rayleigh–Jeans approximation,

dTb

dτ
= −Tb + Tx (13.73)

then has, in a uniform cloud, the solution

Tb = Tx(1− e−τ )+ T0e
−τ . (13.74)

The term T0e−τ representing a background source of strength T0 has been
added to stress the analogy to (13.20).

13.5.3 Radiative transfer in lines

For line radiation, the absorption coefficient K in (13.61) depends on the
statistical level population n j . Generally, one cannot assume LTE conditions but
has to determine the abundance n j of each level j from the balance between
processes that populate and depopulate it. These are, first, radiative transitions
due to spontaneous and induced emission and to induced absorption (section 6.3),
all subject to certain selection rules; second, there are collisional transitions.
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13.5.3.1 Level population of carbon monoxide

Let us consider the excitation of rotational levels in a simple diatomic molecule,
for example, CS or CO (see section 14.2.1). Radiative transitions coupling
to rotational level j are then restricted by the selection rules to levels j ± 1.
Collisions, however, can go from j to any k �= j and back, the main collisional
partners being helium atoms and ortho- and para-hydrogen. The collision rateC jk

from j → k is a function of temperature only. The number of such transitions per
s and cm3 is given by n jC jk . The inverse rate Ckj follows from

g jC jk = gkCkj e−(Ek−E j )/kT .
Let there be N + 1 levels altogether and let us put

i = j − 1 k = j + 1 C j j = 0.

The set of equations for the equilibrium population n j then reads

nk
[
Akj + Bkj ukj

]+ ni Bi j ui j + n(H2)

N∑
m=0

nmCmj

= n j
[
A ji + B jiu j i + B jku jk + n(H2)

N∑
m=0

C jm

]
(13.75)

for j = 0, 1, 2, . . . , N − 1. The left-hand side populates, the right-hand side
depopulates level j . The radiative energy densities ui j in the lines are taken with
respect to transitions between levels i and j and are defined in (6.38). For j = 0,
terms connecting to i = j−1 disappear because level i = −1 does not exist. The
total number of CO molecules is fixed by the additional condition

N∑
j=0

n j = n(CO). (13.76)

13.5.3.2 LTE population

We point out limiting cases of (13.75):

• When the density is high, radiative transitions are negligible and collisions
dominate. Because

C ji = gi
g j
Ci j e

−(Ei−E j )/kT

we are led to ∑
i

Ci j

[
ni − n j gi

g j
e(E j−Ei )/kT

]
= 0.



422 Radiative transport

These equations are fulfilled if the brackets vanish which is true when all
levels are in LTE.

• In the case of a blackbody radiation field, uν = B(ν, T ). When collisions
are negligible,[

n j
8πh

c3 ν j i +
(
n j − ni g j

gi

)
B(ν j i , T )

]
B ji = 0

which also implies thermalization of the levels at temperature T .

13.5.3.3 The microturbulent approximation

The equations (13.75) and (13.76) for the abundances n j contain the radiative
energy densities ui j . They must, therefore, be solved together with the radiative
transfer. For the radiative transfer we again use the integral form (13.39) and
(13.40). However, we now have to follow the intensity not only in the right
quadrant of figure 13.2, from z = 0 to z = ze as for dust but from −ze to ze
because the line-of-sight velocity has, in spherical symmetry, opposite signs in
the near and far quadrant. This changes the boundary conditions in an obvious
fashion.

According to (13.60) and (13.63), the local line profile �(ν) appears in the
expression for the absorption and emission coefficient, Kν and εν . The function
�(ν) is rarely of purely thermal origin. For example, purely thermal and optically
thin molecular lines from a cold interstellar cloud of 10 K would have a width
of typically 0.1 km s−1 (see (5.13)), however, observed lines are usually a few
times wider. Broadening is, therefore, dominated by other, non-thermal motions,
their precise origin being unclear. The observed profiles are, nevertheless, usually
of Gaussian shape which indicates that the motions have a random, turbulent
character. In the microturbulent approximation it is assumed that the velocity
distribution of the non-thermal motions follows a Gauss curve and that the mean
free photon path is much bigger than the scale length of turbulence. In the line
profile (13.59), one, therefore, puts

H 2 =
(

2kT

m
+ ξ2

turb

)
ln 2

where m is the molecular mass and ξturb the most likely turbulent velocity.
One solves the radiative transfer equations (13.39) and (13.40) for all lines and
afterwards the abundance equations (13.75) and (13.76), and repeats this sequence
until convergence is reached.

13.5.3.4 The Sobolev approximation

When the velocity field v in a cloud has a large gradient, the radiative energy
densities in the lines, ui j , may be computed locally, without knowledge of the
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radiation field in other parts of the cloud [Sob60, Ryb70]. This significantly
simplifies the procedure. Atoms do then not interact with one another radiatively
over large distances because their emission is Doppler-shifted by comfortably
more than the linewidth. The standard example is the outward flow in a stellar
wind. For a radial inflow, there are, however, two interacting points along the line
of sight (figure 16.8). The mean intensity J (or the radiative energy density ui j )
in the case of large velocity gradients is derived from a photon escape probability
β by assuming that J is proportional to the source function S,

J = (1− β)S.
If β = 1, photons leave unimpeded and there are no induced transitions in

(13.75). If β = 0, photons cannot escape and J equals the source function of
(13.64). To determine β, consider a point x in a cloud. Let τ be the optical depth
from x towards the edge of the cloud along some axis s, with s = 0 at point x.
Let βe be the corresponding escape probability given by

βe = e−τ .
Here e denotes the unit vector in the direction of the s-axis. The escape

probability βe depends on the optical depth τ but not on the radiation field.
Because the velocity gradient is large, all relevant contributions to the optical
depth τ come from the immediate vicinity of point x. As there is also emission
along the line for s > 0, the mean βe is given by an average over e−τ ,

〈βe〉 = 〈e−τ 〉 = 1

τ

∫ τ

0
e−x dx = 1− e−τ

τ
.

If τ is large, 〈βe〉 = 1/τ . If τ is small, 〈βe〉 = 1, which is all reasonable. To
find the effective β, one must further average 〈βe〉 over all directions e. For a
spherical cloud of radius r , where θ is the inclination angle to the radial vector
and µ = cos θ , we get

β = 1

2

∫ 1

−1

1− e−τ
τ

dµ. (13.77)

To evaluate this integral, one has to determine τ as a function of frequency
ν, radius r and direction µ. If K is the integrated line absorption coefficient of
(13.61) and ν0 the frequency at the line center, the optical depth becomes

τν = K
∫ ∞

0
�

(
ν − ν0 + ν0s

c

dv

ds

)
ds = Kc

ν0

ds

dv

∫ ∞
ν−ν0

�(x) dx = Kc

ν0

ds

dv

and we see that it is independent of the frequency ν. The velocity gradient along
the s-axis is given in spherical symmetry by

dv

ds
= µ2 dv

dr
+ (1− µ2)

v

r
.
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This expression must be positive. If it is not, one takes |dv/ds| which
corresponds to flipping the direction vector of the s-axis. The intensity which
one detects along a line sight at a certain frequency ν is only due to the emission
from a small region of size �, where �|dv/ds| is about equal to the local linewidth,
and may, therefore, be found from (see (13.15) and (13.60)):

Iν = Sν
[
1− e−Kν�].

Integration over all lines of sight and all frequencies yields the line profile which
one would observe towards such a cloud.



Chapter 14

Diffuse matter in the Milky Way

14.1 Overview of the Milky Way

To put interstellar dust into a broader astronomical context, we give in the
remaining chapters an overview of the Milky Way, talk about the interstellar
medium in general and about star formation in particular because it is there that
the study of interstellar dust finds its most important application.

14.1.1 Global parameters

The Milky Way is a rotating stellar system of some 1011 stars that has been created
about 15×109 yr ago. After an initial and violent phase it has settled into a quasi-
stationary state where global parameters, like luminosity, spectral appearance, gas
mass or supernova rate change only gradually, on a time scale of ∼1010 yr. It is a
flat disk about 30 kpc across and several hundred parsec thick with a global star
formation rate of ∼5 M� per year. The center of the Milky Way harbours a huge
stellar cluster, the nuclear bulge, with a diameter of order 2 kpc which contains
∼1% of the total stellar mass of the Milky Way. The flat disk is enveloped by a
halo of some 200 globular clusters.

The total power radiated by the Milky Way is estimated to 4× 1010 L� and
has its origin in the luminosity of the stars. About two-thirds of the starlight leave
the Milky Way unimpeded, one-third is absorbed by dust grains and transferred
to infrared radiation (�10 µm).

The space between the stars is not empty but filled with gas, dust grains,
relativistic particles (moving close to the speed of light), magnetic fields and
photons. Together these components constitute the interstellar medium. It exists
in several phases which differ in all basic parameters like temperature, density,
chemical composition or radiation field. In each of them, the dust is modified
by the specific environment. Usually, one classifies the interstellar medium
according to the state of hydrogen, the most abundant element:

425
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• In molecular clouds, hydrogen is mostly molecular (H2). Besides H2, one
finds in them all kinds of molecules.

• In the diffuse or HI gas, hydrogen is mostly atomic (H).
• In HII regions, hydrogen is ionized (H+) and forms a hot plasma.

Roughly speaking, half of interstellar the mass is in molecular clouds, half
in the diffuse gas, and of order 1% in HII regions. Together, the three phases
account for 99% of the mass of the interstellar medium or about 5% of the stellar
mass of the Milky Way. The total gas mass is Mgas ∼ 5 × 109 M�. The dust is
just a small admixture. Assuming a dust-to-gas mass ratio of 1:150, its mass in
the Milky Way amounts to Mdust ∼ 3× 107 M�.

As a result of its rotation, the Milky Way has formed a spiral pattern which
can be admired in face-on external galaxies (figure 11.4). About every 108 yr a
density wave sweeps over a parcel of gas in the Milky Way and causes a drastic
change in its physical state. The dust then changes its environment leaving, for
example, the warm and tenuous medium and entering a cold and dense phase.
This affects the composition and structure of the grains and happens repeatedly
during their lifetime. The passage of spirals wave initiates star formation.

14.1.2 The relevance of dust

If there is so relatively little dust, why is it so important? There are many reasons:
practical, astronomically fundamental and philosophical. Some are listed here,
without aiming at completeness. Dust is so important:

• because it weakens the visual light and thus limits our optical view in the
Galaxy;

• because it converts the radiation from stars into the infrared; in some galaxies
up to 99%, in the Milky Way about 30%;

• because it determines the spectral appearance of stars during their formation;
in this phase, it is also essential for the dynamics of the gas;

• because it strongly influences the physical and chemical conditions of
the interstellar medium (thermal balance, molecular abundances, radiation
field);

• because it is the basis for the formation of planets; and
• because man is made of interstellar dust. Although not an argument of

natural sciences but of humanities, the fact that there is a lineage between
us and dust is probably the ultimate reason for our interest in it.

When did astronomers realize the relevance of interstellar dust? As a
legendary beginning one may count the year 1784 when Friedrich Wilhelm
Herschel (the father of John Frederick William) looked at the dust cloud ρ
Ophiuchus and exclaimed: Hier ist ein Loch im Himmel (There is a hole in
the sky). The scientific investigation of dust started with the Sky photography
of E Barnard and M Wolf in the 1920s which revealed the existence of dark
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clouds. Their concentration towards the galactic plane could explain the zone
of avoidance for globular clusters and galaxies. J H Oort argued in 1932 that
the absorbing particles cannot be larger than the wavelength of visible light
as otherwise they would produce noticeable effects on the dynamics of stars
perpendicular to the galactic plane. In 1937 J S Hall established the extinction
law in the visible and in 1949 Hall and W A Hiltner discovered interstellar
polarization. But the full relevance of dust for astronomy was grasped only with
the advent of infrared detectors in the 1960s. The breakthrough came when it was
realized that the sky was littered with bright infrared sources. In the 1980s and
1990s, satellites mapped the total sky at infrared wavelengths not accessible from
the ground; the origin of the infrared emission is usually dust.

14.2 Molecular clouds

Roughly half of the mass of the interstellar medium resides in molecular clouds.
There, as the name suggests, one finds many molecular species and almost all
hydrogen is in the form of H2. The prevalence of molecules is due to the fact
that the dust shields them from destructive ultraviolet radiation. Molecular clouds
block the starlight and, therefore, on photographic plates, the near ones appear as
holes in the sky that is otherwise littered by myriads of stars. This has prompted
their second name: dark clouds.

The biggest molecular clouds have masses greater than 105 M� and are
labeled giant molecular clouds (GMC). These GMCs are further structured into
clumps which are the birth place of stars. The density contrast between clumps
and their environment is about one order of magnitude. Molecular clouds trace
the spiral arms of the Milky Way but are also found in the interarm medium.
Examples of well-studied nearby molecular clouds are the complexes in Taurus
(distance D = 140 pc, mass M ∼ 104 M�, extension L = 20 pc), in Ophiuchus
(similar parameters but containing much denser concentrations), and the Orion
GMC.

Although on maps in the CO line (see later) most molecular clouds have a
sharp edge, the transition of the gas density to the intercloud medium is not abrupt.
There is always an intermediate layer with a dust optical depth AV ∼ 1 mag where
CO is photo-dissociated. Therefore, molecular clouds are enveloped by a halo of
atomic hydrogen which, by mass, is not always negligible with respect to the
molecular cloud proper.

It is not clear how molecular clouds are made, whether through coagulation
of smaller units or by large-scale instabilities but the shocks in the spiral arms
are probably an important ingredient in their creation. The likely destruction
mechanism for GMCs is the internal formation of massive stars which produce
strong winds and eventually supernova explosions. The average lifetime of a giant
molecular cloud, τGMC, depends then, in some loose way, on the star-formation
efficiency; estimates for τGMC are several 107 yr.
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Table 14.1. Average parameters of molecular clouds.

Average gas density n = 100 cm−3

Average temperatures Tgas = Tdust = 20 K
Mass fraction of interstellar medium f � 50%
Volume fraction in disk of Milky Way v = a few percent
Scale height (in z-direction) H = 80 pc near Sun
Observable mainly through Molecular lines and IR dust emission
Mass spectrum of GMCs in Milky Way N(M) ∝ M−1.5

Mass spectrum of clumps within GMC N(m) ∝ m−1.5

14.2.1 The CO molecule

14.2.1.1 Why CO is the most frequently observed molecule

Over 100 molecular species are known in space today and about ten of them are
regularly used as probes of the interstellar medium; without being too precise,
they are H2, OH, SiO, CO, CS, H2O, HCN, NH3, H2CO and HCO+. These
molecules have very diverse structures and trace, in various lines, different
physical conditions. We only discuss carbon monoxide (CO) which is the most
widely observed molecule in the study of galactic and extragalactic molecular
clouds because it possesses a number of favourable properties:

• It is very abundant. Where it exists, its number density relative to molecular
hydrogen is [CO]/[H2] ∼10−4. All other molecules are at least one order of
magnitude less frequent.

• It is very stable with a dissociation energy of 11.09 eV.
• Its lowest rotational levels are easily populated by collisions. The level j = 1

is only 5 K above the ground state and requires for its excitation a density of
only n(H2) > 100 cm3.

• It has several observable isotopes: CO, 13CO, C18O and C17O spanning three
orders of magnitude in abundance and likewise in column density and optical
thickness.

We, therefore, exemplify the discussion of interstellar molecules by CO.

14.2.1.2 Nomenclature of levels

CO possesses rotational, vibrational and electronic levels which require
progressively higher energies for their excitation,

Eel � Evib � Erot.

• Rotational states have quantum numbers j = 0, 1, 2, 3, . . . . The lowest
transition j = 1→ 0 has a wavelength λ = 2.6 mm.
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• Vibrational states are labeled v = 0, 1, 2, 3, . . . . The lowest v = 1 → 0
band is at 4.67 µm.

• Electronic states bear the names X, A, B,C, E, . . . . The transition from the
ground state to the next higher electronic state, X 1 + → A 1!, is at
1544 Å.

The lowest CO state is denoted X 1 +v = 0 j = 0. The letter X stands
for the electronic ground state, the Greek indicates that the total orbital angular
momentum of the electrons vanishes, so the quantum number� = 0; for � = 1,
the state is denoted !. The superscript 1 at the letter  shows the multiplicity.
The total eigenfunction ψ of the molecule is approximately the product of the
electronic, vibrational and rotational wavefunctions,

ψ = ψel · ψvib · ψrot.

The plus superscript in X 1 + state means that the electronic state ψel
does not change when all particles of the molecule are reflected at the origin
(inversion); for a  −, it would change sign.

The change in rotational quantum number 
 j in a radiative transition is
subject to the selection rule


 j = j ′ − j = 0,±1

with the further restriction that transitions between j ′ = 0 and j = 0 are
forbidden as well as transitions between  -states with 
 j = 0. Vibrational
transitions split into branches depending on the changes in the rotational quantum
number j :

• P-branch,
 j = −1
• Q-branch,
 j = 0 and
• R-branch,
 j = 1.

The P- and R-branches are displayed in figure 14.1 for 
v = 1 transitions
under LTE at T = 1000 and 2000 K, the Q-branch is absent. Such highly excited
CO is found in accretion disks of young stars.

14.2.1.3 Frequencies, energies and A-values of pure rotational transitions

The rotational eigenstates for v = 0 are found from the Schrödinger equation of a
rigid rotator. If I is the moment of inertia of the molecule about its rotation axis,
the energy levels are

E j = �
2 j ( j + 1)

2I

and the angular momenta
L j = �

√
j ( j + 1).
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Figure 14.1. LTE line intensities of rot–vib transitions with 
v = 1. The upmost
sequences of dots show the v = 1 → 0 bands, the lower curves refer to v = 2 → 1,
3 → 2 and 4 → 3. The intensity scale is linear, equal in both boxes, and goes from zero
to 4.6× 10−14 erg s−1. It gives the average emission per molecule over 4π .

The eigenfunctions are similar to those of the hydrogen atom except that the
function with the radial dependence, which reflects the potential energy of the
atom, is missing. The rotational levels are degenerate with statistical weight

g j = 2 j + 1. (14.1)

Defining the rotational constant B by

B = h

8π2cI
(14.2)

it follows that
E j
k
= hB

k
j ( j + 1) (14.3)

and the frequency of the transition j → j − 1 is

ν = 2B j.

For 12CO, the rotational constant B = 5.763 × 1010 s−1 and the energy
levels are E j/k � 2.77 j ( j + 1) in the unit Kelvin. Inserting the eigenfunctions
of the rigid rotator into the Einstein coefficient (6.41), one finds for the j → j−1
transition

A j, j−1 = 512π4B3µ2

3hc3

j4

2 j + 1
(14.4)
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Figure 14.2. Radiative transition probabilities of the CO molecule for pure rotational lines
(
v = 0) in various vibrational levels v. The upmost sequence of points refers to v = 0.

where the dipole moment µ = 0.112 Debye = 1.12 × 10−19 cgs. The A-
values increase like ∼ j3; for the lowest transition A1,0 = 7.4 × 10−8 s−1.
With higher j -number, the internuclear distance increases and the rigid rotator
model, which assumes a bar of fixed length between the nuclei, is not adequate.
Figure 14.2 plots the A-coefficients of rotational lines in various vibrational levels
and figure 14.3 the energies Ev, j of the vib–rot levels, all for the electronic ground
state.

14.2.2 Population of levels in CO

14.2.2.1 LTE population and critical density

In local thermodynamic equilibrium at temperature T , the population ni of any
level i is determined by (5.8),

ni
n
= gie−Ei /kT

Z(T )
.
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Figure 14.3. Energies above ground of the CO molecule in the electronic ground state for
vibrational quantum numbers v = 0, 1, 2, 5 as a function of the rotational level j . The
lowest sequence of dots is for v = 0. Energies E/k are expressed in Kelvin.

n is the total number of CO molecules per cm3 and Z(T ) the partition function of
(5.7). Z(T ) can be split into its rotational, vibrational and electronic part,

Z(T ) = Zrot · Zvib · Zel.

For example, in LTE at T = 10, 20 and 30 K, the most densely populated
levels are j = 1, 2, 3, respectively. At these temperatures, the molecule is in
its vibrational and electronic ground state (Zvib = Zel = 1) and Zrot equals 3.96,
7.56 and 11.17, respectively.

When level populations are close to LTE, the molecule is said to be
thermalized. This is always true in the limit of high densities. The temperature T
computed from the Boltzmann equation (5.8) is then the gas kinetic temperature
Tkin. If the molecule is not in LTE and the levels are not thermalized, the ratio of
level population n j/ni defines the excitation temperature Tx according to (13.65).
In molecular clouds, usually only the lowest rotational levels of CO are close to
thermalization, the higher ones are not.

To estimate the minimum or critical gas density ncr necessary to excite the
lowest rotational line j = 1→ 0, we neglect photons so that ncr depends only on
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the collision rates C01 and C10 and on the Einstein A coefficient A10 (see equation
(13.75)). For para-H2, C10 � 3× 10−11 cm3 s−1 when T is in the range from 10
to 50 K, typical of molecular clouds. The balance of level population requires

n(H2)n0C01 = n1[A10 + n(H2)C10].
With C01 ∼ 3×C10, one finds that already 10% of the molecules are excited

(n1/n0 ∼ 0.1) when ncr = n(H2) ∼ A10/C01 ∼ 100 cm−3. This rough estimate
indicates that the j = 1 → 0 line of CO is always seen in molecular clouds.
Because A j, j−1 ∝ j3, the upper transitions need higher densities and, of course,
also higher gas temperatures. Because A j, j−1 ∝ µ2, molecules with a larger
dipole moment (for example, CS with µ = 1.98 Debye) require denser gas for
their excitation.

14.2.2.2 Population of rotational levels including radiative excitation

Abundances of rotational levels for representative values of density, temperature
and velocity gradient of molecular clouds are shown in figure 14.4. The
values have been calculated including radiative excitation under the Sobolev
approximation (section 13.5.3).

14.2.2.3 CO abundance and isotopic ratios

From many pieces of indirect evidence, the average abundance ratio [CO]/[H2] ∼
10−4. The value is much smaller in diffuse clouds because of photo-destruction,
and possibly also in dense cold clouds because CO freezes out onto dust
grains. Direct evidence for [CO]/[H2] can, in principle, be gained from
simultaneous measurements of rot–vib absorption bands in CO and H2 towards
strong background infrared continuum sources but this has not yet been done for
molecular clouds. Only in the diffuse medium have CO, H and H2 absorption
lines been observed in the far UV towards weakly reddened hot stars stars
(AV ≤ 1 mag).

The solar value of the isotopic ratio [C]/[13C] is 89. By and large, in other
places of the Galaxy it tends to be smaller, somewhere between 40 and 80, and
in the Galactic Center it is noticeably lower ([CO]/[13CO] ∼ 20). The ratio is
influenced by the folowing processes:

• Self-shielding in the dissociating lines which favours CO.
• Isotopic fractionationwhich favours 13CO. At its root is the charge exchange

reaction
CO+ 13C+ ⇔ 13CO+ C+. (14.5)

The vibrations of the molecules have, like all harmonic oscillators, a non-
zero energy E0 = 1

2hν in the ground level v = 0. The frequency ν decreases
with the molecular mass, ν ∝ m−1/2. Because 13CO is heavier than CO,

E0(
13CO) < E0(CO)



434 Diffuse matter in the Milky Way

Figure 14.4. Non-LTE level population of CO for T = 10, 20 and 40 K and for H2
densities 103 cm−3 (circles), 104 cm−3 (squares) and 105 cm−3 (triangles). The CO
abundance is [CO]/[H2] = 10−4. The deviation from LTE, b j , is defined in (13.69), the
number densities n j are normalized so that their sum equals one. The escape probability
β is computed in the Sobolev approximation from (13.77) for a velocity gradient of
dv/dr = 1 km s−1 pc−1. In the three vertical frames on the left, those dots which are
not connected by a line are calculated without a radiation field and thus without an escape
probability. We see that for j ≥ 3, radiative excitation is more important than collisional
excitation.
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with an energy difference 
E0/k = 35 K. Therefore, the reaction (14.5)
is temperature-dependent and goes preferentially from left to right in cold
clouds (T < 35 K).

• Mass loss from stars heavier than 1 M�, which, because of the specific
preceding nucleosynthesis, enriches the interstellar medium more efficiently
with 13C than with 12C.

The standard isotopic ratio of C18O and C17O are 500 and 1800, respectively,
so these molecules are some five and 20 times less abundant than 13CO.

14.2.3 Molecular hydrogen

Molecular hydrogen, by far the most abundant molecule, is hardly excited
under normal conditions of the interstellar medium and, therefore, generally
inconspicuous, it just supplies the mass for the interstellar gas. However, it is well
observable in photo-dissociation regions and shocks and there its emission gives
information about the ultraviolet radiation field, gas temperatures and densities
or shock velocities. Wherever there is high-mass star formation, with jets and
copious UV radiation, rot–vib lines of H2 are seen, even in external galaxies.

There are two forms of molecular hydrogen: ortho-H2 with parallel and para-
H2 with opposite proton spins. When the temperature is high and many rotational
levels are excited, the ortho form is three times as abundant as the para form,
corresponding to the ratio of the statistical weights. Radiative transitions between
ortho and para hydrogen are forbidden; however, spin exchange can occur by
collisions with molecules and ions or on grain surfaces but the rates are low. The
existence of the ortho and para forms is a consequence of the exclusion principle;
the isotope HD, where the nuclei are not identical, does not show this property.

The electronic ground state of H2 is X 1 +g (see nomenclature in
section 14.2.1). The g (gerade) signifies that the the homonuclear molecule is
symmetric with respect to swapping the two nuclei, whereas u (ungerade) would
imply asymmetry. Being homonuclear, only quadrupole rot–vib transitions are
allowed (section 1.4.4) subject to the selection rules 
 j = ±2 or 0 (excluding
0→ 0 transitions). The spacing of rotational levels is given by (14.3). The lowest
excited level of para-H2 (X 1 +g v = 0 j = 2) lies 510 K above the ground
( j = 0), too high to be populated at normal temperatures. The j = 2 → 0
emission line from this level appears at 28 µm and, as a quadrupole transition,
has a small Einstein coefficient (A = 3 × 10−11 s−1). The lowest ortho-line
( j = 3→ 1, A = 4.8× 10−10 s−1) is at 17 µm and even harder to excite.

14.2.4 Formation of molecular hydrogen on dust surfaces

The major destruction route of H2 in the diffuse gas, outside HII regions, is
photo-dissociation. Absorption of photons with wavelengths between 912 and
1108 Å leads to electronic transitions X 1 +g → B 1 u (Lyman band) and

X 1 +g → C 1!u (Werner band). They are immediately followed by electric
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dipole decay (A ∼ 108 s−1) to the electronic ground state. If the final vibrational
quantum number v is greater than 14, this happens in about one out of seven cases,
the state is unbound and the molecule dissociates.

Molecular hydrogen is observed in the diffuse medium if the ultraviolet
radiation field is not too strong. Its photo-dissociation can then be calculated
and must be balanced by H2 formation. Radiative association H + H → H2
+ hν is strongly forbidden, three-body reactions are excluded as they require
densities n ≥ 1012 cm−3, other reactions are negligible. The only remaining
alternative to create H2 is on grain surfaces. The reaction rate R (per cm3 and
second) is obviously proportional to the number of H atoms impinging on a grain
(n(HI) σgr〈v〉) times the grain density ngr,

R = η n(HI) σgr 〈v〉 ngr.

The efficiency η includes the probability for sticking, finding another
hydrogen atom by tunneling over the grain surface, molecule formation and
desorption. n(HI) is the density of hydrogen atoms, 〈v〉 from (5.16) their mean
velocity and σgr = πa2 the geometrical cross section of spherical grains of radius
a. With a gas–to–dust of ratio 150 and a bulk density of 2.5 g cm−3,

ngr � 1.5× 10−27 nH

a3

where nH = n(HI)+ n(H2) is the total hydrogen density. Therefore

R � 7× 10−23 η n(HI) nH
T 1/2

a
. (14.6)

In the diffuse medium, n(HI) � nH. The smallest grains should get the
highest weight (see (7.29)), so a ∼ 10−6 cm seems appropriate. If η ∼ 0.2,

R ∼ 10−17n2
HT

1/2 cm−3 s−1

and this should indicate the right order of magnitude. On leaving the grain surface,
it is unclear how much of the formation energy of 4.5 eV is transmitted to the dust
particle, which hasmanymodes of energy disposal, and how much is carried away
by the H2 molecule in the form of excited rot–vib levels.

14.2.4.1 A few remarks on H2 and CO chemistry

In the envelope of a cloud illuminated by ultraviolet light with wavelengths
λ > 912 Å, the chemistry of the major gas species is determined by photo-
dissociation. As the radiation penetrates into the cloud, it becomes absorbed
(mainly by dust) and the UV flux weakens. This leads to the formation of a
sequence of chemically distinct layers. If the zero point of the visual optical depth,
τV, is taken at the cloud surface, then, roughly speaking, molecular hydrogen is
dissociated for τV ≤ 1, carbon is ionized for τV ≤ 2, and most gas-phase carbon
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is locked in CO for τV ≥ 3. So at the transition between atomic and molecular
hydrogen (τV � 1), carbon is in the form of C+ and CO is absent.

Although molecular hydrogen is chemically rather inert, a small fraction
becomes ionized by cosmic rays (CR) and is transformed into H+3 ,

H2 + CR −→ H+2
H+2 + H2 −→ H+3 + H.

The new species, H+3 , is reactive and relevant for the chemistry of the
interstellar medium as it can initiate the formation of important molecules like
H2O,

H+3 + O −→ OH+ + H2

OH+ + 2H2 −→ H3O+ + 2H

H3O+ + e −→ H2O+ H

or remove carbon monoxide,

H+3 + CO −→ HCO+ + H2. (14.7)

When the UV shielding by dust is low (τV < 3), CO formation is promoted
by ionized carbon, for example, via

C+ + OH −→ CO+ H+.

CO is then destroyed by line absorption (λ < 1118 Å) from the ground
state X 1 + to a bound level of a high electronic state (E,F, . . .) that couples
radiationless to a dissociating state. The line absorption leads to the effect of self-
shielding. For an isotope like 13CO, the dissociating lines are slightly shifted in
frequency. Because the 13CO column density is much smaller, 13CO is destroyed
in a larger volume than 12CO. When UV shielding is high, CO is formed by
neutral–neutral reactions like CH+ O→ CO+ H.

14.2.4.2 The early universe

In the early universe, at a redshift z � 1000 when hydrogen was already neutral
but before the appearance of the first stars, there were no heavy elements and thus
no dust, only hydrogen and helium. H2 could not then form on grains, however,
it could be created via

H+ H+ −→ H+2 + hν
H+2 + H −→ H2 + H+

or

H+ e −→ H− + hν
H− + H −→ H2 + e
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Table 14.2. Typical parameters of HI clouds. They consist mainly of atomic hydrogen.

Temperature Tgas = 50 . . . 100 K
Tdust ∼ 20 K

Density n(HI) ∼ 1 . . . 10 cm−3

Cloud diameter D ∼ 10 pc
Column density N(HI) ∼ 1020 cm−2

Distance between clouds l ∼ 3 pc
Mass fraction 50% of the HI gas and 25% of all gas
Volume fraction a few percent of galactic disk
21 cm linewidth 
v ∼ 30 km s−1

21 cm line optical thickness 0.2 < τ < 1

and be destroyed radiatively or by collisions with H atoms. Although the reactions
were not efficient, they led to a small fraction of molecular hydrogen which was
important for the formation of the first stars. The critical mass for gravitational
instability of a gas cloud depends on temperature as T 3/2 (see (15.48)) and
contraction is possible only if the release of potential energy can be radiated
away. Here molecular hydrogen could have acted as a coolant down to 100 K
by emission of its lowest rotational lines.

14.3 Clouds of atomic hydrogen

14.3.1 General properties of the diffuse gas

About half of the mass of the interstellar medium is in diffuse clouds. They
contain only a few molecular species. As hydrogen is mainly atomic there, this
component is called a HI gas. Its properties, to a large degree, are derived from
observations of the famous 21 cm line but also from Hα and atomic fine structure
lines, infrared dust emission and pulsar dispersion. Although the HI gas is very
inhomogeneous, it is useful to define a standard HI cloud with parameters as in
table 14.2. Such clouds are seen in absorption and emission and make up what
is called the cold neutral medium (CNM) of the diffuse gas because the hydrogen
there is mostly neutral and relatively cold. The scale height of the clouds at the
locus of the Sun is about 250 pc, which is a few times bigger than for CO and
increases outside the solar circle.

There are other components which are less dense and completely penetrated
by UV radiation. They are, therefore, more strongly ionized and much warmer.
In the warm ionized medium (WIM), n = 0.1 . . .1 cm−3 and gas temperatures
are several thousand K. This component is only seen in emission, it is much
more voluminous, has a larger scale height and a very low optical depth in the
21 cm line, τ < 0.01. There also exists some hot ionized medium (HIM) with
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Tgas ∼ 105 . . . 106 K. It is, of course, very tenuous (n = 0.01 cm−3) and detected
either by soft X-ray emission or through UV absorption lines of highly excited
ions (for instance, O VI at 1030 Å) towards hot stars. It occupies a lot of space,
probably most of the galactic disk but its mass fraction is negligible.

14.3.2 The 21 cm line of atomic hydrogen

In its electronic ground state, a hydrogen atom has two hyperfine sublevels
because the spin of the electron couples to the spin of the proton. There is level
splitting for the same reason as in the Zeeman effect, only here the magnetic field
is supplied by the nuclear magnetic dipole. Let F denote the quantum number of
total angular momentum which is the sum of electron spin S and nuclear spin I ,

F = S + I.
In the upper state, electron and proton spin are parallel, F = 1 and the statistical
weight is g1 = 3; it is a triplet. In the lower state, the spins are anti-parallel,
F = 0 and g0 = 1; it is a singlet. The transition from an upper to the lower
level occurs at ν = 1420 MHz or λ = 21.11 cm and one, therefore, speaks of the
21 cm line. As its propagation is not impeded by dust, in the 1950s it played a
dominant role in elucidating the structure of the interstellar medium of the Milky
Way. Indeed, most of what we know about the diffuse component, its temperature,
density, kinematic behavior, total mass and overall distribution, is due to the study
of the 21 cm line.

14.3.2.1 Frequency and transition probability of the line

One obtains an estimate of the energy difference 
E between triplet and singlet
from the classical formula (11.16) which gives the potential energy of a magnetic
dipole in a magnetic field. The dipole moment of the proton is given by

µp = 2.793 · µN

and is thus 2.793 times greater than a nuclear magnetonµN (compare with (11.10)
for the Bohr magneton),

µN = e�

2mpc
.

The magnetic field in which the proton aligns is supplied by the electron.
It is a dipole field (see the electric analog in (3.10)) of moment µB and decays
with distance like r−3. When one evaluates its strength at one Bohr radius
a0 = 5.29×10−9 cm, (11.16) yields a frequency ν = 
E/h � 530 MHz. This is
the right order of magnitude but an underestimate because a0 is the mean distance
and the positions where the electron is closer to the nucleus have a higher weight.
A very good number is obtained when one averages over the radius and takes the
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1s wavefunction as the weight. Quantum mechanically, the frequency has been
determined to extremely high precision, it is a number with 11 significant digits.

The Einstein A-coefficient of the line follows from the general formula
(6.41) but this time µ is a magnetic dipole moment given by the sum µp + µB.
The value of A10 comes out very small (A10 = 2.869×10−15 s−1): first, because
it is not an electric but a magnetic dipole transition which reduces A10 by a factor
∼106; and second, because the frequency is low (A ∝ ν3 after (6.41)). The
excited state has an extremely long lifetime, τ = 1/A ∼ 107 yr, compared
to optical transitions where τ ∼ 10−8 s. Nevertheless, there is enough neutral
hydrogen around to make the line easily observable.

14.3.3 How the hyperfine levels of atomic hydrogen are excited

14.3.3.1 The excitation or spin temperature

In determining the population of the hyperfine levels, we include, for generality,
a radiation field uν . It may come, for example, from a supernova remnant or the
3 K microwave background. The atomic levels change because of collisions as
well as spontaneous and radiatively induced transitions. As there are only two
levels involved, 0 and 1, we have, in standard notation,

nn1C10 + n1A10 + n1uνB10 = nn0C01 + n0uνB01. (14.8)

The left-hand side populates state 0, the right-hand side depopulates it. Here
n = n1+n0 is the total number of hydrogen atoms per cm3 andC10 is the collision
rate for de-excitation (F = 1→ 0). In equilibrium at kinetic temperature T ,

g0C01 = g1C10e
−α α ≡ hν

kT
.

The excitation temperature Tx, which is often called spin temperature, and
the radiation temperature TR are defined by

n1

n0
= g1

g0
e−hν/kTx

and

uν = 8πν2

c3
kTR.

With the relations (6.39) and (6.40) between the Einstein A and B
coefficients, and

αx ≡ hν

kTx

one finds

e−αx
[
nC10 + A10 + kTR

hν
A10

]
= nC10e

−α + kTR

hν
A10. (14.9)
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This is a general result for a two-level sysytem. The statistical weights gi
are gone. For the 21 cm line, the exponents α and αx are much smaller than one.
After a linear expansion of the e-function, the spin temperature Tx can be directly
expressed by the kinetic gas temperature T and the radiation temperature TR,

Tx = ynT + TR

1+ yn with y ≡ C10

A10

hν

kT
. (14.10)

14.3.3.2 The critical density for excitation

Under most circumstances, the radiaton field is negligible. Then the levels are
thermalized (Tx � T ) above the critical density:

ncr = y−1 = A10

C10

kT

hν
.

One often uses for the critical density the expression ncr ∼ A10/C01. We did
so, for example, in estimating ncr for the CO rotational levels in section 14.2.1.
Indeed, when there are only two levels and no radiation, equation (14.9) implies
Tx ∼ T when n = A10/C01, provided that α ≥ 1. However, at very low
frequencies (hν � kT ), thermalization requires a density that is kT/hν times
larger. Because the temperature difference between the levels of the 21 cm line
is only hν/k = 0.068 K and the gas temperature T ∼ 100 K, the usual formula
ncr � A10/C01 is wrong by a factor ∼1000.

The cross section for collisional deexcitation (F = 1 → 0) in a gas of
100 K is σ10 ∼ 10−15 cm2, corresponding to a collision rate C10 = 〈uσ10〉 ∼
2×10−10 cm3 s−1. The brackets denote an average over the Maxwellian velocity
distribution and u is the velocity. In a standard HI cloud, which has T = 100 K
and n ≥ 1 cm−3, the sublevels are, in view of the small Einstein coefficient,
thermalized, so the population ratio

n1

n0
� 3

and the total hydrogen density n is close to 4n0. However, in a tenuous and hot
cloud (n = 0.05 cm−3, and T = 1000 K implying y � 7 in equation (14.10)),
there is, rather surprisingly, a substantial excursion of the hyperfine levels from
LTE and the ratio Tx/T is only one-quarter.

14.3.3.3 Spin exchange by collisions among H atoms

The physical process that determines the cross section, σ10, is spin exchange.
Suppose a hydrogen atom labeled (1) with F = 1 and electron spin up is hit by
another hydrogen atom. In the collision, the electron spin of atom (1) can flip so
that afterwards it is in the state F = 0; the proton of atom (1) is shielded by the
electron cloud and its spin is unaffected. The electron spin of the hitting atom
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is random and thus some linear combination of up and down; its proton spin is
irrelevant.

During the impact, the two atoms form a molecular complex. If the electron
spin of the hitting atom is also up, the complex is in the repulsive electronic
triplet state (3 , potential Vt); if it is down, the complex is in the attractive
electronic singlet state (1 , potential Vs), as in stable H2 molecules. At large
separations, the two potentials are equal. In quantum mechanics, it is not possible
to specify the state of the atoms separately. Instead, the wavefunction of the
complex is written as a sum of a symmetric and an anti-symmetric function
with respect to the interchanging particles. The symmetric part is associated
with the phase factor exp(−iVtt/�), because when the electrons are swapped,
the wavefunction stays the same, the anti-symmetric part is associated with the
phase factor exp(−iVst/�). So in a time interval dt , the phase between triplet
and singlet changes by (Vt − Vs)dt/�. Therefore the atoms exchange electron
spins at a rate (Vt − Vs)/�. As the potentials Vt and Vs are known, one can semi–
classically follow the collision over the time of the impact and thus calculate
the probability that afterwards atom (1) is in state F = 0 [Pur56]. This yields
σ10. Because the interaction potential is steep, σ10 changes only weakly with
temperature (∝ T−1/4).

14.3.3.4 Excitation by electrons and Lα radiation

Spin flip is also possible as a result of collisions with free electrons. Here the
cross sections are about half as large but electrons fly faster, so the collision rates
are higher. Electron impact becomes important when the fractional ionization
of hydrogen exceeds a few percent. In principle, spin flip can also occur due to
the interaction between the magnetic moments of the electrons but this process is
several orders of magnitude weaker.

Another interesting way of exciting the hyperfine levels of hydrogen atoms
is through Lα photons [Wou52]. They connect the n = 1 and n = 2 states and
are created in HI clouds by cosmic-ray ionization and subsequent proton–electron
recombination. The state n = 2 consists of three sublevels,

2P1/2 2S1/2 2P3/2

each being double because of the hyperfine splitting. The 2S1/2 and 2P1/2 states,
which coincide in Dirac theory, are actually separate due to the Lamb shift. Only
the 2P levels are allowed to combine with the ground state 1S1/2. As a resonance
line, the Lα optical depth is immense and each Lα photon is scatteredmany times,
i.e. undergoes many collisions with H atoms at the gas kinetic temperature T .
The radiation field in the Lα line therefore acquires the same shape (spectral
slope) as the Planck function at that temperature. Because in the absence of
collisions and radiatively induced transitions, the population of the hyperfine
levels is determined by the Lα radiation field, the spin temperature Tx is also
forced towards the kinetic gas temperature T .
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14.3.4 Gas density and temperature from the 21 cm line

14.3.4.1 Optical depth and column density

The optical depth element in the HI line is, from (13.62),

dτν = K�(ν) ds

where �(ν) is the normalized profile function and the absorption coefficient K
is from formula (13.68). Because hν � kTx, one can expand the e-function in
(13.68) and obtain

K � n0K0
hν

kTx
.

Here n0 is the number of atoms in the lower singlet state and K0 is after
(13.67) proportional to the Einstein coefficient A10. The factor hν/kTx is due
to stimulated emission. Without it, one would have K � n0K0. So stimulated
emission, which is usually negligible at optical wavelengths, reduces the cross
section in the 21 cm line by a factor of order 103(!) at typical excitation
temperatures Tx ∼ 100 K. If N(HI) denotes the total column density of neutral
hydrogen, the optical thickness becomes

τν = N(HI)

4
· K0 · hν

kTx
·�(ν). (14.11)

Because of stimulated emission, the hotter the gas, the lower the optical
depth. But note that the intensity of optically thin line emission, which is
proportional to τνTx, is independent of temperature.

It is often convenient to refer the profile function to the Doppler velocity v,
and not to the frequency ν. It is then denoted by P(v), again with

∫
P(v) dv = 1.

At the line center, v = 0. Because P(v) dv = �(ν) dν,

φ(ν) = c

ν
P(v)

and, analogous to (14.11), the optical depth at velocity v is

τv = C−1 N(HI)P(v)

Tx
. (14.12)

When v, N(HI) and Tx are measured in cm s−1, cm−2 and K, respectively,

C = 1.82× 1013.

The brightness temperature Tb at velocity v observed towards a cloud in front
of a background source of intensity Tc is, from (13.74),

Tb(v) = T0 · e−τv + Tx(1− e−τv ). (14.13)



444 Diffuse matter in the Milky Way

Without the background, one obtains, from (14.12),

N(HI) =
∫
N(HI)P(v) dv = C

∫
Tb(v)τv

1− e−τv dv. (14.14)

Therefore, when the optical depth is small everywhere in the line, as is often
the case for the 21 cm transition, integration over the observed line profile directly
yields the HI column density:

N(HI) = C
∫
Tb(v) dv. (14.15)

14.3.4.2 How to measure the optical depth and the spin temperature

With the help of a strong background source, say, a quasar, one can determine
the optical depth τv as well as the spin temperature Tx of an HI cloud. First,
one performs a measurement towards the quasar at a frequency outside the line
where the HI cloud is transparent (τv = 0). This provides the brightness T0 of the
quasar after (14.13). Then one observes the quasar at various velocities in the line.
The actual frequency changes are very small, so T0 is practically constant. If the
quasar is much brighter than the foreground HI gas, it will be seen in absorption
and equation (14.13) reduces to

Tb(v) = T0 e
−τv .

This gives τv . One can now evaluate the column density N(HI) after (14.14); the
optical thickness need not be small. In the line core, at a position immediately
adjacent to the quasar,

Tb = Tx(1− e−τv ).
As τv is known, such a measurement yields the spin temperature Tx. Of course,
one has to assume that Tx is constant along the line of sight and that the cloud
parameters do not change as one switches from the quasar to a nearby off-position.

14.3.5 The deuterium hyperfine line

Deuterium, the hydrogen isotope, also shows hyperfine splitting in its electronic
ground state. The importance of this line rests in the fact that it could
improve the estimate of the deuterium abundance of the interstellar medium, with
cosmological consequences because deuterium has been created during the Big
Bang. So far all attempts to detect the transition have failed because the isotope
is so rare ([D]/[H] ∼ 10−5).

In deuteron, the spins of proton and neutron are parallel. So the nuclear
spin quantum number I of deuterium equals 1 and the spin flip of the electron
corresponds to an F = 3/2 → 1/2 transition. The magnetic moment of the
neutron is

µn = −1.913 µN
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and directed opposite to the magnetic moment of the proton. The magnetic
moment of deuteron is quite close to the sum of the two,

µD � µn + µp � 0.857 µN.

When one aims at greater precision for µD, one must take into account
that the deuteron nucleus possesses some orbital angular momentum (quantum
number l). This is witnessed by its electric quadrupole moment, which also gives
rise to a magnetic dipole moment. In its ground state, deuteron is a mixture
consisting to ∼95% of an S (l = 0) wavefunction and to ∼5% of a D (l = 2)
wavefunction.

To find the frequency of the deuterium hyperfine line relative to the hydrogen
21 cm line, we cannot simply scale with the ratio µD/µp. Instead, we have
to translate the classical formula (11.16) for the potential energy of a magnetic
dipole m in an outer field into an interaction operator W according to the rules of
quantum mechanics. But for a constant factor, we can write mnuc = gnucI for the
nucleus and mel = gelS for the electron, where g is the Landé factor, so

W = mnuc ·mel = gnucgel I · S.

For deuterium, ID = 1 and gD = 0.857; for hydrogen, IH = 1
2 and

gH = 2 · 2.793, for the electron S = 1
2 and gel = 2. The square of the angular

momentum vector F = I+ S is obviously

F · F = (I+ S) · (I+ S) = I · I+ S · S+ 2I · S

so that

I · S = 1
2

[
F · F− I · I− S · S].

When I · S is turned into a quantum mechanical operator, it therefore has the
expectation value

〈I,S〉 = 1
2

[
F(F + 1)− I (I + 1)− S(S + 1)

]
�

2.

The difference
 in these averages between upper and lower state is
D = 3
for deuterium (S = 1

2 ; I = 1; F = 3
2 , 1

2 ) and 
H = 2 for hydrogen (S = 1
2 ;

I = 1
2 ; F = 1, 0). Therefore, the deuterium hyperfine line has a frequency that is

a factor gH
H/gD
D � 4.34 smaller corresponding to a wavelength of 91.6 cm.
Another hyperfine line of cosmological relevance is emitted by 3He+ at

8.665 GHz (F = 0 → 1), again very hard to observe. Of course, one can only
see it where helium is ionized. This is in the inner parts of HII regions where
hydrogen is ionized too. As the ionization zones of H and He are not co-extensive
(section 14.4.2), the derivation of the abundance ratio [3He]/[H] along the line of
sight is problematic.
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14.3.6 Electron density and magnetic field in the diffuse gas

14.3.6.1 The dispersion measure

One can use the pulses emitted from rotating neutron stars to determine the
electron density ne in the diffuse interstellar medium. A pulse, which is a
composite of many frequencies, approaches the Earth with a group velocity vg
given by (1.131). As the observing frequency ω is always much greater than the
plasma frequencyωp =

√
4πe2ne/me (the latter is of order 1 kHz), we can write,

approximately,
1

vg
= 1

c

(
1+ ω2

p

2ω2

)
.

A signal from a pulsar at a distance L reaches us after a travel time

τ =
∫ L

0

ds

vg
= L

c
+ e2

2πmec

1

ν2

∫ L

0
ne(s) ds.

The travel time depends on the observing frequency ν: long waves are slower than
short waves. The quantity

DM =
∫ L

0
ne(s) ds (14.16)

is called the dispersion measure and has the unit pc cm−3. When one measures
the arrival time of a pulse at two frequencies of which ν2 > ν1, there is a delay

τ between the two,


τ = e2

2πmec

(
1

ν2
1

− 1

ν2
2

)
DM. (14.17)

If the distance L is known, one thus finds, via the dispersion measure DM,
the mean electron density, a fundamental quantity of the interstellar medium.
Typical values for the diffuse medium, outside HII regions, are ne ∼ 0.01 cm−3.

14.3.6.2 The rotation measure

A linearly polarized wave can be decomposed into two waves of opposite circular
polarization. When they are traveling parallel to a magnetic field B , equation
(1.126) yields for their difference in phase velocity


vph = 

(
c

n±

)
= nee2

2π2me

eB

me

1

ν3
. (14.18)

The relative phase changes per wavelength λ by

2π

vph

vph
� 2π


vph

c
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and the rotation angle � of the linearly polarized wave, therefore, by half this
amount. The total change on the way from the source at distance L to the observer
is

� = π

λ

∫ L

0


vph

c
ds = RMλ2 (14.19)

with the rotation measure RM defined by

RM = e3

2πm2
ec

4

∫ L

0
neB ds. (14.20)

Because the dispersion measure DM is equal to
∫
ne ds and the rotation

measure RM proportional to
∫
Bne ds, their ratio yields the mean magnetic field

strength

〈B〉 ∝ RM

DM
.

From systematic observations in the Milky Way, one finds 〈B〉 ∼ 3 µG. The
B vector lies preferentially parallel to the galactic plane. Although the rotation
angle � is usually smaller than 90◦, in principle, it may be greater than 2π . To
determine its value, not only modulo 2π , one needs measurements at more than
two wavelengths.

14.3.6.3 The Zeeman effect in HI

The strength of the interstellar magnetic field may be estimated from the Zeeman
effect in neutral hydrogen. In the presence of a magnetic field B, the degeneracy
of the upper hyperfine state (the triplet with F = 1) is removed. When B is
perpendicular to the line-of-sight vector e, one observes a central π-component
and two symmetric σ -components, all with different polarizations (section 6.3.2).
This is summarized here, together with the case when B is parallel to e.

(1) e ⊥ B

• σ is linearly polarized perpendicular to B
• π is linearly polarized parallel to B, no frequency shift
• σ is linearly polarized perpendicular to B, but opposite to other σ -component

(2) e ‖ B
• σ is right–hand circularly polarized
• π is missing
• σ is left–hand circularly polarized.

The frequency shift between the components of opposite circular
polarization is, obviously,


ν = eB‖
2πmec

= 2.80
B‖
µG

[Hz].

It is much smaller than the linewidth (∼ 20 kHz) and, therefore, not easy to
observe. Measured values for B‖ also cluster around 3 µG.
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14.4 HII regions

14.4.1 Ionization and recombination

14.4.1.1 The Lyman continuum flux

The hottest stars on the main sequence are of spectral type O and B. As their
effective surface temperature Teff exceeds 20 000 K, they ionize the surrounding
hydrogen. The resulting nebula of hot plasma is called the HII region. The gas
temperature is fairly constant there (Tgas ∼ 8000 K), the exact number depends
foremost on the abundance of metals which produce cooling lines. Dust that
survives the harsh conditions in the nebula is very warm (Tdust ∼ 50 K), much
warmer than the average dust in HI or molecular clouds. Most HII regions are
large and diffuse with number densities n ∼ 10 cm−3 but some are very compact
(n > 105 cm−3) and these are always embedded in molecular clouds. HII regions
can be observed in many ways: via free–free radiation (bremsstrahlung), radio
and optical recombination lines, fine structure lines, infrared emission of dust. By
order of magnitude, HII regions fill about 1% of the volume of the galactic disk
and their mass fraction of the interstellar medium is of the same order.

The ionization of hydrogen requires Lyman continuum (abbreviated Lyc)
photons. They have energies greater than the ionization potential of hydrogen,
hν ≥ hνL = χ(H) = 13.56 eV, or wavelengths

λ ≤ λL = 912 Å

(see table 14.4 for a list of symbols). The number of Lyc photons emitted each
second from a star of radius R∗ and effective temperature Teff is given by

NL = 4πR2∗
∫ ∞
νL

Bν(Teff)

hν
dν. (14.21)

This is a simplistic formula. In reality, the atmospheres of OB stars are not
blackbodies but are extended and non-LTE effects play an important role. One
often wishes to relate the Lyc flux NL of a main-sequence star to its mass m.
If m is in solar units, we suggest from various sources of the literature the
approximation

log NL = −5.13(logm)2 + 19.75 logm + 30.82 s−1. (14.22)

Table 14.3 lists NL, the spectral type and some other stellar parameters. The
numbers are not precise but sufficient for many purposes.

14.4.1.2 Relation between ionization and recombination coefficient

In thermodynamic equilibrium, a situation which does not prevail in an HII
region, there is a detailed balance so that each process has its exact counterpart
running in the opposite direction. Hence, the number of electrons with velocities
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Table 14.3. Spectral type, effective temperature, bolometric luminosity, Lyman continuum
flux, mass and radius for main sequence stars of various spectral type. The radius and mass
of the HII region, rS and MHII, are calculated for an electron density ne = 1000 cm−3.

Teff L NL M∗ R∗ rS MHII
SpT [K] [L�] [s−1] [M�] [R�] [cm] [M�]

O4 50000 1.3× 106 8.0× 1049 60 15.0 4.2× 1018 260
O6 42000 2.5× 105 1.2× 1049 30 10.0 2.2× 1018 40
O9 35000 4.6× 104 1.2× 1048 19 6.0 1.0× 1018 4
B3 18000 1.0× 103 5.0× 1043 7.6 3.4 3.6× 1016

A0 10000 54 2.9 2.4

Table 14.4. List of symbols used in this section.

νL = Threshhold frequency for ionizing hydrogen
λL = c/νL = 912 Å, threshhold wavelength
NL = Number of Lyc photons emitted by star [s−1]
Nc(r) = Number of Lyc photons passing through shell of radius r [s−1]
hνc = Mean energy of Lyc photons
ne, np, nH = Number density of electrons, protons and hydrogen atoms [cm−3]
Nn = Number density of neutral hydrogen atoms in level n [cm−3]
αn = Recombination coefficient into level n
α(i) = Recombination coefficient into all levels i ≥ n,

at 8000 K, α(1) = 4.6× 10−13, α(2) = 3.1× 10−13 cm−3 s−1

βn = Cross section for electron capture into level n
Kn,ν = Cross section for ionization from level n [cm2]
Kν = K1,ν , cross section for ionization from the ground state [cm2]
K = Frequency average of Kν
χ = Ionization potential from ground state
χn = Ionization potential from level n
gn,ν = Gaunt factor (∼1)
Jν = Mean radiation intensity in the nebula
Lν = Emission of star [erg s−1Hz−1]
εν = Emission coefficient of gas [erg s−1Hz−1ster−1]

in the interval [v, v + dv] captured by protons into level n equals the number of
ionizations from level n by photons with frequencies [ν, ν + dν],

nenpβn(v) f (v)v dv = NnKn,ν
(

1− e−hν/kT
)cuν
hν

dν. (14.23)
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If χn is the energy necessary to ionize an atom in state n, frequencies and
velocities are related through

hν = χn + 1
2mev

2.

In equation (14.23), f (v) is the Maxwellian velocity distribution (5.13) for
electrons, uν the blackbody radiation density of photons after (5.71), both at
temperature T . The brackets on the right contain the correction factor for induced
emission, βn(v) denotes the cross section for electron capture and Kn,ν for photo-
ionization. The latter (without proof) is

Kn,ν = 26π4

33/2

mee10

ch6

gn,ν
n5ν3

� 2.82× 1029 gn,ν
n5ν3

(hν > χn) (14.24)

where the Gaunt factor gn,ν is close to one. When one expresses in (14.23)
Nn/nenp by the Saha equation (5.40) with En = −χn and substitutes Kn,ν
from (14.24), one finds after integration over all velocities and frequencies,
respectively, the total recombination coefficient

αn(T ) ≡
∫ ∞

0
βn(v) f (v)v dv � 3.22× 10−6

T 3/2n3
ex E1(x). (14.25)

E1(x) is defined in (A.20), and x = χn/kT . Using the Saha equation, (14.23)
yields the Milne relation

βn(v) = 2n2h2ν2

c2m2
ev

2
Kn,ν . (14.26)

It must also hold when the medium is not in thermodynamic equilibrium
because βn(v) and Kn,ν are atomic quantities and independent of the radiation
density uν and the particle velocity distribution f (v). There is thus a remarkable
link between the ionization coefficient Kn,ν from principal quantum number n
and the cross section for electron capture βn(v) into that level.

14.4.2 Dust–free HII regions

14.4.2.1 Ionization balance

In each cm3 of a stationary and dust-free HII region of pure hydrogen, the rate of
ionization of neutral hydrogen atoms by the radiation field of mean intensity Jν
equals the rate of recombinations of electrons and protons to all quantum levels
n ≥ 1. If the corresponding recombination coefficient is denoted α(1), then

nH

∫ ∞
νL

4π Jν
hν

Kν(H) dν = nenpα
(1). (14.27)

The radiation field has two components: one from the star (subscript s) which
is directed radially outwards, the other arising from recombinations within the HII
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region. The latter is diffuse (subscript d) and travels in all directions, altogether
Jν = Jsν+ Jdν. The stellar flux Fdν declines with distance r from the star because
it is geometrically diluted and weakened by absorption. In spherical symmetry,

Fsν(r) = R2∗
r2 Fsν(R∗)e−τ (ν). (14.28)

The optical depth

τ (ν) =
∫ r

R∗
nHKν(H) ds

is due to absorption of hydrogen atoms in their ground state 12S. Almost
all neutral hydrogen atoms reside there because the probability for downward
transitions from upper principal quantum numbers n is very high (A-coefficients
104 . . . 108 s−1 for
L±1). Equation (14.28) can now be written as (see (13.26))

1

r2

d

dr
(r2Fsν) = −4π JsνnHKν(H). (14.29)

The expression for the net flux of outwardly directed diffuse radiation Fdν
is similar but contains additionally as a source term the emission coefficient εdν
arising from recombinations to the ground level n = 1,

1

r2

d

dr
(r2Fdν) = −4π JdνnHKν(H)+ 4πεdν. (14.30)

Adding (14.29) and (14.30), dividing by hν and integrating over ν, one
obtains

d

dr

[
4πr2

∫
Fsν + Fdν

hν
dν

]

= −4πr2
[∫

nHKν(H)
4π Jsν + 4π Jdν

hν
dν −

∫
4πεdν

hν
dν

]
.

(14.31)

The integrals extend from νL to infinity. The bracket on the left gives the
number of Lyc photons that pass per s through a shell of radius r ; we denote this
quantity by Nc(r) (unit s−1); by definition,

Nc(r = R∗) = NL.

In the bracket on the right-hand side of (14.31), the first term equals α(1)nenp,
which is the number of all recombinations per second and cm3, and the second
term equals α1nenp, which is the number of recombinations to the ground level
only. Here it is assumed that every diffuse Lyc photon arises from a recombination
to n = 1 and is absorbed on the spot by a neutral H atom. The difference between
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both terms is α(2)nenp, where the coefficient α(2) = α(1) − α1 stands for all
recombinations to levels n ≥ 2. We thus obtain

dNc(r)

dr
= −4πr2α(2)nenp. (14.32)

In an HII region, hydrogen is almost fully ionized, nH � ne = np.
Therefore, we may directly integrate equation (14.32) from the stellar surface
(r = R∗) to the edge of the HII region. The radius there is denoted rS and called
Strömgren radius. Because rS � R∗, in the case of uniform plasma density

NL = NL(r=R∗) = 4π

3
r3

Sn
2
eα
(2).

14.4.2.2 Strömgren radius, ionization structure, recombination time

• For the Strömgren radius, one immediately finds, from the last equation, that

rS =
[

3NL

4πn2
eα
(2)

]1/3

. (14.33)

• Although nH � ne is a very good approximation, it does not tell us the
density of hydrogen atoms, nH. If n ≡ np + nH, the fraction y = nH/n of
hydrogen atoms follows from the quadratic equation

NcK (H)y = 4πr2α(2)n(1− y)2. (14.34)

y is, of course, a function of radius r . Note that the degree of ionization,
1− y = ne/nH, is not determined by the Saha formula (5.38).

• The transition from the HII region to the neutral gas is sharp and called
ionization front. Its width dIF is determined by the condition that the optical
depth τ with respect to Lyc radiation is of order unity,

dIF = 1

nHK (H)
. (14.35)

For densities 103 cm−3 and K (H) ∼ 10−17 cm2 (table 14.4), the width dIF is
only ∼1014 cm, whereas the diameter of the HII region may be greater than
1018 cm.

• The mass of an HII region depends not only on the spectral type of the
exciting star but also on the environment. It is inversely proportional to the
electron density,

MHII = NLmH

ne α(2)
. (14.36)

• Per unit volume, the recombination rate n2
eα
(1) equals the rate of ionization.

An individual electron will, therefore, recombine after an interval

τion = 1

ne α(1)
. (14.37)
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This is the characteristic time for recombination and ionization and also the
time an HII region would go on shining after the star were switched off.
For a plasma of moderate density (ne = 10 cm−3), equation (14.37) implies
τion ∼ 104 yr.

• When helium is present in the gas (typical galactic abundance by number
[He]/[H] � 0.1), it competes with hydrogen for photon capture. Its Lα
radiation from the singlet system of para–helium at λ = 584 Å is also able to
ionize hydrogen. Because helium ionization requires more energetic photons
(χ(He) = 24.6 eV> χ(H) = 13.6 eV), the HeII region is never greater than
the HII region, at best co-extensive. If NL,He is the number of Lyc photons
with hν > χ(He), the Strömgren radius rS(He) for helium becomes

rS(He) =
[

3NL,He

4πnen(He+)α(2)(He)

]1/3

. (14.38)

The flux NL,He depends sensitively on the stellar effective temperature: For
B0 stars, the HeII zone is practically absent, for stars of spectral type O6 or
earlier, rS(He) = rS(H).

14.4.3 Dusty HII regions

14.4.3.1 Ionization balance of a dusty HII regions

The presence of dust reduces the number of Lyc photons available for ionization
of the gas and, therefore, the size of an HII region. Let τ be the optical depth in
the Lyman continuum with respect to dust only, and Kd the corresponding dust
cross section per H atom. So dτ = n Kd dr , where n = ne + nH and helium has
been negelected. As the degree of ionization within an HII region is close to one,
we get from (14.32)

1

NL

dNc

dτ
= −4πα(2)nr2

NLKd
− Nc

NL
.

Inserting rS from (14.33) leads to the ordinary differential equation

1

NL

dNc

dτ
= − 3

n3K 3
dr

3
S

τ 2 − Nc

NL
(14.39)

with the boundary condition Nc(τ=0) = NL. The equation may be solved
numerically but if the density n is constant, it offers the analytical solution [Pet72]

Nc

NL
= e−τ − 3τ 2 − 6τ + 6(1− e−τ )

n Kd rS
(14.40)

which gives Nc(τ ) directly as a function of the dust optical depth τ = rnKd.
The dusty HII region extends to the dusty Strömgren radius rdS, where all Lyman



454 Diffuse matter in the Milky Way

continuum photons have been absorbed either by gas or by dust. One finds rdS
by putting (14.40) to zero and solving for τ . This yields the optical thickness
τdS = rdSnK of a dusty HII region and thus rdS. For example, a region with
optical depth τdS = 1 has a 56% smaller volume than one without dust where
τdS = 0.

There are no observations of the extinction curve in the Lyman continuum,
the dust cross section Kd is, therefore, quite uncertain for λ < 912 Å. Of
course, we have some guidance from the dielectric permeability ε of figure 7.19.
According to it, when applying Mie theory, the cross section of an individual
grain is at λ = 1000 Å three times greater than in the visual and continues to rise
towards shorter wavelengths up to a resonance at ∼700 Å.

For a compact HII region (n = 104 cm−3) around an O6 star (NL =
1049 s−1) the dust-free Strömgren radius rS = 4.5 × 1017 cm. If the dust
in the HII region had the same abundance and properties as in the diffuse
interstellar medium, its cross section per hydrogen atom at 1000 Å would be
Kd � 1.5 × 10−21 cm2, and in the Lyman continuum greater still. This would
imply a huge optical depth (τ = rnKd ∼ 10) so that the HII region would almost
vanish. However, compact HII regions are being observed. Consequently, the
dust must be modified, most likely it is depleted, partially destroyed by the strong
and hard far UV field. In HII regions, dust absorption coefficients per gram of
interstellar matter are probably reduced by a factor of four with respect to neutral
gas clouds.

The dust in an HII region is heated radiatively and its temperature Td is
decoupled from the gas temperature. The radiation field Jν which the grains
absorb includes stellar light, Lα photons and optical cooling lines. Td then follows
from (8.7). In a compact HII region, more than two-thirds of the radiation is
emitted by dust (disregarding the surrounding shell of neutral gas).

14.4.3.2 Lyα photons of hydrogen

Each Lyman continuum photon ionizing a hydrogen atom leads inevitably to a
proton–electron recombination. No matter how the newly formed hydrogen atom
cascades down from its excited state, eventually it produces a Lyα photon of
energy hνα = 10.2 eV. Like all photons connecting to the ground state, they are
trapped inside the HII region. Therefore their radiation density is very high. But
it cannot build up indefinitely because of the following three destruction routes:

• Absorption of Lyα photons on grains. This is by far the most important
process and works independently of the amount of dust in the HII region. If
there is very little dust because most has been destroyed, the few remaining
grains receive all the Lyα flux and will be very hot. They absorb the fraction
NLhνα/L∗ of the stellar luminosity L∗, typically 25%. This energy then
escapes as infrared radiation. If the HII region is not almost dust-free and
the dust optical depth τdS not small, the infrared luminosity (without cooling
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fine structure lines) will be even greater than ∼25%. In addition, the grains
then also directly absorb stellar photons of all wavelengths, as well as diffuse
photons of the cooling lines.

• Decay of the metastable upper level 2 2S (n = 2, l = 0, lifetime 0.12 s) into
the ground state 1 2S by emission of two photons (see end of section 6.3.4.3)
of total energy hνα . Averaged over many transitions, the decay forms a
continuum.

• Diffusion of Lα photons into the optically thin line wings from where they
can escape the HII region.

14.4.4 Bremsstrahlung

In a hydrogen plasma of temperature T and electron density ne, the electrons
have a mean velocity proportional to T 1/2. The protons are much heavier and,
therefore, almost at rest. As an electron passes a proton, it is accelerated and
changes its direction, usually only a little. The acceleration of the electron leads
after the dipole formula (1.97) to electromagnetic radiation.

• The monochromatic emission coefficient is (without proof)

εν = 8

3

√
2πme

3kT

e6

m2
ec

3
gff n

2
e e
−hν/kT . (14.41)

The emission spectrum is at low frequencies flat,

εν � 5.44× 10−39n2
eT
−1/2 erg cm−3s−1Hz−1ster−1

because exp(−hν/kT ) � 1 and the Gaunt factor gff � 1. In a plasma
at 8000 K, the Boltzmann factor e−hν/kT becomes important only at
wavelengths λ < 10 µm.

• Denoting by ḡff the frequency average of the Gaunt factor, the total
bremsstrahlung emission is

4π
∫
εν dν =

√
2πkT

me

32πe6

3hmec3 ḡff nenp

� 1.42× 10−27 ḡff n
2
e

√
T erg cm−3s−1. (14.42)

• The continuum absorption coefficient of the plasma follows from
Kirchhoff’s law. At radio wavelengths

Kν = Bν(T )

εν
� 0.173

(
1+ 0.13 log

T 3/2

ν

)
nenp

ν2 cm−1 (14.43)

implying a continuum optical depth τc ∝ ν−2. Defining the emission
measure by

EM =
∫
n2

e ds (14.44)
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τc can be approximated by [Alt60]

τc = 0.082a(ν, T )T−1.35
( ν

GHz

)−2.1
EM (14.45)

where the factor a(ν, T ) � 1 and the emission measure is in the unit
pc cm−6.

• Below a turnover frequency νturn, the HII region is opaque, above
transparent. When it is opaque, one receives a flux Sν that is proportional
to the Planck function, Sν ∝ Bν ∝ ν2; when it is transparent, Sν ∝ τνBν ∝
ν−0.1. Bright and compact HII regions have typical emission measures
107 pc cm−6. At T = 8000 K, they become optically thin at frequencies
above νturn ∼ 2 GHz.

• Measuring the integrated radio flux Sν of an optically thin source allows to
determine the number of stellar ionizing photons Nc,

Nc = 7.54× 1046
( ν

GHz

)−0.1
(

T

104 K

)−0.45 ( D

kpc

)2 ( Sν
Jy

)
s−1. (14.46)

One can then infer the spectral type of the exciting star (table 14.3). In case
of a compact source, one has to make allowance for the absorption of Lyc
photons by dust. Because the integrated radio flux is

Sν ∝
∫
nenp dV

one can also derive from Sν the mean electron density if the volume V is
estimated from the linear size of the HII region.

• A young HII region appears, first of all, as an infrared source whose spectral
energy distribution is dominated by dust and peaks typically at 60 µm. With
the help of table 14.3 or equation (14.22), one can predict from (14.46) the
radio flux Sν that a star of certain stellar type or mass will produce. Because
the dust emission drops with frequency like ν4, whereas the radio spectrum
is flat, bremsstrahlung exceeds dust emission at long long wavelengths. The
cross-over is usually at λ ∼ 3 mm.

14.4.5 Recombination lines

Important information on HII regions is provided by recombination lines.
They arise when electrons recombine with protons, or other ions, and cascade
downwards. For hydrogen-like atoms, the frequencies follow from the Rydberg
formula (n > m)

ν = cRZ2
(

1

m2
− 1

n2

)
.

Z is the electric charge of the atomic nucleus (Z = 1 for H) and R the
Rydberg constant (for infinite nuclear mass, R = 109 737.3 cm−1). Transitions
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n → n − 1 are called α-lines, n → n − 2 are β-lines, and so forth. Because the
recombination and Einstein coefficients are known, the strength of the lines yields
directly the number of ionizing photons in an HII region.

Optical lines (Balmer lines, like Hα) can be very bright but in order to
be interpreted they have to be corrected for dust extinction. De-reddening by
means of an extinction curve (figure 7.8) requires observations of several lines
at different wavelengths. The procedure is often ambiguous because one does
not know how much dust resides within the HII region and how much is in the
foreground. The problem is less severe in the near infrared (Brackett and higher-
order lines).

Interstellar dust extinction is irrelevant for transitions between high quantum
states. Such radio recombination lines can be detected from very obscured and
optically not accessible places. When combining the radial velocity with the
rotation curve of the Milky Way, one obtains the (kinematic) distance of the
source. The lines thus reveal the spiral structure of the Milky Way as traced
by bright star-forming regions. We add three other interesting features of radio
recombination lines:

• As the Einstein coefficients are small, the levels have a long lifetime and
they are reshuffled by collisions leading to a population that is close to
thermodynamic equilibrium, at the temperature of the ionized gas (see
(5.40)).

• Because electrons with high quantum numbers are far from the atomic
nucleus, nuclei of the same charge but of different mass produce only slightly
shifted frequencies. For example, the relative difference 
ν/ν between H
und He radio recombination lines is 4.1× 10−4 which allows us to observe
both lines in one measurement, thus enhancing the accuracy of line and
abundance ratios.

• The highest transitions observed are around n ∼ 700. The atomic radius r
increases with quantum number like r = a0n2 (Bohr radius a0 = 0.529 Å)
and such highly excited atoms have macroscopic sizes (> 1 µm).

14.5 Mass estimates of interstellar clouds

The amount of interstellar gas, Mgas, that an astronomical object contains, be it
a galaxy, a molecular cloud or a stellar disk, is one of its prime parameters, like
luminosity or size. We summarize a few methods for estimating Mgas. None of
them is very precise, so one employs as many methods as possible and takes an
average.

14.5.1 From optically thin CO lines

Consider rotational CO transitions j + 1 → j in a homogeneous cloud of
temperature T and column density Nj of molecules in level j . If �(ν) is the
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Gaussian line profile from (13.59), the optical thickness τν becomes

τν = Nj
g j+1

g j

c2

8πν2 A j+1, j

(
1− b j+1

b j
e−

hν
kT

)
�(ν) (14.47)

where b j = Nj/N∗j denotes the deviation of Nj from the LTE value N∗j (see
(13.69)). Let 
ν = 2H be the half-width in frequency of the absorption
profile and τc the optical depth in the line center. One then finds that in LTE
(b j = b j+1 = 1), the column density of the upper level is given by

Nj+1 = τc
v

ehν/kT − 1

3h

16π3µ2

√
π

ln 2

2 j + 3

j + 1
.

µ is the dipole moment of the molecule and 
v = c
ν/ν. The optical depth in
the center of millimeter CO lines is always high (τc � 1) but for the isotope C18O,
τc is often below one. Then
v is also the observed linewidth and τc follows from
the line temperature TL = τcT . If 
v is given in cm s−1

Nj+1 = 6.81× 109 TL

T


v

ehν/kT − 1

2 j + 3

j + 1
cm−2.

The column density of the upper level, Nj+1, is roughly proportional to the
line area TL
v. It depends only weakly on the kinetic gas temperature T and
can be converted into the total CO column density N(CO) with the help of the
Boltzmann distribution (5.8) and from there to the molecular hydrogen column
density, N(H2), assuming the standard ratio [H2]/[CO] = 104.

14.5.2 From the CO luminosity

Most molecular clouds do not collapse under their own gravity but seem to be
virialized. Their typical internal systematic velocity
v is then determined by the
cloud mass M (section 15.2.1). If R denotes the cloud radius,


v � √
GM/R.

The CO luminosity is defined by

LCO = Abeam

∫
line

Tmb(v) dv (14.48)

where Abeam is the area of the beam at the distance of the source and Tmb is the
observed main-beam-brightness temperature (section 13.1.4) of a CO rotational
line, usually the (1–0) or (2–1) transition. It is customary to measure LCO in
pc2 K km s−1. The integral in (14.48) extends over the whole line. As long as the
source is smaller than the beam, the product AbeamTmb and thus LCO is constant,
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independent of the beam size. If the mass fraction of stars within the cloud is
negligible such that M � Mgas, then

LCO ∝ T√
n
Mgas (14.49)

where T is the cloud temperature and n the number density of the gas. If one
assumes that the ratio T/

√
n is constant for all clouds, the CO luminosity is

directly proportional to the cloud mass, although the CO line may be optically
very thick. Of course, the relation (14.49) must be calibrated. The assumed
constancy of T/

√
n implies that the gas temperature goes up when a cloud

becomes more compact. By and large, this may be so, possibly as a result
of increased star formation in dense regions but it is certainly not a rule.
Nevertheless, the method seems to work, at least, better than we understand.

The CO luminosity is also used to derive gas masses of galaxies. Gas
motions there are large, of order 200 km s−1, comparable to the rotational velocity
of the Milky Way. The gas kinematics are entirely determined by the gravitational
potential of the stars, and not by the gas. Nevertheless, equation (14.49) is
applicable. When one makes an observation towards the center of a galaxy, the
CO line will have a width of the same order, say, 200 km s−1. As the beam usually
covers a linear scale of a few hundred pc or more, at the distance of the galaxy,
it samples many giant molecular clouds. Each GMC produces a relatively narrow
line, say, of 10 km s−1 width. The observed line is then a superposition of many
sublines that are well separated, either spatially because they come from different
locations in the galaxy or in frequency space because they have different Doppler
velocities. The contributions from the GMCs thus add up linearly to give the total
gas mass of the galaxy.

In the CO (2–1) line, for example, an average over a large sample of
spiral galaxies yields LCO ∼ 4Mgas when Mgas is measured in M� and LCO
in pc2 K km s−1. Of course, the masses from the CO luminosity refer only to the
molecular gas. How to estimate column densities of the HI gas was discussed in
section 14.3.4. Masses from dust emission (see later) include both components,
HI and H2.

14.5.3 From dust emission

Because the dust absorption coefficient Kλ drops quickly with wavelength
(figure 12.10), almost all interstellar clouds are transparent in the submillimeter
and millimeter region. The observed flux Sλ from the dust is then directly
proportional to the dust mass Md. If the dust temperature Td is uniform over
the source,

Sλ = KλBλ(Td)Md

D2 . (14.50)

The distance D is usually known, Td has to be derived as a color temperature
from the fluxes at, at least, two wavelengths (see (8.20) and discussion thereafter)
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or from molecular line data. At long wavelengths, when hc/λkT � 1, the
Planck function Bλ(Td) is not very sensitive to the exact value of Td. A favourite
observing wavelength is λ = 1.3 mm because the atmosphere there has a window
of good transmission.

The critical quantity in (14.50) is the absorption coefficient per gram of
interstellar dust, Kλ. At λ = 1.3 mm, one is in the Rayleigh limit (grain
radius a � λ), and the grain size distribution is fortunately irrelevant. One may,
therefore, use the absorption efficiency (3.3),

Qabs
λ =

8πa

λ

6nk

(n2 − k2 + 2)2 + 4n2k2 .

In our dust model, whose optical constants are displayed in figure 7.19
and which is detailed in section 12.4, bare silicates have at this wavelength
(n, k) � (3.4, 0.04) and amorphous carbon (aC) has (n, k) � (12, 4). These
numbers imply

Q1.3mm =
{

0.86a for silicate dust
2.13a for amorphous carbon dust

(14.51)

when a is measured in cm. The mass absorption coefficient per gram of silicate
or carbon dust becomes

K1.3mm = 3πa2Q1.3mm

4πa3ρ
=
{

0.26 cm2 per g of Si
0.64 cm2 per g of aC .

(14.52)

For the material density of the dust, we put for both components ρ = 2.5 g cm−3.
With a dust-to-gas mass ratio in the diffuse medium of Rd = 1 : 140, one obtains

K1.3mm =
{

0.0026 cm2 per g of interstellar matter
0.41 cm2 per g of dust .

(14.53)

Equation(14.53) may be extrapolated to far infrared wavelengths by assuming
Qλ ∝ λ2,

Kλ = 4.4× 10−5
(
λ

cm

)−2

cm2 per g of interstellar matter. (14.54)

Fluffiness of the grains as well as ice mantles tend to increase Kλ, so that in
dense and cold clouds (see figure 12.10) it may be five to ten times bigger than
that given in (14.54).



Chapter 15

Stars and their formation

To get an idea of how the elements that make up interstellar dust are created,
section 15.1 deals with nulear burning, in particular, with the pp chain and the 3α
process. We then present approximate formulae for the luminosity and lifetime
of individual stars, discuss the initial mass function (IMF) which specifies how
masses are distributed when stars are born, and show averages for star clusters
displaying an IMF. In section 15.2, we delineate the structure of cloud clumps
at the verge of gravitational instability and present Jeans’s criterion for collapse
to actually occur. In section 15.3, we numerically analyse the equations for
spherical, isothermal collapse and derive, for the earliest stages of protostellar
evolution, the approximate density and velocity structure of the protostellar
clump. Section 15.4 treats disks which inevitably form as the result of cloud
rotation and which have a strong effect on the appearance and dynamical evolution
of protostars, to say nothing about planet formation. The results of section 15.3
and 15.4 serve as the basis for models of dust and molecular line emission in
chapter 16.

15.1 Stars on and beyond the main sequence

15.1.1 Nuclear burning and the creation of elements

Stars form the most obvious component of the Milky Way. They are, by and large,
the ultimate source of luminosity in galaxies. The energy is generated in the stellar
cores by fusion of atomic nuclei. During the main-sequence phase, hydrogen is
burnt into helium. In the post-main-sequence phase, when hydrogen has been
exhausted, elements of atomic mass number greater than four are produced by
compounding helium nuclei. The energy yield per gram of matter is then one
order of magnitude smaller. Fusion ends with the generation of iron which has
the lowest binding energy per nucleon; heavier nuclei release energy not in fusion
but in fission. An example is uranium 235U where fission, here on Earth, has very
diverse technical applications: to supply electricity to our homes, or to remove
10 000 homes in one blow.

461
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Table 15.1. Standard solar abuncance of selected elements and their origin from [And89]
and [Tri89].

Element Relative abundance Origin

H 1 Big bang
He 0.10 Big bang, H-burning
C 3.6× 10−4 He-burning
N 1.1× 10−4 From carbon during H-burning
O 8.5× 10−4 He-burning
Ne 1.2× 10−4 C-burning
Mg 3.9× 10−5 Ne-burning
Al 3.0× 10−6 Ne-burning
Si 3.6× 10−5 O-burning
S 1.9× 10−5 O-burning
Fe 3.2× 10−5 Pre-supernovae

Nuclear burning not only supplies energy but also creates elements. We
are mostly interested in the origin and abundance of carbon, nitrogen, oxygen,
magnesium, silicon and iron as they are, together with hydrogen, the building
blocks of interstellar dust and constitute the most frequently observed molecules.
They are synthesized during the major burning phases and that qualitatively
explains why they are so common. Estimates of their abundances are summarized
in table 15.1, the burning phases are described later.

Nuclear astrophysics is the branch where the synthesis of elements is studied.
According to standard cosmological theories, none of the atoms heavier than
helium can have been created in the Big Bang in any relevant amount. So they
were made afterwards. But obviously, not all elements can have been synthesized
by α-particles in nuclear burning. Nor does adding a proton to a helium core
and then another and another usually work in building up heavier nuclei. For
example, helium has more binding energy per nucleon than its heavier neighbors
in the Periodic Table: lithium, beryllium and boron. So the latter three cannot be
fused in this way. Instead, the light elements are probably made in cosmic-ray
spallations.

Most other elements (besides C, N, O, Ne, Mg, Si) and the plethora of
isotopes are built by neutron capture. Neutrons are made in various side-branch
reactions. They do not feel the Coulomb repulsion and easily penetrate an atomic
nucleus. The resulting new atom can be a stable isotope or be unstable to β-decay.

• When the rate of neutron production and capture is slow compared to
β-decay, as during the quiescent post-main-sequence burning stages, one
speaks of s–processes.

• When it is rapid, as in supernova explosions and some late stellar phases,
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more than one neutron is captured before the nulceus β-decays. In this case,
one speaks of r–processes.

15.1.2 The binding energy of an atomic nucleus

To understand nuclear burning and the resulting element abundances, we must
know how tightly atomic nuclei are bound. The approximate energy of a nucleus
containing N neutrons of mass mn and Z protons of mass mp, altogether

A = N + Z
particles, can be derived from the liquid drop model where one considers the
binding of the nucleons in analogy to the chemical binding of molecules in a
water drop (section 9.5). According to this model, the density in the nucleus is
constant and there is mutual attraction only between neighboring particles. The
total energy of the atomic nucleus consists of the energy equivalent of the mass
of the free particles minus the binding energy Eb > 0,

W = Zmpc
2 + Nmnc

2 − Eb. (15.1)

For A > 4, approximately

Eb = αA − βA 2
3 − γ e

2Z(Z − 1)

A1/3 − η (N − Z)
2

A
± δ

A
. (15.2)

The binding energy per nucleon, Eb/A, is plotted in figure 15.1 as a function
of atomic number Z . We discuss the individual terms in (15.2):

• The first is due to the strong force and its value per nucleon is constant, equal
to α.

• The second term is a correction to the first because some nucleons, their
number being proportional to A2/3, are on the surface of the nucleus and
have fewer neighbors. It produces in figure 15.1 the decline at small Z .
Term 1 and 2 correspond to equation (9.58) which gives the energy of an
ordinary liquid drop.

• Term 3 comes from the Coulomb repulsion which acts not only between
neighboring particles but everywhere and here over a mean distance
proportional to the radius of the nucleus, or to A1/3. This also brings
Eb/A down at large Z so that the function Eb/A obtains a maximum at
intermediate Z .

• Term 4 follows from the Pauli principle and very much improves the
approximation. When it is included, Eb/A peaks near iron (A = 56) at
about 8.8 MeV. The term is zero if there is an equal number of neutrons and
protons, N = Z . To derive it, one assumes that the energy levels available
to the nucleons have a constant separation ε and that the same level can be
occupied by a neutron–proton pair but not by two neutrons. It is then easy to
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Figure 15.1. Binding energy Eb/A per nucleon of the most abundant isotope (but
including deuterium) of each element. Filled circles are derived from mass excess as
tabulated by [Lan80] and are connected by a full line. The dotted curve is a fit after
equation (15.1). It is quite satisfactory all the way from uranium down to lithium, except
for nitrogen. Parameter values are given in the text. The insert is merely a magnification.

show that the binding energy decreases proportionally to ε(N − Z)2 when
N > Z .

• The final term is relatively small and takes into account the effect of pairing
among nucleons. It is positive when N and Z are both even, negative when
both are odd, and zero otherwise. It introduces the zigzag and the local
peaks when an atom consists of a multiple of α-particles (4He, 12C, 16O,
20Ne, 24Mg, 28Si, . . .).

The coefficients in equation (15.2) are determined by a combination of
theory and experiment and are listed in the special literature. We used, in
figure 15.1, α = 15.7, β = 17.8, γ = 0.71, η = 23.6 and δ = 132 MeV,
with no attempt for optimization.
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15.1.3 Hydrogen burning

15.1.3.1 Energy yield in hydrogen burning

When stars are on the main sequence, they burn hydrogen by melting four protons
into helium,

41H −→ 4He.

A helium nucleus (mass mHe2+) is a bit lighter than four protons. The mass
difference


m = mHe2+ − 4mp

is such that 
m/4mp = 7.12 × 10−3. In other words, ∼0.7% of the mass is
converted into energy. The fusion of one helium nucleus thus liberates


mc2 = 4.282× 10−5 erg = 26.73 MeV. (15.3)

From burning 1 g of hydrogen into helium one receives 6.40× 1018 erg and this
provides the greatest energy reservoir of a star, excluding gravitational collapse
into a black hole. The 26.73 MeV released in reaction (15.3) appear in the form
of γ -rays, neutrinos, positrons and as the kinetic energy of the reaction products.
The neutrinos have an extremely small cross section and escape from the burning
core without interacting with the stellar material. The energy of 0.263 MeV per
fused He nucleus they carry away is lost. The positrons unite with electrons and
are annihilated producing γ -rays. All γ -photons collide with other particles and
deposit their energy in the form of heat.

15.1.3.2 The proton–proton chain

In all low-mass stars, up to masses a little more than 1 M�, helium is created in
the proton–proton or pp chain. Because this process is at work in the Sun, we
discuss a few details. The chain consists of three major steps:

In the first step, deuterium is generated according to

1H+ 1H −→ 2D+ e+ + νe + 1.442 MeV. (15.4)

The 1.442 MeV include the annihilation energy of the positron e+ and the
energy of the electron–neutrino νe. Usually the Coulomb force prevents protons
from coming close together but at very short distances the strong nuclear force
sets in and overcomes electric repulsion. The strong force has a range of order
∼10−13 cm, it binds the nucleons but is not felt outside the nucleus. The strong
force is insensitive to the electric charge of the nucleons, so it does not discern
between protons and neutrons.

The potential barrier between two protons separated by a distance r =
10−13 cm is Eb = e2/r ∼ 1.5 MeV. In the Sun, which has a central temperature
of 1.5× 107 K, the average kinetic energy of atoms is only 2 keV or a thousand
times smaller. The chance, PMaxw(v), of finding in the tail of the Maxwellian
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velocity distribution atoms with a kinetic energy of 1.5 MeV is negligible (see
(5.13)). The only way protons can unite is by tunneling through the Coulomb
potential barrier.

We can estimate the tunneling probability Ptun(v) for protons of velocity
v from (6.57), although this formula applies strictly only to square potentials
in one dimension. The distance L at which tunneling sets in follows from
1
2mpv

2 = e2/L. The penetration probability, Ppen, is given by

Ppen = PMaxw(v) · Ptun(v).

As the protons get faster, Ptun(v) increases, while PMaxw(v) decreases. When we
evaluate the velocity where Ppen(v) has its maximum, using calculus, we find that
tunneling already occurs at a distance L ∼ 5× 10−12 cm, far beyond the range of
the strong force.

After the tunneling, there is an ephemeral pp complex but it is not stable: 2He
does not exist. The reason is that the potential of the strong force depends on the
spin direction. When the spins of the two nucleons are anti-parallel, the system
is unbound, when they are parallel, the complex is bound, however, this state is
excluded because the two protons are identical and as fermions their quantum
numbers must not coincide.

It is, therefore, not enough to have the two protons approach each other via
tunneling to a nuclear distance. One of the protons must also be converted into a
neutron (see reaction (15.4)). Only then does one have a stable system, a deuteron,
with a binding energy of 2.23 MeV. Because a proton consists of two up and one
down quark, a neutron of one up and two down quarks, there is a transformation

p = (up, up, down) −→ n = (up, down, down).

It is mediated by the weak nuclear force which has an extremely short range
(∼10−15 cm) and is 1012 times weaker than the electromagnetic force. Because
the conversion of a proton into a neutron must take place in the short time while
the proton traverses a distance of ∼10−13 cm, the reaction (15.4) proceeds very
slowly. A proton in the Sun has to wait ∼1010 yr before it is incorporated into a
deuterium atom.

The next step,

2D+ 1H −→ 3He+ γ + 5.493 MeV (15.5)

follows only seconds later. It is so much faster because it requires only the
electromagnetic and not the weak force. The appearance of a γ –quantum is
necessary for the conservation of energy and momentum. The photon energy
is accounted for in the 5.493 MeV.

In the final step the build–up is completed by

3He+ 3He −→ 4He+ 2 H1 + 12.859 MeV. (15.6)



Stars on and beyond the main sequence 467

For this reaction to proceed, the preceding two must have occurred twice.
The 3He nuclei are doubly charged, so the Coulomb repulsion is strong and as
they are also rare, the reaction is fairly slow with a time scale of order 106 yr. In
the sun there are other channels besides (15.6) involving the elements Li, Be, B
but they are far less common. The seemingly simple reaction 3He + p→ 4He is
irrelevant because it involves the weak force.

15.1.3.3 The CNO cycle

In all massive stars, there is an alternative mode of hydrogen burning: the CNO
cycle. It may be started by adding a proton to a 12C atom, and then another and
another. In this way, one builds up nuclei of subsequently higher mass number
but eventually ends up again with a 12C atom plus an α-particle, symbolically

12C
p−→ 13N

β−→ 13C
p−→ 14N

p−→ 15O
β−→ 15N

p−→ 12C+ 4He. (15.7)

The letter p above an arrow indicates proton capture, β stands for β-decay.
The elements C, N and O that give the burning its name take part in the reactions
only as catalysts: in equilibrium, their abundance does not change. The net result
of the reaction chain is again the conversion of hydrogen into helium.

The CNO cycle requires higher temperatures than the pp cycle because the
Coulomb barriers are higher. It is also more sensitive to temperature: the energy
production rate is at 18 × 106 K roughly proportional to T 18 versus T 4 in the
pp chain. The CNO cycle dominates when the central stellar temperature is higer
than∼18 million K or, equivalently, when the stellar mass is slightly above 1 M�.

The β-decay reactions in (15.7) proceed quickly (102...3 s), on about the
same time scale that a free neutron disintegrates into a proton, electron and anti–
neutrino. The proton captures, however, are much slower, by far the slowest
step being the formation of 15O from 14N which takes about 300 million years.
Therefore, even if ones starts out with no nitrogen at all, 14N will build up until
an equilibrium abundance is reached. Indeed, the CNO cycle is the major source
for nitrogen in the universe. Of course, the cycle can only operate if initially one
of the catalysts is present.

15.1.4 The 3α process

The next element, after helium, synthesized in stars by burning is carbon. It is
made in red giants by fusing three α-particles. Because of the strong Coulomb
repulsion between α-particles, the temperatures have to be above 108 K. The
burning process consists of two steps. First, two α-particles unite to 8Be, then
another α-particle is added to transform beryllium into carbon. The beryllium
atom resulting from the first step,

α + α −→ 8Be+ γ − 92 keV
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Figure 15.2. The formation of 12C from the unstable compound (8Be + α) proceeds
through the resonant state C∗.

is, however, unstable and α-decays. This reaction is endothermic requiring
Q = 92 keV; it goes in both ways, so we may write

2α ←→ 8Be. (15.8)

When the temperature in the stellar core reaches 1.2 × 108 K, the average
kinetic energy per particle is 3

2kT � 15 keV and in thermal equilibrium about
1 out of 1010 atoms will be on the right-hand side of (15.8), in the form of 8Be.
This follows from the Saha formula when one makes some obvious modifications
in (5.38). The small fraction of beryllium nuclei reacts further to form carbon,

8Be+ α −→ 12C+ γ + 7.37 MeV.

Now it is important that carbon possesses an excited state, C∗, which lies
E∗ = 7.65 MeV above the ground level but only ER = 0.288 Me above the
complex 8Be + α (figure 15.2). For those atoms whose kinetic energy is close to
ER, the cross section for creating C∗ has a sharp maximum (resonant reaction).
Once formed, C∗ may then de-excite to the ground state 12C (α-decay is, however,
more frequent).

The existence of the state C∗ speeds up the reaction 8Be + α →12C by a
factor 107. It allows the triple-α process to operate already at a temperature of
1.2×108 K. Without this, the stellar interior would have to be as hot as 2×108 K
for helium to burn into carbon. This makes a tremendous difference considering
the extreme temperature sensitivity of the 3α process. At ∼108 K, the energy
production rate is proportional to T 30, and a temperature rise of only 5% makes
the reaction ten times faster. The energy yield in the 3α process per gram of matter
is ten times lower than in hydrogen burning.
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Once carbon is present, oxygen, neon, magnesium and so forth can be
generated through the capture of α-particles. Here are some reactions with their
energy yield:

12C+ α −→ 16O+ γ + 7.16 MeV

16O+ α −→ 20Ne+ γ + 4.73 MeV

20Ne+ α −→ 24Mg+ γ + 9.32 MeV

24Mg+ α −→ 28Si+ γ + 9.98 MeV.

When taken per gram of stellar matter, the yield decreases as heavier
elements are synthesized.

15.1.5 Lifetime and luminosity of stars

Stars are born with masses, m, between 0.08 and 100 M�, the upper limit being
rather uncertain. Their lifetime τ and luminosity L determine, to a large degree,
the stellar population and the optical and infrared appearance of the Milky Way.
To first order,

τ ∝ m

L
.

The stellar mass fixes the amount of fuel, and the luminosity the speed of
its consumption. For example, assuming that 20% of the mass of the Sun is in
its hydrogen burning core and that the energy yield is 0.007c2 erg per gram of
burnt matter (see (15.3)), one gets a lifetime of 20 billion years, not bad as a first
estimate.

Most of this time, a star spends on or near the main sequence. The
subsequent evolution is very quick: first, because the star has become a giant
and is generally much more luminous, so the consumption rate is higher; and
second, because 90% of the fuel reserve has already been used up. Therefore, the
total lifetime is not much longer than the main sequence lifetime, τms. However,
because giants are so bright, the luminosity averaged over the total lifetime of a
star, Lav, can be several times greater than the main sequence luminosity Lms,
despite the fact that the post-main-sequence phase is short.

Stars are best classified by their line spectrum. The analysis yields the
spectral type (O, B, A, F, G, K, M) or effective temperature Teff, and the
luminosity class (roman numbers from I to VI) or surface gravity. The stellar
mass m is not an observational quantity and much less certain. It can be directly
determined only in binary systems.

Formulae (15.9)–(15.13) and figure 15.1 are approximations of the
parameters τms, Lms and Lav, as a function of the stellar mass m. They are
based on computations of stellar evolution and adapted from [Mas88]. The initial
chemical composition of the star as well as its mass loss rate have some influence
on the results but it is not important for our purposes.
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When lifetimes are expressed in years, stellar masses in M� and luminosities
in L�, one gets the following results

• Main sequence lifetime:

τms =



3× 106 + 1.2× 109m−1.85 m > 7.293
107 + 5× 109m−2.7 2.594 ≤ m ≤ 7.293
1.1× 1010m−3.5 m < 2.594 .

(15.9)

• Main sequence luminosity: For m ≥ 1 M�,

log Lms = 4.989× 10−3 + 4.616 logm − 0.6557 log2 m − 0.06313 log3 m.
(15.10)

For m < 1 M�,

Lms =
{

1.012m4.34 0.6 ≤ m ≤ 1
0.51m3 m ≤ 0.6.

(15.11)

• Average luminosity (mean over lifetime of star including giant phase):

Lav = 9.77× 1010 max

(
mrem

τms
, Lms

)
. (15.12)

Lav is expressed through the mass mrem of the stellar remnant. It is a neutron
star or a black hole when the progenitor explodes as a supernova, i.e. when
the initial mass m > mSN = 6 M�. It is a white dwarf when the initial mass
0.65 ≤ m ≤ mSN:

mrem =



m m ≤ 0.65
0.65 0.65 ≤ m ≤ 2.2
0.105(m − 2.2)1.4 + 0.65 2.2 ≤ m ≤ mSN
0.1m1.4 m > mSN.

(15.13)

The constant 9.77× 1010 in (15.12) assumes an energy yield of 6× 1018 erg
per gram of burnt remnant matter with a mass fraction of 0.7 of the heavy
elements (the ashes).

15.1.6 The initial mass function

Stars generally form in clusters, almost simultaneously. An outstanding example
is the very compact cluster in Orion around the Trapezium which contains over
2000 members with a stellar density of more than 104 pc−3. A fundamental
problem concerns the distribution of masses of young stars, either born in clusters,
as in Orion, or elsewhere. If dN(m) stars are born in the mass rangem . . .m+dm,
then

dN(m) ∝ ξ(m) dm (15.14)
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defines the initial mass function ξ(m), abbreviated IMF. One way to derive the
IMF observationally is to count the number of stars in the solar neighborhood per
interval of apparent visual magnitude mV. Then one determines their distances
to obtain the luminosity function φ(MV). It gives the number of stars per unit
volume and interval of absolute visual magnitude. When one restricts the counting
to main sequence stars, MV can be uniquely translated into a stellar mass m (see
figure 15.3). This leads to a function ψ(m) such that ψ(m) dm is the present
stellar density for the mass interval m . . .m + dm. One arrives at the initial mass
function ξ(m) by deconvolving ψ(m) with the stellar lifetime τ (m) (see again
figure 15.3) and assuming that the star-formation rate has been constant over the
past.

A much more direct approach to find ξ(m) is to count in a young stellar
cluster, where no member has yet evolved off the main sequence, the number
of stars per mass interval. Such a method is, however, prone to observational
bias by the detection limit as young clusters are always heavily obscured by
dust. Also, the result from any one cluster is not representative for the Milky
Way as a whole. One may alternatively try to determine ξ(m) theoretically by
making certain assumptions about the processes during star birth. Two analytical
expressions for the IMF are in wide use [Sal55, Mil78],

ξ(m) =
{
m−2.35 Salpeter IMF
1

m
exp(−0.966 lnm − 0.206 ln2 m) Miller–Scalo IMF.

(15.15)
The functions are not normalized; they may, for example, refer to 1 M� of

gas that has transformed into stars. For the lower and upper mass limit of stars, ml
and mu, one often assumes 0.1 M� and 50 M�, respectively but these numbers
are debatable and depend on the environment. Figure 15.4 illustrates how stars of
different masses contribute to the total luminosity and thermal radio emission of
a cluster with mass distributions as given in (15.15).

15.2 Clouds near gravitational equilibrium

15.2.1 Virialized clouds

Consider an interstellar cloud of volume V consisting of N atoms, all of equal
mass m and with coordinates x j . An outer pressure P0 is exerted on the cloud
surface. The virial theorem asserts a relation between the various forms of energy
when the cloud is in equilibrium so that all time derivatives with respect to the
cloud as a whole but not with respect to an individual particle, vanish. The
theorem follows immediately from the equation of motion,

F j = mẍ j i = 1, . . . , N (15.16)
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Figure 15.3. The top panel shows the lifetime of stars according to equations (15.9),
The bottom one their luminosity after (15.10) to (15.13). The full curve gives main
sequence luminosity Lms, dotted line shows Lav which is an average over the whole stellar
life including the giant phase. For stars of very high and very low mass, Lms � Lav.
The former move after the exhaustion of hydrogen in the Hertzsprung–Russell diagram
horizontally to the right, without increasing their luminosity. The latter never turn into
giants. They also live much longer than 1010 yr, so their post-main-sequence evolution
does not bother us.

when one multplies by x j and sums over all particles. Because

x · ẍ = d

dt
(x · ẋ)− ẋ2

one finds for the time averages (we do not mark them explicitly)∑
j

F jx j = −
∑
j

mẋ2
j . (15.17)
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Figure 15.4. The cumulative mass M , luminosity L and Lyman continuum flux NL for
the Salpeter (full curve) and Miller–Scalo (broken curve) IMF with lower and upper mass
limit ml = 0.1 M� and mu = 50 M�. For example, in a Salpeter IMF, stars with masses
smaller than 10 M� account for only 9% of the luminosity, although they comprise 90%
of the stellar mass. In other words, one-tenth of the stars by mass accounts for almost all
the luminosity (precisely, for 91%). The dependence of the luminosity on mass, L(m), is
from (15.10) and (15.11); the Lyc flux NL(m) is from (14.22).

Without systematic motion, all kinetic energy is thermal and
∑
mẋ2

j =
3NkT . The other sum

∑
F jx j can be split into a term containing only those

forces F j which act from outside, the other containing the inner forces. The outer
forces are due to the external pressure P0 which results in a force P0 d f that is
perpendicular to each surface element d f and directed inwards. To evaluate this
sum, one has to integrate over the cloud surface and transform the expression
into a volume integral according to Gauss’ theorem. The inner forces come from
mutual gravitational attraction of the atoms. The end result links the thermal
energy Etherm = 3

2NkT , the gravitational (potential) energy Egrav, and P0V ,

P0V = NkT + 1
3 Egrav (15.18)

with

Egrav = −
∑
i< j

Gm2

|xi − x j | .

An interstellar cloud fulfilling (15.18) is said to be virialized. Virialization
is a special cloud property. For a spherical cloud of uniform density, radius R and
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mass M ,

Egrav = −3GM2

5R
. (15.19)

When the outer pressure can be neglected with respect to the central pressure,
(15.18) yields

−Egrav = 2Etherm = 3kT M

m
. (15.20)

For example, a low-mass protostar in its late stage of evolution moves
towards the main sequence along the Hayashi track; its surface temperature is
then approximately constant, whereas the stellar radius and the luminosity shrink.
When accretion has ended and nuclear burning not yet started, the luminosity
L is entirely due to gravitational contraction. The star is always in equilibrium
and exactly half of the liberated gravitational energy goes according to the virial
theorem into heating the gas; the other half is radiated away.

When the star is on the main sequence and, in a thought experiment, one
switches off nuclear burning, the luminosity would be sustained over the Kelvin–
Helmholtz time scale

tKH = Etherm

L
� 3kT M

2mL
(15.21)

where T is an average by mass over the star and m, as before, is the mean particle
mass. For the Sun, tKH equals 30 million years; for O stars, tKH is a thousand
times smaller.

Equation (15.20) also holds for planets and other objects whirling around the
Sun if one replaces Etherm by the average kinetic energy Ekin over a revolution. It
is not valid for comets that fly on a parabolic orbit of infinite extension.

15.2.2 Isothermal cloud in pressure equilibrium

In a gas sphere, when pressure and gravitational forces balance exactly
everywhere,

dP

dr
= − GMr

r2
ρ (15.22)

dMr

dr
= 4πr2ρ. (15.23)

Mr denotes the mass contained in a sphere of radius r . Formulae (15.22) and
(15.23) can be combined into one, which is of second order and called the Emden
equation [Emd07],

1

r2

d

dr

(
r2

ρ

dP

dr

)
= −4πGρ. (15.24)

We solve (15.22) and (15.23) subject to the boundary conditions

ρ(0) = ρc
dρ

dr

∣∣∣∣
r=0
= 0 (15.25)
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i.e. we prescribe the central density ρc and its gradient, which has to be flat. One
still has to add the equation of state,

P = kT

m
ρ = v2

s ρ (15.26)

where m denotes the mean mass of the gas particles and

vs =
√
∂P

∂ρ
=
√
kT

m
(15.27)

the isothermal sound speed. For polytropes, the pressure P can be expressed
solely by ρ,

P = Kρ1+ 1
n (15.28)

where K is some constant. The temperature does not enter but T is nevertheless
not uniform over the cloud. General solutions of polytropes are discussed in
[Cha39]. Here we are interested in the structure and stability of an isothermal
sphere which is described by a polytrope of index n = ∞.

The assumption of isothermality correctly reflects the conditions in
protostellar clouds before they collapse. Heating of such a cloud, beneath its
surface layer, happens either through absorption of far infrared radiation by grains
or by interaction of cosmic rays with the gas. In either case, the heating rate
per gram of interstellar matter is fairly uniform over the cloud and does not
depend on density. Cooling comes mainly from grains (although some is due to
molecular lines, especially of H2O and CO). As the cloud temperatures are low,
the maximum dust emission lies at submillimeter wavelengths and such photons
can freely escape. At the prevailing high densities, dust and gas are thermally
coupled by collisions between gas molecules and grains.

When the cloud collapses, the PdV work of the gravitational compression
is transferred from the gas to the dust and radiated away. As long as the cloud is
optically thin to dust radiation, which is true during the early protostellar phases,
the collapse does not enhance the temperature.

15.2.3 Structure and stability of Ebert–Bonnor spheres

Equations (15.22) and (15.23) are integrated from the center outwards. At the
edge, where r = R, the cloud is confined by an outer pressure P0 which is equal
to the pressure just below the cloud surface, so P0 = v2

s ρ(R). For every mass
M , there is a family of solutions, the central density ρc being the parameter. By
introducing the variables

y = ρ/ρc (15.29)

x = r√4πGmρc/kT (15.30)
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equation (15.24) can be made dimensionless and brought into the form

y
′′ − y

′2

y
+ 2y ′

x
+ y2 = 0 (15.31)

with the boundary conditions y(0) = 1 and y′(0) = 0. Its solution describes
the structure of isothermal gas balls in equilibrium; they are called Ebert–Bonnor
spheres. If we further put y = eu , (15.31) simplifies to

u
′′ + 2u′

x
+ eu = 0 (15.32)

with u(0) = 0 and u′(0) = 0. To solve this second-order differential equation
by a Runge–Kutta method, we still have to know how u′/x in (15.32) behaves
near zero. Because obviously u′/x → u

′′
(0) for x → 0, it follows that

(u′/x)x=0 = − 1
3 . The result of the numerical integration is shown in figure 15.5.

The density is flat in the core, and ρ falls off in the envelope approximately like
r−2. The mass of an Ebert–Bonnor sphere is computed from

M = 4π
∫ R

0
r2ρ dr = 1√

4πρc

[
kT

Gm

]3/2 ∫ xu

0
yx2 dx (15.33)

where xu = R · √4πGρc/v2
s . With the help of figure 15.6, which displays the

integral

I (xu) =
∫ xu

0
y(x) x2 dx (15.34)

one can determine to which value of xu (or radius R) a sphere of given mass M ,
central density ρc and temperature T extends.

Figure 15.7 depicts how the radius R of an Ebert–Bonnor sphere varies with
the boundary pressure P0. The function P0 = f (R) and the ensuing stability
criterion can be studied analytically but the treatment is laborious [Ebe55, Bon56].
In figure 15.7, clouds from A over B to infinite radii are stable because ∂P0/∂R <
0. When such a cloud is perturbed, it reverts to the configuration whence it started
from. However, between A and C , which is the point of minimum cloud radius,
∂P0/∂R > 0. When somewhere on this part of the curve the radius is decreased
by some inevitable fluctuation, the cloud arrives at a new configuration where the
actual outer pressure P0 surpasses the value required for equilibrium. Thus the
cloud is further compressed and finally collapses. As one increases the central
density and moves on the curve beyond the point C towards the eye of the spiral,
the instability continues. Although ∂P0/∂R may again be negative for the cloud
as a whole, interior parts are unstable.

A cloud in a low-pressure environment settles into an equilibrium
configuration, somewhere to the right of point A on the curve in figure 15.7. Its
environment may vary but the cloud is stable and adjusts to a changing outside
pressure P0. Collapse starts only when the Ebert–Bonnnor sphere becomes
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Figure 15.5. The structure of an (isothermal) Ebert–Bonnor sphere after (15.31). The
density y is in units of the central density, y = ρ/ρc. The radial coordinate x is
proportional to the cloud radius, x = r(4πGρc/v

2
s )

1/2. In this logarithmic plot, the broken
curve shows for comparison the slope of a density distribution falling off like 1/r2.

critical. To determine the critical values, we write the outside pressure P0 and
the cloud radius R as a function of the dimensionless variable x ,

P0(x) = v2
s ρcy(x) =

(
kT

m

)4 1

G3M2

I 2(x)y(x)

4π
(15.35)

R = x
(

kT

4πGmρc

)1/2

= Gm

kT
M

x

I (x)
. (15.36)

The expressions I 2y and x/I are readily evaluated numerically. For a fixed
cloud mass M and temperature T , P0 attains its maximum at x = 6.450, where
I 2y/4π = 1.398 and x/I = 0.4106. Therefore, the cloud is stable only if the
outer pressure is smaller than the critical value Pcrit and the radius greater than
Rcrit,

Pcrit = 1.40
k4

G3m4

T 4

M2
(15.37)

Rcrit = 0.411
Gm

kT
M. (15.38)
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Figure 15.6. The mass integral I (xu) = ∫
yx2 dx of equation (15.34);

xu = R(4πGρcv
2
s )

1/2 marks the cloud boundary. For large values, roughly I (xu) ∝ xu,
for small ones I (xu) ∝ x3

u . Insert: The functions x/I (x) and y(x) I2(x)/4π near the
critical value xcr = 6.45.

Assuming some reasonable pressure to prevail in the interstellar medium,
say P0 = nkT ∼ 10−12 dyn cm−2, as in a tenuous HII region, the largest possible
stable mass for a cold H2 cloud of 10 K is thus only ∼6 M�.

A cloud in pressure equilibrium is also virialized and the virial theorem in
the form (15.18) follows directly from the equation for hydrostatic equilibrium
(15.22). Indeed, multiplication of (15.22) with 4πr3 and integration by parts over
the cloud radius gives

∫ R

0
4πr3 dP

dr
dr = 3P0V − 3NkT = −

∫ R

0

GMr

r
4πr2ρ(r) dr = Egrav.

When the cloud has a large volume, its density is almost constant and the
relations between P0 and R are practically identical for an Ebert–Bonnor sphere
and a virialized homogeneous sphere. However, when the cloud is compact,
pressure gradients, which are taken into account by the virial theorem in (15.18)
only in an integral form, become important and the curves diverge.
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Figure 15.7. The sequence of points shows the general relation between the radius R
and the outer pressure P0 for an isothermal gas ball in hydrostatic equilibrium after
(15.24) when R and P0 are normalized to the values of the critical sphere. The central
density ρc increases by a constant factor of 1.2 from one point to the next as one follows
the spiral of dots from right to left. Stable configurations are only possible from A
over B to infinity. For an H2 cloud of 1 M� and T = 10 K, at the critical point A,
ρc = 1.19 × 10−18 g cm−3, R = 1.33 × 1017 cm and P0 = 3.41 × 10−11 dyn cm−2;
at point B, ρc = 2.15 × 10−20 g cm−3. For comparison, the full curve is from the virial
relation (15.52) for unmagnetized spheres of constant density.

15.2.4 Free-fall of a gas ball

The ultimate simplification in the study of cloud collapse is to treat the contraction
of a constant density sphere under the influence of gravity alone, thus neglecting
all other forces that arise from pressure gradients, magnetic fields or rotation.
Consider a gas sphere of total mass M which at time t = 0 is at rest and has an
outer radius R. Let r(m, t) denote the radius of an internal sphere that contains
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the mass m ≤ M at time t . The collapse is then described by

r̈ = −Gm
r2

(15.39)

together with the conditions that, at time t = 0, the cloud is at rest, ṙ(m, 0) = 0.
When r0 ≡ r(m, 0) and ρ0 denotes the initial constant density, then obviously
4πρ0r3

0/3 = m. Integration of (15.39) yields

ṙ

r0
= −

√
8πGρ0

3

(r0

r
− 1

)
.

Putting r/r0 = cos2 β, one finds

β + 1
2 sin 2β = t

√
8πGρ0

3
. (15.40)

β and thus also r/r0 do not depend on the mass m and the collapse therefore
proceeds homologously. It is completed when the cloud has contracted to a point,
i.e. when r = 0. This happens for β = π/2, from which follows the free-fall time

tff =
√

3π

32Gρ0
. (15.41)

tff depends only on the initial density ρ0 and is inversely proportional to its
square root. The free-fall time gives the right order of magnitude for the duration
of gravitational collapse but rather as a lower limit because all retarding effects,
like rotation or pressure gradients, are excluded. It is often useful to compare tff
with the time scale of other processes, such as fragmentation of the cloud into
subunits, gas cooling, frosting of molecules onto dust particles, grain coagulation
and so forth.

15.2.5 The critical mass for gravitational instability

Although in any interstellar cloud there is always some gravitational pull which
tries to compress it, clouds are generally not in the stage of collapse. If they
were, the star-formation rate would be orders of magnitude higher than what one
observes. J Jeans was the first to give a quantitative answer to the question under
what conditions a cloud collapses and the stability criterion bears his name. It is
valid only when rotation, magnetic fields, turbulence or outer forces are absent.

In a medium of constant temperature T , the basic gas–dynamical equations
of momentum and mass continuity for the time-dependent variables velocity v
and density ρ are

∂v
∂ t
+ (v · grad)v = − 1

ρ
grad P − gradφ (15.42)

∂ρ

∂ t
+ div(ρv) = 0. (15.43)
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The gravitational potential φ is given by the Poisson equation


φ = 4πGρ (15.44)

and the gas pressure P by the equation of state (15.26), P = kρT/m = ρv2
s ,

where m is the mean particle mass and vs the sound velocity of (15.27). Let
the medium intitially be uniform and at rest. We introduce a small perturbation,
denoted by the subscript 1, and examine whether it grows or not. If the initial
values of density and velocity are ρ0 = 0 and v0 = constant, at some later time

ρ = ρ0 + ρ1 v = v0 + v1.

Writing the density change ρ1 in the form of a plane wave,

ρ1 ∝ ei(kz+ωt)

one obtains
ω2 = k2v2

s − 4πGρ0. (15.45)

If the perturbation ρ1 increases exponentially, the cloud is unstable. This
occurs when ω is imaginary (ω2 < 0), i.e. when the wavenumber k is below some
critical value kJ (the letter J stands for Jeans) given by

kJ = π

LJ
=
√

4πGmρ0

kT
.

Do not confuse the symbol k for the wavenumber with Boltzmann’s constant
k. So a cloud of density ρ and temperature T is unstable to collapse if it has a size
greater than

LJ =
√
πkT

4Gmρ
. (15.46)

For a cloud of molecular hydrogen (m = 2mH),

LJ ≈ 1.2× 1019
√
T/n cm (15.47)

where n is the number density of hydrogen molecules per cm3. Therefore, the
maximum mass of an interstellar cloud of given density and temperature that does
not collapse is

MJ ≈ L3
Jρ =

(
πk

4Gm

)3/2
√
T 3

ρ
. (15.48)

It is called the Jeans mass. For convenient comparison with observations,
(15.48) may be written as

MJ

M�
≈ 2.4× 10−19

(
L

cm

)
T . (15.49)
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A gravitationally unstable clump of one solar mass has, therefore, a size
of ∼0.1 pc. This derivation of the critical mass MJ from perturbation theory is
logically not clean. A homogeneous medium at rest cannot be in equilibrium. If
it were, ∇φ and thus 
φ would have to vanish but that is impossible because of
the Poisson equation (15.44). All constants in the preceding equations (15.46)–
(15.49) should, therefore, not be taken too literally. However, the Jeans criterion is
qualitatively correct and very useful. For example, by measuring the temperature
T , linear size L and mass M of a suspected protostellar condensation, formula
(15.49) helps decide whether it should collapse or not.

15.2.6 Implications of the Jeans criterion

15.2.6.1 The role of dust in gravitational stability

Because an isothermal collapse of a molecular cloud requires radiation losses, the
dust optical depth τ , from the cloud center to the surface, must be smaller than
unity at wavelengths where dust emission is efficient, so

τ = 1
2 LJKdρ < 1.

When the optical depth is transformed into

τ =
(
πk

4Gm

)2 KdT 2

1
2 MJ

one sees that clumps of very low mass cannot freely radiate the gravitational
energy released in the collapse. Using for Kd the Planck mean absorption
coefficent KP of equation (13.33), the minimum fragment mass that can undergo
free collapse is

min(MJ) = 2.4× 10−7T 4 M�. (15.50)

For T = 20 K, min(MJ) ∼ 0.04 M�. Of course, these numbers should
not be taken at their face value but the remarkably strong dependence of MJ on
the cloud temperature may explain the observational fact that in starburst galactic
nuclei, where the dust is warm (Td ≥ 30 K), the IMF is heavily biased towards
massive stars and low-mass stars do not seem to form at all.

15.2.6.2 Fragmentation and thermodynamic instability

During cloud contraction, gravitational energy is converted into heat. Initially,
the collapse is isothermal because dust is a very effective coolant; gas cooling
is relatively inefficient. Continuing our crude analysis of cloud collapse, we
thus notice from (15.48) that a gravitationally unstable and contracting cloud has
the tendency to break up into fragments because the critical mass MJ decreases
proportionally with T 3/ρ as the average cloud density ρ rises. Smaller subunits
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of the mother cloud become unstable as long as the temperature does not rise
faster than ρ1/3. This process, called fragmentation, is fundamental.

The isothermal phase ends when the cloud becomes opaque to the cooling
radiation. In a homogeneously contracting cloud, for which R3ρ = constant, the
dust optical depth τ grows proportionally to R−2; for inhomologous contraction,
the rise is even steeper. So as the cloud shrinks, τ must at some moment exceed
unity. Compression then leads to heating and pressure gradients build up which
stop the collapse: a hydrostatic core forms. When the gravitational energy is not
radiated away, the gas behaves adiabatically, δQ = dU + P dV = 0, and

T ∝ ργ−1

where γ = Cp/Cv is the ratio of specific heat at constant pressure to that at
constant volume. Isothermality implies γ = 1. According to (15.48), there is
gravitational instability if γ falls below

γcr = 4
3 . (15.51)

Besides fragmentation, the value γcr also figures in protostellar evolution
(section 15.3.2).

15.2.6.3 Further remarks on the Jeans criterion

• The Jeans instability criterion is also valid when the gas pressure is due to
supersonic turbulence (because it just compares kinetic with gravitational
energy). One must then replace, in the corresponding formulae, the sound
velocity vs by the turbulent velocity, and the thermal energy by the energy of
the turbulent motions.

• Suppose in some place of a cloud the gas is contracting. The information
about the contraction travels through the cloud in a time ttrav. If ttrav is shorter
than the free-fall time tff of (15.41), the cloud will be stable. Otherwise, it
cannot respond quickly enough to the density perturbation and collapse will
ensue. The condition

ttrav = R

vs
=
√

3π

32Gρ
= tff

together with (15.27) for the sound velocity, also yields the Jeans mass or
Jeans length.

• When one applies the virial theorem in the form of (15.20), where the outer
pressure is absent and the gravitational energy equals twice the thermal
energy, to a gas sphere of mass M , radius R and with M/m gas particles,
one gets

3GM2

5R
= 2

M

m
· 3

2
kT .
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Within a factor of order unity, one immediately recovers the formulae for LJ
and MJ, (15.46) and (15.48). The radius of the critical Ebert–Bonnor sphere
also has the same form as the Jeans length (see (15.38) and (15.46)) and the
two expressions are also practically equivalent.

• Any spherical cloud supported against its gravity by an internal pressure P
becomes unstable when P ∝ ρ4/3, independently of the physical origin of
P . So the critical value γcr also holds for magnetic pressure Pmag. We can
thus extract from the Jeans criterion (15.48) the critical mass Mmag in the
presence of a magnetic field (see section 15.2.7). Indeed, when we rewrite
equation (15.48) as MJ = (π/4G)3/2P3/2/ρ2 and insert, for P , the magnetic
pressure Pmag = B2/8π , we are led to Mmag in (15.53), again but for a factor
of order unity.

15.2.7 Magnetic fields and ambipolar diffusion

15.2.7.1 Critical mass for magnetized clumps

When a cloud is pervaded by a magnetic field, its net effect is to lend further
support against collapse. One can approximately extend the virial equation
(15.18) so that it incorporates magnetic forces. As the terms in (15.18) represent
global cloud energies, one expects the new term for the magnetic field to be
equal to the total magnetic field energy (see (1.56)). Indeed, for a spherical cloud
threaded by a uniform field of strength B , equation (15.18) is generalized to

4πR3P0 = 3NkT − 3GM2

5R
+ 1

3
R3B2. (15.52)

If the field is frozen into the cloud, the magnetic flux is conserved and the
relation BR2 = constant holds no matter whether the cloud is contracting or
expanding. The gravitational and magnetic term in (15.52) have then the same
1/R-dependence and if one form of energy, gravitational or magnetic, dominates
at the beginning, it will do so throughout the subsequent evolution. The cloud
can, therefore, only collapse if 3GM2/5R > R3B2/3. This condition leads to a
minimum mass for instability in the presence of a magnetic field, Mmag, which
can obviously be written in two ways,

Mmag = 53/2

48π2G3/2

B3

ρ2
= 51/2

πG1/2
�. (15.53)

The second expression for Mmag contains the flux � = πR2B through the
clump. When the analysis is extended and cloud flattening taken into account, the
proportionality factor drops, from

√
5/3π = 0.24 to 0.13; but such refinements

are academic as estimates based on the virial theorem are rough anyway. We
conclude that for R = 0.1 pc and B = 10 µG, the critical mass for collapse is
∼1 M�.
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It is not easy to determine the strength of the magnetic field in molecular
cloud cores but if one extrapolates from the lower density environment, where
measurements are easier and B is at least 1 µG, to clump densities, one ends up
with a field strength of ∼10 µG or more. A 1 M� cloud can, therefore, only
contract if its radius is smaller than ∼0.1 pc. For the extrapolation, one assumes
a relation B ∝ ρn between gas density and field strength. For homogeneous
contraction (R3 ∝ ρ−1), flux freezing (BR2 = consant) implies n = 2

3 ; in the
case of equipartition between thermal energy of the gas and magnetic energy,
n = 1

2 ; a more elaborate analysis yields 1
3 ≤ n ≤ 1

2 [Mou91].

15.2.7.2 Time scale of ambipolar diffusion

Of course, all this is correct only if the magnetic field is coupled to the gas,
otherwise there is no interaction. Although the interstellar matter is mainly
neutral, cosmic rays alone can probably keep one out of 107 gas particles ionized,
even in molecular cloud cores, and this should be sufficient to effectively freeze in
the magnetic field. The strength of the coupling between gas and field is expressed
through a diffusion timescale td, which we now define for a spherical cloud of
mass M and radius R.

Let the cloud be close to equilibrium so that the gravitational force is
balanced by the magnetic field. The ions are then kept at their position while
the neutrals drift slowly across the field lines under the influence of gravity. The
process is called ambipolar diffusion. Assuming that the density of the neutrals
is much larger than the ion density, n � ni, and that both kinds of particles have
the same mass m, each ion imparts to the neutrals per second the momentum
n〈σu〉 · mwd, where wd is the drift speed between the two components and 〈σu〉
an average over thermal velocity times cross section. The force balance for 1 cm3

is thus
GM

R2
nm = nin〈σu〉mwd

from which follows the ambipolar diffusion time

tad = R

wd
= ni

n

3

πGm
〈σu〉 � 7× 1013 ni

n
yr. (15.54)

Because the slippage occurs between ions and neutrals, the cross section
for momentum transfer is large, 〈σu〉 ∼ 2 × 10−9 cm3 s−1; for neutral–neutral
collisions it would be a thousand times smaller. With ni/n = 10−7, the diffusion
time tad is several million years. All this suggests that a cloud must first get
rid of its magnetic field through ambipolar diffusion before it can collapse. As
ambipolar diffusion is a slow process compared to dynamical contraction, it limits
the pace at which stars can form. Should the degree of ionization be much above
10−7, for example, because the medium is clumpy and stray UV photons manage
to penetrate into the cloud interior, the diffusion time tad would exceed the cloud
lifetime and collapse could not occur.
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15.3 Gravitational collapse

15.3.1 The presolar nebula

15.3.1.1 Gravitational and thermal energy

To get a feeling for the parameters of a protostellar cloud, let us consider the
presolar nebula. It must have had a mass of 1 M�, possibly a bit more as some
matter was dispersed and did not fall onto the star. Evidence from molecular lines
and dust radiation from low-mass protostellar clumps indicates a temperature T ∼
10 K. Equation (15.38) then yields a critical cloud radius of about R = 0.05 pc
or 1.54 × 1017 cm and a density ρ ∼ 1.3 × 10−19 g cm−3, corresponding to a
molecular hydrogen density somewhat above 3 × 104 cm−3. The free-fall time
from (15.41) then becomes tff � 1.9× 105 yr, about equal to the travel time of a
sound wave through the cloud.

Today, the Sun has a radius R� = 7 × 1010 cm and a mean density
ρ̄� �1.4 g cm−3. So on the way from the protostellar cloud to the main sequence,
there are vast changes: the radius shrinks by a factor ∼107, the density increases
by 20 powers of ten, and the cold neutral gas turns into a hot plasma of over 107 K
with thermonuclear reactions.

The initial gravitational and thermal energy of the protosolar nebula are:

Egrav � GM2

R
� 2× 1042 erg (15.55)

Etherm = 3kT M

2m
� 1× 1042 erg. (15.56)

By the time the accretion process is over, the cloud radius has shrunk to
∼2R�. We know this from the position of T Tau stars in the Hertzsprung–
Russell diagram. Half of the released gravitational energy, namely GM2/4R� ∼
1048 erg, has gone into heating. As a result, the gas has acquired an average
temperature of ∼3 × 106 K, a reasonable mean value for the Sun. The other
half was radiated away. Over one free-fall time, this gives a mean luminosity of
∼40 L�. So very elementary considerations suggest that the Sun was, at least,
during some of its protostellar evolution more luminous than it is today.

15.3.1.2 Rotational and magnetic energy

A protostellar cloud rotates. This is what the Milky Way does and what all other
celestial objects do. The galactic disk does not rotate rigidly but differentially and
the angular frequency ω decreases with galactic radius R as described by Oort’s
constants A and B:

A = − 1

2
R0
dω0

dR0
� 15 km s−1 kpc−1 (15.57)

−B = 1

2
R0
dω0

dR0
+ ω0 � 10 km s−1 kpc

−1
. (15.58)
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They are determined observationally and refer to the locus of the Sun where
ω = ω0 and R = R0. Rigid rotation of the disk would imply A = 0 and
B = −ω0. From (15.57) and (15.58), one finds ω0 = A − B � 8−16 s−1

corresponding to a rotation period of 250 million years. In the differentially
rotating galactic disk, the orbital velocity v = ω0R decreases towards the
periphery like

dv

dR0
= R0

dω0

dR0
+ ω0 = −A − B � −5 km s−1 kpc−1 . (15.59)

Here we have used dv = ω0dR0 + R0dω0. Because of the differential
rotation of the galactic disk, the orbital speed of an interstellar cloud is higher on
the near side facing the galactic center than on the far side. We may envisage
a large cloud to revolve around its own axis at an angular frequency ω =
|dv/dR0| � 1.6× 10−16 s−1, a few times smaller than ω0. As protostellar clouds
have undergone some contraction by which they were spun up, ω ∼ 10−15 s−1

seems a fair guess for them. Note: the previously cited values of A and −B
are not up-to-date but easy to remember. Their uncertainty is about 20%. In
more recent analyses, the numbers for both A and −B tend to converge around
12.5 km s−1 kpc−1; this would reduce ω accordingly [Oll98].

A constant density sphere has a moment of inertia I = 2
5MR

2. For a presolar
cloud, the initial rotational energy becomes

Erot = 1
2 Iω

2 ∼ 1037 erg.

Although this is small compared to Egrav or Etherm, conservation of angular
momentum Iω implies Erot ∝ R−2, so the rotational energy rises steeply as the
radius shrinks. This raises a fundamental problem in the theory of star formation:
How do we get rid of the angular momentum?

When the protosolar nebula is pervaded by a magnetic field of strength
B = 10 µG, the magnetic energy is

Emag = B2

8π

4π

3
R3 � 6× 1040 erg.

Flux conservation implies for the contracting cloud BR2 = constant and
thus Emag ∝ R−1. The magnetic field is initially relatively weak but grows with
R−2 and should thus be 1013 times stronger in the final star. This, however, is not
what one observes. The main mechanism by which a protostellar cloud rids itself
of the magnetic field is probably ambipolar diffusion.

15.3.2 Hydrodynamic collapse simulations

Modern hydrodynamic calculations of protostellar evolution are multi-
dimensional, with two or three spatial coordinates. They are based on sphisticated
codes and carried out on computers as powerful as available at the time. Because



488 Stars and their formation

of the complexity of the numerical results, they usually cannot be adequately
presented in plots but have to be visualized in motion pictures. Inevitably, a naive
understanding of what is happening gets lost. Here and in section 15.3.3, we,
therefore, sketch simplified scenarios which nevertheless catch important aspects
of the collapse stages.

The dynamical equations of a spherical cloud can be written as (cf. (15.42)
and (15.43))

∂u

∂ t
+ u ∂u

∂r
+ 1

ρ

∂P

∂r
+ GMr

r2
= 0 (15.60)

∂ρ

∂ t
+ 1

r2

∂

∂r
(r2ρu) = 0. (15.61)

The geometry is here one-dimensional: density ρ, pressure P = v2
s ρ and

velocity u depend only on radius r , and on time t . The gas is driven by the
gradient of the pressure P and by the gravitational attraction. Mr is the mass of a
sphere of radius r , so

∂Mr

∂r
− 4πr2ρ = 0. (15.62)

During the early phases, the collapse is isothermal. The sound velocity vs is
then constant and in (15.60) the derivative ∂P/∂r = v2

s ∂ρ/∂r . In this case, and
as long as there are no shocks, it is straightforward to transform (15.60) to (15.62)
into difference equations and solve them numerically; an example is presented in
figure 15.8. For a fixed cloud volume, the non-trivial outer boundary condition
reads as u = 0.

When the cloud becomes optically thick (see section 15.2.6), the assumption
of isothermality has to be abandoned. One must then add to (15.60)–(15.62) an
equation for the conservation of energy (first law of thermodynamics) and for the
transport of radiation. For the latter, one often uses a frequency–averaged (grey)
approximation in the spirit of (13.29). The numerical solution of the full set of
equations [Lar69] leads to a ρ ∝ r−2 density distribution even when starting at
constant density (see figure 15.8). The core becomes opaque when about 0.01 M�
of gas have been accumulated within a radius r ∼ 1014 cm. The submillimeter
dust radiation is then trapped, the core warms up and settles into hydrostatic
equilibrium. When the gas temperature reaches ∼2000 K, molecular hydrogen
dissociates. The released gravitational energy is then no longer used to increase
T but to separate the hydrogen atoms. Initially, the cloud is made up mostly of
H2 for which γ = 7/5 > γcr of (15.51). But when hydrogen dissociates, γ falls
below the critical value of 4/3 and the hydrostatic core begins to collapse. This
second collapse is halted only when γ rises again above 4/3, which happens at a
central density of ∼10−3 g cm−3.

As one can read from figure 15.8 or 15.9, flow velocities become quickly
supersonic because the sound speed is only ∼1 km s−1 in a cloud of 10 K. When
a hydrostatic core has formed, the supersonically falling gas is stopped at the core
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Figure 15.8. The distribution of density ρ and velocity u during the isothermal contraction
of a spherical and initially homogeneous H2 cloud of 1 M�. The cloud is at temperature
T = 10 K, its radius is fixed (u = 0 at the surface), and the free-fall time tff = 1.60×105 yr.
The collapse is very inhomologous. After 2.86 × 105 yr, the core (r < 1014 cm) turns
opaque to its own far infrared radiation and the assumption of isothermality is no longer
valid. If the density at that moment is approximated by a power law, the exponent equals
−2.3 in the envelope and −1.6 in the inner regions. For an Ebert–Bonnor sphere (slightly
beyond the brink of stability), the evolution would be similar.

surface giving rise to a shock. The width of the shock is determined by the mean
free path of the gas particles, so practically it is a discontinuity described by the
Rankine–Hugoniot jump conditions and this poses a numerical challenge. In the
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Figure 15.9. The solution of the ordinary coupled differential equations (15.66) and
(15.67) describing spherical isothermal collapse. The time evolution goes along the lines
from right to left. The starting values at x = 10 are from (15.68) with A = 2.0001. One
can determine, from this figure, the cloud structure in terms of r, u, ρ of an initially (t = 0)
hydrostatic cloud of density ρ = v2

s /2πGr
2 at any later time t0 > 0. To get the radius r ,

one multiplies the abscissa x by vst0; to get the velocity u, one multiplies v by vs; and to
obtain the density ρ, one multiplies α by (4πGt20 )

−1 (see (15.64)).

shock front, the gas kinetic energy is converted into radiation. If R∗ and M∗ are
the radius and mass of the hydrostatic core, the protostellar luminosity, prior to
nuclear burning and neglecting the contraction of the protostellar core, becomes

Lshock = GM∗Ṁ
R∗

. (15.63)

The accretion rate Ṁ , the size and radius of the hydrostatic core are therefore
the parameters that determine the protostellar luminosity. To evaluate it correctly,
a proper treatment of shocks is obviously necessary.

When the numerical effort to compute protostellar collapse is much
enhanced and the physical processes are refined, new problems arise concerning
the stability of the core. For example, when the collapse calculations are carried
out in two dimensions and cloud rotation is included, the core has the tendency
to split up. To avoid fission of the core, one may, for instance, invoke strong
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turbulent friction (of speculative origin). It would guarantee an efficient outward
transport of angular momentum and thus enable the formation of a single star
[Tsc87].

15.3.3 Similarity solutions of collapse

15.3.3.1 Equations for spherical collapse

Similar solutions to the one-dimensional hydrodynamical equations for an
isothermal cloud also exist [Shu77]. By definition, the spatial distribution of
u(r, t) and ρ(r, t) at a fixed moment t then differs from the spatial distribution at
any other moment t ′ only by scale factors that depend only on time. This restricted
class of solutions does not add anything new to the one-dimensional numerical
calculations of [Lar69] but because of its simplicity, it is very instructive. The
similarity solutions can be found by introducing a dimensionless variable which
expresses some relation between r and t , let us choose

x = r

vst
.

Because of similarity, the dependent variables velocity, density and mass are
the product of a function of t times a function of x . A fruitful ansatz is

u(r, t) = vsv(x) ρ(r, t) = α(x)

4πGt2
M(r, t) = v

3
s t

G
m(x). (15.64)

Inserting these expression for u, ρ and M into (15.62) and into

∂M

∂ t
+ u ∂M

∂r
= 0 (15.65)

which is an equivalent form of the continuity equation (15.61), yields

m = m′(x − v) m′ = x2α �⇒ m = αx2(x − v).
Now (15.60) and (15.61) can be written as two ordinary differential

equations:

[
(x − v)2 − 1

]
v′ =

[
α(x − v)− 2

x

]
(x − v) (15.66)

[
(x − v)2 − 1

]α′
α
=
[
α − 2

x
(x − v)

]
(x − v). (15.67)

Instead of two independent variables, r and t , one has only one, x , and
there are no more partial derivatives, only derivatives with respect to x , which
are denoted by a prime. Two solutions are obvious. The first, v = 0 and
α = 2x−2, corresponds to a static sphere with a diverging central density. The
second, x−v = 1 and α = 2/x , can be discarded as unphysical because it implies
a static mass distribution M(r, t) = 2a2r/G, although the velocity u is not zero.
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15.3.3.2 Initial cloud structure

Let us consider an infall scenario where initially (t = 0), the cloud is at rest.
When t → 0 �⇒ x →∞. Then v goes to zero and (15.66) and (15.67) become

v′ = α − 2x−2 α′ = α(α − 2)x−1.

They yield, for x →∞, the asymptotic solutions

α→ Ax−2 v→− A − 2

x
m → Ax . (15.68)

The constant A has to be greater than 2 for v to be negative but only a tiny
bit so that velocities are small. When A � 2, the cloud is close to hydrostatic
equilibrium and has a structure similar to the envelope of an Ebert–Bonnor
sphere. As one can sketch the global aspects of its evolution with elementary
mathematics, the singular isothermal sphere with A � 2 is often used to outline
qualitatively protostellar collapse. Of course, one may be skeptical whether such
an artificial configuration is realized in nature and the results given here can in no
way replace hydrodynamic calculations.

The initial structure (t → 0) of a singular isothermal sphere is, therefore,

ρ(r, t) = v2
s A

4πGr2
u(r, t) = 0 M(r, t) = Av2

s

G
r. (15.69)

The density falls off like r−2. One can integrate (15.66) and (15.67) from
some large value of x by a Runge–Kutta method down to x = 0 (corresponding
to t → ∞), if one takes the initial parameters from (15.68). The solution for
A = 2.0001 starting with x = 10 (that is large enough) is plotted in figure 15.9;
for other values of A slightly above two, the solutions are similar.

15.3.3.3 Final cloud configuration

There are also analytical expressions for the configuration towards which this
cloud evolves as x → 0, corresponding to t → ∞. We can read from
figure 15.9 that for x → 0, the absolute value of the dimensionless velocity
|v| � 1 and αx |v| � 1. From (15.66) one then finds v′ = α and from (15.67)
v′′ + v′2/v + 2v′/x = 0. This differential equation is satisfied by

α→
√
m0/2x3 v→ −√2m0/x for x → 0

where m0 = −(x2αv)x=0 is the limiting value of m(x); for A→ 2, m0 = 0.975.
The final cloud structure for t →∞ is, therefore,

ρ(r, t) =
√

m0v3
s

32π2G2
t−

1
2 r−

3
2 (15.70)

u(r, t) = −
√

2m0v3
s t

1
2 r−

1
2 . (15.71)
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At a fixed time, the density now changes like r−3/2 and the velocity

u(r, t) = −√2GM∗(t)/r

is the free-fall velocity towards the central mass

M∗(t) = m0v
3
s

G
t .

The accretion rate Ṁ , which is the quantity that determines how long the
collapse will last, is time-independent and given in the self–similarity analysis by

Ṁ = 4πr2ρu = m0v
3
s

G
. (15.72)

15.3.3.4 Remarks on the cloud evolution

To solve the full equations (15.60) and (15.61), one needs a starting model and
boundary conditions at the edge and center of the cloud. In the similarity solution,
only the parameters α and v are required for some value of the variable x ∝ r/vst .
Inner and outer cloud boundaries are disregarded and should not influence the
evolution of the flow.

With the help of figure 15.9, we can delineate the evolution of an initially
hydrostatic cloud of density distribution ρ = v2

s /2πGr
2. To follow the density

and velocity at some fixed radius in time, we note that as time proceeds the
corresponding point of the similarity variable x = r/vst moves along the curves
α(x) and v(x) from right to left. Because the initial density declines like r−2

and the free-fall time tff of (15.41) decreases as ρ−1/2, the collapse begins at the
center working its way outward.

• In the envelope, for x > 1, the gas is still at rest, it does not yet know
that the inner regions are collapsing. The density has not changed, ρ is still
proportional to r−2.

• In the core, for x < 1, velocities become supersonic and approach the free-
fall velocity towards a central object of mass m0v

3
s t/G that is accreting at

a rate m0v
3
s /G. The density decreases with time and radius, from (15.71),

proportionally to t−1/2r−3/2.
• At the interface between free-falling core and static envelope, x � 1 and

r = vst , so this transition region is moving outwards with the speed of sound.

For example, if the total cloud mass is 1 M� and vs = 0.2 km s−1, the cloud
stretches out to R = 1.67 × 1017 cm. After t = 5 × 1012 s, or 1.6 × 105 yr,
all gas interior to r = 1017 cm is collapsing and the mass accreted at the center
equals ∼0.3 M�. At r = 1014 cm, the density is ρ � 1.0 × 10−15 g cm−3 and
the velocity u � −9× 105 cm s−1.
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15.4 Disks

A rotating collapsing cloud inevitably flattens because the gravitational pull
perpendicular to the rotation axis will, at some radius rcenfug, be balanced by
centrifugal forces, whereas parallel to the rotation axis, these forces are absent.
Eventually, a disk forms. Disks are widely observed in young stars and their
presence is predicted by theory. Take, for example, an initially rigidly rotating
spherical cloud of angular velocity ω0. A gas parcel at radial distance r0
and under an angle θ0 to the rotation axis has the specific angular momentum
j = ω0r2

0 sin2 θ0. In the gravitational field of a dominant central mass M∗, the
parcel can approach the center only to a distance

rcenfug = j2

GM∗
(15.73)

which depends on r0 and θ0. Because the gas parcels have different initial specific
angular momenta, the final equilibrium configuration in which they collect is a
disk.

15.4.1 Viscous laminar flows

The evolution and structure of an accretion disk is largely determined by
internal friction. We, therefore, begin with an elementary experiment illustrating
Newton’s friction law (figure 15.10). A flat piece of arbitrary material and total
surface area 2A is dipped into a vessel filled with a viscous fluid of density ρ
and kinematic viscosity coefficient ν. To pull it out at a constant velocity u, one
needs, after subtraction of gravity and buoyancy, a force F . The molecules of the
liquid are always at rest on the walls of the vessel and on both sides of the plate.
The flow in between is plane parallel at velocity v = (vx , vy, vz) = (0, vy, 0) but
it has a gradient ∂vy/∂x in the x-direction. When the width 2b of the vessel is
small, the velocity increases linearly from the walls towards the sheet and

F = νρ u
b

2A = νρ ∂vy
∂x

2A. (15.74)

The force F does not depend on the velocity itself but on its gradient ∂vy/∂x .
The gradient implies that the fluid particles change their relative positions, so
tangential or shear forces appear and there is friction which causes the plate
to resist being pulled out. The friction also generates heat. The total power
dissipated in the vessel is Fu, so each cm3 of the liquid receives, per second,
a heat input

D = Fu

2Ab
= F

2A

∂vy

∂x
≥ 0. (15.75)

It is positive, as it should be, because of the term (∂vy/∂x)2. One can get a
feeling for the strength of the force and the dissipation rate by using numbers
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uy

x2b

Figure 15.10. To move a sheet at a constant speed through a viscous fluid, one needs a
force F after (15.74).

from everyday’s life. For example, at 20 ◦C, water has ν = 10−2 cm2 s−1 and
ρ = 1 g cm−3; for air, the kinematic viscosity ν is 15 times larger but the density
ρ is 830 times smaller.

A rotational analog of this system consists of three coaxial cylinders of
height h (figure 15.11). The inner and outer cylinder are corotating, the middle
one has a different angular velocityω �= ω0. The thin layers between the cylinders
are filled with liquid or gas. Again the molecules are at rest at the cylinder
walls and there is a shear flow in between. A torque τ then has to be applied
to the middle cylinder in order to sustain the motion. It equals force per unit area
multiplied by area and by radius,

τ = νρr dω
dr

4πrhr.

Let us denote the derivative with respect to r by a prime and with respect to
time by a dot. Because the work expended per second equals τω after (11.4),
we get, in complete analogy to (15.75), the dissipation rate per cm3 of gas,
D = τω/4πrhb or

D(r) = νρ(rω′)2 ≥ 0. (15.76)

In the marginally modified experiment of figure 15.12, the angular velocities
of the cylinders C1,C2,C3 decrease with radius. C3 exerts on C2 the torque

τ (r) = νρr dω
dr

2πrhr (15.77)
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Figure 15.11. A viscous fluid is trapped between three closely spaced cylinders; the inner
and outer one are corotating at angular velocity ω0, the one in the middle has ω �= ω0.
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Figure 15.12. Like figure 15.11 but now the angular velocity ω decreases monotonically
outward, as in a disk with Keplerian rotation.

trying to retard it. But for a change of sign, this is equal to the torque of C2
on C3 which tries to accelerate C3. The same considerations apply to C1 and
C2. Therefore, if the middle cylinder C2 has a thickness 
r , it feels the net
torque τ ′
r . When we remove C2 in the experiment, the gas that fills its place is
subjected to exactly the same torque. The net torque on a gas ring of 1 cm width
is dτ/dr .
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15.4.2 Dynamical equations of the thin accretion disk

We next explore the evolution of a thin viscous disk of height h and surface
density  = ρh. We use cylindrical coordinates (r, ϕ, z) and assume that the
disk parameters do not depend on z or ϕ. The equation of mass continuity,
ρ̇ + divρv = 0 (see (15.43)), becomes

∂ 

∂ t
+ 1

r

∂

∂r
(rvr ) = 0 (15.78)

where the velocity has the components

v = (vr, vϕ = ωr, vz = 0)

vϕ is the Kepler velocity. The momentum equation (15.42) must be generalized
to include the viscous force per cm3, Fvisc. Such a force is not conservative and
cannot be derived from a potential. For a viscous fluid, the correct equation of
motion is

∂v
∂ t
+ (v · grad)v = − 1

ρ
grad P − gradφ + Fvisc

ρ
.

We now write it in a way that it directly expresses the conservation of angular
momentum  r2ω. It is then formally similar to (15.78) but for the creation term
dτ/dr due to the torque. When we divide this term by 2πr so that it refers to the
unit length of the circumference, we get

∂

∂ t
( r2ω)+ 1

r

∂

∂r
(rvr r

2ω) = 1

2πr

dτ

dr
. (15.79)

The torque τ (r) is from (15.77). Combining (15.78) and (15.79) and
assuming that ω is time-independent yields rvr · (r2ω)′ = τ ′/2π from which it
follows, again with the help of (15.78), that

∂ 

∂ t
= − 1

2πr

∂

∂r

[
τ ′

(r2ω)′

]
. (15.80)

This is the general formula for the evolution of the surface density. It
contains a time derivative on the left-hand side and a second-order space
derivative on the right; it is, therefore, a diffusion equation. We can immediately
work out the radial gas velocity

vr = τ ′

2πr (r2ω)′

and the radial mass flow
Ṁ(r) = −2πr vr .

The latter is positive when matter streams inwards. Significant changes in
the structure of the disk occur over a diffusion timescale tdif. If we put in a
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dimensional analysis Ẋ ∼ X/t and X ′ ∼ X/r , where X denotes some variable,
we find, from the earlier expression for vr or from equation (15.80), that

tdif = r

vr
∼ r2

ν
.

Without viscosity, the surface density would stay constant forever.

15.4.3 The Kepler disk

In a thin disk gravitationally dominated by a central mass M∗, when radial
pressure gradients are absent, matter moves in Keplerian orbits. The angular
velocity ω decreases outwards while the specific angular momentum j increases,

ω(r) =
√
GM∗r−3/2

j (r) = √GM∗r1/2 = r2ω.

One finds (r2ω)′ = 1
2rω and τ ′/(r2ω)′ = −3π[ν + 2r(ν )′]. With these

two expressions, the diffusion equation (15.80) in a Kepler disk becomes

∂ 

∂ t
= 3

r

∂

∂r

[
r1/2 ∂

∂r

(
ν r1/2

)]
(15.81)

and the radial velocity

vr = − 3

r1/2 

∂

∂r
(ν r1/2). (15.82)

The disk structure in the z-direction can be determined assuming that the
gas is isothermal and in hydrostatic pressure equilibrium. The vertical component
of the gravitational acceleration, gz , is then balanced by the pressure gradient
∂P/∂z,

gz = − z
r

GM∗
r2
= 1

ρ

∂P

∂z
. (15.83)

Because P = ρkT/m = ρv2
s , one finds

∂ρ

∂z
= −ρzω

2

v2
s

and this differential equation is satisfied by a vertical Gaussian density profile,

ρ = ρ0 exp

[
− z

2ω2

2v2
s

]
= ρ0 e

−z2/2h2
(15.84)

with

h2 = v
2
s r

2

v2
ϕ

= kTr3

GM∗m
. (15.85)



Disks 499

h measures the disk thickness and is independent of the surface density.
Here we have used the Kepler velocity vϕ = √GM∗/r . The temperature and
isothermal sound speed vs are, of course, functions of the distance r . Equation
(15.85) has the interesting consequence that when the disk is thin, h � r , the
Kepler velocity must be highly supersonic,

vϕ =
√
GM∗/r = vs

√
2r

h
� vs. (15.86)

15.4.4 Why a star accretes from a disk

Let us follow the time evolution of a viscous Kepler disk according to the diffusion
equation (15.81). We rewrite it as

 ̇ = 3(ν ′′ + 2ν′ ′ + ν′′)+ 9(ν ′ +  ν′)/2r
translate it into a difference equation and solve it numerically. In a radial mesh
r1, r2, . . . , rN with spacings
r = ri − ri−1, one needs (at least) three grid points
to express a second-order derivative and two for a first-order derivative. Let  i
denote the known value of the surface density at grid point i and time t , and new

i
the new value a small time step τ later. We then make the following replacements
(assuming constant spacings ri − ri−1)

∂ 

∂ t

∣∣∣∣
i
�  

new
i − i
τ

∂ 

∂r

∣∣∣∣
i
�  i − i−1


r

∂2 

∂r2

∣∣∣∣∣
i

�  i+1 − 2 i + i−1

(
r)2
.

The derivatives of ν are written accordingly. All variables in the resulting
difference equation for (15.81) refer to the old model, except for the term of the
time derivative  ̇. Such an explicit scheme is very easy to solve but the time
step τ must be fairly small for reasons of stability (Courant–Friedrichs–Lewy
condition).

Let the surface density  of the starting model (t = 0) have a bell-shaped
spike centered at radius r0 = 1 of width σ = 0.1. So initially,

 (r) = exp
[− (r − r0)

2/σ 2]
and (r0) = 1. At later times, the spike will broaden and we want to see in detail
how. For the viscosity coefficient, we choose ν = r (units are not important in
this section). For comparison, the radial dependence of ν in an α-disk in which
the temperature T (r) is proportional to r−3/4 would be ν ∝ r3/4 (see (15.92)). At
the disk center (r = 0), the surface density is flat or ∂ /∂r = 0 (see the analog
(15.25) for a sphere). At the disk edge (r = R), the radial velocity vr is zero,
or ν r1/2 = constant (see (15.82)). This corresponds to a solid confinement but
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Figure 15.13. The spreading of a mass spike in a Kepler disk due to internal friction after
equation (15.81). Curves are shown for time t = 0, 0.01, 0.04. The left panel gives the
mass 2πr (full curve) and the angular momentum 2πr j (dots) of a ring of unit width
where j is the angular momentum per unit mass. The right panel displays the surface
density  . At time t = 0, the maximum values of the central spikes are all one, so their
tops are cut off. Note how mass and angular momentum separate during the evolution.

as we assume the edge to be far out (R = 5), it has no influence on the early
disk evolution. The inner and outer boundary condition are, therefore,  1 =  2
and  N =  N−1(νN−1/νN )(rN−1/rN )1/2, corresponding to  ′ = 0 and vr = 0,
respectively.

The right box of figure 15.13 displays the numerical results for the evolution
of the surface density. Because of the viscous forces, the spike flattens and
broadens. There is mass influx towards the central gravitating mass for r < r0,
whereas farther out, the gas streams away from the center. The radial velocity vr
of (15.82) (not shown) is roughly proportional to (r − r0).

The full curves in the left frame are plots of 2πr indicating how much
mass is contained in a ring of unit width. The dotted curves give the angular
momentum, 2πr j , in these rings. For t = 0, dots and solid line practically
coincide. The essence of the diffusion mechanism in an accretion disk is not the
spreading of the gas but the segregation of mass and angular momentum. The
angular momentum dissipates outwards and the mass diffuses inwards while the
total mass and angular momentum stay constant. Without this separation into low
and high angular momentum gas, a star or a black hole could not accrete matter
from a disk. In the end, not shown in the figure, almost all mass has accreted on
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the star and almost all angular momentum has been transported to large radii.
When the viscosity is a function of radius, equation (15.81) offers an

analytical solution [Lyn74]. But because the mathematics are involved, it loses
much of its instructiveness. However, the analytical solution is superior to the
numerical results in showing the asymptotic behavior of the disk for t →∞.

15.4.5 The stationary accretion disk

When the gas flow is steady, one can readily derive the structure and luminosity of
the disk. Setting in the equation of mass conservation (15.78) the time derivative
∂/∂ t to zero implies that the accretion flow Ṁ = −2πr vr does not depend on
space or time. Integration of the momentum equation (15.79) gives

r3 ωvr = r3ν ω′ + C. (15.87)

For Kepler orbits around a stellar mass M∗, the angular velocity ω increases
inwards like

√
GM∗/r3. However, the increase cannot continue up to the stellar

surface because the star rotates quite slowly, at least, T Tauri stars do. We can
determine the constant C in (15.87) if we assume that ω is abruptly reduced
in a thin layer immediately above the stellar surface and that in this layer, at
the point where the first derivative ω′ vanishes, ω can be approximated by√
GM∗/R3∗ where R∗ is the stellar radius. At the position where ω′ = 0, one

finds C = Ṁ
√
GM∗R∗/2π and, therefore, equation (15.87) becomes

 = ν−1 Ṁ

3π

[
1−

√
R∗
r

]
. (15.88)

The mass inflow rate Ṁ together with the viscosity ν determine the surface
density  (r). It also follows that at distances comfortably greater than the stellar
radius, the viscosity must be inversely proportional to the surface density,

ν ∝  −1 for R∗ � r.

15.4.6 The α-disk

15.4.6.1 The viscosity coefficient

So far, we have described internal friction only phenomenologically. We did not
discuss the physical processes involved or how the kinematic viscosity coefficent
ν depends on the parameters of the gas. The reason for viscosity in a gas flow
with a velocity gradient is the exchange of momentum perpendicular to the flow
direction. In an ideal gas at temperature T , where the atoms have a mean velocity
〈u〉 and free path �, one works out that

ν = 1
3 〈u〉�. (15.89)



502 Stars and their formation

Because in a Maxwellian velocity distribution 〈u〉 ∝ √T and because �
grows only weakly with T , one expects for an ideal gas something like ν ∝√
T . We will not prove formula (15.89) but it is qualitatively understandable.

Looking at the flow depicted in figure 15.10, one realizes that the deeper the
atoms penetrate from one layer into the next and the faster they move, the more
momentum they transfer and the stronger the friction. If n is the number density
of the particles and σ their collisional cross section, the free path length is

� = (nσ)−1. (15.90)

The product νρ, which appears in the basic equation (15.81) of a Kepler disk,
is thus independent of the density ρ (the surface density  equals ρ multiplieed
by the disk height h). For hydrogen molecules, σ is of order 10−15 cm2 and the
ensuing value νρ is far too small to produce any dynamical effect on the disk
evolution.

But our previous analysis on internal friction applies to laminar flows. When
the gas is turbulent, the viscosity is greatly enhanced. Turbulence means that
superimposed on the average flow there are violent chaotic motions on all scales
capable of very effectively exchanging momentum. The largest eddies determine
the character of the flow. This becomes evident from the Reynolds number (15.93)
which contains the linear dimension of the object. It is reasonable to use, for the
size of the largest eddies, the disk height h and for their velocity the sound speed
vs; supersonic motions would be quickly damped in shocks. In analogy to (15.89),
one writes the viscosity coefficient

ν = αvsh (α ≤ 1) (15.91)

where α is a fudge factor introduced to express the inherent uncertainty.
Proposing α ∼ 0.01 would not lead to a riot among astronomers. Disks with
ν in the form of (15.91) are called α-disks [Sha73]. If they are in hydrostatic
equilibrium in the vertical direction, one can substitute h from (15.85) so that for
a turbulent Kepler disk the viscosity is

ν = αv2
s

√
r3/GM∗. (15.92)

Although this expression is too nice to be true, it gives some handle on the surface
density  . With v2

s ∝ T ∝ r−3/4 and equation (15.88), one finds for  the same
power law decline as for the temperature, (r) ∝ r−3/4.

15.4.6.2 The Reynolds number

To answer the question whether there is turbulence or not, one turns to the
Reynolds number defined as

Re = Lv

ν
. (15.93)
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L is the dimension of the system and v the speed of the fluid. In laboratory
experiments, the flow around objects is laminar when Re < 10, turbulent
when Re > 105, and the critical range is Re ∼ 3000. These numbers give
some rough general guidance. To guarantee an effective outward transport of
angular momentum in an accretion disk, very large Reynolds numbers seem to be
required. Possible ways to achieve them are convection in the disk or, if the disk
is permeated by a magnetic field, twisting of the field lines in the rotating plasma.

The Reynolds number (15.93) increases with velocity (a strong wind whirls
up more dust), and with the size of the object (a big body disturbs the flow
more effectively), and also when the viscosity decreases (water is more likely
to be turbulent than honey). With respect to the last point, it is, however,
puzzling that a small viscosity, which should mean little momentum exchange
between neighboring stream lines yields a high Reynolds number and thus implies
turbulence. The answer to this apparent contradiction follows from the analysis
of the flow equation of an incompressible fluid. There, in the term containing the
viscosity, the smallness of ν is more than compensated by a large second-order
gradient in the vorticity rot v.

15.4.7 Disk heating by viscosity

In a steady state, the heat generated in the optically thick disk by internal friction
is lost radiatively from its surface. Let F(r) denote the outward flux at radius r
on one side of the disk surface. Local balance with the frictional dissipation rate
of (15.76) using (15.88) yields

F(r) = 1
2ν (rω

′)2 = 3

8π

GM∗Ṁ
r3

[
1−

√
R∗
r

]
. (15.94)

To obtain the total disk luminosity Ldisk, we must integrate over both sides
of the disk,

Ldisk = 2
∫ ∞
R∗

2πr F(r) dr = GM∗Ṁ
2R∗

. (15.95)

Ldisk depends on the mass and radius of the star and on the accretion rate Ṁ .
The viscosity does not appear but is hidden in Ṁ . For a blackbody surface, the
effective temperature Tvisc follows from

F(r) = π
∫
Bν(Tvisc) dν = σT 4

visc(r). (15.96)

Here σ is the radiation constant of (5.80). At large distances, F(r) =
3GM∗Ṁ/8πr3 and

Tvisc ∝ r−3/4.

A disk with a finite radius Rout has the total monochromatic luminosity

Lν = 4π2
∫ Rout

R∗
r Bν(Tvisc(r)) dr (15.97)



504 Stars and their formation

with T 4
visc(r) = 3GM∗Ṁ[1−√R∗/r]/8πσr3. An observer sees, of course, only

one side of the disk. If he views it face-on from a distance D, he receives the
flux Lν/2πD2. when the disk is inclined, one has to apply an obvious cosine
correction.

15.4.7.1 The UV excess of T Tauri stars

Ldisk in (15.95) corresponds to only half the potential energy that was available
when matter was at infinity. The other half is stored in rotational energy. If the
disk extends to the star, the power

1
2 Ṁv

2
ϕ =

GM∗Ṁ
2R∗

(15.98)

is liberated in a thin layer at the stellar surface where rapid braking takes place
from the Kepler velocity vϕ to the usually much smaller rotational velocity of the
star. As the energy is released over an area A small compared to the stellar surface,
it will lead to hot UV continuum radiation of luminosity LUV. An estimate of the
sprectrum is obtained by assuming blackbody emission of temperature TUV and
putting LUV = AσT 4

UV.
Alternatively, the disk may be prevented from reaching the star by magnetic

forces of the stellar magnetic field. At a distance of a few stellar radii, where
magnetic and kinetic energy are about equal, the accreting gas is channelled from
the disk along the magnetic field lines upward in the z-direction and then falls in
a loop onto the star at high stellar latitudes. The result is again a hot continuum.
Such a model can better explain the observational fact that the emission lines of
T Tauri stars often have a width of several hundred km s−1. In the case where
the gas rotates in a disk all the way to the star, it is difficult to produce such large
radial velocities, i.e. velocities along the line of sight. Examples of disk spectra
are presented in chapter 16.



Chapter 16

Emission from young stars

We have learnt to compute how dust grains absorb and scatter light and how
they emit. In this final chapter, we apply our faculties to astronomical examples
relating to star formation. Cosmic dust is not now the object of our study but
the agent by which we want to disclose the structure of an observed source. Its
infrared continuum spectrum yields not only, in an obvious fashion, the infrared
luminosity or an estimate of the dust temperature. An analysis of the spectrum
by means of radiative transfer calculations often allows us to get an idea of the
three-dimensional distribution of the dust with respect to the embedded star(s).
For this purpose, one constructs models that are supposed to resemble the source
and varies the model parameters until agreement between theory and observation
is achieved. Fitting an extensive observational data set is laborious and requires
occasional intuition. To solve such a task, a senior scientist needs a good student
(the reverse is not true). Most of the spectra here are merely sketches, for the
purpose of illustrating the magnitude of the emission.

16.1 The earliest stages of star formation

16.1.1 Globules

Usually, star formation is a contagious process. When a star is born in a molecular
cloud, it disturbs the interstellar medium in its vicinity through its wind, jet or
radiation pressure, and then neighboring clumps are pushed beyond the brink
of gravitational stability, too. The isolated birth of a star is a rare event but it
can happen in globules. These are cloudlets that have been stripped off from
larger complexes. They have masses of ∼10 M� and appear as dark spots on
photographic plates. Globules are bathed in a radiation field which heats them
from outside and we want to evaluate their infrared emission in the absence of an
internal source.

Let us consider a spherical globule of 2.6 M� at a distance of 200 pc with
diameter of 2r = 1.2× 1017 cm. The hydrogen density nH equals 4× 106 cm−3

505
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in the inner part (r ≤ 3 × 1016 cm) and declines linearly to 2 × 106 cm−3 at
the surface. Using the standard dust model described in section 12.4, the overall
visual optical thickness through the cloud center amounts to 282 mag, so the
globule is very opaque.

We compute the radiative transfer for an external radiation field J ext
ν that is,

when integrated over frequency, four times stronger than the ISRF of figure 8.2.
Such excursions in the radiative intensity can produce remarkable effects and
occur when the globule is near a star (for example, at a distance of 1.5 pc from a
B3V star). We assume that J ext

ν consists of two components: a hard one described
by a diluted blackbody of T = 18 000 K that is meant to represent the UV flux
from star(s), and a very soft one of spectral shape ν2Bν(T = 20 K) that mimics
the ubiquitous far infrared radiation. The relative strength of these radiation fields
is chosen such that the grain temperatures lie between 17 and 27 K at the surface
of the globule where the UV photons are responsible for heating and around 7 K
in the cloud center.

The globule in figure 16.1 appears observationally first of all as a very cold
submillimeter source. Its emission has a broad maximum around 250 µm. The
millimeter spectrum comes from the coldest dust, it is fit by a modified Planck
curve (section 5.4.3) of only 7 K. There is a skin layer of thickness AV � 1 mag
where the big grains are much warmer (∼20 K) and these grains account for the
flux between 50 and 200 µm.

The presence of very small grains (vsg) and PAHs in the skin layer has
the remarkable effect that the source becomes visible in the mid infrared. As
discussed in section 8.5, such tiny grains with heat capacities of merely a few
eV make a big upward leap every time they absorb an ultraviolet photon and this
produces an emission spectrum entirely different from big grains. Although the
tiny grains account for only a few percent of the total dust mass, they absorb
some 20–30% of the UV light and their excitation therefore radically changes
the infrared appearance of the source. Most noticeable are the PAH features
(section 12.2). Without vsg and PAHs, the globule would only be detectable in
the far infrared and beyond.

The presence of the PAHs has the further interesting consequence that it
leads to important heating of the interior by mid infrared photons. Without them,
the core would be extremely cold (Td � 5 K). A rise in dust temperature from 5
to 7 K implies an increase in the heating rate by a factor (7/5)6 � 8.

16.1.2 Isothermal gravitationally-bound clumps

A homogenous spherical cloud of mass M and temperature T has, at the brink of
gravitational stability, from (15.19) and (15.20) a radius

R � GMm

5kT
.
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Figure 16.1. Dust emission of a globule irradiated by a UV field that is four times stronger
than the ISRF of figure 8.2. The plotted spectra show the difference in the signal towards
the source and in the off–beam where one still sees the external radiation field. The broken
curve gives the flux when PAHs and vsg are absent, the dotted curve the emission from
dust at 7 K. See text for further explanation.

A typical optical thickness of the clump is

τν � 2ρKν R

where ρ is the gas density and Kν the absorption coefficient at frequency ν per
gram of interstellar matter. The optical depth becomes

τλ = 3Kλ
2π

(
5k

Gm

)2 T 2

M
� 1026 T 2

Mλ2

where we used cgs units for the clump mass and the wavelength to derive the
factor 1026. At a distance D, the clump subtends a solid angle

� = πR
2

D2

and an observer receives the flux

Sν = �Bν(T ) · [1− e−τν ]. (16.1)

• If the clump is tranparent (τν → 0),

Sν = MKνBν(T )

D2
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Figure 16.2. The flux Sν from (16.1) emitted by dust from a gravitationally bound,
homogeneous and isothermal clump at 100 and 350 µm. Sν is shown as a function of
cloud mass and for three dust temperatures (full curves). The broken curve in each box
refers to a clump at 10 K with a tenfold the absorption coefficient as a result of grain
coagulation and accretion of ice mantles (see figure 12.10). The source is at a distance of
200 pc.

• if it is opaque (τν →∞),

Sν = πR
2 · Bν(T )
D2 .

Cold clumps are best detected by their submillimeter dust emission. Their
flux, Sν , is given by (16.1). It is plotted in figure 16.2 for various temperatures
and wavelengths as a function of clump mass M assuming a source distance
D = 200 pc, a mean molecular mass m = 2.34mH, corresponding to a normal
mixture of H2 molecules and helium atoms, and a far infrared dust absorption
coefficient according to (14.54).

When the optical depth is below one, which is always true at 850 µm or
longer wavelengths, the flux is simply proportional to the cloud mass. However,
when τν is large, which happens at λ = 100 µm for small masses, Sν ∝ M2. The
break in the slope of the flux Sν where the dependence on mass M changes from
linear to quadratic occurs at τν ∼ 1.

16.2 The collapse phase

16.2.1 The density structure of a protostar

In sections 15.3.2 and 15.3.3, we derived the density distribution of a protostellar
cloud under the assumption of spherical symmetry. We now discuss a protostar
where it is possible to verify the theoretical predictions by direct measurement
of the dust absorption [Sie00]. It is named HH108MMS and its surroundings
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Figure 16.3. A 14 µm image around the protostar HH108MMS. The contour lines show
the dust emission at 1.3 mm [Chi97]. The protostar is the white blob in the center of the
figure. It coincides with a millimeter source and is seen at 14 µm in absorption against
a diffuse background. The millimeter source on the lower right is a young stellar object
(IRAS18331–0035) that emits in the mid infrared (black blob). Reproduced from [Sie00]
with permission of EDP Sciences.

are depicted in the mid infrared map of figure 16.3. One sees a triplet of lined-
up sources, one dark and two white spots, which can also be followed by their
1.3 mm dust emission (contour lines). The protostar, at a distance of 310 pc, is at
the map center. The millimeter source to its lower right is a young stellar object
of ∼3 L�, still heavily obscured at optical but sticking out prominently at mid-
infrared wavelengths as witnessed by the black spot in the map. It drives two
Herbig–Haro objects but they lie outside the field of view. There is a third weak
millimeter source in between the protostar (map center) and the young stellar
object (black spot) that appears as a white blob in the 14 µm map. It is also a
protostar but it will not be discussed any further.
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No far infrared luminosity is detectable from HH108MMS, an embryo star
has therefore not yet formed and the accretion phase not yet begun. HH108MMS
appears at 14 µm in absorption against the diffuse background and this offers
the opportunity to derive, from the variation of the surface brightness over the
source, the optical depth and the density profile in the source. Alternative methods
to obtain a density profile, by observing millimeter dust emission or certain
molecular lines, are less direct and, therefore, less reliable.

The geometrical configuration for our analysis is drawn in figure 16.4.
HH108MMS is embedded in a molecular cloud and viewed from Earth through
the veil of zodiacal light of the solar system. Four regions contribute to the
observed 14 µm flux:

• The background of intensity I0. Our globular model in section 16.1.1
suggests that this radiation is due to emission by PAHs and vsg heated in
the surface layer on the backside of the molecular cloud.

• The far and near side of the molecular cloud with temperatures T1 and T3
and optical depths τ1 and τ3, respectively. We put τcl = τ1 + τ3.

• The absorbing core (protostar) of optical depth τ2 and temperature T2.
• The interplanetary dust of the solar system. It emits zodiacal light of intensity

Iz and is, in fact, by far the strongest contributor to the 14 µm flux.

The molecular cloud and the absorbing core are certainly cold (T < 20 K)
and have no mid infrared emission of their own (B14µm(Ti ) � 0, i = 1, 2, 3). The
intensity in the direction of the absorbing core (source) can, therefore, be written
as Is = Iz + I0e−(τcl+τ2), and towards the background, at a position next to the
absorbing core, Ib = Iz + I0e−τcl . As the zodiacal light is constant on scales of a
few arcsec, one gets

Is − Ib = I0e
−τcl · [e−τ2 − 1]. (16.2)

Is and Ib are known from observations. To find the optical depth τ2 across the
protostar, let us denote the maximum value of τ2 by τ2,max and the corresponding
intensity by Is,max. The 1.3 mm flux towards that position yields for the central
beam an average optical depth τ1.3mm ∼ 10−2 (see (8.19)). The dust opacity
appropriate for cold clumps is depicted by the upper full curve of figure 12.10;
this gives K14 µm/K1.3mm ∼ 1000. The optical depth τ2,max is, therefore, of order
10 and well above unity. Towards the position of maximum obscuration, equation
(16.2) can, therefore, be approximated by

I0e
−τcl = Ib − Is,max.

Inserting I0e−τcl into (16.2) yields the desired expression for the optical
depth in the core as a function of position,

τ2 = − ln
[
1− (Ib − Is)/(Ib − Is,max)

]
. (16.3)

τ2 is plotted in figure 16.5 for two perpendicular cuts. From τ2, one can
derive the density structure in the protostellar core. If it is a sphere of radius R
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Figure 16.4. A sketch of how HH108MMS is embedded into a larger molecular cloud.
Temperature and optical depth in the various regions are indicated. The intensity towards
the source (protostar HH108MMS) and the background is denoted Is and Ib, respectively.
I0 is the intensity behind the Serperns cloud. Reproduced from [Sie00] with permission of
EDP Sciences.

and the dust inside has a power–law density ρ(r) = ρ0r−α , the optical depth
τ2(x) through the cloud at an offset x ≤ R from its center is

τ2(x) = Kρ0

∫ X

0
(x2 + s2)−α/2 ds

where K is the dust mass absorption coefficient and X = √R2 − x2. For finding
the exponent α, the product Kρ0 is irrelevant. The variation of the optical depth
and the best fit density distributions are shown in figure 16.6. Good fits are
obtained for ρ(r) ∝ r−1.8±0.1.

The self–similarity solution of gravitational collapse in section 15.3.3
predicts for the early evolution, in the absence of rotation and magnetic fields,
a density profile ρ ∝ r−2 in the outer envelope, and a less steep distribution
ρ ∝ r−3/2 in the inner part. The dynamical calculation for a low-mass
protostar in figure 15.8 gives similar results. In more sophisticated models, when
magnetic fields and rotation are included, the density distribution in the envelope
follows a power law with an exponent between −1.5 and −1.8 [Bas95]. So the
observational results for HH108MMS confirm the theoretical predictions, at least,
up to an optical thickness at 14µm of 4 (see figure 16.6) corresponding to a visual
extinction of 200 mag.
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Figure 16.5. The top frame gives the difference between the flux towards the protostar
HH1108MMS and the background in a cut along the major axis. The protostar is at offset
zero, IRAS18331–0035 at offset +70′′ . The bottom frame shows the optical depth derived
from (16.3). Reproduced from [Sie00] with permission of EDP Sciences.

Figure 16.6. Optical depth profiles (diamonds) of HH108MMS. For the major axis, as in
figure 16.5 but now on a logarithmic scale. The full curves show the theoretical variation
of the optical depth in a spherical cloud with a power-law density distribution, ρ ∝ r−α .
The exponent α is close to 1.8; a deviation by only 0.2 from this value would imply an
unacceptable fit. Reproduced from [Sie00] with permission of EDP Sciences.
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16.2.2 Dust emission from a solar-type protostar

We compute the dust emission from a single low-mass protostar, a protosun. The
total cloud mass, including the embryo star, is about one solar mass. In the early
phase of collapse, the luminosity comes from the release of kinetic energy of
the free-falling envelope in a shock front at the surface of the hydrostatic core.
Its value, Lshock, is given by (15.63) and (15.72) but one needs hydrodynamic
calculations to relate M∗ to R∗. They suggest that for a clump of initially one solar
mass, Lshock is 30 L� and fairly constant over one free-fall time [Win80]. Only
near the end of the accretion phase when most of the matter in the envelope has
rained onto the star does the shock luminosity decline and the energy generation
from contraction (section 15.2.1) and later from hydrogen burning take over. In
the Hertzsprung–Russell diagram, the protostar approaches the main sequence
from above, at roughly constant color B− V.

In the example of figure 16.7, the outer cloud radius Rout = 1.3×1017 cm is
determined by the critical radius (15.38) of an Ebert–Bonnor sphere. The density
ρ changes in the protostellar envelope like ρ ∝ r−3/2 (see (15.70)). The total
cloud optical depth thus depends foremost on the inner cloud radius, Rin. There
are various ways to fix Rin in the model. One may equal it to the evaporation
temperature of dust, which would imply a value less than 1 AU. Or one may use
the centrifugal radius rcenfug of (15.73) assuming that inside this radius gas and
dust are strongly flattened into a disk. The disk emission would then have to be
evaluated separately (section 16.3) and added, in a consistent fashion, to the flux
from the spherical cloud. As the numbers extracted from equation (15.73) for
rcenfug are very rough, one may set Rin equal to the radius of the solar planetary
system (40 AU). We opt for a value in between, we put Rin = 2 × 1013 cm and
neglect the disk.

In the particular presentation of figure 16.7, we plot νFν instead of the
observed flux Fν . This has the advantage that for any two logarithmic frequency
intervals [ν1, ν2] and [ν′1, ν′2] of the same length, i.e. ν1/ν2 = ν′1/ν′2, equal
areas under the curve νFν imply equal spectral luminosities over these frequency
intervals. One can thus directly compare the energy emission from different
spectral regions.

Figure 16.7 shows models at five evolutionary stages, for a source distance of
150 pc. The curves labeled 1 to 5 follow a time sequence. During the collapse, the
visual optical depth from the center to the cloud edge as well as the clump mass
(without the embryo star) decline, the corresponding values are AV = 560, 560,
57, 11.4, 1.1 mag and Mcloud = 0.93, 0.93, 0.093, 0.019, 0.0018 M�. At stage 1,
the accretion phase starts and the luminosity is still low (L = 1 L�). During the
main accretion period (stage 2 and 3), the luminosity is much higher (L = 30 L�).
It drops later to 3 L� (stage 4) and 2 L� (stage 5) in the T Tauri phase. The
spectral index α between 2.2 and 20 µm, which is used in the classification of
protostars (section 7.3.4) has, for curve 1–5, the values 12, 12, 1.7, 0.2, −0.2.

The spectra have the following qualitative features as they change in time.
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Figure 16.7. The spectral energy distribution of a protostellar cloud of 1 M� at five
consecutive evolutionary stages, numbered 1 to 5. The curves are marked by squares at
2.2, 5.0 and 20 µm which are the wavelengths used for computing the spectral index α
introduced in section 7.3.4. The models are described in the text.

The protostar appears first as a submillimeter source. In the course of the early
protostellar evolution, the maximum of the emission shifts towards shorter but
still far infrared wavelengths. There is a strong 10 µm silicate absorption feature
but a near infrared counterpart of the embryo star is not yet detectable. In the
advanced phases, the emission increases rapidly in the near infrared, the silicate
absorption disappears and the star becomes visible optically.

Although the computer was busy for a few minutes to obtain the spectral
energy distributions of figure 16.7, the output must not be taken too literally.
First, because of the simplicity of the one-dimensional code, in state-of-the-
art models, the radiative transfer is calculated consistently together with the
multi-dimensional hydrodynamic evolution. Interestingly, the dust properties
are not crucial, all dust models give similar curves, except for the outer cloud
envelope where the grains may be icy and fluffy. Second, the protostar is always
embedded in a larger cloud complex which distorts the spectrum of the protostar
because it leads to additional extinction in the near and even mid infrared and
to an enhancement of the submillimeter emission. Third, a real cloud is more
complicated, it is asymmetric due to rotation and the presence of magnetic fields
which makes the observed spectrum dependent on the viewing angle. Finally, one
expects an accretion disk around the embryo star whose structure and emission
have not been clarified.
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16.2.3 Kinematics of protostellar collapse

The search for a protostar has occupied observing astronomers for decades. It may
continue to do so for many more to come because there is no exact definition what
a protostar is. The term is applied loosely to anything at the verge of gravitational
stability to the stage when it becomes optically visible. The ultimate proof that
one has found a collapsing object has to come from the velocity field of the
interstellar clump: without a kinematic signature, the collapse cannot be identified
with certainty. As interstellar dust does not supply us with velocity information,
we have to turn to atomic or molecular lines. This is a healthy reminder that even
dust is not everything.

Ideally, in the study of a protostellar clump, one has for each physical
domain, characterized by a certain interval of temperature and density, a specific
transition of a particular molecule with which one can probe the conditions in
the gas. The source is mapped in various transitions of several such molecules
to cover the full physical range encountered in the cloud. The observations are
carried out with high spatial resolution so that one can resolve the cloud structure.
When the observed lines are analysed in a radiative transfer model, infall betrays
itself by distinctive features in the profiles.

The structure of a spherically symmetric, collapsing protostellar cloud was
sketched in section 15.3: the gas density decreases with radius r like a r−3/2 and
the infall velocity v goes with r−1/2. The isovelocity curves with respect to the
Doppler shift toward the Sun are displayed in figure 16.8. Along a line of sight,
emission from position 1 (3) interacts with the gas at position 2 (4) because the
radial velocities at the two points are equal. After an embryo star has formed, the
temperature will decrease away from the star because the cloud has an internal
energy source. Point 2 (3) will, therefore, be hotter than point 1 (4). If the line
is optically thick, one receives red-shifted emission only from the cold position 4
because emission from the warm gas at 3 is absorbed, and likewise blue-shifted
emission is detected only from the warm position 2. This leads to the signature of
infall: an asymmetric profile where the blue peak is stronger than the red one. If
the line, however, is optically thin, as for rare isotopic species, the profiles will be
symmetric because of the symmetric configuration in the near and far side of the
cloud.

To illustrate what the lines might look like, we present in figure 16.9 and
16.10 model calculations for the early phase of protostellar collapse, before the
release of gravitational energy in a shock front. The cloud is then isothermal. We
choose a kinetic gas temperature Tkin = 17 K, a ρ ∝ r−3/2 density dependence
and an infall velocity u = 5.5 × 1012r−1/2 cm s−1 (which implies an embryo
star mass M of 0.11 M� if one puts u2 = 2GM/r ). The clump has a radius
R = 1017 cm and its total gas mass (without the embryo star) equals 0.65 M�.
The computations are performed in the microturbulent approximation described
in section 13.5.3, assuming a constant turbulent linewidth of 0.2 km s−1.

It is important to note that although Tkin is constant in our model, the
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Figure 16.8. Kinematics in a spherically symmetric collapsing cloud. The infall velocity
v equals 1 (in arbitrary units) at the circumference of the circle and increases with radius r
like r−1/2 (see (15.71)). The egg-shaped curves are lines of constant radial velocity vrad,
which is the component in the direction to the observer. Along a line of sight (arrow), at
points 3 and 4, vrad is positive (red-shifted gas) and has the value v+rad. At points 1 and 2, it
has the value v−rad = −v+rad (blue-shifted gas). On the egg-shaped curves, which have been
computed and are drawn to scale, vrad = ±1.1,±1.3 and ±2, respectively.

excitation temperature Tex, which is the relevant quantity for line emission (see
(13.65) and (13.66)), will decrease in the envelope if the level population of the
particular molecule is sensitive to the gas density. A good tracer for the densities
prevailing in a protostar are the rotational transitions of CS. The molecule is fairly
abundant ([CS]/[H2] ∼ 2×10−9) and in its physics similar to CO (section 14.2.1).
CS has, however, a much larger dipole moment (µ = 1.98 Debye) than CO
and thus requires higher densities for excitation (section 14.2.2). This, ideally,
has the pleasant side effect that all tenuous foreground and background material,
not related to the protostar, becomes invisible. Because the Einstein coefficients
change roughly with j3 (see formula (14.4)), one penetrates progressively deeper
into the cloud as one climbs the j–ladder. So observations of the higher j → j−1
transitions refer to the core region where densities and velocities are larger.

The spectra in figures 16.9 and 16.10 show the CS lines of upper level jup =
2, 4, 5 for different angular resolution of the telescope. Those in figure 16.9 refer
to a large beam and their profiles are almost Gaussian. But when looking at the
source at high resolution, the lines become very asymmetric. They then display a
double peak as a result of self-absorption. The excitation temperature Tex drops
from 17 K in the center where the levels are thermalized (LTE population) to 4.6 K
in the (5–4) line and 5.3 K in the (2–1) line at the cloud edge. There are other more
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Figure 16.9. Selected rotational lines of CS as observed towards a collapsing isothermal
clump: full curve, (2–1); broken curve, (4–3); and dotted curve, (5–4). The model is
described in the text. The object is at a distance of 150 pc and observed with a beam half
its angular size. The profiles are only slightly asymmetric as emission comes mainly from
the cloud envelope.

subtle features in figure 16.10 that concern the change of the line shape with j -
number. As j grows, the intensity ratio between red and blue peak increases and
the velocity of the red peak as well as of the central dip (local minimum of the
profile) shift by about one local linewidth to the red. Altogether, the red peak
shows stronger variations with j -number than the blue one.

In the real world, outside our models, things are less simple. First, a protostar
is always embedded into a larger gas complex and the latter, although of lower
density is usually not transparent and modifies the observed line profiles. For
example, when we increase the radius of our model cloud to R > 1017 cm while
retaining the density distribution ρ(r), so when we just add a low-density outer
envelope, the profiles change, not dramatically but noticeably. The line profiles
are further influenced by all kinds of systematic (non-radial) or turbulent motions.
Our microturbulent assumption that the mean free photon path is much bigger
than the scale length of turbulence (section 13.5.3) may not be valid. Finally,
observations support the theoretical expectation that in cold clouds the molecules
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Figure 16.10. The same model as in figure 16.9 but here observed with a narrow beam,
directed toward the cloud center. Now the core region dominates. The CS lines are
double-peaked, the maximum on the blue side being stronger. Their wings are due to
the high central infall velocities. The lines of the rare isotope ([CS]/[C34S] � 20) are
optically thin and quite symmetric.

are frozen out (section 12.3). In such a scenario, one would not see collapsing gas
at all, dust would be our only tracer. So to conclude with confidence that certain
line profiles arise from collapsing gas in a protostar is, at present, not easy.

16.3 Accretion disks

16.3.1 A flat blackbody disk

We model the emission of a geometrically flat but not necessarily optically
thin accretion disk of finite extension around a T Tauri star. If the disk is
passive, its only source of energy comes from the illumination by the star. In
a first approximation, let the disk be a blackbody. Its temperature profile in
radial direction is given by (13.50) and plotted in figure 16.11. There are four
contributors to the spectrum displayed in figure 16.12:

(i) The star. In our example, it has a luminosity L∗ = 2 L� and an effective
temperature T∗ = 4070 K.
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Figure 16.11. The temperature distribution in a blackbody disk. Tillu and Tvisc refer to
radiative and viscous heating (see (13.50) and (15.96)). When both processes operate, the
effective temperature is T = (Tvisc+Tillu)

1/4. Model parameters are given in figure 16.12.
Tvisc is computed assuming an accretion rate Ṁ = 6× 10−8 M� yr−1.

(ii) The hot spot on the stellar surface. It is the place where the kinetic energy
of the accreted disk material is thermalized and radiated in the ultraviolet.
We assume, somewhat arbitrarily, blackbody emission of 15 000 K. The
associated luminosity in all directions (see (15.98)) equals GṀM∗/2R∗ =
0.33 L�, for Ṁ = 6× 10−8 M� yr−1, M∗ = 1 M� and R∗ = 2× 1011 cm.

(iii) The disk. It is illuminated by the star and its overall luminosity equals
1
4 L∗ = 0.5 L� when the disk stretches out to infinity. The observed flux
is computed from

Sν = cos i

D2

∫ Rout

R∗
2πr Bν(T ) dr (16.4)

where D is the distance and T is taken from (13.50). The viewing angle i
entails a reduction factor cos i . When one looks face-on, cos i = 1.

(iv) A potential further energy source, not included in figure 16.12, is
viscous heating. The associated luminosity into all directions would be
GṀM∗/2R∗ = 0.33 L�, the same as for the UV hot spot (see (15.95)).

The spectrum is dominated by the ridge between 2 and 200 µm. Its slope is
constant as a result of the power-law distribution of the temperature. Indeed, from



520 Emission from young stars

Figure 16.12. The spectrum of a T Tauri star with a flat blackbody disk viewed pole–on.
The disk is heated by the star, there is no frictional dissipation. The stellar parameters are:
distance D = 200 pc, M∗ = 1 M�, L∗ = 2 L�, T∗ = 4070 K, R∗ = 2 × 1011 cm.
The full bold curve is the sum of three components: star, UV hot spot, plus disk. Inner
and outer disk radius: Rin = R∗, Rout = 20 AU. For the broken curve beyond 200 µm,
Rout = 100 AU.

T (r) ∝ r−q it follows that

Sν ∝
∫

2πr Bν(T ) dr ∝ ν3− 2
q

∫
x

2
q−1

ex − 1
dx (16.5)

so that in our case where q = 3/4 (see (13.51)),

Sν ∝ ν1/3.

In the submillimeter region, Sν ∝ ν2. The flux has the same slope as the
Planck function in the Rayleigh–Jeans part but only because of the finite disk
radius which sets a lower boundary to the temperature. If the disk were infinite, T
would go to zero as r →∞ and the wavelength range where Sν is proportional to
ν2 would extend to infinity. So the radial cutoff, although irrelevant for the energy
budget, is important for the shape of the long wavelength spectrum.
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16.3.2 A flat non-blackbody disk

16.3.2.1 Isothermality in the z-direction

A real disk is not a blackbody, even if it is opaque at all wavelengths. The vertical
optical thickness τ⊥ν in the disk is the product of the surface density  multiplied
by the mass absorption coefficient per gram of circumstellar matter, Kν ,

τ⊥ν (r) =  (r)Kν .
For a disk of arbitrary optical depth that is isothermal in the z-direction, the

observed flux is given by

Sν = cos i

D2

∫ Rout

R∗
2πr Bν(T (r)) · [1− e−τν ] dr (16.6)

with τν = τ⊥ν / cos i . The formula is similar to (16.4) but contains the additional
term [1 − e−τν ]. If τν is large, (16.4) and (16.6) coincide. At wavelengths where
the emission is optically thin, the factor cos i due to the disk inclination drops out
and the flux Sν is directly proportional to the disk mass Mdisk. The problem with
using (16.6) is to find the right radial temperature variation T (r). As the disk is
not a blackbody, equation (13.50) can only be an approximation.

16.3.2.2 The influence of grain size

Nevertheless, to get an idea how the grain size influences the spectrum, we apply
(16.6) to the disk around a T Tau star with the same radial temperature profile
T (r) as in figure 16.12 and with an outer radius Rout = 20 AU. For the surface
density, we assume

 (r) =  0r
−α

with α = 1. In the example of figure 16.13, Mdisk � 0.01 M�.
Before we can numerically evaluate (16.6), we have to specify the

wavelength–dependent mass absorption coefficient, Kλ, of dust. As we are
dealing with a disk, the grains may be quite big as a result of coagulation, after
all, even planets might form. A power-law approximation Kλ ∝ λ−2 according
to (8.10) is then not warranted and Kλ must be calculated from Mie theory
(section 2.6.5). Figure 16.13 illustrates the influence of grain size on the spectrum
for fixed surface density (r). If λ0 denotes the wavelength where the outer, more
tenuous parts of the disk become transparent, the total disk emission falls below
the blackbody case (depicted in figure 16.13 by the full curve) for λ > λ0.

• If the particles have radii of 10 µm or less, λ0 � 500 µm. For λ > λ0, the
emission Sν is proportional to ν4, and not to ν2, as in the Rayleigh limit of
the Planck function.

• If the particles are bigger than 10 µm, λ0 first increases with grain radius
a (the line labeled A refers to a = 100 µm), then decreases. For very big
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Figure 16.13. The spectra of a disk with the same radial temperature profile T (r) used in
figure 16.12. The flux is computed from (16.6), the full curve shows, for comparison, the
blackbody of figure 16.12. The surface density of the gas  (r) = 1016r−1 (cgs units),
the gas-to-dust ratio equals 150. The dust consists of identical silicate spheres, the grain
radius, a, is indicated; the label A stands for a = 100 µm.

grains (a = 1 cm), the spectrum steepens very gradually as the frequency
decreases.

16.3.3 Radiative transfer in an inflated disk

We refine the disk model by discarding the assumption of isothermality in the
z-direction. The temperature T (z) is now determined from the radiative transfer
outlined in section 13.3. As an example, we choose a main sequence star of type
B9V (L∗ = 100 L�, M∗ = 3 M�, T∗ = 12 000 K, R∗ = 2.76 R�,). The
disk is inflated, the grazing angle αgr is taken from (13.53). The surface density
 (r) =  0r−3/2 with  0 = 4.1× 1022 cgs. This implies that there are 0.01M�
of gas within 100 AU and that at one astronomical unit from the star, the visual
optical thickness of the disk due to dust is τV � 2.1×105. The dust model is from
section 12.4, except that the MRN grains have an upper size limit a+ = 1 µm.
They are thus, on average, a bit bigger because of likely coagulation in the disk.

We first look at the emission from a narrow annulus thus avoiding the
complexity that arises from the radial variations in temperature and surface
density. The flux from an annulus of radius r = 20 AU, where the grazing
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Figure 16.14. The flux, in arbitrary units, from a narrow annulus of a disk around a B9V
star. The radius of the annulus is 3×1014 cm. The model and its parameters are expounded
in the text and in figure 16.15. The dots show a blackbody surface. The broken curve is for
dust without PAHs or vsg. The full curves refer to inclination angles i = 90◦ (face-on),
78◦ and 52◦, respectively.

angle αgr = 3.32◦, is displayed in figure 16.14. The temperature in the midplane
(z = 0) is for all grain types equal, Tmid = 91 K. At the disk surface, the
dust temperatures vary between 210 and 510 K. A blackbody would after (13.54)
acquire a temperature of 115 K.

The full curves in figure 16.14 result from a full radiative transfer in the z-
direction and include PAHs and vsg. The viewing angle i for the upper curve is
90◦, for the two lower ones, i = 78◦ and 52◦, respectively. In the far infrared,
the disk annulus is opaque up to ∼150 µm. The flux is then reduced because
of geometrical contraction if one looks at the disk from the side (i < 90◦). In
the submillimeter region, the disk becomes translucent and the curves begin to
converge. At 1 mm (not shown), the dependence on the position of the observer
has disappeared and the slope approaches Sν ∝ ν4. Note that an increase in
surface density would raise the submillimeter emission without changing much
in the spectrum below 50 µm. For λ ≤ 15 µm, the full curves coincide. At
these wavelengths, one sees only the hot dust from a thin and transparent surface
layer. The broken curve, again for an inclination angle i = 90◦, is calculated
without very small particles. It merges with the upper full curve for λ > 30 µm.
The dotted curve shows, for comparison, the flux from a blackbody annulus
T = 115 K viewed face-on. The integrated flux is the same as in the other curves
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Figure 16.15. The flux from the whole disk, including the B9V star, at inclination
angles i = 90◦ (face-on), 78◦ and 52◦. Stellar distance D = 100 pc, Rin = 0.1 AU,
Rout = 100 AU, surface density  =  0/r

3/2 with  0 = 4.1× 1022 cgs so that at 1 AU,
 = 700 g cm−2 and τV � 2.1× 105.

with i = 90◦.
Figure 16.15 shows the emission from a full disk of outer radius 100 AU. The

inner radius Rin = 0.1 AU = 9.2R∗ is about equal to the evaporation temperature
of dust. Note that a flat disk absorbs 92% (!) of the stellar flux within r ≤ 9.2R∗,
thus only 8% at larger radii. This explains the trough at∼3 µm with respect to the
spectral energy distribution in figure 16.12. So there is a hole in our disk between
1 and ∼9 stellar radii. There might be even much larger holes if planetesimals or
planets have formed. The rise in the far infrared in figure 16.15 is due to the large
grazing angle. It is the result of inflation. Should only the gas disk be inflated but
not the dust disk because the grains have sedimented, the calculations would yield
quite different numbers. Such uncertainties about the basic structure of the disk
are more grave than the shortcomings of the simple one-dimensional radiative
transfer code.

16.4 Reflection nebulae

Reflection nebulae are illuminated by stars, typically of type B3V, that are hot but
not hot enough to create an HII region. Nevertheless, the radiation field within
them is hard and the grains are in a harsh environment. This leads to ample
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excitation of very small grains and PAHs. We demonstrate in the models here the
tremendous effect which they have on the spectrum of a reflection nebula.

The visual optical depth of a reflection nebula is never large (�1) and we
may, therefore, assume that the grains are heated directly by the star, without any
foreground attenuation. Computing the radiative transfer is therefore not really
necessary. The infrared emission from the dust itself is, of course, also optically
thin. To evaluate it, we adopt the dust model outlined in section 12.4 but slightly
simplify it to make the role of the PAHs more transparent. We use only one kind
of PAHs with NC = 50 carbon atoms, hydrogenation parameter fH/C = 0.3 and
cutoff wavelength λcut = 0.42 µm, and lump the four C–H out-of-plane bends
(table 12.1) into one resonance, at 11.3 µm. The mass fraction of the PAHs is
6%. The very small grains (vsg), which are made of graphite and silicate, contain
10% of the mass of the big particles and have uniform radii of 10 Å. The big
(MRN) grains are exactly as described in section 12.4.

The dust emission at various positions in the nebula is shown in figure 16.16.
The source parameters are listed in the figure caption, absolute fluxes can be read
from figure 16.18. Far from the star (right frame, distance D = 5× 1018 cm), the
big grains are cool, their mid infrared emission is negligible and the maximum
occurs beyond 100 µm. The spectrum below 50 µm is then entirely due to PAHs.
Closer to the star, the big grains become hotter. But even at D = 5 × 1016 cm,
where the maximum in the spectrum has shifted to ∼25 µm, the PAHs dominate
below 15 µm.

The relative strengths of the PAH features, the band ratios, are not sensitive
to the stellar distance, only the absolute flux weakens if the dust is far out.
This becomes evident from figure 16.17. A similar situation is encountered in
figure 8.14 with respect to the very small grains where the colors (flux ratios) are
almost constant over the nebula. In the present example, however, the vsg play
only a minor role.

To exemplify the influence of PAH size, the computations are repeated for
a distance D = 5 × 1017 cm but now the number of carbon atoms in a PAH,
NC, is varied from 30 to 500 (figure 16.19). The hydrogenation parameter, fH/C,
changes according to (12.11). The big PAHs are, on average, cooler than the small
ones and it is, therefore, harder to excite their high-frequency bands. This is best
seen by comparing the C–H resonances at 3.3 and 11.3 µm. The emission ratio,
ε3.3/ε11.3, is much larger for small (hot) than for big (cool) PAHs.

It is also instructive to see how the temperature of the big (MRN) particles
changes with distance, grain size and chemical composition. Summarizing, the
silicates are always colder than the amorphous carbon grains, and big particles
always colder than small ones of the same chemistry. At a distance D =
5× 1018 cm, the temperature of the silicates, T (Si), ranges from 16 to 20 K, that
of the carbonaceous particles, T (aC), from 20 to 25 K. Corresponding numbers
at distance D = 5× 1017 cm are: T (Si) = 33 . . .43 K and T (aC) = 46 . . .58 K.
At D = 5× 1016 cm: T (Si) = 71 . . .93 K and T (aC) = 107 . . .137 K.
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Figure 16.16. The emission by dust in a reflection nebula near a B3V star with L = 103 L�
and Teff = 18 000 K at various distances to the star. The spectra are normalized at their
maxima. Full curves: sum of all three dust components; dash-dotted lines: big (MRN)
grains; broken lines: very small graphite and silicate grains (vsg) of 10 Å radius (the
silicates have a hump at 10 µm); dots: PAHs.

16.5 Cold and warm dust in galaxies

Typically, one-third of the total flux of a galaxy is emitted at infrared wavelengths
and, in some objects, this fraction exceeds 90%. The infrared luminosity results
from the absorption and re–emission of stellar light by interstellar dust grains.
The spectra appear at first glance rather similar, at least, they always peak around
100 µm. From the spectral energy distribution in the infrared, one can infer:

• The total infrared luminosity LIR. This is done simply by integrating over
wavelength (usually for λ > 10µm). One only needs a few spectral points to
obtain a reasonable estimate of LIR. The ratio LIR/L tot indicates how dusty
the galaxy is and serves as a crude measure for its activity.

• The temperature distribution of the dust. Naturally, the infrared spectrum
originates from grains in all kinds of environment but there are dominating
components. Of special import is the coldest because it refers to the bulk
of the dust, and thus of the gas in view of mixing. To determine its
temperature Td, one needs measurements at several (at least, two) well-
separated wavelengths between, say, 200 µm and 1.3 mm. The Td derived
from such photometric observations is a color temperature. It represents the
physical grain temperature only when one uses the correct slope dKλ/dλ for
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Figure 16.17. A blowup of figure 16.16 showing the PAH bands between 3 and 15 µm.
The top line refers to the case when the dust is nearest to star star (D = 5× 1016 cm), the
bottom line when it is farthest away (D = 5× 1018 cm).

Figure 16.18. Very similar to figure 16.16, same kind of PAHs (NC = 50, fH/C = 0.3)
and vsg but now with absolute fluxes per gram of interstellar matter and a distance
D = 1017 cm.
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Figure 16.19. How the PAH emission varies with PAH size. The grains are at a distance
D = 5× 1017 cm from the star, again with L = 103 L� and Teff = 18 000 K. The broken
curves are big ones, NC = 500, fH/C = 0.13; Dashes and dots, medium sizes, NC = 120,
fH/C = 0.26; Full curves, small ones, NC = 30, fH/C = 0.5. Arbitrary but identical flux
units are used for all three curves.

the wavelength dependence of the dust absorption coefficient (section 8.2.6).
The emission shortward of the peak, usually below 100 µm, comes from
dust that is warmer and its mass is always negligible compared to the total
dust mass in the galaxy.

• The total dust mass Md. This is, from equation (14.50), directly proportional
to the detected flux Sλ but one has to use wavelengths greater than 350 µm
in order to avoid the sensitivity of Md with respect to Td. When one adopts a
reasonable dust-to-gas ratio (for example, Rd ∼ 0.007), one gets the total gas
mass Mgas. This is certainly one of the fundamental parameters of a galaxy
because the gas provides the reservoir for star formation. Other fundamental
galactic parameters are luminosity, size, total mass, morphology (spiral,
elliptical, irregular) and activity class.

We exemplify a few conclusions which can be drawn from a decomposition
of the far infrared dust spectrum (λ > 40 µm) in the case of the spiral
galaxies Mkn799 and UGC2982 [Sie99]. Their optical images are displayed in
figures 16.20 and 16.21 and some of their parameters are listed in the captions. We
point out that when galaxies, like these two, have distances greater than∼20 Mpc,
their far infrared emission cannot be spatially resolved. The observations must be
carried out from above the atmosphere, and space telescopes, to save weight, have
a small diameter (d ≤ 1 m). Their resolving power, given by 1.2λ/d in arcsec,
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Figure 16.20. A decomposition of the far infrared and millimeter dust emission
of the spiral galaxy UGC2982, distance D = 70 Mpc (Hubble constant
H0 = 75 km s−1 Mpc−1), total IR luminosity L IR = 1.4× 1011 L�.
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Figure 16.21. A decomposition of the far infrared and millimeter dust emission of the
spiral galaxy Mkn799, D = 38 Mpc, L IR = 5× 1010 L�.
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is only of order 1 arcmin at λ = 100 µm. The far infrared spectrum, therefore,
refers to the galaxy as a whole. The big squares in the upper boxes of figure 16.20
and 16.21 roughly indicate the beam at 200 µm.

In Mkn799, the flux Sλ between 50 µm and 1 mm can be approximated by
one temperature component. Putting Sν ∝ ν2Bν(Td), a least–square fit yields
Td = 31 K. For UGC2982, however, we need two components, one at about the
same temperature as in Mkn799 (Td = 32 K), the other at 14 K, thus much colder
and of lower integrated luminosity. Nevertheless, the cold component contains
90% of the mass. Because the total dust emission is proportional to T 6

d (see
(8.14)), the heating rate for most of the dust in Mkn799 is a factor (31/14)6 � 120
greater than in UGC2982 and the average stellar luminosity per unit volume
correspondingly higher.

Closely related to the disparate temperatures of the coldest component (14 K
versus 31 K) is the discrepancy in the ratio of infrared luminosity over gas mass,
LIR/Mgas. Expressing both quantities in solar units, LIR/Mgas ∼ 5 for UGC2982,
whereas this value is almost 20 times larger in Mkn799. A high ratio LIR/Mgas is
often interpreted to imply a high efficiency for extracting luminosity from the
gas via star formation. Exactly how much depends, of course, on the initial
mass function (see figure 15.4). LIR/Mgas is thus regarded as an indicator of
star-formation activity. In this scenario, Mkn799 is active whereas UGC2982 is
quiescent. Periods of extreme star-formation efficiency (starbursts) are usually
restricted to the nucleus of a galaxy (see section 16.6). Due to the strong
concentration of both dust and luminosity, grains with temperatures below 30 K
are absent in the center of a starburst galaxy, which would explain Td = 31 K for
the coldest component in Mkn799.

16.6 Starburst nuclei

16.6.1 Repetitive bursts of star formation

Galactic nuclei are extended stellar clusters that form the nuclear bulge. In
roughly one out of ten, one finds at their center a high concentration of OB stars
that must have been created in an episode of violent star formation, a so called
starburst. The rate of astration during the burst cannot be sustained over a period
much longer than 107 yr, otherwise the nucleus would run out of interstellar
matter. The burst takes place in a region only a few hundred parsec across,
often considerably less. The starburst nucleus is very bright, up to 1012L�, much
brighter than the rest of the galaxy. The high luminosities advocate an initial mass
function (IMF) heavily biased towards massive stars, with a lower limit ml much
above the value of the solar neighborhood (∼0.1M�, section 15.1.6).

Before we model the dust emission from a galactic nucleus, we sketch how
the collective star formation possibly operates. Such a tentative explanation is
always useful. It will guide us in the same way that a notion about the dynamics
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of protostellar collapse (section 15.3) guided us in calculating the protostellar
spectra.

In a galactic nucleus, the gas is gravitationally trapped in the potential well
created by the bulge stars. Initially, before the burst, it is supported against
collapse by circular as well as turbulent non-circular motions. As the turbulent
energy is inevitably dissipated in cloud–cloud collisions, the gas sinks in the
potential well and its density increases. Above a certain threshold, violent star
formation sets in. A few million years later, the most massive stars explode as
supernovae and their ejecta replenish the turbulent energy of the gas. The gas is
then dispelled and star formation ends. The process is likely to be repetitive, as
argued later, and this would explain why bursts are fairly common. A sequence
of bright bursts may be initialized by a strong inflow of gas from the disk into the
nucleus, possibly as a result of tidal interaction of the host galaxy with a neighbor.

16.6.1.1 Dynamics of the gas in a galactic nucleus

To estimate the strength of a burst, its duration and spatial extent, and to show
the likely cyclic character of the phenomenon, we treat the interstellar matter in a
galactic nucleus as one homogeneous gas cloud of mass M , radius r and turbulent
energy ET [Tut95]. The following equations of a one–zone model describe the
evolution of the cloud:

ṙ = u (16.7)

u̇ = 2

3

ET

Mr
− G[M∗(r)+ M]

r2
(16.8)

ĖT = − ET

τdis
+ (Ṁ − µ) ET

M
+ νSN ESN − 2uET

r
(16.9)

Ṁ = µ−
{
M/τSF if M ≥ f M∗ and ρ > ρcr
0 else.

(16.10)

There are four time-dependent variables: r,M, ET and the velocity u. In
(16.10), µ denotes a constant mass inflow, from the disk or from the wind of
old stars in the nuclear bulge. The quantity f is the volume filling factor of
the gas, f < 1 implies clumping. M∗(r) specifies the mass of the bulge stars
within radius r ; their lifetime is very long (∼1010 yr) and their total mass much
greater than the mass of the gas or the newly–born stars. The time scales for star
formation and dissipation of turbulent energy are τSF and τdis, respectively, νSN
denotes the supernova rate and ESN the turbulent energy input into the gas per
supernova explosion.

It is easy to show that a protostellar clump can collapse only when the mean
gas density exceeds the mean stellar density or when M ≥ f M∗ in a galactic
nucleus, otherwise tidal forces will disrupt the clump. The condition applies
where strong gradients in the gravitational potential are present. In the present
scenario, it is more stringent than the Jeans criterion (section 15.2.5). We also
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Table 16.1. Typical parameters for a galactic nucleus with a starburst, like M82. See
section 12.2 for nomenclature of PAHs and very small grains (vsg). Infrared spectra are
displayed in figures 16.23 and 16.24.

OB stars integrated luminosity 3× 1010 L�
radius of stellar cluster ROB = 200 pc

stellar density nOB(r) ∝ r−1/2

effective surface temperature TOB = 30 000 K

luminosity of one OB star LOB = 105 L�
Low luminosity integrated luminosity 1010 L�

stars radius of stellar cluster R∗ = 700 pc

stelllar density n∗(r) ∝ r−1.8

effective surface temperature T ∗ = 4000 K

Dust radius of dust cloud Rdust = 800 pc

density ρdust(r) = constant for r ≤ 230 pc

∝ r−1/2 for r > 230 pc

AV from cloud edge to center 29 mag

AV from r = 0 to r = 230 pc 10 mag

PAHs small ones (NC = 50) YPAH
C = 0.05, fH/C = 0.4

big ones (NC = 300) YPAH
C = 0.05, fH/C = 0.16

Very small grains only graphites Y vsg
C = 0.05, a = 10 Å

stipulate in (16.10) that stars can only form when the gas density is above some
critical value ρcr.

Equations (16.7)–(16.10) are solved numerically. One has to follow the
history of newly–born stars in all stellar mass intervals: how bright they are, how
long they shine and whether they explode as SN or die quietly. Figure 16.22
presents an example for a galactic nucleus that is meant to resemble M82, the
archetype nearby starburst galaxy. The fundamental feature of the bursts, their
periodicity, is not very sensitive to the intial conditions or to the parameters that
appear in the equations (except for the lower stellar mass limit ml, see later). In
particular, the model of figure 16.22 assumes the following.

At time t = 0, the gas cloud has a mass M = 2 × 108 M� and a
radius r = 200 pc. The constant mass input from old stars or the disk is
µ = 0.2 M� yr−1. The gas is clumped with volume filling factor f = 0.2.
For the dissipation time scale of turbulent energy, we choose τdis = 3 × 107yr,
for the critical gas density, ρcr = 10−19 g cm−3. When condition (16.10) for star
formation is fulfilled, the gas is consumed in an astration time τSF = 3× 106 yr.
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Figure 16.22. Evolution of a galactic nucleus similar to M82. Top: Radius r of the gas
cloud. It first shrinks because energy is dissipated on a time scale τdis and then grows when
supernovae explode. The ripples in r reflect quasi–adiabatic oscillations (the free-fall time
tff � τdis = 3× 107yr). Bottom, dashes: Gas mass M on a linear scale starting from zero;
at time t = 0, M = 2× 108 M�. For t ≤ 2× 107yr, M increases because of mass inflow.
In a burst, M decreases. Bottom, full curve: Total luminosity LOB of OB stars. They are
created in bursts of∼107 yr duration, the time interval between them is∼108 yr. Note that
LOB may be greater than the luminosity of the rest of the galaxy.

Stars are born in a burst with a Salpeter IMF, ξ(m) ∝ m−2.35 with upper and
lower boundary mu = 50M� and ml = 3M�. Stars of masses greater than
mSN = 8M� end as supernovae (section 15.1.5). The main sequence lifetime
of the SN progenitors can be read from figure 15.3. Each supernova inputs
ESN = 1050 erg of turbulent energy into the gas. The mass distribution of the
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Figure 16.23. Radiative transfer models of a starburst nucleus similar to M82. Distance
D = 20 Mpc, dust properties from section 12.2, further parameters in table 16.1. The
two dotted curves are benchmarks for comparison with figure 16.24: The lower one is
computed without hot spots, the upper depicts a point source; it is the only curve in this
figure where PAHs are included. The full curves are models with hot spots of gas density
n(H) = 102 cm−3 (solid), 103 cm−3 (dashed) and 104 cm−3 (dash–dot) and a standard
dust-to-gas ratio.

bulge stars follows the power law M∗(r) ∝ r1.2, the same as for the center of the
Milky Way. Within r = 500 pc, there are M∗(r) = 109 M� of stars.

16.6.2 Dust emission from starburst nuclei

The nucleus of a galaxy is usually deeply embedded in dust and can, therefore,
only be probed by infrared observations. One way to derive the structure of the
nucleus, to determine how dust and stars are geometrically arranged, what the
total extinction and the gas mass are, or to which spectral type the stars belong,
is to model the dust emission spectrum. For this end, one has to compute the
radiative transfer in a dust-filled stellar cluster.

A starburst nucleus contains many OB stars. We first convince ourselves
that it is indeed necessary to treat the OB stars and their surroundings separately,
as hot spots, following the strategy in section 13.4. If one does not treat them
properly, one grossly underrates the mid–infrared flux. This becomes evident
from figure 16.23 where spectra are displayed calculated with and without hot
spots. In the latter case, the luminosity of the OB stars is taken into account but
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Figure 16.24. As figure 16.23 and with the same benchmark models (upper and lower
dotted curves) but now with hots spots and PAHs and vsg.

Figure 16.25. Left: Dust emission from the nucleus of the galaxy NGC 1808. The dotted
(full) line shows the model flux received in a 25′′ (100′′) aperture. The galaxy is at a
distance of 11 Mpc where 1′′ corresponds to 53 pc. Circles represent observational data.
Right: Blowup of the near and mid infrared data and of the 25′′ aperture model. The
model fit is very good. Reproduced from Siebenmorgen, Krügel and Laureijs 2001 Astron.
Astrophys. 377 735 with permission of EDP Sciences.

their emission is smeared out smoothly over the cluster.

Except for the point source model, none of the stellar cluster spectra in
figure 16.23 includes PAHs or very small grains (vsg). To get closer to reality,
one has, of course, to incorporate them. This has been done in figure 16.24.
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Figure 16.26. The influence of the hot spots and the PAHs on the spectrum of the galaxy
NGC 1808. The line labeled full model includes PAHs and hot spots. Reproduced from
Siebenmorgen, Krügel and Laureijs 2001 Astron. Astrophys. 377 735 with permission
from EDP Sciences.

The PAHs and vsg further enhance the mid infrared flux over the already strong
level produced by the hot spots and totally dominate this wavelength region.
Interestingly, it is now not obvious at all how to derive, from the 10 µm silicate
feature which lies between PAH bands, an absorption optical depth. We add that
in view of the strong and hard radiation fields prevalent in a galactic nucleus
with OB stars, the radiative transfer code must allow for the possibility of photo-
destruction of PAHs and vsg (see section 12.2.3).

A point source model of the same luminosity and spectral appearance as the
exciting stars but where the stars are squeezed into a tiny volume at the center
of the galactic nucleus is also of relevance and it is shown by the upper dotted
curve in figures 16.23 and 16.24. It too yields a very strong mid-infrared flux but
differs from the models with extended emission by its small angular size. Mid–
infrared cross cuts of high spatial resolution over the galactic nucleus allow us to
discriminate between a stellar cluster and a point source.

A massive black hole with an accretion disk would appear to an observer
as a point source. But it is one with a considerably harder emission spectrum
than OB stars. Usually one assumes for a black hole a power law Sν ∝ να with
α � −0.5. If the dust is exposed to the flux from such an object, PAHs will
evaporate in its vicinity (they can only survive farther out) and the ratio of mid
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infrared over total luminosity is reduced. This can be checked observationally.
However, spectral lines from multiply ionized atoms, which require for their
excitation more energetic photons than are found in HII regions, are generally
a better diagnostic for the presence of a powerful non-thermal source.

Hot spots and PAHs determine the mid infrared emission not only of starburst
nuclei. Figure 16.25 shows the spectrum of the galaxy NGC 1808 where the star-
formation activity in the center is very mild and only 10% of the total luminosity
(L tot � 5×1010 L�) comes from OB stars. The nucleus of NGC 1808 is also only
weakly obscured (AV ∼ 5 mag). Nevertheless, even here model calculations with
and without hot spots or PAHs (figure 16.26) yield completely different results
[Sie01].



Appendix A

Mathematical formulae

Notations

• Vectors are written boldface, for example, torque τ , velocity v, electric field
E.

• The absolute values of these vectors are τ, v and E , respectively. As an
exception to these customs, the position vector in Cartesian coordinates,
(x, y, z), is sometimes denoted by x, and then, of course, |x| =√
x2 + y2 + z2 and not |x| = x .

• A dot over a letter means a time derivative. When a function φ depends on
the space coordinates (x, y, z) and on time t , its full differential is

dφ = ∂φ
∂ t
dt + ∂φ

∂x
dx + ∂φ

∂y
dy + ∂φ

∂z
dz.

In our notation, φ̇ = ∂φ/∂ t , which, of course, is different from dφ/dt .
A prime denotes space derivative: f ′(x) = d f/dx where x is a space
coordinate.

• For the vector operators we usually use the notations div, rot and grad. Other
common symbols are

rot = curl = ∇× = ∇ ∧
div = ∇· grad = ∇ 
 = ∇2 = div grad .

The Nabla or Hamilton operator ∇ is mathematically more convenient,
whereas div, grad and rot are physically more suggestive. 
 is the Laplace
operator.

• The symbol � indicates that two quantities are quite similar, ∼ means that
the agreement is only rough.
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Hermitian polynomials

The Hermite polynomials are defined through

Hn(y) = (−1)ney
2 dn

dyn
e−y2

(n = 0, 1, 2, . . .). (A.1)

They may be generated from the recurrence relation (n ≥ 1)

Hn+1(y)− 2yHn(y)+ 2nHn−1(y) = 0. (A.2)

The first four Hermite polynomials are

H0(y) = 1

H1(y) = 2y

H2(y) = 4y2 − 2

H3(y) = 8y3 − 12y.

The Hermite polynomials Hn(y) are orthogonal with respect to the weight
function e−y2

, ∫ ∞
−∞

H 2
n (y)e

−y2
dy = 2nn!√π.

Exploiting (A.2) gives∫ ∞
−∞

Hi(y)yH j(y)e
−y2

dy =
∫ ∞
−∞

Hi
[
Hj+1 + 2 j H j−1

]
e−y2

dy

= 2i−1i !√π{δi, j+1 + 2 jδi, j−1
}
. (A.3)

Vector analysis

• Let f (x, y, z) be a scalar function and A(x, y, z), B(x, y, z) vector
functions. Then

div( fA) = A · grad f + f divA (A.4)

div(A× B) = B · rotA− A · rotB (A.5)

rot rotA = grad divA−
A (A.6)

grad(A× B) = (B grad)A+ (A grad)B+ B× rotA+ A× rotB (A.7)

rot(A× B) = (B grad)A− (A grad)B+ A divB− B divA (A.8)

div( fA) = A · grad f + f divA (A.9)

rot grad f = 0 (A.10)

div rotA = 0 (A.11)

(A · grad)A = 1
2 gradA2 − A× rotA (A.12)
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• (A · grad)A is short hand writing. For example, the x-component of this
vector is [

(A · grad)A
]
x = Ax

∂Ax
∂x
+ Ay

∂Ax
∂y
+ Az

∂Ax
∂z

• Let A be a vector function over some region G with surface S. Gauss’
theorem connects the volume and the surface integral,∫

G
divA dV =

∮
S
A · n dσ. (A.13)

The unit vector n on the surface element dσ on S is directed outwards.
• If one chooses for the vector function in Gauss’ theorem

A = u grad v

where u and v are scalar functions, one arrives at Green’s identity,∫
G
(u
v − v
u) dV =

∮
S

(
u
∂v

∂n
− v ∂u

∂n

)
dσ. (A.14)

∂u/∂n = ∇u · n, and likewise ∂v/∂n, denotes the normal derivative taken
on the surface S and directed outwards from G.

• Let A be a vector function over some surface S with boundary B . Stoke’s
theorem connects the surface integral to a line integral,∫

S
rotA · n dσ =

∮
B
A · ds (A.15)

Sums and integrals

∑
i≥0

yi = 1

1− y �⇒
∑
i≥1

iyi−1 = d

dy

∑
i≥0

yi = 1

(1− y)2 (A.16)

I (s) =
∫ ∞

0

xs−1

ex − 1
dx = �(s) · ζ(s) = (s − 1)!

∑
n≥1

1

ns
. (A.17)

The last integral is expressed as the product of the gamma-function, �(s),
and Riemann’s zeta-function, ζ(s). In particular,

ζ(4) = π
4

90
I (4) = π

4

15
.∫ √

x2 − a2

x
dx =

√
x2 − a2 − a arccos

a

x
(A.18)∫

arcsin(ax)

x3 dx = −arcsin(ax)

2x2 − a
√

1− a2x2

2x
. (A.19)
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The integral exponential function is defined by

En(x) =
∫ ∞

1

e−xz

zn
dz (x, n ≥ 0). (A.20)

Complex integer Bessel functions Jn(z) of the complex variable z = x + iy
can be defined through [Abr70, 9.1.21]

Jn(z) = i−n

π

∫ π

0
eiz cosϕ cos(nϕ) dϕ. (A.21)

In particular,

J0(z) = 1

π

∫ π

0
eiz cosϕ dϕ. (A.22)

Furthermore [Abr70, 9.1.38]

J0(z) = J0(−z) (A.23)

z J1(z) =
∫ z

0
J0(x)x dx . (A.24)

The bell curve

For a > 0, ∫ ∞
0

e−ax2
dx = 1

2

√
π

a
(A.25)∫ ∞

0
xe−ax2

dx = 1

2a
(A.26)∫ ∞

0
x2e−ax2

dx = 1

4

√
π

a3
(A.27)∫ ∞

0
x3e−ax2

dx = 1

2a2
(A.28)∫ ∞

0
x4e−ax2

dx = 3

8

√
π

a5 (A.29)∫
xe−ax2

dx = − 1

2a
e−ax2

(A.30)

∫
x2e−ax2

dx = − xe
−ax2

2a2
+
√
π

4a3
erf (ax) (A.31)∫

x3e−ax2
dx = −ax

2 + 1

2a2
e−ax2

. (A.32)
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The time average of an harmonically variable field

Let
AR = A0R cosωt BR = B0R cosωt

be two real physical fields with real amplitudes A0R, B0R. When they are rapidly
oscillating, one is mostly interested in mean values over many cycles. For the
product

S = ARBR

we get the time average
〈S〉 = 1

2 A0RB0R

or
〈A2

R〉 = 1
2 A

2
0R.

We may also write the fields in complex form,

E ∝ e−iωt H ∝ e−iωt

which is more convenient when taking derivatives; of course, only the real
components have physical meaning. If we express these real quantities AR, BR as
complex variables,

A = A0e
−iωt and B = B0e

−iωt

where the amplitudes A0, B0 are complex themselves, then AR = Re{A}, BR =
Re{B} and

S = Re{A} · Re{B} = 1
4 (A + A∗)(B + B∗) = 1

4 (AB
∗ + A∗B + AB + A∗B∗).

An asterisk denotes the complex conjugate. Taking the mean of S, the third and
fourth terms in the last bracket vanish because they contain the factor e−2iωt . In
the remaining expression, the time cancels out, so finally

〈S〉 = 1
2 Re{A0B

∗
0 } (A.33)

and the time average of the square of a complex quantity A is

〈A2〉 = 1
2 |A0|2. (A.34)
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Basic physical and astronomical constants

Table A.1. Cosmic constants.

Bohr radius �2/mee2 a0 = 5.2918 × 10−8 cm
Bohr magneton e�/2mec µB = 9.2741 × 10−21 esu cm
Boltzmann constant k = 1.3806 × 10−16 erg K−1

electron rest mass me = 9.1096 × 10−28 g
elementary charge e = 4.8033 × 10−10 esu
fine structure constant e2/�c α = 1:137.04
gravitational constant G = 6.673× 10−8 cm3 g−1 s−2

Planck’s constant h = 6.6262 × 10−27 erg s
proton rest mass mp = 1.6726 × 10−24 g
Rydberg constant R∞ = 1.097 373 × 105 cm−1

velocity of light c = 2.9979 × 1010 cm s−1

astronomical unit 1 AU = 1.496× 1013 cm
parsec 1 pc = 3.086× 1018 cm

Sun absolute visual magnitude MV = 4.87 mag
effective temperature Teff = 5780 K
mass M� = 1.989× 1033 g
luminosity L� = 3.846× 1033 erg s−1

radius R� = 6.960× 1033 cm
surface gravity g� = 2.736× 104 cm s−2

Earth mass M
�

= 5.973× 1027 g

equatorial radius R
�

= 6.378× 108 cm

equatorial surface gravity g
�

= 9.781× 102 cm s−2

tropical year 1 yr = 3.1557 × 107 s



Appendix B

List of symbols

The notation is intended to be human and is, therefore, not strict. Of course, the
velocity of light is always c and the constants of Planck and Boltzmann are h
and k. But symbols have multiple meanings. For instance, it is general practice
to label the luminosity, the angular momentum and the Lagrange function by the
letter L. What a symbol at a given place means is evident from the context, or is
stated explicitly, hopefully.

The alternative to our somewhat loose notation is to have strictly one symbol
represent one quantity. Then one needs subscripts and superscripts, everything
is terribly clear but the formulae look horrible and it takes longer to grasp and
memorize them visually. To avoid this, we use, for example, in an equation
connecting gas atoms and dust grains, the letter m for the mass of the light atom
and a capital M for the mass of the heavy particle, instead of Matom and Mgrain.
Here is a list of selected symbols:

A area
a radius of spherical grain or of circular cylinder
a0 Bohr radius = 5.29× 10−9 cm
a−, a+ lower and upper limit of grain radii in size distribution
Aij Einstein coefficient for spontaneous emission
AV extinction in the visible in magnitudes
A vector potential of magnetic field
Bij Einstein coefficient for induced emission
Bν(T ) Planck function
B magnetic induction
c velocity of light
cn number density of droplets consisting of n molecules (n-mer)
Cabs absorption cross section of a single grain, likewise Csca . . .

Cp,Cv specific heat at constant pressure and constant volume
CH,CM specific heat at constant magnetic field and constant magnetization
D displacement in Maxwell’s equations
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e charge of a proton but also of an electron
eccentricity of a spheroid

e unit vector
E energy
E electric field
EB−V standard color excess
f number of degrees of freedom
fi j oscillator strength
fi volume fraction of component i
Fν electromagnetic flux at frequency ν
F free energy or Helmholtz potential
F force
g asymmetry factor in scattering

statistical weight
G free enthalpy or Gibbs potential

gravitational constant
h Planck’s constant
H enthalpy

Hamiltonian
H magnetic field
I moment of inertia
Iν intensity at frequency ν
J current density
k Boltzmann constant

imaginary part of the optical constant m
k wavenumber, in vacuo k = 2π/λ, as a vector k
K abs volume or mass absorption coefficient, likewise K sca . . .

L Lagrange function
luminosity
angular momentum
Loschmidt’s number= 6.02× 1023

La shape factor of ellipsoid with respect to axis a, likewise Lb, Lc
m,M mass
M magnetization
m = n + ik optical constant
m magnetic moment
me mass of electron
n real part of the optical constant m

number density of particles
nH n(HI)+ n(H2) = total hydrogen density, atomic plus molecular
N column density, occasionally also number density
� occupation number (quantum mecahnics)
p momentum of a particle
p(λ) degree of linear polarization of light at wavelength λ
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p electric dipole moment
P polarization of matter, related to D
p, P pressure
q charge of a particle
Qabs absorption efficiency of a grain, likewise Qsca . . .

Q heat (thermodynamics)
r distance or radius

reflectance
r position vector
R Rydberg constant
Rd dust-to-gas mass ratio
s saturation parameter of vapor pressure
S entropy
S Poynting vector
t time
T temperature

kinetic energy
Td dust temperature
uν radiative energy density at frequency ν
U potential energy

internal energy (thermodynamics)
v,V velocity
vg, vph group and phase velocity
v0 volume of one molecule
V volume

potential energy
W energy loss rate

work
x position vector
x size parameter of grain
Xr symbol for an element in ionization stage r
α degeneracy parameter (quantum mechanics)
αe, αm electric, magnetic polarizability
β 1/kT (thermodynamics)
γ damping constant
δ penetration depth of electromagnetic field
δA infinitesimal work (thermodynamics)
εν emissivity at frequency ν
ε ε1 + iε2 = complex dielectric permeability
ζ surface tension
η efficiency
ηi sticking probability of gas species i
κ force constant of a spring

ratio of specific heats
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λ wavelength
µ µ1 + iµ2 = complex dielectric permeability

damping constant in dissipational motion
µi j dipole moment for transition j → i , see (6.20)
ν frequency
ρ density or charge density
ρ(E) density of states at energy E
ρgr density of grain material
σ radiation constant

electric conductivity
surface charge

σ(ω) cross section of atom at frequency ω
σT Thomson scattering cross section
σgeo geometrical cross section
τν optical depth at frequency ν
τ time scale
φ scalar potential (electrodynamics)
d� size of an infinitesimal cell in phase space
χad, χT adiabatic and isothermal (static) susceptibility
χ χ1 + iχ2 = complex susceptibility
ψ quantum mechanical wavefunction
ω circular frequency

probability for a configuration of atoms
ωp plasma frequency
� thermodynamic probability
d� element of solid angle
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Index

Absorption coefficient 420, 460
by mass 222
definition 45
grey approximation 406
physical background 14

Absorption efficiency
definition 47
infrared approximation 243–245
of small particles 81–85

Accretion of gas on grains 275ff
Accretion disk 494ff
α-disk 502
flat blackbody 518
grazing angle 410ff
inflated 414, 522ff
Kepler 498ff
spectral energy distribution 518ff

Acoustical phonon branch 256–257
Activation barrier 229, 278, 281
Adsorption 278, 281
Albedo 45, 219, 234
Ambipolar diffusion 485ff
Amphiboles 231
Amplitude scattering matrix 57–58
Anomalous dispersion 24
Anomalous refraction 342
Antenna pattern 401
Antenna temperature 402
Anthracene (C14H10) 379ff
Asymmetry factor in scattering 46,

57, 86, 122–123, 128
Atmosphere of Earth 126, 224, 296

Babinet’s theorem 103ff, 112, 114,
120, 123, 137

Balmer decrement 219

Balmer lines 457
Barnett effect 372–373
Benzene 226ff, 377, 379, 386
Binding energy of atomic nucleus

461–466
Birefringence 342
Blackbody 106, 123, 132, 156,

216–222, 245ff, 400, 503
radiation 156, 170ff, 184, 383,

450
Bloch theorem 212–213
Bloch walls 370
Bohr radius 160, 208ff, 439, 457,

544, 545
Bohr magneton 351, 357ff, 439,

544, 545
Boltzmann statistics 145ff, 160,

240, 242, 360, 419
Boltzmann factor 38
Bose statistics 153ff, 194
Bosons 152ff
Bragg law 207
Bravais lattices 203ff
Bremsstrahlung 455
Brightness temperature 400ff, 420,

443, 458
de Broglie wavelength 152, 192
Bronzite ((Mg,Fe)SiO3) 233
Brownian motion 39–40, 72, 292ff,

351ff, 362, 367, 372
Bruggeman mixing rule 74ff, 395

Calcite 342
Calory, definition 303
Canonical distribution 163–164
Carbon, bonding 227ff

552



Index 553

Carbon, amorphous 74–77, 97,
123–124, 131ff, 224ff

Carbon cylinders 333ff
carbon monoxide (CO) 185, 224,

306, 427, 437, 475
level population 421ff, 429ff
properties of molecule 428ff
optically thin lines 457
destruction and formation

436–437
Carbonaceous grains 224ff
Carnot cycle 302
Cauchy principle value 65–69
Chandler period 349
Charge equilibrium 285ff
Chemical potential 156, 158, 165
Chemisorption 278
Cigars 95ff, 143, 334ff
Circular polarization of light 61ff,

342ff
Clausius–Mossotti relation 73, 102
Clausius–Clapeyron equation 301ff
Close-packed structure 228, 233
CNO-cycle 467
Coated particles 72, 78, 83, 97,

132–133, 224, 334, 390
Color 216ff, 223, 513, 525
Color excess (EB−V) 217ff, 339
Color temperature 251, 272ff, 459,

526ff
Composite grains, see Fluffy grains
CO luminosity 458–459
Commutation rules 178
Conventional cell 202ff
Conduction band 211
Conductor, see Metal
Conductivity, electric 33–37,

67–68, 140ff, 212, 230
Conjugate momenta 161, 175ff
Coordination number 232–233
Coordination polyhedron 233
Copper 35–36, 229
Coriolis force 373
Cornu spiral 113, 115

Cosmic abundance of elements 76,
78, 224, 355, 392, 433, 445,
462

Covalent (homopolar) bonding
208ff, 225, 232

Critical damping 16, 370
Critical saturation 305ff
Cross section

definitions 44ff
of ellipsoids 93–99

Crystals 201ff
classes 203ff
space groups 205
standing waves 258ff
symmetry operations 205ff
systems 204ff

Cubic lattice 4, 101, 204, 277, 342,
356

Cubic close-packed structure 233
Curie law 357ff, 362
Curie temperature 356ff
Current density 8ff, 25ff, 68, 213,

353
Cutoff wavelength 259–261, 380,

385–386, 391, 408
Cyclotron frequency 36
Cylinders, extinction efficiency of

319ff
C2H2 (acytelene) 226–227
C2H4 (ethylene) 226–227
C2H6 (ethane) 226–227
CsF 211
CS lines (see also CO) 515ff

Davis–Greenstein mechanism 347,
365ff

Debye frequency 260ff
Debye polarization 361ff
Debye relaxation 40–41, 138–139,

363ff
Debye temperature 212, 259ff, 271,

380
Debye T 3-law 261
Degeneracy parameter 158, 194



554 Index

Degree of freedom 161ff, 174, 242,
378ff

Degree of linear polarization
62–63, 86, 128ff, 324

Density of vibrational modes 258ff
Depolarization field 101ff
Depletion of elements 224–225,

275–276, 355–356
Deuterium

fusion in stellar interiors
466–467

hyperfine line 444–445
Diamagnetism 7, 355
Diamond 227ff
Dichroism 344
Dielectrics 7ff
Dielectric permeability 2ff, 41,

67–68
of dielectric 20ff
of metal 33ff

Diffraction pattern 103, 107
behind a half-plane 113ff
behind a sphere 111ff

Diffusion of photons 405
Diffuse interstellar medium 218ff,

274, 389, 392ff
Dipole field 83
Electric dipole absorption 81, 82,

85, 139–143
Electric dipole scattering 81,

139–143
Dipole moment 2, 27, 38, 71, 83, 89

quantum mechanical 179
Dipole potential 92, 100
Disorder time for Brownian motion

or alignment 41, 293,
367–368

Dispersion measure 446
Dispersion relation

of dielectric permeability 4, 20ff
of magnetic permeability 68–69

Distance modulus 216, 218
DNA 214
Domain, magnetic 359, 369–370

Drag 289ff, 300
Drude profile 32, 34ff, 137,

141–142, 218
Dulong–Petit rule 262
Dust-to-gas mass ratio 223–224,

276, 392, 395, 405, 436,
460, 535

Ebert–Bonnor spheres 456ff, 484,
492, 513

Eddington factor 405–406
Effective optical depth 327ff
Effective medium theories 71ff
Efficiency

definitions for absorption,
scattering etc 44–47, 141

electrostatic approximations 82ff
Einstein–de Haas effect 372
Einstein coefficient 31, 183ff
Ellipsoids 74, 90ff, 134, 334ff
Elliptical coordinates 91ff
Electric displacement 2, 9
Electric polarizability 3, 14–15, 58,

83–84, 134, 139, 214, 277
Electron radius, classical 29
Electric susceptibility 2–6, 65–68,

102
Emden equation 474ff
Emissivity 126, 240ff
Emission measure 455
Energy bands 197–198, 212ff
Energy density

of electric field 13
of magnetic field 14
of blackbody radiation 170, 173

Enstatite (MgSiO3) 233
Entropy 5, 69, 148, 162ff, 174,

305ff
Equipartition of energy 242ff, 292,

293, 351, 352
Ergodic hypothesis 161ff
Escape probability of photons 423,

434
Euler’s constant 117
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Euler’s equations of rotation 347ff
Evaporation 214, 281ff

temperature and pressure 303ff
Exchange field 357ff
Excitation temperature 419ff, 443
EB−V 217ff, 339

Faraday rotation 33, 37
Fermat’s principle 23
Fermi energy 87, 158, 193ff, 211
Fermi velocity 86
Fermi statistics 157ff, 194
Fermi temperature 194, 212
Fermions 152ff, 194, 466
Ferrimagnetism 359
Ferromagnetic relaxation 369ff
Ferromagnetism 7, 357ff
Figure axis 349ff
Fine structure constant 2, 186
Fluffy grains 71ff, 79, 394–395
Fourier series 187, 207, 212
Fourier transforms 19, 364
Fragmentation 482–484
Free charges 8
Free energy 165ff
Free enthalpy 165ff, 308ff
Fresnel zones 109ff
Friction coefficient 293, 352
Fullerenes 230

Galactic nuclei 531ff
dynamical evolution 532ff
Hot spots 415ff
infrared emission 535ff
stellar components 418ff

Galaxies, infrared emission of 526ff
Garnett mixing rule 73ff
Gaunt factor 449, 450, 455
Gibbs potential, see Free enthalpy
Giant molecular clouds (GMC)

427ff, 459
Globules 506ff
Grain alignment 347ff
Grain charge 285ff

Grain destruction 298ff
evaporation 303ff

Grain formation 301ff
Grain motion 289ff
Grain size distribution 124, 234ff,

276, 330, 392–394, 460
Grain equilibrium temperature

243ff
Graphite 97, 133ff, 142ff, 194, 214,

273, 392, 525
properties 36
structure 228ff

Gravitational instability, see Jeans
criterion

Gravitational collapse 479–480,
487ff, 508ff

Green’s identity 108–109, 541
Group velocity 37–38

HAC 231
Hamiltonian 175ff, 188, 189, 208
Harmonic oscillator 15ff

classical
absorption cross section 30
dissipation of energy 18–19
emission 26ff, 174ff
forced oscillations 17ff
free oscillations 16, 19
phase shift 18
scattering cross section 29–30
transients 16

quantum mechanical 149, 179ff,
193

Heat capacity, definitions 168ff
Helium 132, 395, 421, 437, 445,

453, 508
hyperfine line 445
Helium II 194
nuclear burning 462ff

Helmholtz potential, see ree energy
Hertzsprung Russell diagram 224,

486, 513
Hexagonal close-packed structure

228
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HII regions 377, 426, 435, 448ff,
457, 478, 524, 538

Homogeneous nucleation 307ff
Homogeneous phase 165
Homogeneous wave 12
Hooke’s law 187
Huygen’s principle 106ff
Hydrogen, atomic

HI clouds 438ff
hyperfine line 439

Hydrogen, molecular 435ff
Hydrogen bridges 213
Hydrogen burning 465ff
H+2 -molecule 208ff

Ice Mantles 78, 398ff
Inertia ellipsoid 348
Inhomogeneous wave 12
Initial mass function (IMF) 470ff,

482, 531, 534
Insulators , see dielectrics
Intensity of radiation

definition 396ff
moments of 403

Interstellar extinction curve, see
reddening curve

Interstellar radiation field (ISRF)
247–249, 268ff, 415, 506

Ionic bonding 209ff
Ionization equilibrium 158ff
Ionization front 452
Iron, properties of 357–358, 372,

461, 463
Isotropic scattering 46, 86, 123,

127, 132

Jeans length and mass 480ff
Jeans stability criterion 482ff, 532

Kelvin–Helmholtz timescale 474
Kepler disk 497ff
Kimberlites 229
Kirchhoff’s wave propagation 108ff
Kirchhoff’s law 239ff, 263, 455

Kramers–Kronig relations 64ff,
224, 234, 244, 345

Lagrange function 176, 188, 255
Laminar flows 295ff, 494ff
Lagrangian multiplicators 147
Landé factor 351, 445
Laplace equation/operator 82, 88,

91–92, 108, 531
Larmor’s theorem 373
Langevin function 39, 357, 369
Large spheres 103
Lattice types 203ff
Lattice base 202ff
Linear polarization 327ff
Line radiation 418ff

absorption profile 420ff, 424
Gaussian half-width

Linear polarization of light 329ff
Local electric field 99–101, 365
Lorentz condition 25
Lorentz force 2, 36, 176, 373
Lorentz model of harmonic

oscillator 15ff
Lorentz profile 20, 30
Loschmidt number 302
LVG, see Sobolev approximation
Lyman band 223, 435
Lyman continuum flux 448ff,

448–454, 473
Lyα radiation 223, 443, 454, 456

Madelung constant 211
Magnetic dipole moment 6, 27, 39
Magnetic dipole absorption 82, 90,

140ff
Magnetic dipole radiation 27
Magnetic induction 2, 7, 9
Magnetic polarizability 89–90, 141
Magnetic polarization 6
Magnetic susceptibility 7, 68, 169,

356ff
Magnetite (Fe3O4) 359
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Main beam brightness temperature
401–402, 458

Main sequence stars 132, 216ff,
250, 292, 448–449, 461ff,
486, 513, 522, 534

Mass coefficient 47, 124–125
Maxwell’s equations 18ff
Maxwellian velocity distribution

149ff
Metals 7, 33ff, 67–68, 143

bonding 212ff
heat capacity213

Metallic spheres 87ff, 123, 140
Methane (CH4) 226–227, 303
Mie theory 51ff
Microcanonic emission 377ff
Microturbulent approximation

422ff, 515, 517
Milky Way 299ff, 364, 425ff
Miller indices 202
Milne relation 450
Molecular clouds 427ff
Moment of inertia 348ff, 367ff

Natural line width 31
Neutron stars 194
Newton’s friction law 295
Non-magnetic alignment 373ff
Normal coordinates 254ff
Normal dispersion 24
Normal incidence 104ff
Nucleosynthesis 225, 435
Na (sodium) 211
NaCl 209–210

Occupation number 155ff, 188
Ohm’s law 33, 35, 212
Olivine (Mg,Fe)2SiO4 233, 355
On-the-spot approximation 451
Oort’s constants 486
Optical activity 343
Optical phonon branch 256–257
Optical constant, see refractive

index

Optical depth, definition of 398
Optical theorem 47ff
Oscillator strength 30–31

PAHs 72, 74, 230ff, 248, 261, 256,
377ff

cross sections 393
cutoff wavelength 260, 385
destruction 386–387
resonance bands 383

Pancakes 95ff, 335ff
Paramagnetic dissipation 359ff
Paramagnetism 7, 355ff
Partition function 147ff

of harmonic oscillator 149
Pauli’s exclusion principle 153ff,

209, 277, 358, 385
Penetration depth 89–90
Phase function 46, 60, 86, 116, 127
Phase space 151ff,
Phase transition 160, 229, 302
Phase velocity 11, 37, 40
Photoelectric effect 286ff
Photon gas 156, 174
Photon yield 288ff
Picket fence alignment 320ff
Planck function 126, 138, 170ff,

245, 251, 400, 419, 442
item Planck mean
absorption coefficient 405

Plasma frequency 20, 21, 31ff, 117,
135ff, 285, 426

Platonic year 350
Polarizability tensor 14
Polarization charges 8
Polarization of scattered light 57ff,

85–86, 127ff
Polarization ellipse 60–61
Polarization of matter 2ff
Polytropes 475
Porous grains, see Fluffy grains
Potential

double well 198ff, 208, 284
generalized 177
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periodic 196ff, 213
retarded 24–25
U12-6 type 277, 282
van der Waals 276ff

Poynting vector 10, 27
Poynting–Robertson effect 297ff
pp-chain 465ff
Prandtl surface layer 296
Presolar nebula 486–487
Primitive cell 201ff
Principle axes 91, 348ff
Probability density of temperature

263ff
Protostars 74ff, 508ff

dust emission 509ff
line emission 515ff

Psycho-physical rule 215
Pyroelectricity 4
Pyroxenes 231
π-bonds 226ff

Quadrupole moment 27, 445
Quadrupole radiation 27

Radiation constant 173, 246
Radiation damping 28–29
Radiative transfer

basic equations 398ff
in disks 409ff, 522ff
in galactic nuclei 415ff
in spherical clouds 402ff

Radiation pressure 46–47, 291–292,
403, 405

Random walk 289ff
Rayleigh limit 30, 77, 80ff, 94, 124,

133–142,
Rayleigh–Jeans limit 171, 184, 218,

250–251, 401, 420
Rayleigh–Gans particles 70, 116ff
Reciprocal lattice 207
Reciprocity theorem 111, 401
Recombination coefficient 449ff
Recombination lines 448, 456ff
Reddening curve 71, 214ff

Reflectance 104, 123
Reflection efficiency 106
Reflection nebulae 131–132,

272–273, 524ff
Refraction 22–23, 107
Refractive index 12–13, 37, 50–51
Resonant frequency 16
Reynolds number 295–296,

502–503
Rosseland mean absorption

coefficient 405
Rotation measure 446–447
Rydberg formula 456
RV 218ff, 239

Saha equation 158ff
Saturation magnetization 356, 359,

369
Saturation of vapor 305ff
Scattering 84ff, 93ff, 103, 116,

122ff
Scattering diagram 127
Scattering efficiency of small

particles 81, 84ff
Scattering plane 58
Schrödinger equation 178ff, 193,

199ff, 214
Selection rules, quantum

mechanical 186
Serkowski curve 329ff, 339, 343,

368
Shape factor 93ff
Shear flow 494–495
Silicate cylinders 332ff
Silicate grainss 74–79, 97, 121,

134, 224ff
Silicon 224, 232, 389, 462
Sobolev approximation 422ff,

433–434
Sound velocity 475
Source function 400ff, 419
Specific heat 168ff
Spectral indices 220ff
Spheroids 95ff, 335ff
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spin–lattice relaxation 360ff
spin–spin relaxation 362ff
Spin exchange 435, 441
Spin temperature 440ff
Sputtering 301
Stars

lifetime 470, 472
luminosity 293, 449, 470, 472
Lyman continuum flux 448ff

Stefan–Boltzmann law 172ff
Stellar magnitudes 215ff
Sticking probability 275ff, 287, 354
Stirling formula 146, 155
Stokes friction law 295
Stokes parameters of polarization

57, 61ff
Strömgren radius 452ff
Supernovae 225, 298ff, 425, 368,

427, 462, 470, 532, 534
Super-paramagnetism 368ff
Suprathermal rotation 353ff, 362,

368, 372
Surface modes 133ff
Surface tension 296, 317
Symmetric tops 349ff
SiO4-tetrahedron 231ff, 355
SiC 225
σ -bonds 226ff

Temperature fluctuations 262ff
Thermal hopping 281ff

first law 165–168
second law 165–168

Thermodynamics, 1st and 2nd law
165–168

Thermodynamic probability 146,
148

Thomson scattering cross section
29

Tourmaline 342
Transition probability 183ff
Translational symmetry 201
T Tauri stars 486, 501ff, 513, 518ff

Tunneling 192ff, 200, 283ff, 436,
466

Two-color-diagrams 219ff
Two-dimensional lattices 205ff, 261
Two-photon emission 191

UBV diagram 218ff
Uncertainty principle 32, 152, 200,

208

Vega 215–216
Very small grains 262ff, 392ff,

506ff, 526ff
Virial theorem 471ff, 478, 484
Virialized clouds 471ff
Viscosity ,kinematic 295–296,

494ff
Volume coefficient 47, 124–125
vsg, see Very small grains

van der Waals forces 213, 230, 276
Water (liquid) 42, 126, 303, 307,

495
molecule 42
vapor 310ff
drops 296
surface tension 296

Water ice 214, 279, 303, 388
Wave equation 10, 25, 34, 51ff,

88–89, 108–109
Wavenumber 11ff, 35
Weiss law 359
Werner band 223, 435
White dwarfs 194, 470
Wien’s displacement law 172, 252
Wien limit 171, 184

X-ray scattering 117–118
Young’s elasticity module 187
Zeeman effect 447
Zone of avoidance 427

2175 Å bump 218–219, 231, 234
10 µm silicate feature 235, 334ff,

337, 389


