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Preface

Dear reader

Before you is a compilation of lectures held at the University of Bonn all revolving
around interstellar dust and the formation of stars.

From lecture notes to print

The incentive to turn my scribbled lecture notes into a book was twofold: the
desire to reach a larger audience, and the wish to hand students a more polished
and lasting description of the tools for future work. Lecture and written text,
even when covering the same topic, should not be identical in their contents, but
complementary: they are two independent didactical challenges. In a lecture, the
student should be able to follow from beginning to end. The speaker stresses
ideas and concepts and does not waste time in elaborating lengthy formulae. A
good lecturer may be likened to a salesman at the front door. He is aggressive,
his arguments are compelling and what he says sounds exciting which prevents
us from slamming the door in his face.

A serious writer, however, can convince only by more subtle tones, most of
all through thoroughness. He is like the unobtrusive shopkeeper whom we have
been visiting for years. We know we can trust his goods, although he himself
may be a bit boring. Whereas an opinion about a lecture is formed quickly and
is not likely to change afterwards, we esteem a book only at second sight. Not
every chapter has to be grasped at first reading. Instead, there is opportunity to
contemplate a figure, formula or paragraph at leisure, over a steaming pot of tea
or the curly smoke rings of a pipe.

The topic

The central theme of this book is cosmic dust. Its relevance for astronomy and for
the evolution of the cosmos is not obvious. Unless we use special equipment,
more sophisticated than binoculars, it does not catch our attention as does a
variable star, a comet or a globular cluster. Dust only screens the light at optical
wavelengths. Its constituents, the grains, are disappointingly small and would

XiX



XX Preface

barely be visible under a microscope. The total dust mass in the Milky Way is
negligible compared to that of the stars or even the interstellar gas. However, we
believe that man is made of this very dust and that, by itself, is reason to study it
in depth.

But there is more to it. Interstellar dust is not an isolated component of the
universe, like pulsars or white dwarfs, which could be removed and everything
else would stay the same. Instead, it is in intimate contact with the rest of the
world, giving and taking, and this is best exemplified by the influence it has on
star formation and on the appearance of young stars and galaxies.

The addressee

This text was conceived for students who have received an elementary but
comprehensive introduction to physics—this is usually the case after two years of
university studies—and who have taken a general course in astronomy. It is also
aimed at PhD students who are starting research and have come across interstellar
dust in one of its many manifestations. Hopefully, this book will also be of service
to astronomers in general.

I admit that it contains hardly any exciting new results; not because a book is
never fresh, nor for fear that excitement might be detrimental to the heart. Instead,
the goal was to supply the student with those basic facts about small solid particles
that passed the test of time. Only being acquainted with the old results can one
fully enjoy the new. As many of the basic facts are scattered over the literature
and are sometimes hard to dig up, a selected compilation was thought to be useful.

Another reason to concentrate on matters where there is consensus and to
avoid being specific or touching upon controversial topics lies in the very nature
of the dust itself. Hardly any two dust grains in the universe are alike and this
immense diversity explains, to a large degree, why all numbers about interstellar
dust are vague and insecure. When an astronomical number is certain, say, the
mass of a planet or the distance to a star, one can happily apply it in further work
without worrying how it was derived. But when the number is ill determined, one
should know the physical and technical pillars upon which its derivation rests.
Only then can one estimate how far it may, or should, be stretched, or come up
with a new number, physically founded and adapted to the particular problem.

Astronomy is a branch of physics

This is a provocative statement and may arouse indignation. As if I had forgotten
how the great discoveries of the past 30 years have come about: As a result
of revolutionary technologies and grand enterprises! Indeed, when one recalls
how astronomical satellites have widened our outlook on the universe, it seems
justified to consider astronomy a branch of Space Project Management, and when
one thinks of the progress achieved by new telescopes, astronomy appears as
a subfield of Telescope Engineering or Receiver Development. It was new-



Preface XX1

technology instruments that have allowed us to peep into hitherto hidden realms.
Even ADM (Advanced Data Manipulation) may be more important to astronomy
than physics in view of the gigantic quantities of data that have to be crunched
and transformed into convincing numbers and pictures.

So I freely acknowledge the priority of management and technology over
physics. If one were to reduce the physics in astronomy courses to a minimum
(one cannot do entirely without it) and teach instead the fields mentioned earlier,
astronomy would continue to thrive for a decade or two, if one includes Science
Marketing, even for three. Despite all this, out of sheer pleasure for the subject,
this book stresses the link between astronomy and physics. It attempts to
summarize the major physical topics with direct application to interstellar grains
and wishes to encourage students to try the physical approach to an astronomical
problem, without polemizing against higher resolution or higher sensitivity.

The language

It is obviously English. The obvious needs no words but there are lamentable
aspects about using the modern lingua franca. 1 consider it a trifle that no sentence
came easy. Indeed, it did me good learning some more of a foreign language
while composing the text. Nor do I mind that one suspects behind simple phrases
a simple mind, this supposition may be true.

A serious argument against writing in a tongue one has not fully mastered
is that style and clarity are akin because improving the style usually means
improving the thought, nothing else. After all, a textbook on physical sciences
is not a railway timetable. A poignant style enhances the understanding, helps
memorize and carries the reader over difficult stretches. Ach, in this respect,
German would have been beneficial to the reader.

More important still is the obligation to preserve and develop one’s language
as an inherited gift and an attribute of culture of no less import than the collection
of national wines. As English has become so pervasive in our daily scientific
work, we, the majority of astronomers, tend to forget technical terms in our
mother tongue or do not update them and this has the deplorable consequence
that we speak and write about our favourite subject clumsily in two languages: in
English and in our own.

But the strongest point in a plea to retain in science one’s mother tongue
in all its might, parallel to the lingua franca, is that each language imprints on
the mind its own pattern of thinking. Pondering a problem in different languages
means approaching it on different paths, and each path offers its specific outlook.
It is erroneous to think that the findings of natural sciences are fully expressed in
numbers or formulae. Words are needed, too. A formula lacks cross relations and
does not sufficiently take into account the analogous character of what it asserts.
For example, I solve equations containing time but do not very well know what
time is. If words are needed to explain a formula, how many more are required
to arrive at it? What would quantum mechanics be if it were reduced to equations
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without extensive accompanying text? Who would shorten R Feynman’s Lectures
on Physics? They are the work of a genius not because of the formulae, they are
the usual ones but because of the way the story is fold. And a successful struggle
with an astronomical problem also needs a vivid, precise and powerful language
to put all its facets into a fruitful perspective.

To whom I am indebted

I owe to my colleagues who bore with me, helped with their expertise and
advice and encouraged me, in particular: David Graham, Michaela Kraus,
Antonella Natta, Richard Porcas, Johannes Schmid-Burgk and Alexandr Tutukov.
I am grateful to those who undertook the pains of critically reading parts of
the manuscript: Christian Henkel, Aigen Li, Armin Kirfel, Ralf Siebenmorgen,
Werner Tscharnuter, Nikolaj Voshchinnikov, Malcolm Walmsley and Jan Martin
Winters.

Two books served as guides (Vorbilder) which 1 tried to follow, without
pretending to match them. Each has, to my mind, one outstanding merit:
L Spitzer’s Diffuse Matter in Space is of dazzling perfection. It has been on
my desk for decades (and I am still struggling with parts of it today). M Harwit
pioneered in his Astrophysical Concepts to teach astronomy anew, with the eyes
of a physicist, addressing the student and enlightening the professor.

The philosophical headline

A long scientific text is frequently preceded, one might even say embellished,
by words from an authority outside the field, such as a philosopher or a poet.
Although far from being an expert in the scientific subject itself, his words carry
weight because they shed light on the topic from a different angle of cognition
and reassure the natural scientist in his moments of doubt. I wish to follow this
custom.

Dabbling in poetry and philosophical treatises, I found numerous aphorisms
suitable for such a purpose but the most appropriate headlines for this book came
to me as a birthday gift from my daughters. It is the following verse by the
19th century North-American poet Walt Whitman which they had calligraphically
written onto cardboard. Here is what Whitman left us:

When I heard the learn’d astronomer,

When the proofs, the figures, were ranged in columns before me,

When I was shown the charts and diagrams, to add, divide, and measure
them,

When [ sitting heard the astronomer where he lectured with much
applause in the lecture-room,

How soon unaccountable I became tired and sick,

Till rising and gliding out I wandered off by myself
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In the mystical moist night-air, and from time to time,
Looked up in perfect silence at the stars.

Of course, any literary praise of these lines from my side is out of place,
being a layman in literature. So I will not say a word about the magic beat that
pervades the poem: How the rhythm starts from impatience, condenses into anger
and transforms into serenity. I will not admire how irresistibly Whitman conjures
the lure of the night sky and contrasts it to the unnerving ambition of scholars.
Nor will I marvel at his prophetic power to foresee and congenially describe the
feelings of a backbencher at an astronomical meeting more than a century after
his time.

The reason for picking this poem as the philosophical headline is that it pays
a wise tribute to the irrational. Reflected or not, irrationality, like the mystical
moist night-air, is at the root of any sincere endeavour, including the quest of an
astronomer to understand the cosmos. Some colleagues strongly disagree and
regard with contempt those who let themselves be charmed by such a poem.
I take their objections very serious but find the occasional vehemence of their
arguments soothing, corroborating, at least, that they are not moved by logic and
astronomical data alone.

At the end of this longish foreword, a line comes to mind by
F M Dostojevskji from his novel The Demons. At a benefit party, Stepan
Verchovenskji, the aging hero of the narrative, makes an ambitious opening
speech which Dostojevskji laconically summarizes by the words

Ho Bce OBl 9TO HUUEro, U KTO HE 3HAET ABTOPCKUX MPEAUCIOBUL?

After intensive consultations with linguists and psychologists, I venture in
the present context the translation: Hmm well, well hmm!
Let this be the concluding remark.

Yours sincerely
EK

Bonn

Easter 2002
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Chapter 1

The dielectric permeability

We begin by acquainting ourselves with the polarization of matter. The
fundamental quantity describing how an interstellar grain responds to an
electromagnetic wave is the dielectric permeability which relates the polarization
of matter to the applied field. We recall the basic equations of electrodynamics
and outline how plane waves travel in an infinite non-conducting (dielectric)
medium and in a plasma. We summarize the properties of harmonic oscillators,
including the absorption, scattering and emission of light by individual dipoles.
Approximating a solid body by an ensemble of such dipoles (identical harmonic
oscillators), we learn how its dielectric permeability changes with frequency. This
study is carried out for three scenarios:

e a dielectric medium where the electron clouds oscillate about the atomic
nuclei;

e a dielectric medium where the charge distribution in the atomic dipoles is
fixed but the dipoles themselves may rotate; and

e ametal where the electrons are free.

1.1 Maxwell’s equations

At the root of all phenomena of classical electrodynamics, such as the interaction
of light with interstellar dust, are Maxwell’s formulae. They can be written in
different ways and the symbols, their names and meaning are not universal, far
from it. Before we exploit Maxwell’s equations, we, therefore, first define the
quantities which describe the electromagnetic field.

1.1.1 Electric field and magnetic induction

A charge ¢ traveling with velocity v in a fixed electric field E and a fixed magnetic
field of flux density B experiences a force

qu[E+lva] (1.1)
C
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called the Lorentz force; the cross x denotes the vector product. B is also called
the magnetic induction. Equation (1.1) shows what happens mechanically to a
charge in an electromagnetic field and we use it to define E and B.

The force F has an electric part, gE, which pulls a positive charge in the
direction of E, and a magnetic component, (¢/c)v x B, working perpendicular
to v and B. When the moving charges are electrons in an atom driven by an
electromagnetic wave, their velocities are small. A typical value is the velocity
of the electron in the ground state of the hydrogen atom for which classically v/c
equals the fine structure constant

62

1
= — ~ 1.
= T

Protons move still more slowly because of their greater inertia. For an
electromagnetic wave in vacuum, |E| = |B| and, therefore, the term (v x B)/c in
formula (1.1) is much smaller than E and usually irrelevant for the motion of the
charge.

1.1.2 Electric polarization of the medium

1.1.2.1 Dielectric permeability and electric susceptibility

In an electrically neutral medium, the integral of the local charge density p(x) at
locus x over any volume V vanishes,

/ p(x)dV =0.
1%

However, a neutral body of volume V may have a dipole moment p (small letter)
given by

pzf xp(x)dV. (1.2)
Vv

The dipole moment per unit volume is called the polarization P (capital
letter),

P=_. (1.3)

It may be interpreted as the number density N of molecules multiplied by the
average electric dipole moment pmyo) per molecule:

P= Npmol-

E and P being defined, we introduce as an additional quantity the
displacement D. It adds nothing new and is just another way of expressing the
polarization of matter, P, through an electric field E:

D =E 4 4nP. (1.4)
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The local polarization P and the local average electric field E in the dielectric
medium are much weaker than the fields on the atomic level and constitute just a
small perturbation. Therefore, P, D and E are proportional to each other and we
can write

D =¢E (1.5)
P—xE (1.6)
with
_E— 1 (1.7
= T '

The proportionality factors ¢ and x are material constants, they mean more or
less the same; ¢ is called the dielectric permeability or dielectric constant or
permittivity, x bears the name electric susceptibility. In the trivial case of a
vacuum, the polarization P vanishes, E =D and ¢ = 1. In a dielectric medium,
however, a constant field E induces a dipole moment so thate > 1 and P # 0.

We have, altogether, three quantities describing the electric field: D, E and
P, although two would suffice. For example, we could replace D in all equations
by ¢E. Equation (1.5) is the first of two constitutive relations complementing the
set of Maxwell’s formulae.

1.1.2.2  The electric polarizability

Another quantity we will need is the electric polarizability «.. If we place a small
grain of volume V into a constant electric field E, it acquires a dipole moment

p=a.VE. (1.8)

Because of the dipole moment, the field in the vicinity of the grain becomes
distorted. It no has longer the value E but some other value, say E° (e for
external). As one recedes from the grain, E® approaches E asymptotically. There
is also a field E' inside the grain. This differs from the constant outer field E.
The relation between them is described in detail in section 3.4. The polarization
P (capital letter) depends linearly both on E (from (1.6)) and on E (from (1.8)),
the proportionality factors being « and x, respectively,

P = xE = o E. (1.9)
In the general case, e and x are tensors, and the dipole moment and the
fields do not have the same direction.
1.1.3 The dependence of the dielectric permeability on direction and
frequency

Unless specified otherwise, we always assume (on a macroscopic level with
dimensions much greater than an atom) homogeneity so that the dielectric
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permeability ¢ does not depend on the position in the grain. The relation (1.5),
D = ¢E, is linear, which means that ¢ is independent of the field strength.
However, it may depend on the direction of the fields because, on a microscopic
level, a grain is made up of atoms and is thus not homogeneous. Equation (1.5)
must then be generalized to

D; = ZEikEi + Dy;.

1

The constant term Dy, implies a frozen-in dipole moment even in the absence
of an outer field. This happens only in special cases known as pyroelectricity; for
mono-crystals with a cubic structure (see section 7.1), Dy; is always zero. The
tensor &;x is symmetric, &y = &k, and can always be brought into a diagonal
form by the appropriate choice of coordinate system. It then has, at most, three
independent components. If the three diagonal elements are equal, ¢ reduces to a
scalar and the grain is said to be isotropic. Crystals of the cubic system have this
pleasant property but in interstellar grains we will also encounter anisotropy.

It is an essential feature for a discussion of interstellar dust that ¢ is a function
of frequency:

w =21y

or, as one says, that ¢ shows dispersion. The functional form of ¢(w) is called
the dispersion relation and will be used extensively in what follows. So the
term dielectric constant, which is the other frequently used name for &(w), is
misleading when taken at its face value.

In electrostatics, only one parameter is needed to specify the polarization and
x or ¢ are real. However, in an alternating field, one needs for each frequency w
two independent numbers which, out of mathematical convenience, are written as
one complex variable:

x(@) = x1(w) +ix2(w) (1.10)
e(w) =¢1(w) +ier(w). (1.11)

1.1.4 The physical meaning of the electric susceptibility x

We explain the physical meaning of x in the case of a harmonically and slowly
varying field,
E = Ege™'".

We use scalar notation for the moment and let E be real. The vector representing
the complex field E then rotates in the complex plane clockwise, as depicted in
figure 1.1. For a slowly varying field with small w, the susceptibility x is close to
its static value:

x1 = x(0) x2 = x2(0) = 0.
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li magi nary

real

Figure 1.1. The electric field vector, E, in the medium is presented as a complex quantity
of length E, which rotates at frequency w. It induces a complex polarization P in the
material of length P. When damping is weak, P lags behind E by a small angle ¢. The
real part of the complex electric susceptibility is equal to the ratio of the radii of the two
circles, x; = P/E, whereas the imaginary part gives the phase lag, xo = xj¢. Only the
real components of P and E have a physical meaning, the complex representation is for
mathematical convenience.

The static value x1(0) is positive because the polarization must point in the
direction of the electric field. Obviously the real part x| determines the maximum
polarization during one cycle via the relation Ppax =~ x1 Eo.

As the field changes, E and P are not in phase because the electrons always
need a little while to adjust. The polarization P, therefore, lags behind by some
time Af < w~! corresponding to a small angle

¢ = wAtr =tan(x2/x1) = x2/x1 < L. (1.12)

The interval At must be positive for reasons of causality: sensible people
squeal only after they have been pinched. Therefore, the imaginary part x; is
positive and determines, for a given xi, the time lag. While adapting to the
field, the electrons have to overcome internal friction, which implies dissipational
losses. Some of the field energy is inevitably drained into the dielectric medium.
If x» and Ar were negative, the field would draw energy from the dielectric body,
decreasing its entropy which contradicts the second law of thermodynamics. Even
x2 = 0 is impossible as it would mean that E and P are absolutely synchronous
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and dissipation is completely absent.

If the frequency w is not small but arbitrary, the angle wAr is also not
necessarily small. Nevertheless, we can exclude x» < 0 for the same reasons
as before. The real part of the susceptibility, x1, however, may become zero as

well as negative. The maximum of P is now given by Pmax = \/ x? + x3 Eo.

Of course, we could also choose a time dependence ¢/® for the field
and nothing would change. The sign of i is just a convention, although one
that must be followed consistently. When E = Ege!®’, the field rotates anti-
clockwise in figure 1.1 and the susceptibility, instead of (1.10), would be x (w) =
X1(w) — i x2(w), again with positive x3.

1.1.5 Magnetic polarization of the medium

In a macroscopic picture, a stationary motion of charges with density p and

velocity v, corresponding to a current density J = pv, produces a magnetic
moment 1
m:—/(xxJ)dV. (1.13)
2c
When the integral extends over a unit volume, it is called the magnetization M,
M=2 (1.14)
=7 .

For example, a charge ¢ traveling with velocity v in a circular orbit of radius
r constitutes a current I = qv/2mr. The magnetic moment of this moving charge

is
_qur Al

2c c

where A = 7r? signifies the area of the loop. If A is small, the accompanying
field is that of a dipole.

Without the motion of the macroscopic charge, the magnetization of matter
comes, in the classical picture, from the atomic currents (electron orbits). The
magnetic moment per unit volume M may be interpreted as the number density
N of molecules in the substance multiplied by the total magnetic moment mp|
per molecule:

M = Nmy,).

The magnetic field H is defined by
H=B-47M. (1.15)

Similar to the situation of the electric field, we could replace H by B in all
equations and retain two field quantities, B and M, instead of three. We would
prefer the pairs (E, P) and (B, M), because the electric field E, the magnetic
flux density B as well as the polarizations P and M allow a direct physical
interpretation; however, conventions urge us to drag D and H along.
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1.1.6 The magnetic susceptibility

The second constitutive equation concerns the magnetic field H and the induction
B. If the substance is not ferromagnetic, a linear relation holds as in (1.5):

B = uH. (1.16)
1 is the magnetic permeability and also generally complex,

W= |+ i

It also shows dispersion. In vacuo, B = H and u = 1. For diamagnetic
substances, w is a little smaller than one, for paramagnetic substances a little
bigger, 1 is large only for ferromagnets. Similar to (1.7), we define the magnetic
susceptibility by

w—1

4
so that M = xH. If there is any chance of confusion, one must explicitly write
Xm Or xe for the magnetic or electric case. In analogy to (1.8), a constant outer
magnetic field H induces in a small body of volume V a magnetic dipole moment

m=VM = o, VH (1.18)

where oy, is the magnetic polarizability and M the magnetization within the body.
For interstellar grains, which are weakly magnetic substances with |u| close to
one, the magnetic induction and magnetic field are practically the same inside
and outside, and x ~ «. If B denotes the interstellar magnetic field and M the
magnetization of the grain, one usually writes M = xB.

1.1.7 Dielectrics and metals

We will be dealing with two kinds of substances for which Maxwell’s equations
are often formulated separately:

e Dielectrics. These are insulators and no constant current can be sustained
within them. Nevertheless, alternating currents produced by a time-variable
electric field are possible. In these currents, the charges do not travel far
from their equilibrium positions.

e  Metals. This is a synonym for conductors and, in this sense, they are the
opposite of dielectrics. When a piece of metal is connected at its ends
to the poles of a battery, a steady current flows under the influence of an
electric field. When this piece of metal is placed in a static electric field,
the charges accumulate at its surface and arrange themselves in such a way
that the electric field inside vanishes and then there is no internal current.
However, time-varying electric fields and currents are possible.

In the interstellar medium, one finds both dielectric and metallic particles but
the latter are probably far from being perfect conductors.
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1.1.8 Free charges and polarization charges

We are generally interested in the electromagnetic field averaged over regions
containing many atoms. So we usually picture the grain material to be a
continuous medium. However, sometimes we have to dive into the atomic world.
On a scale of 1 A or less, the medium becomes structured. Atoms appear with
positive nuclei and negative electrons spinning and moving in complicated orbits
and the electric and magnetic fields, which are smooth on a macroscopic scale,
have huge gradients.

Consider a microscopic volume 6V in some piece of matter. It contains
protons and electrons and the net charge divided by § V gives the total local charge
density pi. For an electrically neutral body, electrons and protons exactly cancel
and pyo integrated over the body is zero. Often pyo is written as the sum of two
terms:

Prot = Ppol + Pfree- (1.19)

The first arises from polarization. In a dielectric medium, the electric field
polarizes the atoms and thus produces aligned dipoles. If the polarization within
the particle is uniform, ppor is zero because the positive and negative charges of
the neighboring dipoles exactly balance; the only exception is the surface of the
particle where charges of one kind accumulate. However, if the polarization P
is spatially non-uniform, ppo; does not vanish. Then the separation of charges is
inhomogeneous and leads to a charge density

Ppol = — divP. (1.20)

The second term in (1.19), pfree, comprises all other charges besides ppol.
For example, when the polarization is constant, div P = 0 and pfree stands for all
charges, positive and negative. In an uncharged body, their sum is zero. When
charges are brought in from outside, pfee 7 0. Within a metal, P = 0, and
polarization charges can only appear on the surface.

Moving charges constitute a current. The total current density Jo may also
be split into parts similarly to (1.19),

Jtot = Jtree + Jpol + Jmag~ (1.21)

The first term on the right-hand side is associated with the motion of the
free charges, the second with the time-varying polarization of the medium and
the third represents the current that gives rise to its magnetization:

Jiree = Vfree Jpol = P Jmag = ¢ - Tot M. (1.22)

1.1.8.1 Sign conventions

We have to make a remark about the sign convention. An electron, of course, has
a negative charge, its absolute value being ¢ = 4.803 x 1079 esu (electrostatic
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units). After Maxwell’s equation (1.27), the electric field of an isolated positive
charge (proton) is directed away from it and repels other positive charges
according to (1.1). The moment p of a dipole created by two opposite but equal
charges is, from (1.2), directed from the minus to the plus charge and anti-parallel
to the electric field along the line connecting the two charges. Hence a dielectric
grain in a constant field E has a polarization P parallel to E and surface charges
as depicted in figure 3.4 of chapter 3. With the help of this figure, we can explain
the minus sign in equation (1.20). Going from left to right, the polarization jumps
at the left edge of the grain from zero to its value inside. The gradient there
is positive and thus a negative charge appears on the surface. In the case of non-
uniform polarization within the grain, at a place where divP > 0, the electric field
pulls a small charge 8q out of a tiny volume §V leaving behind an unbalanced
negative charge —8q.

1.1.9 The field equations

We have now defined all quantities that appear in Maxwell’s equations and we
write them down, first, for a neutral dielectric medium:

divD = 0 (1.23)
divB =0 (1.24)
1.
rotE = — -B (1.25)
C
1.
rotH = —D (1.26)
C

second, for a medium with free charges and currents:

divD = 47 pfree (1.27)
divB =0 (1.28)
1.
rotE= — -B (1.29)
C
1. 4n
rotH=-D + _Jfree~ (130)
C C

A dot above a letter stands for partial time derivative, for instance, B =
oB/ot. Applying the operator div to (1.30) gives the expression for charge
conservation:

Otree + div Jfree = 0. (1.31)

E denotes the electric and H the magnetic field, D the electric displacement,
B the magnetic induction, J the current density and ¢, of course, the velocity of
light. Our choice of mathematical symbols is summarized in appendix A together
with some common relations of vector analysis.
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1.2 Waves in a dielectric medium

We derive from Maxwell’s equations how a plane wave propagates in an infinite
medium, define the optical constant, or refractive index and recall a few formulae
concerning energy, flux and momentum of the electromagnetic field.

1.2.1 The wave equation

In harmonic fields, which have a sinusoidal time dependence proportional to
e~ "' Maxwell’s equations (1.25) and (1.26) become simpler:

o
rotE=i—H (1.32)
c
we
rotH= —i—E. (1.33)
c

Applying the operator rot to (1.32) and (1.33), we arrive, with the help of formula
(A.6) of vector analysis, at

a)2 a)2
AE+ —usE=0  AH+ —pusH =0 (1.34)
C C
or JLE .. JLE .-
AE-—E=0 AH-—H=0. (1.35)
C C

These are the wave equations which describe the change of the
electromagnetic field in space and time. In an infinite medium, one solution to
(1.34) is a plane harmonic wave,

E(x, 1) = Eg - ¢/ kX~ (1.36)
H(x, 1) = Hy - ¢/ ®X~®) (1.37)

where Kk is a vector with k> = w?ue/c?. The characteristics of a plane harmonic
wave are an ¢'K* space variation and an e’ time variation. All waves in
interstellar space that interact with interstellar matter are planar because the
sources from which they arise are very distant.

1.2.1.1 Flux and momentum of the electromagnetic field

An electromagnetic wave carries energy. The flux, which is the energy per unit
time and area, is given by the Poynting vector S. For real fields, its momentary
value is c
S=—ExH. (1.38)
4

In a vacuum, when Eq denotes the amplitude of the electric field vector, the time

average is
c

2
(S) = ¢ E. (1.39)
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When we use complex fields, the time average of the Poynting vector is a
real quantity and, from (A.33), is given by

c

(S) = — Re(E x H*}. (1.40)

8

H* is the complex conjugate of H. The wave also transports momentum, through
a unit area at a rate S/c. In the corpuscular picture, an individual photon travels at
the speed of light, has an energy 4v, a momentum /v /c and an angular momentum
h.

1.2.2 The wavenumber

The vector k = (ky, ky, k;) in (1.36) is called the wavenumber and is, in the most
general case, complex:

k=k; +iky
with real k1, ko and obeys the relation
2

K=K — k2 +2ik; ko = = 1.41
=ki—k 1k = —Fue (1.41)

Of course, k* = k - k = k + k3 + k2. Inserting the field of a plane wave given
by (1.36), (1.37) into equations (1.32) and (1.33) yields

i we
““H=kxE and —E=-kxH (1.42)
C C

and after scalar multiplication with k
k-E=k-H=0. (1.43)

e  First, we consider the standard case in which Kk is real. Its magnitude is then

k= 2«/8/¢L
C

and the imaginary parts €5 and p,, which are responsible for the dissipation
of energy, must be zero. This is strictly possible only in a vacuum. Any
other medium is never fully transparent and an electromagnetic wave always
suffers some losses. As k specifies the direction of wave propagation, it
follows from (1.42) and (1.43) that the vectors of the electric and magnetic
field are perpendicular to each other and to k. The wave is planar and travels
with undiminished amplitude at a phase velocity

c

w
vph = - = (1.44)
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The real amplitude of the magnetic and electric field, Eo and Hy, are related

through
Ho= |ZE. (1.45)
"

= Hy = E k= —2
Uph = C = = —=—.
ph 0 0 c X

In particular, in a vacuum

e Next, let k be complex. Then ¢; and py are complex, too, and the electric
field vector equals

E(X, t) — EO . e—k2~X . ei(k|~X—w[).

As the wave propagates, light is absorbed and the wave amplitude suffers
damping proportional to e %X, The phase of the wave is constant in a plane
perpendicular to k; and the amplitude is constant in a plane perpendicular to
ky.

If the vectors k| and k; are parallel, the planes of constant phase and constant
amplitude coincide. There is a unit vector e parallel to k defining the
direction of wave propagation such that k = (k; + iko) - e, where ki, kp
are the lengths of ki, ky. Such a wave is called homogeneous.

If k; and k; are not parallel, one speaks of an inhomogeneous wave and the
surface where the field is constant is not a plane. The geometrical relations
(1.42), (1.43) then lose their obvious interpretation.

1.2.3 The optical constant or refractive index

For the propagation of light, the electromagnetic properties of matter may be
described either by the wavevector (from (1.41)) or by the optical constant

m = JelL. (1.46)

m is also called the (complex) refractive index. When the medium is metallic
and has a conductivity o, one must use the dielectric permeability ¢ as defined in
(1.115), rather than (1.5). It is clear from the definition of the optical constant
(1.46) that m does not contain any new information, in fact less than all material
constants €, 4 and o taken together. The name optical constant is unfortunate as
m is not constant but varies with frequency. It is a complex dimensionless number,

m(w) = n(w) + ik(w) (1.47)

with real part n and imaginary part k. In the common case of a non-magnetic
medium, where

n=1
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the real and imaginary parts of the optical constant follow from &1 and &,

1

n=— ,/slz—i—e%—}—e] (1.48)
1

k=— ,/sf—i—e%—e] (1.49)

e =n’—k* (1.50)
& = 2nk. (1.51)

[\

[\

and, vice versa,

(1.46) has two solutions and we pick the one with positive 7 and non-negative k.

1.2.4 Energy dissipation of a grain in a variable field

The total energy of an electrostatic field E in vacuum, produced by a fixed
distribution of charges, is

1
U:—/E~EdV
8w

where the integration extends over all space. This formula follows readily
from the potential energy between the charges, which is due to their Coulomb
attraction. It suggests an energy density

1

u=—E-E. (1.52)
8w
If the space between the charges is filled with a dielectric,
1
u=—E-D. (1.53)
8w

When we compare (1.52) with (1.53), we find that the energy density of
the dielectric medium contains an extra term %EP which accounts for the work
needed to produce in the medium a polarization P. Therefore, if we place, into
a constant field in a vacuum, some small dielectric object of volume V, the total
field energy changes by an amount

w=—3VP-E. (1.54)

It becomes smaller because some work is expended on the polarization of the
grain. If the outer field slowly oscillates, E = Ege™'?', so does the polarization
and for small energy changes

dw=—1Vd®P-E)=—VP.dE.

! In order to abide by the customary nomenclature, we use the same letter for the imaginary part of
the optical constant (italic type k) and for the wavenumber (Roman type k).
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The time derivative w, which we denote by W, gives the dissipated power
and its mean is

(W) = —V(PE) = 1VwIm{ac}|Eo|* > 0. (1.55)

It is positive and proportional to frequency @ and volume V, which makes
sense. The bracket (...) denotes the time average, and we have used P = o.E
from (1.8). Because of the mathematical relation (A.33), the real part of the
dielectric polarizability Re{a.} disappears in the product (PE) confirming that
only the imaginary part Im{c.} is responsible for heating the grain.

Formally similar expressions but based on different physics, hold for
magnetism. We first look for the formula of the magnetic energy density. Whereas
static electric fields are produced by fixed charges and the total energy of the
electric field is found by bringing the charges to infinity (which determines their
potential energy), static magnetic fields are produced by constant currents. These
currents also exert a force F on a charge but from (1.1) do no work because
F-v = (gq/c)v- (v x B) = 0. Therefore, in the case of a magnetic field, one
has to evaluate its energy by changing H. This produces according to (1.25) an
electric field E and thus a loss rate E - J. After some elementary vector analysis,
one gets, for the total energy of the magnetostatic field,

1
U:—fH~BdV
8

which implies an energy density of the magnetic field

1
u=—H-B. (1.56)
8

In complete analogy to the electric field, a time-variable magnetic field,
H = Hpe ', leads in a small body of volume V and magnetic polarizability
om (see (1.18)) to a heat dissipation rate

(W) = LV Im{om}|Hol>. (1.57)
(1.55) and (1.57) are the basic equations for understanding the absorption of
radiation by interstellar grains.

1.2.4.1 The symmetry of the polarizability tensor

We have already mentioned that, for an anisotropic substance, the dielectric
permeability ¢ is a tensor and symmetric. The same applies to the polarizability.
So instead of (1.9), we write more generally

P = ZaijEj.
J
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The symmetry of the tensor «;; can be shown by computing after (1.54) the
total energy W expended on polarizing a particle in a cycle consisting of four
steps. At the beginning, the particle is unpolarized. In the first step, one applies
an electric field in the x-direction, in the second step in the y-direction. Then
one takes back the component Ex and finally the component Ey. If the cycle is
loss-free, the condition W = 0 requires axy = oyx. In a similar way, one finds
ax; = 0zx and oy, = atzy.

1.3 The harmonic oscillator

In the early history of atomic theory, H A Lorentz applied the harmonic oscillator
model to the motion of an electron in an atom. Despite its simplicity and the
fact that electrons ‘move’ in reality in complicated paths, the Lorentz model is
quite successful in a quantitative description of many phenomena that occur on
the atomic level and reveal themselves in the macroscopic world. The oscillator
concept is very fruitful, although a precise idea of what we mean by it is often
missing. Usually we have in mind the electrons in an atom but occasionally
the oppositely charged atomic nuclei of a crystal or some other kind of dipoles
are meant. But generally we assume that a grain is built up of a system of
oscillators. Using this concept, we later derive the dispersion relation ¢ = &(w)
of the dielectric permeability around a resonance at frequency wy.

1.3.1 The Lorentz model

We imagine the following idealized situation: An electron of mass m. and charge
e is attached to a spring of force constant x. A harmonic wave with electric field

E = EO e—iwt

exerts a force F = e E which causes the electron to move, say, in the x-direction.
Its motion is governed by the equation

meX +bx +kx = F. (1.58)

On the left-hand side, there is (a) an inertia term m¢X; (b) a frictional force, —bx,
which is proportional to velocity and leads to damping of the system unless it is
powered from outside; and (c) a restoring force, —k x, that grows linearly with the
displacement from the equilibrium position. Putting

LS b
a)o = — ‘}/ = —
Me Me
we get
. . 2 ek
X+yx+owygx =—. (1.59)

ne
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The oscillator has only three properties:

charge-to-mass ratio e/me,
damping constant y and
resonant frequency wy (if the electron is unbound, wg = 0).

In the following, we discuss only the one-dimensional oscillator, where the
electron moves along the x-axis but one may readily generalize this to three
dimensions. It is assumed that the electric field is spatially constant over the
displacement x of the electron. This is correct as long as the velocity v of the
electron is small, v <« ¢, because then x >~ v/w can be neglected in comparison
to the wavelength c/w of the field. Indeed, the velocity of an electron in an atom
is typically of order v/c ~ 1%.

1.3.2 Free oscillations

In the simplest case, when there is no friction (y = 0) and no perturbation from
outside (E = 0), (1.59) reduces to

¥4+wix=0 (1.60)

and the electron oscillates harmonically forever at its natural frequency wg. If
there is friction (y # 0) but no external force,

X4 yi+wix=0 (1.61)
the solution is called a transient. It has the general form
x=e V2. (Ae7i" 4 Bel®r?) (1.62)

where A and B are complex constants and

wy =/} — y?/4.

For x to be real, it is required that B be the complex conjugate of A,
B =A*

which means Re{A} = Re{B} and Im{A} = —Im{B}. If > < 4w, i.e. when
damping is weak, w, is real. The electron then oscillates at a frequency w,
somewhat smaller than the natural frequency wg, with an exponentially decaying
amplitude. If friction is strong, y2 > 4w(2) and w,, is imaginary. The amplitude
then subsides exponentially without any oscillations. Critical damping occurs for

y = 2wy. (1.63)
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1.3.3 The general solution to the oscillator equation

In the most general case of equation (1.59), there is friction plus an external field
that acts on the electron. It is now convenient to write the displacement and the
electric field as complex variables; sometimes for clarity we mark the complexity
of a quantity explicitly by a bar. So if we assume an harmonic field,

E — EO e—iwt’
E and E are complex and
x s, 22 € E o —iet
X +yx +wjgx = —Epe . (1.64)
ne

One obtains the general solution of this inhomogeneous equation by adding
to the general solution (1.62) of the associated homogeneous equation (1.61) one
particular solution of (1.64), for example

X =xpe ', (1.65)

In such a sum, the transient (1.62) eventually dies out and only (1.65)
remains. The electron then oscillates at frequency w and not wg. Equation (1.65)
describes the steady-state solution into which any particular solution, satisfying
certain initial values for x and x at some earlier time fg, evolves. For the complex
amplitude of the displacement of the electron one finds

_ eEy
X0 = 5 > . (1.66)
me(wy — 0= —iwy)
Putting Ey = |Eo| and xo = |xg|, the real amplitude of the electron’s
displacement becomes
eEy
xXo = (1.67)

me\/(w(z) — 0?)? + ?y?

If damping (y) is small and the incoming wave vibrates with the natural
frequency of the electron (w = wy), the amplitude xq is proportional to y ~!' and
can become very large.

A static field E induces in the oscillator a permanent dipole moment

€2E0

Mmew?

p:e_xo:

One can apply this equation to atoms to obtain a rough estimate for the dipole
moment induced by a field Ey if one chooses for the characteristic frequency wg
a value such that hwyg is of order of the ionization potential of the atom.
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1.3.3.1 The phase shift

Equation (1.65) tells us that although the electron has a natural frequency wy, it
moves in the forced oscillation with the frequency w of the external field. Without
friction (y = 0), the electron and the field are synchronous. With friction, the
complex variables for position and field, X and E, are out of phase because of
the imaginary term iwy in (1.66). The electron always lags behind the field by a
positive angle

w
1 . where x = 7)/.
tan~'(x)+ 7 ifw > w wy — w?

_ {tan—l(x) ifw < w

At low frequencies (w < wyp), the lag is small.
Around the resonance frequency, the phase shift changes continuously and
amounts to 90° at w = wy.

e For w > wy, it approaches 180°. Then the electron moves opposite to the
direction in which it is being pushed by the external force e E. This is not a
miracle but reflects the steady-state response of the electron. Initially, when
the field E was switched on, the acceleration vector of the electron pointed,
of course, in the same direction as the electric field.

1.3.4 Dissipation of energy in a forced oscillation

The total energy of the oscillator is the sum of kinetic energy T plus potential
energy V:
T+ V = Ime(i* + ojx?). (1.68)

The total energy declines when there is friction. If we think of a grain as
being composed of many oscillators (atoms), friction results from collisions of
the electrons with the lattice and this leads to heating. The damping constant
v, which has the dimension s~!, is then interpreted as the collisional frequency.
Because the mechanical power W, which is converted in a forced oscillation into
heat, equals force multiplied by velocity:

W = Fx

multiplication of formula (1.58) with x gives

d
W =Fx = 7 (%me)&z + %mew8x2> + yme)'c2.

The terms in the brackets represent the total energy. If y is small, the time

derivative of the total energy almost vanishes and only the term ymx? remains.
With x = —wx, the time-averaged dissipation rate is
1 yezEg w?
W = —ymew’x} = . (1.69)
2 0 2me (W} — w?)? + w?y?
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(In fact, we should denote the time average by (W) but for simplicity we write
w.)

e  When the frequency is very high or very low, the heating rate W goes to zero
because the velocities are small.

e Near the resonance frequency (w =~ wp), however, and especially when
damping is weak, the power W becomes large.

1.3.5 Dissipation of energy in a free oscillation

If the system is not driven by an external force and if damping is small, the
electron swings almost freely near its natural frequency wg, while its amplitude
gradually declines like e ~7!/2. If the motion of the electron is described by

X(t) = {xoe_yt/ze_iwo’ fort >0 (1.70)
0 fort <0

the total energy E (unfortunately, the same letter as for the electric field) at time
t=0is

1 2.2
Eo = smewpx)

and afterwards it falls due to dissipational losses like

E = Ege 7", (1.71)
The energy of the system drops by a factor e in a time T = 1/y or after wo/27y
cycles; the initial loss rate is

1 2.2
W = symewyxy.

The Fourier transform of x (¢) in equation (1.70) is, by definition,

fw) = f x()e' " dt (1.72)

—00

or, in view of the reciprocity relation,

x(t) = L/OO fw)e  do. (1.73)
27 J_o

The two functions x(f) and f(w) form the Fourier transform pair. The
integral (1.73) can be regarded as an infinite expansion of the motion of the
electron, x(¢), into harmonic functions e’ of amplitude f(w) and with
continuously varying frequencies w. For the amplitudes in the Fourier expansion
of the free oscillator of (1.70), we find

X0

T (1.74)
i(wy —w)+y/2

f(@) =xo f T erigienon gy
0
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In the decomposition of x(¢) into harmonics, only frequencies with a
substantial amplitude f(w) are relevant. As we assume weak damping, they all
cluster around wp. The loss rate corresponding to each frequency component is
then proportional to the square of the amplitude:

14
(@ —wo)? + (y/2)*

W(o) x y|f(w)]*

Equation (1.74) is the basis for the Lorentz profile to be discussed in
section 1.4.

1.3.6 The plasma frequency
The plasma frequency is defined by

47 Ne?
=T (1.75)

where N is the number density of free electrons. The inverse, w, I gives the
relaxation time of the electron density. To prove it, we apply a perturbation to
a plasma in equilibrium which consists of heavy, immobile positive ions and
unbound light electrons. Prior to the disturbance, the mean charge density p over
any macroscopic volume AV is zero: positive and negative charges balance. Now
consider in the plasma a slab S| with sides Ax, Ay, Az and Ay - Az = 1, so that
the volume of the slab AV = Ax. All electrons inside S; are suddenly displaced
along the x-axis by the infinitesimal length Ax. After this disturbance, they are in
the neighboring slab S,, which has the same shape and volume as S, and the net
charge density (ions plus electrons) in S is no longer zero but equal to Ne. The
electric field E arising from the charge separation as a result of shifting electrons
from S; to S, exerts a force F on the displaced electrons and accelerates them:

F = NeAx - E = NAxmex.

The field E = 4w Nex is found by integrating the basic equation 47p =
div D; therefore,
Ar Ne*x = mei.

Comparison with (1.60) shows that the electrons will oscillate around their
equilibrium position with the frequency wp of (1.75).

1.3.7 Dispersion relation of the dielectric permeability

Because the restoring force, —«x, in (1.58) is due to electrostatic attraction
between the electron and a proton, we may consider the oscillating electron as
an alternating dipole of strength xe. A real grain contains many such oscillators
(electrons) that are driven by the incoming wave up and down. If they swing in
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Figure 1.2. The dispersion relation specifies how the dielectric permeability ¢ = g1 +igp
or, equivalently, the optical constant m = n + ik, change with frequency; here for a
harmonic oscillator after (1.77). The vertical line helps us to locate the maxima with
respect to the resonance frequency.

phase and their volume density equals N, the dipole moment per unit volume
becomes, from (1.66),

_ _ Ne? E e—1_
P = Nie = = E (1.76)

me 0} — 0? —iwy 4

where the equals sign on the far right comes from (1.6). The bar designates
complex quantities. Equation (1.76) represents the so called dispersion relation
of the complex dielectric permeability and specifies how ¢ varies with frequency.
If we use the plasma frequency of (1.75), where N is the number density of free
electrons, we get

20,2 2 2
wp(wy — ) ) Wy

+1 .
(w(z) — w?)? + 202 (w(Z) — )2 + 202

c=¢g +ieg=1+ (1.77)

Figure 1.2 presents an example of the dispersion relation &(w) calculated
with y/wp = 0.2 and w, = wp. Despite this particular choice, it shows the
characteristic behavior of the dielectric permeability at a resonance. Also of
interest are the limiting values in very rapidly and very slowly changing fields.
As we can compute m from ¢ after (1.48) and (1.49), figure 1.2 also gives the
dispersion relation for n and k.

e Inaconstant field E, all quantities are real. The induced dipole moment per
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unit volume and the static permeability are:
_ Ne’E

mea)g

0}
e(0) =1+ —2.
®q

In a slowly varying field (v < wy),

2 2

w sy
=14+ —+i—ro (1.78)

“o @o

The real part &1 approaches the electrostatic value €(0), whereas ¢, becomes
proportional to frequency w times the damping constant y and is thus small.
Correspondingly, n goes towards a constant value and k falls to zero.
Around the resonance frequency, €7 is quite symmetric and has a prominent
peak. But note in figure 1.2 the significant shifts of the extrema in n, k and
&1 with respect to wg. At exactly the resonance frequency, €1(wp) = 1 and
g2(wo) = wg/Vw(»

The imaginary part &, goes to zero far away from the resonance on either
side but always remains positive. €] increases from its static value as w nears
wy, then sharply drops and rises again. It may become zero or negative, as
displayed in figure 1.2.

At high frequencies (w > wp) and far from the resonance, there is very little
polarization as the electrons cannot follow the field due to their inertia and ¢
can be approximated by

2 2

s:l—w—g—ki%. (1.79)
w 0%

¢ is then an essentially real quantity asymptotically approaching unity. This
is a necessary condition for the fulfilment of the Kramers—Kronig relations
(see section 2.5). Refraction disappears (n — 1), and the material becomes
transparent because there are no dissipational losses (k, e — 0).

At very high frequencies, when the wavelength is reduced to the size of an
atom, the concept of a continuous medium breaks down and modifications

are necessary.

1.4 The harmonic oscillator and light

We continue to discuss the optical constant from the viewpoint that matter is made
of harmonic oscillators. We derive the emission of an accelerated charge, compute
how an oscillator is damped by its own radiation and evaluate the cross section
for absorption and scattering of a single oscillator.
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Figure 1.3. For light traveling from focus Fy of an ellipse to focus F, via the reflection
point M on the circumference of the ellipse, the total path length F{MF, is indifferent to
variations around M. If the reflection point M lies on the tangent T, the actual path is a
minimum, if it is on the curve C which has a curvature radius smaller than the ellipse at M,
the path is a maximum.

1.4.1 Attenuation and refraction of light

The attenuation of light is due to the dissipation of energy. In the harmonic
oscillator model, the electrons transfer kinetic energy in collisions to the lattice.
The loss rate depends foremost on the imaginary part of the dielectric constant
&2, which itself is proportional to the frictional parameter y. In a resonance, &>
has its maximum value close to but not coinciding with the natural frequency wq
(see figure 1.2). &> or k can never be negative as this would imply amplification
of light, which is impossible for a dust grain in thermodynamic equilibrium. In
an idealized loss-free medium &> and k vanish.

The real part of the dielectric constant, €1, may take up positive and negative
values. The real part of the optical constant, n, however, is always positive. The
index n determines the phase velocity vy of the wave. Without damping one

finds, from (1.44) and (1.46),
c
Uph = E

n is responsible for the phenomenon of refraction. According to Fermat’s
principle, light traveling in a medium of varying n chooses, from among all
possible paths, the quickest. More precisely, when infinitesimally varying the
actual path, to first order, the travel time does not change. So the chosen route
might be a local minimum or a local maximum (see figure 1.3).

Fermat’s principle formally explains how spectacles and binoculars work and
why a light ray changes its direction when it passes from a medium with index 7
to one with n,. The physical reason that, for example, the phase velocity in glass
is different from that in vacuum is contained in the concept of superposition which
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states that the field at any given point is the sum of the fields from all oscillators
anywhere in the world.

Consider, for this purpose, a plane wave that encounters a flat, thin sheet of
glass oriented perpendicular to the direction of wave propagation. The electric
field of the wave accelerates the electrons in the glass and they start to radiate
themselves. The field E, far ahead of the sheet is, according to the principle of
superposition, the sum of the fields created by all electrons plus the field of the
incident wave. When one computes E, (it is not too difficult), one finds that it
has a phase shift relative to the incident wave, i.e. to the wave if there were no
sheet. One gets exactly the same phase shift if one neglects the fields from the
electrons altogether and assumes the wave has traveled in the sheet at a reduced
phase velocity ¢/n. So the phase velocity c/n follows, in a subtle way, from the
interference of the incoming wave with waves generated by the excited oscillators.

For a medium that is almost transparent, i.e. when the damping is weak and
y < wy, the expression for n reduces, from (1.48) and (1.77), to

C02

n~1+4+—=2 1.80
2(a)(2)—a)2) (1.80)

So for small attenuation, »n is nearly constant at low frequencies and equal to
1+ a)g / Zw(z). As one approaches the resonance (see figure 1.2), n rises, reaches its
maximum shortward of wy, dips afterwards below one and goes asymptotically to
unity at high frequencies. In terms of actual frequencies, it all depends, of course,
on the value of wg. When n rises with w, i.e. to the left of wp in figure 1.2,
one speaks of normal dispersion. This is true, for example, for glass in the
visible range: blue light entering a prism is bent more than red light. However,
if dn/dw < 0, the dispersion is called anomalous, for historical reasons. When
n is less than one, the phase velocity exceeds the velocity of light in vacuum.
This does not violate special relativity as it is not possible to transmit information
with a monochromatic wave. A wave package, which is composed of waves of
different frequencies and is capable of carrying a message, cannot travel faster
than ¢ (see (1.131)).

If a substance has several resonances arising from different oscillators with
number density N; and natural frequency w;, one has instead of (1.80)

2me? N;
nlw) >~ 1+ S
me ; CL)? — w?

1.4.2 Retarded potentials of a moving charge

An oscillating electron represents a current that is surrounded by a time-variable
magnetic field which, in turn, induces an electric field and so on; in the end, an
electromagnetic wave is emitted. To calculate the emission, we first summarize
what the electric and magnetic fields produced by arbitrarily moving charges
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of density p look like. We start with Maxwell’s equations in the so-called
microscopic form where all contributions to charge and current are included, not
only the ‘free’ parts:

divE = 47 pyo divB =0 (1.81)
1. 1. 4m
rotE = ——B rotB = —E + — Jo. (1.82)
c c c
They follow immediately from the equation set (1.27)—(1.30) with the help
of (1.19)—(1.22). Again there is charge conservation, ot + div Jior = 0. We now
drop the suffix ‘tot’. Because divB = 0, there exists a vector potential A such

that
B =rotA (1.83)

and because rot(E + A/c) = 0, there exists a scalar potential ¢ with

1.
E+-A=-Vg. (1.84)
C

These potentials are gauged by imposing on them the Lorentz condition,
. L.
divA+-¢ =0 (1.85)
c

which leaves the fields E and B untouched. Then ¢ and A obey the relations

1. 4
AA——ZA: ——1J (1.86)
c c

1.
Ap— =¢= —4mp. (1.87)
c

(1.86) and (1.87) are equivalent to Maxwell’s equations. In vacuum, they
become wave equations and their right-hand sides vanish. If the charges are
localized around the center of the coordinate sytem and if their position is denoted
by x1, the potentials at the point x of the observer are (see any textbook on
electrodynamics):

b(xp. 1) = fMdv (1.88)
[x2 — x1]

Aoy = [ I&LD 4y (1.89)
clx2 —x1

The potentials A and ¢ are called retarded as they refer to the present time
t but are determined by the configuration at an earlier epoch /. The delay
corresponds to the time it takes light to travel from x; to X»:

p_ . Ixe—xq]

t'=t (1.90)

c
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If the size d ~ |x1]| of the region over which the charges are spread is small
compared with the distance r = |x3| to the observer,

d<r

(astronomers are always at a safe distance from the action), we may put r =~
|x2 —x1| and take r out from under the integrals. Moreover, X, —X1| = |X2| —X] -€,
where e is the unit vector pointing from the atom to the observer, so

' ~t—(r—x1-e)c. (1.91)
If the d is also small compared with the wavelength,
d <A

there will be no phase shift among the waves emitted from different parts of the
source and the emission is coherent, so we can write

' ~t—r/c

and .
A(Xz,t)=—/J(x1,t—r/c)dV. (1.92)
Ccr

This expression applies, for example, to atoms where a charge is oscillating
at a frequency v and the linear dimension of the system d ~ v~'v = Av/c, where
v is the non-relativistic charge velocity.

1.4.3 Emission of an harmonic oscillator

Under such simplifications, one obtains the dipole field. The vector potential A
follows from a volume integral over the current density J at the earlier epoch
t' =t — r/c. If there is only one small charge ¢ of space density p(x) that is
oscillating about an opposite charge at rest, equation (1.92) yields

1
A(xa, 1) = o p(x1,t —r/c) (1.93)

because the current density is J = pv and the wiggling charge ¢ constitutes a
dipole p = gx; whose derivative is given by the integral over the current density.
If there are many charges ¢; shaking at velocity v;, the result is the same with
P =D qiX:.
We do not discuss the near field here. Far away from the charge, the wave is
planar and
H=exE E=Hxe.

Far away, V¢ in (1.84) is negligible because ¢ represents the potential of the
charge (see the comment after equation (6.10)) and the electric field of a charge
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falls off like 1/r2, whereas the field of a light source falls off more slowly like
1/r. We thus have E = —A/c and

1 . w?

H=—S-pxe=—-exp (1.94)
cr cr
w?

E = T(exp) X e (1.95)
cr

where we have assumed that the dipole varies harmonically at frequency w.
Having determined the fields E and H via the dipole moment p, we can compute
the flux dW carried in a solid angle d2 = sin 8 d6 d¢ into the direction e which
forms an angle 6 with the dipole moment p. This flux is given by the Poynting
vector of (1.38), so 5

AW = 4|p| sin20 dQ. (1.96)

o

The emission is zero in the direction of the motion of the charge and
maximum perpendicular to it. Integration over all directions yields for the total
momentary power radiated by a dipole:

2
W= —1p> 1.97
<1l (1.97)

If the dipole oscillates harmonically proportional to coswt, the time-
averaged power equals half the maximum value of W in (1.97).

1.4.4 Radiation of higher order

More generally, if one does not make the simplification ¢’ = ¢t — r/c but sticks to
equation (1.91) and expands J(x1, t') in (1.89) for small x; - e, equation (1.93) is
modified and at first order one has to add two correction terms:

Q. (1.98)

1 1 1
A=—p+—mxe+
cr cr 6c2r

m is the magnetic dipole moment of equation (1.13) and

Qij = / p(X)[3xix; — x*8;;1dV (1.99)

the electric quadrupole moment, a traceless tensor. The vector x has the
components x; and the length x; §;; denotes the Kronecker symbol. From Q;;
one defines the vector Q,

Q=(01,02,03) withQi=) Qie; (=123
J

and this Q is used in (1.98). The vector potential A in formula (1.98) is also
evaluated at the time ¢/ = ¢ — r/c. Again, one finds the Poynting vector
S=(c¢/4n)E x HfromE = —A/cand H=e x E.
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Even when the electric dipole moment vanishes, there may still be electric
quadrupole or magnetic dipole radiation, associated with Q and m, respectively
but they are several orders of magnitude weaker. One can easily show that if all
particles have the same charge-to-mass ratio as, for instance, the two atoms in
the hydrogen molecule Hy, the time derivatives p and m are zero so that only the
electric quadrupole radiation remains.

1.4.5 Radiation damping

An accelerating electron radiates and the emitted light reacts on the electron
because of the conservation of energy and momentum. Although theory (quantum
electrodynamics) and experiment agree extremely well, there is currently no strict,
self-consistent description of the feedback. We describe the feedback in classical
terms here.

When a force F accelerates a free and otherwise undamped electron, we
write the equation of motion in the form

F + Fraq = meit.

The additional force Frag accounts for the retardation caused by the radiative
loss and u = x is the velocity. Fy,q acts oppositely to F. Averaged over some time
interval At, we assume that the emitted power due to the radiative deceleration
(see (1.97)) is equal to the work that the force Fy,q has done on the electron:

262 .2
— Fraqu dt = %3 u”dt.
At 3¢ Jas

When we integrate the right-hand side by parts and assume a periodic motion
where uu = 0 at the beginning and at the end of the time interval A¢, we find

/ Fog— 252 wai =0
— —=Uu u = U.
" rad 303

Frad = metii

So the force becomes

with 5
2
r= -0 _—627x10%s.
3mec3

Frag has to be added in the equation of motion of the harmonic oscillator, so
(1.59) becomes

. . eEy _;
Wgx + yu i — i = — e,
me
It contains time derivatives in x up to third order but, because ii = —w?u for a

harmonic oscillation, the steady-state solution is again

= )Z'()@_lwt
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(a bar denotes complexity) and the complex amplitude becomes

eEp 1
2

=

Me a)(z) —? =iy +10?)

This is the same expression for xo as in (1.66) if one replaces there the
dissipation constant y by

Y+ 10" =¥ + Vraa-
The term

262 2
;O (1.100)

Yrad =
3mec

is the damping constant due to radiation alone and follows from equating the
time-averaged losses %yradmewzxg of the harmonic oscillator after (1.69) to the
time-averaged radiated power péw4 /3¢3 of (1.97). Note that we always assume
the radiative losses over one cycle to be small in comparison to the energy of the
oscillator.

1.4.6 The cross section of an harmonic oscillator
1.4.6.1 Scattering
An oscillating electron with dipole moment

iot iot

p = poe ' = expe”
scatters, from (1.67) and (1.97), the power
2 2 e*E? o
wsa = = ptpl=_— 0 (1.101)
337 PO =33 mZ (0} — 0?2 + 0?y?

where we put po = | pol. So its cross section o5, defined as the scattered power
divided by the incident flux § = (c/4n)E(2) of (1.38), becomes

sca w4
o w) = =or (1.102)
N (@} — )2 + ?y?
where
8rg —25 2
or = =6.65 x 107“’ cm (1.103)

is the Thomson scattering cross section of a single electron; it is frequency
independent. rg is the classical electron radius and follows from equalling the
rest mass energy mec? to the electrostatic energy e?/ro:

2

ro=—5=282x10"" cm. (1.104)

MmeC
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If there is only radiative damping, we have to set ¥ = jraq after (1.100).
From equation (1.102) we find the following approximations for the scattering
cross section at the resonance, and at low and high frequencies:

o \* .
oT P~ if w < wyp
o5 w) = ’ 2 (1.105)
oT Wy . - :
— 5 5 if o >~ wg
4 (0—w0)?+(/2?
oT if w > wp.

When the frequency is high, the electron is essentially free and the cross
section constant and equal to or. When the frequency is small, o5 falls with
the fourth power of w (Rayleigh scattering). Near the resonance, we have put

w? — a)(z) >~ 2wo(w — wo).

1.4.6.2 Absorption

In a similar way, we get from (1.69) for the absorption cross section of the
harmonic oscillator

abs 2 2
4
oS () = L (1.106)
with the approximations
L [4vopte? if o < o
e
o (w) = ifw~ o 1.107
@)= e | @— w02 T (/27 0 (1107
dyw=? if @ > wo.

A frequency dependence according to the middle line of (1.107) or (1.105)
results in a Lorentz profile. It has the characteristic feature that the intensity over
an emission or absorption line changes proportional to [(w—wg)*+(y/2)*17!. As
we have seen in the Fourier analysis of the motion of a free oscillator after (1.74),
at the root of such a profile is the exponential decline e ~¥*/? of the amplitude of
the electron.

1.4.7 The oscillator strength

Integrating o (w) after (1.106) over frequency yields the total cross section for
absorption,
2m2e?

Otot = /U(a))dwz (1.108)

The integrand has significant values only around wy, so to evaluate oy, We
could also use the approximate second formula of (1.107). We note that

/°° y /°° dx
dow =2 ~ 2w (y < wo).
0o (w— w())z + (V/Z)Z —2wq/y 1+ x2

meC
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When the cross section o is a function of v = w /27, we get

JT€2

O'totI/O'(\))dl)z .
MeC
The true quantum mechanical cross section for a downward transition j — i
integrated over frequency is often written as

7'[62

Otot = — fji (1.109)
MeC
where fj; is called oscillator strength. It is of order unity for strong lines,
otherwise smaller. f;; is related to the Einstein coefficients for induced and
spontaneous emission, Bj; and A j; (see section 6.3), through

me? hv c?
i = Bji = g5 Aji (1.110)
€

where hv is the energy difference between level j and i.

1.4.8 The natural linewidth

If the oscillator is not driven by an external field but swings freely near the
resonance frequency wo, its energy decays exponentially like e ¥md(@0)! (see
(1.71) and (1.100)). The intensity of emission, I(w), at a frequency w is
proportional to xg(a)), the square of the elongation given in (1.67). One may
call xg (w) the resonance curve (see figure 1.4). Because all relevant frequencies
for emission are close to wp, we have w? — a)(z) ~ 2wq(w — wp) and the full width
Aw of the resonance curve xg (w) taken at half maximum becomes

2rg 4
Aw = Yrad = §w0
or, expressed in wavelength,
Aw 4 —4
Ar=2mc— = —ro =118 x 107 A. (1.111)
wj 3

This is the natural linewidth as derived from classical physics. It does not
depend on the frequency of the transition, all intrinsic properties of the oscillator
have canceled out.

In quantum mechanics, the Einstein coefficient A j; is the counterpart to the
radiative damping constant y;,q of classical electrodynamics. Aj; specifies the
rate at which a system in level j spontaneously decays to a lower level i (see
section 6.3). The probability of finding the system in state j decreases with time
like e~4i’, in analogy to the classical formula.
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Figure 1.4. The emitted intensity of a classical oscillator with a resonance at A that is
damped only radiatively with a damping constant y;,q after (1.100). Irrespective of A, the
width of the line is 1.18 x 10™* A in wavelengths or y;,q in frequency.

Furthermore, in quantum mechanics, the energy E; of state j is fuzzy
because of the uncertainty principle, AEAt > h. Here At ~ ATil is the average
time that the atom stays in level j. Therefore, E; is undetermined by an amount
AE = hAj; resulting in a frequency uncertainty Aw = Aj;. (More accurately,
when calculating Aw, one has to sum the A coefficients of all possible downward
transitions starting in j and something similar must be done for the lower level i,
unless it is the ground state.)

The time A;.l that the atom resides in state j also gives the duration of the
emitted pulse. As the pulse travels with the velocity of light, the length of the
wave train is CAﬁ] . The emission thus cannot be strictly monochromatic but has
a frequency spectrum centered at wy.

1.5 Waves in a conducting medium

We modify the expression for the dielectric permeability or the complex
wavenumber for the case that some of the electrons in the material are not bound
to individual atoms but are free so that they can conduct a current. The medium
is then a plasma and the dispersion relation is known as the Drude profile. We
show that, in the presence of a magnetic field, the optical constant n of a plasma
depends for circularly polarized plane waves on the sense of rotation. This leads
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to the phenomenon of Faraday rotation. We also derive the group velocity of a
wave package in a plasma.

1.5.1 The dielectric permeability of a conductor

A conductor contains free charges that can support a constant current, as we know
from everyday experience with electricity. Ohm’s law asserts a proportionality
between the electric field E and the current density J (omitting the suffix ‘free’),

J=oE. (1.112)

o is called the conductivity and is usually defined for a quasi-stationary
electric field; in a vacuum, ¢ = 0. When a conductor is placed in a static field,
no current can flow because the charges arrange themselves on its surface in such
a way that the electric field inside it cancels out. In a dielectric medium, however,
a static electric field is, of course, possible. An electric field may exist in a metal,
either because it varies rapidly and the charges do not have time to reach their
equilibrium positions or it is produced by a changing magnetic field according to
(1.25).

We treat conductors because some interstellar grains have metallic properties
and because the interstellar medium is a plasma. Let us start with the Maxwell
equations (1.29) and (1.30) which are appropriate for conductors,

1. 1. 4rx
rotE=—-B rotH=-D+ —].
c c c

When we insert harmonic fields into these formulae, we get for a
homogeneous medium with the help of (1.112)

rothiﬁH
c
W Ano
rOtH:—l—(8+l—> E. (1.113)
c w

We may look at (1.113) as an expansion of rot H into powers of w. The term
with the conductivity o dominates at low frequencies, more precisely when

dno
le] €K —.
w
Then equation (1.113) reduces to
4
rotH = 22k (1.114)
Cc

which describes the magnetic field produced by a quasi-stationary current.
Formally, we can retain the field equation

£
rotH = -E,
C
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as formulated in (1.33) for a dielectric medium, also for a conducting medium.
However, ¢ must then denote the sum of the dielectric permeability of (1.5),
written here as gq to indicate that it refers to a dielectric, plus a term relating

to the conductivity:

Ano
e=2¢6q+1i . (1.115)
w

The complex wavenumber of (1.41), which appears in the wave
equations (1.34), is in a conducting medium

2 4
k2=¥(8d+i m). (1.116)
C w

The optical constant m follows from ¢ of (1.115) viam = ,/eu (see (1.46)).
At low frequencies, the dielectric permeability of a metal is approximately
(see (1.123) for an exact expression)

Ano
e(w) =1 .
w

¢ is then purely imaginary (¢; = 0), much greater than one (|¢| > 1) and
has a singularity at @ = 0. From (1.48) and (1.49) the optical constants n and k
are, therefore, also large and roughly equal:

n>~k— oo forw — 0. (1.117)

The difference between dielectrics and metals vanishes when the
electromagnetic field changes so rapidly that the electrons make elongations that
are small compared to the atomic radius. Then the restoring force, —kx, in
(1.58) is negligible and all electrons are essentially free. This happens around
w~ 107571,

1.5.2 Conductivity and the Drude profile

We repeat the analysis of the harmonic oscillator in section 1.3 for a plasma. The
electrons are then free, they experience no restoring force after an elongation and,
therefore, wp = 0 in (1.59). With the same ansatz ¥ = Xge '“' as before, we find
the velocity of a free electron in an harmonic electric field:

_ e =
V= ———
me(y —iw)

The conductivity follows from the current density J = o E = Nev. If there are N
free electrons per cm3,
Neé? 60[2,

T me(y —iw)  An(y —iw)

(1.118)
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where w, = /4w Ne?/me is the plasma frequency of (1.75). So generally
speaking, the conductivity is a complex function and depends on w,

4 +'w‘2’ d (1.119)
4 y2 + 0? l4ny2+a)2' ’

o

o(w) =o1(w) +io(w) =

e Atlong wavelengths (v < y), o becomes frequency independent. It is then
an essentially real quantity approaching the direct-current limit

2
“p
o(w=0)=—— (1.120)
drry
which appears in Ohm’s law. The conductivity depends on the density of
free electrons through w, and on the collision time through y.
e If the frequency is high or damping weak (y <« w), the conductivity is
purely imaginary and inversely proportional to frequency. There is then no
dissipation of energy in the current.

When we put ¢g¢ = 0, © = 1, and substitute, for the conductivity o, the
expression from (1.118) into (1.116), we find for the wavenumber of a plasma

2 2 2
w [ Yy )
K=—[1-—2L A— . 1.121
cz( y2+w2+lwy2+w2 ( )
Without damping,
2 2
w w
K=—[1--2]. 1.122
( ) L122)

In this case, when w is greater than the plasma frequency, the real part n of the
optical constant is, from (1.48), smaller than one, so the phase velocity is greater
than the velocity of light, vph > ¢. For o = wp, n becomes zero. A wave with
@ =< wp cannot penetrate into the medium and is totally reflected. The bending
of short-wavelength radio waves in the ionosphere or the reflection on metals (see
(3.60)) are illustrations.

The dielectric permeability ¢(w) corresponding to (1.121) is known as the
Drude profile (see (1.41)):
% 7%

ew)y=1- i— .
) Y2+o? oy?+o?

(1.123)

To get some feeling for the numbers associated with the conductivity, here
are two examples:

e  Copper is a pure metal with a free electron density N ~ 8 x 10?2 cm ™3,
a plasma frequency wp = 1.6 x 10'6 s~! and a damping constant y =~
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3 x 10'3 571, It has a high direct-current conductivity o ~ 7 x 107 s~
Therefore copper cables are ideal for carrying electricity.

e  Graphite, which is found in interstellar space, has N ~ 1.4 x 10%° cm~
and y >~ 5 x 10'2 s~! so the direct-current conductivity becomes o =~
7 x 10" s71; it is two orders of magnitude smaller than for copper. Graphite
is a reasonable conductor only when the electrons move in the basal plane.

3

1.5.3 Electromagnetic waves in a plasma with a magnetic field

In the presence of a magnetic field, wave propagation is generally complicated.
We consider the fairly simple situation when a plane wave with electric vector
E = (E,, Ey,0) travels without attenuation through a plasma parallel to a
constant magnetic field B = (0, 0, B) oriented in the z-direction. The trajectory
r(t) = (x, y,0)(¢) of an electron follows from integrating the equation of motion,
F = m.¥, where F is the Lorentz force of (1.1),

. e eB . . e eB
X=—FE:+ y y=—E, -
me mec Mme mecC

. (1.124)

The variable magnetic field of the wave is neglected. If the wave is linearly
polarized, it can be regarded as a superposition of two oppositely circularly
polarized waves. For example, if the electric vector stays along the x-axis,

. 1 .
E:@Qmmfwzim¢m+anMmfm.

We, therefore, put
r+ =x=xiy Er=E;+IiE,

and interpret the (x, y)-plane as a complex plane, and E4 and E_ as the electric
vectors of two circularly polarized waves associated with the electron trajectories
r4(t) and r_(¢). It follows from (1.124) that

. e . €
r+ =—FE4+ Fi
Me MeC

Fi.
The solution to this differential equation is

r e/me E
+=———£FEt
0? £ wweye

with the cyclotron frequency
eB
Weye = —. (1.125)
MeC
A circularly polarized wave makes an electron rotate. The presence of the
magnetic field B modifies the orbit, and the modification is different for clockwise
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and anti-clockwise rotation. If there are N electrons per unit volume, their motion
implies a current J1 = o4 E+ = Nery, where the conductivity

,Ne2/me
j— /e

oy = .
W F Weye

Without damping, the optical constant n> = &;. The dielectric permeability ¢ is
given in (1.115) with ¢q = 1, therefore,

2
w, —1
ni:l——"(lﬂ:@) . (1.126)
[0)]

We conclude that the two circularly polarized waves travel with different
phase velocities vpn, = c¢/n+. This leads to a change in the direction of the
polarization vector of the linearly polarized wave. This effect is called Faraday
rotation.

1.5.4 Group velocity of electromagnetic waves in a plasma

A one-dimensional wave package is a superposition of monochromatic waves (see
(1.36)):

u(x,t) = /oo A(K) - e/ =D gk (1.127)

—00

in which the amplitude A(k) has a sharp peak at some wavenumber k = ky. We
therefore develop the dispersion relation w = w(k) around ko,

dow
w (k) =wo+ﬁ(k—ko). (1.128)

Here wyp = w (ko) and the derivative dw/dk is evaluated at k = kg. At the
time ¢ = 0, the wave package has the form

u(x,0) = /oo AK)e™ dk.

Inserting (1.128) into (1.127) gives

u(x,t) = exp |:i (Z—C;ko — wo) tj| f_z A(k) exp |:ik (x — Z—it)] dk

=C-u(x',0) (1.129)

with
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Therefore, as the factor C is purely imaginary and irrelevant, the wave
package travels with the group velocity

_do
Codk’
According to (1.122), for a plasma without damping

v =d—w=c-,/l—a)2/a}2<c. (1.131)
£ dk P =

For the product of group and phase velocity vph = w/k (see (1.44)),

vy (1.130)

Uph - Vg = 2. (1.132)

1.6 Polarization through orientation

The polarization which we have modeled with the help of the harmonic oscillator
of section 1.3 is due to the deformation of atoms in the sense that their internal
charges are shifted relative to each other. In this section, we consider molecules
with an intrinsic dipole moment and a rigid charge distribution that are allowed
to rotate. This process is principally relevant to gases and liquids and only
marginally to solids, provided the molecules are sufficiently ‘round’ so that they
can turn and are not hooked too strongly to their neighbors. However, the analysis
which we develop here also applies to the alignment of atomic magnets and we
will use the results later in chapter 11 on grain alignment.

1.6.1 Polarization in a constant field

An atom or molecule with a dipole moment p in an electric field E has a potential
energy U that depends on orientation,

U=—-p-E=—pEcosb (1.133)

where 0 is the angle between the vectors p and E, their lengths being p and E.
The potential energy is at its minimum when the dipole moment lines up with the
field and 6 = 0.

The atoms are never perfectly aligned because they are tossed around by
the motions of their neighbors. In thermal equilibrium at temperature 7, the
distribution of orientations is expressed by the Boltzmann factor e Y/¥T If
f(6) dO denotes the number of atoms that have angles between 6 . . . 6 4+ d6, then

f©) = foe VKT = foePEeosb/kT (1.134)
The average value of cos 6 follows from integrating f(6) over all directions,

_ [ f©®)cosbdQ

(cos0) = 7640 (1.135)
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where d2 is an element of the solid angle. If there are N dipoles per unit volume,
the polarization P in the direction of E equals

P = Np{cosb). (1.136)

epEcos&/kT

In our particular case, where f(6) , the mean cosine is given by

. PE
(cos 9) (x) with x T

where L(x) denotes the Langevin function:

X )C3

1
L(x)=coth(x)—— == — = +.... 1.137
(x) = coth(x) — ==z — 7=+ ( )
We see that the strength of the net polarization P depends on temperature.
Easy to handle and relevant to our applications are weak fields (pE < kT) for
which
F© =14+ 22 cosp (1.138)
= — —cosf |. .
4w kT
f(6) is now almost constant, all directions are almost equally likely and the
average angle is
pE
kT
An identical formula holds for magnetic dipoles (dipole moment m) in a
magnetic field. One just has to replace pE by mB.

(cosO) =

1.6.2 Polarization in a time-variable field

The distribution function f for the orientation of dipoles in the case of a time-
variable field is considerably more complicated. It now depends not only on the
angle 6 between dipole moment and field but also on time, so we have to write
f(0,1) instead of f(0). The time enters into f for two reasons. First, the field
exerts on each dipole a torque

T = pEsiné (1.139)

which makes it rotate. The rotation speed 6 is assumed to be proportional to the
torque 7, SO
=100 (1.140)

where ¢ is a friction coefficient. Second, there is Brownian motion because
the dipoles are jostled about in collisions. We now sketch how one derives an
expression for the distribution function leaving aside the mathematical details. Let
f(@,1)d2 be the number of dipoles whose axes fall into a small solid angle d2
and make an angle 8 with respect to the field E. The directions of the individual
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dipoles vary smoothly with time due to Brownian motion and the alternating
electric field. One computes the change

A= fdQst

in the number of dipoles (8, ) d<2 over the time interval §¢. The interval &7 is
chosen long enough so that the dipole axes manage to escape from d<2 but also
sufficiently short so that their directions are modified only by a small angle. The
change A is split into a contribution due to Brownian motion and one due to the
field

A = Agrown + Afield-

e To evaluate Aprown, One can restrict the discussion to the dipoles in the
vicinity of d€2, because ¢ is small. This leads to an expression for Agrown
that depends on f and its spatial derivatives times the mean square angular
distance (¢?) which the axis of an individual dipole travels during the time
8t. But (¢?) is known: for Brownian motion (¢2) = kT8t /4¢.

e The other term Agelq is much easier to calculate. The axes are turned at an
angular velocity 6 by a variable torque 7 (see (1.140)) that tries to align the
moments with the field. The difference in the number of axes that leave and
enter the solid angle d€2 is Afeld-

Altogether, Debye [Deb29] found for the time derivative of the distribution

function

sin6@ 90 200

The first term in brackets on the right-hand side of (1.141) is due to Brownian
motion, the second term due to the rotation of the dipoles by the field.

. 1 8|:. ( of ):|
(f=———|sin0 (kT==+1f)|. (1.141)

1.6.3 Relaxation after switching off the field

The average orientation in a constant time field is described by the Maxwell—
Boltzmann equation (1.134). It does of course not depend on time, so f vanishes.
We may convince ourselves that (1.134) is, indeed, a solution to (1.141) for
f=0.

Suppose now that the field is suddenly switched off at time r = 0. Then
for t > 0, the torque 7 is absent and the orientations begin to randomize; after
a while, complete disorder is established. This process is called relaxation and
governed by the equation

. 1 o 0
if:—_ — sin@—f (1.142)
kT sin6 06 00

which follows from (1.141) for T = 0. To solve (1.142), we try a distribution
function

f@,0H=1 +<p(t)p—EOcos0
kT
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which is similar to (1.138) but for the relaxation function ¢(¢) and the factor
N /4m which has been dropped. Substituting f (0, t) into (1.142) yields

2kT

pt)=e ¢ ' (1.143)

The form of the relaxation function implies exponential decay. The system
relaxes from statistical alignment in a constant field to random orientation on a
time scale

¢
trel = ——. 1.144
rel T ( )

1.6.4 The dielectric permeability in Debye relaxation

In the presence of an harmonic field E = Ege™'*’, the distribution function f
depends explicitly on time. The Maxwell-Boltzmann formula (1.134) is then no
longer applicable and needs to be generalized. It is easy to find a solution to
Debye’s equation (1.141) when the variable field is weak, i.e. when

PEy < kT.

Naturally, we try an ansatz for f in the spirit of (1.138), again without the
factor N /4w,
. PDE
0,0 =1+ Aeiet % cos 6.

When inserted into (1.141) and terms with Eg are neglected, it yields
1
A= P E——
1 — iwtel
So the full expression for the distribution function in a variable weak field is
—iwt

pEo e
fO,)y=1+ T cosf - . (1.145)

For a static field (w = 0), we are back to Maxwell-Boltzmann. At very high
frequencies, f becomes constant and is independent of the direction of the field.

We can now compute the polarization P of such a medium according to
(1.136). For {(cos®8) in (1.135) we have to use the distribution function from
(1.145). Because P = x E, we obtain for the susceptibility x (or the dielectric
permeability €) in the case of rotational polarization:

e—1 Np> 1 sz[ 1 Wl
X = =

dn " 3KT 1— it 3KT | 1+ 222, e

rel

] (1.146)

This function is plotted in figure 1.5. It should be compared with &(w) for
a dielectric and a metal, i.e. with (1.77) and (1.123). We have here the novelty
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Figure 1.5. The dielectric permeability € = | + iy after (1.146) and the optical constant
m = n + ik for the case that polarization is due to the alignment of molecules with a
permanent dipole moment p; here we put 47 N p2 /3kT = 1. Shown are n, k and &] — 1
and ¢&.

that ¢ depends on temperature. For small frequencies, one may approximate the
imaginary part of x by

Wirel ; sz (1.147)
~ =—1. .
X2 = K0T S oot X0 = 3=

rel

xo is the static value of x(w) and refers to a time constant field. The
dissipation rate is proportional to w, inversely proportional to temperature and
otherwise determined by the relaxation time |-

Let us consider water as an example of rotational polarization. The water
molecule has an intrinsic electric dipole moment as the three nuclei in H,O form
a triangle with an obtuse angle of 105°. Therefore the center of positive charge,
which lies in the midst between the hydrogen atoms, and the center of negative
charge, located near the oxygen atom, do not coincide, resulting in a permanent
dipole moment p = 1.9 Debye.

Liquid water has, at room temperature, a viscosity n ~ 0.01 gcm™! s~1. If
the water molecules are approximated by spheres of radius a, the friction constant
¢ follows from the viscosity using the equation for the torque (1.139) and the force
F of Stokes’ law (see (9.41)),

¢= "~ T snad. (1.148)
0 0

Fora ~ 1 A, tye] =~ 2 x 10712 s approximately. The associated frequency

tr;l lies in the microwave region. With the support of experimental data, one can
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improve the estimate to #e] >~ 8 X 10712 s but the first guess was not bad. As the
density of water is N = 3.3 x 10?2 cm™3, at room temperature we have roughly
Np?/3kT ~ 1. When water freezes, the molecules find it hard to adjust their
orientation because they cannot rotate freely in a solid. Then the viscosity and
the relaxation time jump by a large factor and the frequency at which ¢; has its
maximum drops and polarization due to Debye relaxation becomes unimportant.



Chapter 2

How to evaluate grain cross sections

In section 2.1, we define cross sections, the most important quantity describing
the interaction between light and interstellar grains. Section 2.2 deals with the
optical theorem which relates the intensity of light that is scattered by a particle
into exactly the forward direction to its extinction cross section. In sections 2.3
and 2.4, we learn how to compute the scattering and absorption coefficients of
particles. The problem was first solved in the general case for spheres by G Mie
[MieO8] and the underlying theory bears his name. Section 2.5 is concerned
with a strange but important property of the material constants that appear in
Maxwell’s equations, such as ¢ or . They are complex quantities and Kramers
and Kronig discovered a dependence between the real and imaginary parts. In the
final section, we approximate the material constants of matter that is a mixture of
different substances.

2.1 Defining cross sections

2.1.1 Cross section for scattering, absorption and extinction

For a single particle, the scattering cross section is defined as follows. Consider a
plane monochromatic electromagnetic wave at frequency v and with flux Fy. The
flux is the energy carried per unit time through a unit area and given in (1.39) as
the absolute value of the Poynting vector. When the wave hits the particle, some
light is scattered into the direction specified by the angles (0, ¢) as depicted in
figure 2.1. The flux from this scattered light, F (6, ¢), which is received at a large
distance r from the particle is obviously proportional to Fy/r2; we, therefore,
write

F{
F(0,¢) = kz—fzc(e, ®). 2.1)

The function £(6, ¢) does not depend on r nor on Fy. We have included in
the denominator the wavenumber

k="
)

44
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¢

P, —— -

F(6,0)

Figure 2.1. A grain scatters light from a plane wave with flux F into the direction (6, ¢).
In this direction, the scattered flux is F (6, ¢).

to make £(60, ¢) dimensionless; the wavelength X is then the natural length unit
with which to measure the distance r.

e The cross section for scattering of the particle, C5?, follows from the
condition that FpC*® equals the total energy scattered in all directions per
unit time. Consequently,

“a 1 r 1 2 T r
™= — ©@,9)d2 = —/ dqbf do L, ¢)sinb
k2 47 k2 0 0

with the element of solid angle
dQ =sinfdodo. (2.2)

The scattering cross section C*“® has the dimension of an area. It is assumed
that the frequency of radiation is not changed in the scattering process.

e Besides scattering, a particle inevitably absorbs some light. The
corresponding cross section C2 is defined by the condition that FoC?
equals the energy absorbed by the particle per unit time.

e The sum of absorption plus scattering is called extinction. The extinction
cross section,

Xt — Cabs 4 Csea (2.3)

determines the fotal amount of energy removed from the impinging beam of
light.
e The albedo is defined as the ratio of scattering over extinction,

CSCa

A= Cext’

(2.4)

It lies between 0 and 1; an object with a high albedo scatters a lot of light.

All these various cross sections do not generally depend on the radiation
field, the temperature or density of the dust material (which only changes very
little anyway). In this respect, it is much simpler to calculate cross sections of
grains than of gas atoms.
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2.1.2 Cross section for radiation pressure
2.1.2.1 Phase function and asymmetry factor

In equation (2.1), £(9, ¢) specifies how the intensity of the scattered radiation
changes with direction. We form a new function f (6, ¢), which is proportional
to £(6, ¢) but normalized so that the integral of f over all directions equals 47 :

f0.9)d2=4n
4
and call it the phase function. An isotropic scatterer has f =1.

For spheres, there is, for reasons of symmetry, no dependence on the angle
¢, only on 6. It is then convenient to have a phase function f which has cos6 as
the argument, so we put f(cosf) = f(6). Again f = 1 for isotropic scattering
and the normalization condition is

+1
1=1 1 f(x)dx. (2.5)

When one does not know or does not need the full information contained
in f(cosf), one sometimes uses just one number to characterize the scattering
pattern. This number is the asymmetry factor g, the mean of cos6 over all
directions weighted by the phase function f(cos8),

+1
g =(cosf) =1 f(x)xdx. (2.6)
-1

It is easy to verify that g lies between —1 and 1.

When scattering is isotropic, and thus independent of direction, g = 0.

When there is mainly forward scattering, g is positive, otherwise it is

negative. In the limit of pure forward scattering, ¢ = 1; for pure

backscattering g = —1.

2.1.2.2 The momentum imparted on a grain by radiation

Electromagnetic radiation also exerts a pressure on a grain. A photon that is
absorbed deposits its full momentum hv/c. If it is scattered at an angle 6 (see
figure 2.1), the grain receives only the fraction (1 — cos ). Therefore, the cross
section for radiation pressure, C™, can be written as

CP =(C™ —g.C5%, 2.7

As g can be negative, although this case is unusual, C' may be greater than
C*, To obtain the momentum transmitted per second to the grain by a flux F,
we have to divide by the velocity of light ¢, so the transmitted momentum is

F.C?
-

2.8)
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2.1.3 Efficiencies, mass and volume coefficients

The definition of the cross section of a single particle can be extended to 1 g
of interstellar matter or 1 g of dust, or 1 cm® of space. We use the following
nomenclature (omitting the dependence on frequency):

The cross section of a single particle is denoted by the letter C.
Efficiency, Q, is the ratio of C over the projected geometrical surface area
Ogeo:
C
0= 2.9)

Ogeo

For spheres, 0geo = wa?, where a is the grain radius. There are efficiencies
for absorption, scattering, extinction and radiation pressure, again

Qext — Qabs + Qsca (2.10)
QP = Q™ _g. 052, (2.11)

With the exception of spheres, ogeo as well as the Cs and Qs change with the
direction of the incoming light.

e Mass coefficient, K, is the cross section per unit mass. It refers eitherto 1 g
of dust or to 1 g of interstellar matter. The latter quantity is some hundred
times smaller.

e Volume coefficient is the cross section per unit volume and also denoted by
the letter K. It refers either to 1 cm? in space (which typically contains
10~23 g of interstellar matter and 102> g of dust) or to 1 cm? of dust material
with a mass of about 1 g.

2.2 The optical theorem

When a beam of light falls on a particle, some light is absorbed by the grain,
heating it, and some is scattered. The optical theorem asserts that the reduction of
intensity in the forward direction fully determines the particle’s extinction cross
section.

2.2.1 The intensity of forward scattered light

Consider a plane electromagnetic wave of wavelength A propagating in a vacuum
in the z-direction with electric field

Ej = 'keen, (2.12)

For easier writing, we neglect the vector character of the field and assume
a unit amplitude. When the wave encounters a grain located at the origin of
the coordinate system, some light is absorbed and the rest is scattered into all



48 How to evaluate grain cross sections
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Figure 2.2. Light enters from the left, is scattered by a particle and falls at a large distance
r through a disk of diameter d. The x-axis is perpendicular to the (y, z)-plane.

directions (6, ¢). At a distance r which is large when measured in wavelength
units (kr = 27rr/A > 1), the scattered field can be presented as

i(kr—owt)
E.=50,¢)——. (2.13)
—ikr

The information about the amplitude of the scattered wave lies in the
complex function S(0, ¢), the exponential term contains the phase. Because
|Eg|? is proportional to the scattered intensity, comparison of (2.13) with (2.1)
tells us that | S(0, ¢) |2 corresponds to £(60, ¢). As before, conservation of energy
requires E; o< 1/r. The wavenumber k = 2m /A is introduced to make S(6, ¢)
dimensionless, the factor —i in the denominator is just a convention.

Let us now determine the flux F through a disk of area A far behind the
grain. The disk has a diameter d, so d? ~ A. Its center coordinates are (x =0,
y = 0, zo). It lies in the (x, y)-plane and is thus oriented perpendicular to the
z-axis. All points (x, y) in the disk fulfil the inequalities

lx] < zo Iyl < zo
and their distance to the particle is, approximately,

x2 4+ y2
2z0

r >~ zo+

The radiation that goes through the disk consists of the incident light (Ej)
and the light scattered by the particle (Es). The two fields interfere and to obtain
the flux through the disk, they have to be added:

sz |Ei + E5|>dA. (2.14)
A
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Dividing (2.13) by (2.12), we get

eik(rfz)
Es = EiS©O, ¢p)— (2.15)
—ikr
and for the sum of the incident and scattered field
SO 2 2
Bt Eo=E 11— 5@ e (22 (2.16)
ikzo 220

Here we put
S(0) =S50 x=0,9¢)

because d < zp, so the disk as viewed from the grain subtends a very small angle.
Therefore, in this expression for |E; + Es|2, we may neglect terms with z, 2 In
this way, we find

2| E;)? N 2 4y?
E+ E = |5 - 28 Re{%ew(l‘kﬂ :

kzo 220
To extract the flux F from (2.14), we have to evaluate the integral (see

(A.27))
0 ka2 00 ikx? 2 2
/ e %0 dxdy= |:f e %o dx] = iﬂ. 2.17)

—c0 0 k
Of course, the disk does not really extend to infinity. But the integral still
gives more or less the correct value as long as the disk diameter is much greater

than \/zoA = /2mz0/Xk, i.e. it is required that

A <d~VA <Kz

We, therefore, obtain the flux
5 4

Now without an obstacle, the flux through the disk would obviously be
A|E;|* and thus greater. The light that has been removed by the particle
determines its cross section for extinction:

ext )‘2
C =;mw@} (2.18)

This is the grand extinction formula, also known as the optical theorem. It
is baffling because it asserts that C**, which includes absorption plus scattering
into all directions, is fixed by the scattering amplitude in the forward direction
alone. The purely mathematical derivation of (2.18) may not be satisfying. But
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Figure 2.3. Light passes through a plane-parallel slab of thickness / with one face lying
in the (x, y)-plane. The slab is uniformly filled with identically scattering particles. We
determine the field at point P with coordinates (0, 0, z).

obviously C*** must depend on S(0): the extinction cross section of an obstacle
specifies how much light is removed from a beam if one observes at a large
distance, no matter how and where it is removed (by absorption or scattering).
If we let the disk of figure 2.2 serve as a detector and place it far away from the
particle, it receives only the forward scattered light and, therefore, S(0) contains
the information about C®*t,

2.2.2 The refractive index of a dusty medium

One may also assign a refractive index to a dusty medium, like a cloud of grains.
Let a plane wave traveling in the z-direction pass through a slab as depicted
in figure 2.3. The slab is of thickness / and uniformly filled with identically
scattering grains of number density N. When we compute the field at point P
on the z-axis resulting from interference of all waves scattered by the grains, we
have to sum over all particles. This leads to an integral in the (x, y)-plane like the
one in (2.17) of the preceding subsection where we considered only one particle.
But there is now another integration necessary in the z-direction extending from
0 to /. Altogether the field at P is:

SO) (1 1 [*® k(2 4y2)
Ei+ Es=Ei{l—N— dz — dxdye
ikz Jo ZJ_o
)\‘2
=FE(1-S0)—NI]. (2.19)
2

The main contribution to the double integral again comes from a region of area
zoA (see figure 2.2 for a definition of zg). We see from (2.19) that the total field
at P is different from the incident field E; and it is obtained by multiplying E; by

the factor 5

1 - S(O);—HNZ. (2.20)
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Not only do the grains reduce the intensity of radiation in the forward
direction but they also change the phase of the wave because the function §(0)
is complex. We can, therefore, assign to the slab an optical constant (with a bar
on top)

m=7n+ik.

The field within the slab then varies according to (1.41), like e!&mz=®1)
If the slab were empty containing only a vacuum, it would vary like e!®¢=®")
Therefore, the presence of the grains causes a change in the field at P by a factor
X @™=1) When 7 is close to one (Jm — 1] < 1), which is certainly true for any
interstellar dust cloud,

eiklm=1) 1 _ ikl(m —1). 2.21)

Setting (2.20) equal to (2.21) yields

_ 2n N

n—1= = Im{S(0)} (2.22)
— 2n N
k= — 3 Re{S(0)}. (2.23)

The refractive index of the slab, m = 7 + ik, refers to a medium that consists
of a vacuum plus uniformly distributed particles. The way m is defined, it has the
property that if the particles are pure scatterers, k is nevertheless positive. This
follows from comparing (2.18) and (2.23) because the extinction coefficient CX!
of a single grain does not vanish. A positive k implies some kind of dissipation,
which seems unphysical as no light is absorbed. One may, therefore, wonder
whether 77 and k obey the Kramers—Kronig relation of section 2.5. However, they
do, as one can show by studying the frequency dependence of S(0).

To find the refractive index m = 7 + ik from (2.22) and (2.23) for a cloud
filled with identical spheres of size parameter x = 2mwa/X and refractive index
m = n + ik, one can calculate S(0), with m and x given, from (2.65).

2.3 Mie theory for a sphere

Scattering and absorption of light by spheres is a problem of classical
electrodynamics. Its full derivation is lengthy and we present only the sequence
of the main steps. Missing links may be filled in from the special literature (for
instance, [Boh83, Hul57, Ker69]). The reader not interested in the mathematics
may skip the next pages, or even cut them out carefully, and resume the text
with the last subsection entitled Absorption and scattering efficiencies. What is
in between can be condensed into one sentence: In Mie theory, one finds the
scattered electromagnetic field and the field inside the particle by expanding both
into an infinite series of independent solutions to the wave equation; the series
coefficients are determined from the boundary conditions on the particle surface.



52 How to evaluate grain cross sections

2.3.1 The generating function

Consider a spherical particle in vacuum illuminated by a linearly polarized
monochromatic plane wave of frequency v = w/2m. Let E; and H; describe
the incident field. We denote the field within the particle by E;, H; and outside
of it by Eo, Hy. The field outside is the superposition of the incident and the
scattered field (subscript s),

E> =E +E (2.24)
H, — H; + H,. (2.25)

The further calculations are greatly simplified by the following relations. Let
¢ be an arbitrary constant vector and i a solution to the scalar wave equation

AY +K2Y =0 (2.26)
where
12— a)zus
62

from (1.41) (or (1.116) in the case of conductivity). All material properties are
taken into account by the wavenumber k. Then the vector function M, defined by

M = rot(cyr) (2.27)
is divergence-free (div M = 0) and a solution to the vector equation
AM + kK*M = 0. (2.28)

This is easy to prove either by the standard formulae of vector analysis or
component—wise. The vector function N given by

N= % rotM (2.29)
also obeys the wave equation
AN +Kk*N =0 (2.30)
and M and N are related through
rotN = kM. (2.31)

2.3.2 Separation of variables

In this way, the problem of finding a solution to the vector wave equation reduces
to finding one for the scalar wave equation. We start with the vector function

M = rot(ry). (2.32)
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M is tangential to the sphere of radius |r| because the scalar product of r and
M vanishes: r-M = 0. In spherical polar coordinates (r, 8, ¢), the wave equation
for i reads:

1o [ Lov 19 (. oy U A
10 (L0 9 (no )¢ LV 2y o 233
r2dr (r r ) T 25ing 90 (sm > T inte d¢? Ty 23

We make an ansatz of separated variables

U(r,0,¢) =R(@r)-T©O) - P(9). (2.34)

Arranging (2.33) in such a way that its left-hand side depends only on » and
its right-hand side only on 6 and ¢, both sides must equal a constant value, which
we write as n(n + 1). In the same spirit, we can separate 6 and ¢. This leads to
the three equations:

d*P

2
1 d (09T) . it D) m? -0 (2.36)
— | sinf — - = :
sin6 do 6 e sin20
d ( ,dR 5
E(r E)—i—[k r—n(n+1)]R—O. (2.37)

The linearly independent solutions to (2.35) are sin m¢ and cos m¢. Because
they must be single-valued (P(¢) = P(¢ + 2m)) it follows that m =
0,£1,£2,.... Equation (2.36) is satisfied by the Legendre functions of the first
kind P}"(cos#), where n and m are integer and m € [—n, n]. Formula (2.37) has,
as solutions, the spherical Bessel functions of the first (j,) and second (y,) kind

. T

Jn(p) = ‘/%Jﬁ%(p) (2.38)
T

yn(p) = ‘/gYH%(p) (2.39)

where p = kr and n + % is half-integer. Altogether we obtain
Yemn = cos(me) - P (cos0) - z, (kr) (2.40)
Yomn = sin(me) - P (cos0) - z,(kr). (2.41)

Here z, may either equal j, or y,. In the subindices of i, e stands for even
(associated with cosine terms) and o for odd (sine terms). As v is the generating
function for M, we get, from (2.27),

Meyn = rot(r¥emn) (2.42)
Momn = rot(x¥omn)- (2.43)

Nemn and Ny, then follow from (2.29).
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2.3.3 Series expansion of waves

In the next step, one expands the incident, internal and scattered waves into the
spherical harmonics Meyn, Momn, Nemn and Nopy,. Starting with the incident
plane wave E;, the not straightforward result is

> 2n+1
M _ N - -
E; = n§=1 E, (Moln - zNe]n) with E, = Eoz”n(n T (2.44)

where the scalar E(y denotes the amplitude of the incident wave. The awkward
expression (2.44) for the simple incident wave is the consequence of using
spherical coordinates which are not suited for planar geometry; but, of course,
these coordinates are the right ones for the scattered light. The superscript (1)
at M and N signifies that the radial dependence of the generating function ¢ is
given by j, and not by y,; the latter can be excluded because of its behavior at
the origin. Note that all coefficients with m # 1 have disappeared. For the rest of
this paragraph, the symbol m is reserved for the optical constant.
For the internal and scattered field one obtains

o0

Ei= Y En(caM), —id,N{}) (2.45)
n=1
o0

E = Y Ey(a,N)), — b,M{}). (2.46)
n=1

Superscript (3) denotes that the dependence of the generating function is given
by the spherical Hankel function hgl)(z) = jn(z) + iyn(z) of order n. At large
distances (kr > nz), it behaves like

(_l-)neikr

hV (kr) ~ -

(2.47)
The magnetic fields H;, Hg follow from the corresponding electric fields by
applying the curl after Maxwell’s equation (1.25).

2.3.4 Expansion coefficients

The expansion coefficients in (2.45) and (2.46) follow from the boundary
conditions of the electromagnetic field at the surface of the grain. To derive the
latter, consider a small loop in the shape of a rectangle with two long and two
very much shorter sides. One long side lies just outside the particle in vacuum
and runs parallel to the surface S of the grain, the other is immediately below the
boundary within the particle. When we integrate rotE = ({wu/c)H from (1.32)
over the rectangular loop employing Stokes’ theorem (A.15) and make the loop
infinitesimally small, the integral vanishes so that the tangential components of E
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must be continuous at the boundary of the grain. Applying the same procedure to
equation (1.33), or to (1.113) for metals, we get the same result for the tangential
component of H. Therefore, at all points x € §

[E2x) —Ei(x)] xe=0 (2.48)
[Hy(x) —H;(x)] xe=0 (2.49)

where e is the outward directed normal to the surface S. Substituting for E;, Hp
from (2.24) and (2.25) yields for the components of the fields

E1p = Eig + E
Ep = Eip + Esg
Hip = Hig + Hyg
Hiy = Hip + Hsp.

This set of equations leads to four linear equations for the expansion
coefficients a,, b,, ¢, and d, of the internal and scattered field (see (2.45) to
(2.46)). If A is the wavelength of the incident radiation, m the complex optical
constant of the sphere, a its radius, and

2ma
X =—
A

the size parameter, then a, and b, are given by

Y (x) - Y (mx) — mry (mx) - ¥, (x)

n = (2.50)
En(x) - Yy, (mx) — mir, (mx) - &, (x)
_ myn(x) - (mx) — g (mx) - 4, (x) 2.51)
" mn(x) g (mx) — Y (mx) - 5 (x) ‘
In the trivial case, when the optical constant m = 1, the scattered field

disappears as a, = b, = 0. The complex functions

Vn(z) = zju(2)

Y (2) = 2jn—-1(2) — nju(2)

in(2) = z[jn(@) + iya (@] = 2h{P 2)

0n(2) = 2ljn=1(@) + iyn-1(2)] = nlju(2) + iya(2)]

may be calculated from the recurrence relations [Abr70, section 10.1.19]

2n —1

Jn(@) = — jn—2(2) + Jn—-1(2)

2n —1

Yu(2) = — yn—2(2) + Yn-1(z)
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starting with [Abr70, sections 10.1.11 and 10.1.12]

. sin z . sinz cosz
Jo(z) = — J1@) = s
Z Z
CcOS Z cosz sing
n@=-— @) =-——-—.
Z b4 Z

When |mx]| is of order 100 or bigger, one encounters numerical difficulties
because the complex Bessel functions contain the term e* which becomes
excessively large. A numerically much superior algorithm is printed in
appendix A of [Boh83].

2.3.5 Scattered and absorbed power

If we imagine the particle to be surrounded by a large spherical and totally
transparent surface A, the energy absorbed by the grain, W,, is given by the
difference between the flux which enters and which leaves the sphere. If S is
the Poynting vector of the electromagnetic field outside the particle,

Cc

S= Re{E; x H}}

8

where E, or Hj is the sum of the incident and scattered field from (2.24) and
(2.25), W, is determined by the integral

Wa = —f S-e.dA. (2.52)
A

Here e, is the outward normal of the surface, and the minus sign ensures that W,
is positive. The Poynting vector S can be considered to consist of three parts:
S =S8 +Ss + Sext
with
Si = (¢/87) Re{E; x H{'}
Ss = (¢/87) Re{Es x H}
Sext = (¢/87) Re{E; x HY + E¢ x H!'}

and, therefore,

—Wa:/Si-e,dA—i—/Ss~erdA+/Sext~erdA.
A A A

The first integral vanishes because the incident field (subscript i) enters and
leaves the sphere without modification. The second integral obviously describes
the scattered energy,

c 2 T . w\ 2 .
Wi= —Re (EsoHgy — Esp HY)r? sin6 db dg. (2.53)
0 0
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The negative of the third integral, which we denote by —Wcyy, is, therefore,
the sum of absorbed plus scattered energy:

Wext = Wa + Ws

2
- Re/ / 1¢H IQH:% — ESQH;;) + Es(pHg)}’ sinf d6 d¢
(2.54)

and thus the total energy removed from the beam at a large distance. According
to our definition in section 2.1, Wj is related to the absorption coefficient of the
particle, C2%, through W, = S;C®*, where §; is the time-averaged Poynting
vector of the incident field. Likewise for the scattering and extinction coefficient,
Wy = S5iC%® and Wexy = SiC.

2.3.6 Absorption and scattering efficiencies

As the fields E; and Eg have been evaluated in (2.44)—(2.46), one obtains from
(2.53) and (2.54) after some algebra the following formulae for the efficiencies of
extinction and scattering:

2 o0
0 = > > @n+1)-Refa, + by) (2.55)
n=1
sca __ 2 - 2 1 2 b 2 2.56
0 —;Z}(n+)~[|an|+|n|]. (2.56)

They must usually be evaluated with the help of a computer. The expansion
coefficients a,, b, are given in (2.50) and (2.51). The asymmetry factor of (2.6)
becomes

= x2Qsca r; |: P Re{a,ani1 +b,byy1} + m Re{anbn}] .

(2.57)

2.4 Polarization and scattering

We introduce the amplitude scattering matrix, define the Stokes parameters and
compute the radiation field scattered into a certain direction. A number of results
in this section are merely summarized, not fully derived but the missing links
concern only the mathematics.

2.4.1 The amplitude scattering matrix

Consider a plane harmonic wave propagating in the z-direction and a particle at
the origin of the coordinate system. Some light is scattered by the particle into a
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certain direction given by the unit vector e. The z-axis together with e define what
is called the scattering plane.

The amplitude of the incident electric field E; may be decomposed into
two vectors, one parallel, the other perpendicular to the scattering plane; their
lengths are denoted by Ej) and E;, , respectively. Likewise, one may decompose
the scattered electric field Es, the components being E and Es;. A three-
dimensional model would help visualize the geometrical configuration but a two-
dimensional drawing is no better than words and, therefore, missing.

At a large distance r from the particle, in the far field where r > A, there
is a linear relation between (Es 1, Eq) and (Ejy, Ej)) described by the amplitude

scattering matrix,
Ey) — elkr—o) S 83 Ej) (2.58)
Esi —ikr \(S4 S1J\EL)" )

The factor before the amplitude scattering matrix is the same as in (2.15)
where we considered a scalar field, with only one function S. Here we deal with
vectors and there is an amplitude scattering matrix consisting of four elements S;.
They depend, of course, on the scattering direction, which is specified by the unit
vector e or by two angles, 6 and ¢.

As an example, we work out the scattering matrix of a small grain of unit
volume. If its polarizability « is isotropic, its dipole, p, due to the incident wave
is

p = «E;.
The scattered electric field is given by equation (1.95),

6020{

ESZT(CXEi)Xe.
cr

It is always transverse to e and depends only on e and p (or E;) and not on the
direction k from which the incident wave is coming. With the help of figure 2.4
we can easily figure out that E5j = cos6 E;j and Ej| = E;, so for a dipole

S S3\_ .3 (cosf 0O
<S4 S1>_ lku( 0 1>. (2.59)

2.4.2 Angle-dependence of scattering

In the case of a sphere, the amplitude scattering matrix (2.58) also acquires a
diagonal structure as the elements S3 and S4 vanish:

Ea) o€ (8 0 (E (2.60)
Es1 —ikr \LO 8 Ei )’ )
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Figure 2.4. An incident wave with electric field E; excites a dipole p and is scattered into
the direction of the unit vector e. The scattered wave has the electric field Eg. The incident
wave travels in the direction of the wavenumber k. Both E; and Es lie in the scattering
plane which is defined by e and k. Alternatively (this scenario is not shown in the figure),
E; and p may be perpendicular to the scattering plane given by the same vectors k and e.
Then Es is also perpendicular to the scattering plane.

S1, 82 depend only on & = cos 8, where 6 = 0 denotes the forward direction.
They can again be expressed with the help of the expansion coefficients a,, b,
from (2.50) and (2.51),

2n + 1
S1 = ——(apmy + byt 2.61
1 ;n(n+1)(an n+ bnTh) ( )
2n + 1
S = ——(anty + by 2.62
2 ;n(n+1)(an n + bnTtn) ( )
with 1 1
P (cosb) dP
) =--1—-= 0) = —L2L.
7, (cos 6) o T (cos 0) 70
The functions 7, and 7, are computed from the recurrence relations
2n —1 n
Tn () = UTTp—] — Tn—2
n—1 n—1
(W) = numy, — (n+ Dy
beginning with
7o =0 o = 1.
e  For unpolarized incident light (Ej; = Ej1), the intensity of the radiation
scattered into the direction 6 is given by
Sti(cosf) = 1 [|S1 2+ |S2|2]. (2.63)

The factor before the matrix in (2.60) has been negelected. The notation
S11 comes from equation (2.76); in (2.1) the same quantity was denoted L.
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When integrated over all directions,
b
/ S11(cos @) sinf d0 = Fx* Q5.
0

e The angle-dependence of the normalized phase function f(cos ) (see (2.5))
is related to S1; through

2 nsca

4

S11(cosf) = 2 £(cos ). (2.64)

e We now have two ways to determine the extinction cross section C*' =
nazQeXt of a grain. Either from (2.55) or by inserting S1(0) = S2(0) of
(2.61) into the general extinction formula (2.18). Comparison of the two
formulae yields

$1(0) = $2(0) = 3 Y "(2n+ 1) - Re{a, + by} (2.65)
n
e  We add for completeness the formula for the backscattering efficiency. It is
defined by
S11(180°
oback — 4L2) (2.66)
X

and it is a useful quantity in radar measurements or whenever a particle is
illuminated by a source located between the particle and the observer. Its
series expansion is

2

0"k = — |3 (=1)"@n+ 1) - (an — b)) - (2.67)
n=1

1
x2
For a large and perfectly reflecting sphere, Q2 = 1.

2.4.3 The polarization ellipse

Consider a plane harmonic wave of angular frequency w, wavenumber k and
electric field '
E(X, t) — EO . el(k-X—wI)

(see (1.36) and (1.37)) that travels in the z-direction of a Cartesian coordinate
system. The amplitude E is, in the general case, complex,

E)=E| +iE,

with real E| and E,. At any fixed z, the real part of the electric vector E rotates
at frequency w and the tip of the vector describes in the (x, y)-plane, which is
perpendicular to the z-axis, an ellipse,

Re{E} = E| coswt + Ej sin wt. (2.68)
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The sense of rotation changes when the plus sign in (2.68) is altered into
a minus sign, i.e. when E; flips direction by an angle w. There are two special
cases:

e  Linear polarization. For E; = 0 or E; = 0, or when E1, E; are linearly
dependent, the ellipse degenerates into a line. By adjusting the time ¢,
it is always possible to make Eg real. At a fixed location z, the electric
vector swings up and down along a straight line whereby its length changes;
it vanishes when Re{E} switches direction. The field can drive a linear
oscillator in the (x, y)-plane.

e  Circular polarization. The vectors are of equal length, |E;| = |E2|, and
perpendicular to each other, E; - E; = 0. The ellipse is a circle. At a
fixed location z, the electric vector never disappears but rotates retaining
its full length. The circularly polarized wave sets a two-dimensional
harmonic oscillator in the (x, y)-plane (with equal properties in the x- and
y-directions) into a circular motion; it transmits angular momentum.

One can combine two linearly polarized waves to obtain circular polarization
and two circularly polarized waves to obtain linear polarization. The magnetic
field has the same polarization as the electric field because E and H are in phase
and have a constant ratio.

2.4.4 Stokes parameters

The polarization ellipse is completely determined by the length of its major and
minor axes, a and b, plus some specification of its orientation in the (x, y)-plane.
This could be the angle y between the major axis and the x-coordinate. Instead
of these geometrical quantities (a, b, y), polarization is usually described by the
Stokes parameters I, Q, U and V. They are equivalent to (a, b, y) but have the
practical advantage that they can be measured directly. We omit the underlying
simple mathematical relations as well as the description of the experimental setup.

When a plane harmonic wave is scattered by a grain, the Stokes parameters
of the incident (subscript i) and the scattered wave (subscript s) are linearly related
through

I St Sz Sz Suis I
Os 1 S0 S22 Sz S 0Oi

- . 2.69
Us K272 | S31 S32 533 S Ui (2.69)
Vs Sa1 Sa2 S43 Sus Vi

The Stokes parameters of the scattered light as well as the matrix elements
refer to a particular scattering direction (6, ¢); r is the distance from the particle.
The matrix §;; contains no more information than the matrix in (2.58) and,
therefore, only seven of its 16 elements are independent, which corresponds to
the fact that the four elements S; in the matrix of (2.58) have four absolute values
|S;| and three phase differences between them.
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Only three of the four Stokes parameters are independent as for fully
polarized light
1’=0*+U%+V2% (2.70)

Unpolarized light has

and for partially polarized light, one has, instead of the strict equality
I? = Q% + U? 4 V2, an inequality
1’> 0+ Ut +v2
For unit intensity (I = 1), linearly polarized light has
V=0 Q =cos2y U =sin2y
so that
0>+ U?=1.

The degree of linear polarization is defined by

- <1. @2.71)

It can vary between 0 and 1.
Circular polarization implies

the sign determines the sense of rotation of the electric vector. The degree of

circular polarization is
1%

1
Even when the incident light is unpolarized, i.e. when

<= <. (2.72)
0i=Ui=Vi=0 (2.73)

it becomes partially polarized after scattering if S>1, S31 or S41 are non-zero.
Indeed, dropping the factor 1/k*r? in (2.69), we get

Iy = S Os = S11; Us = S$311; Vs = Sq1 1;. 2.74)

2.4.5 Stokes parameters of scattered light for a sphere

In the case of a sphere, the transformation matrix (2.69) between incident and
scattered Stokes parameters simplifies to

I St Sz 0 0 I
Os | _ 1 S12 S11 0 0 Oi
v |Tie2| o 0 sy ose|lo ] @

Vs 0 0 —Su 83 Vi
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Out of the 16 matrix elements, eight are non-trivial and they have only four
significantly different values:

Sit = 3(S11> + 152 (2.76)
Sip = 3(1S21> = 1$1%)
S33 = (581 + $>87)
S34 = L(S185 — $287).
Only three of them are independent because
St = Sty + S35+ 83

e  If the incident light is 100% polarized and its electric vector parallel to the
scattering plane so that I; = Q;, U; = V; = 0, we get, dropping the factor
1/k%r2 in (2.75),

ISZ(S]] +S]2)[i Qszls Us=Vs=0~

So the scattered light is also 100% polarized parallel to the scattering plane.
e Likewise, if the incident light is 100% polarized perpendicular to the
scattering plane (f; = —Qj, U; = V; = 0), so is the scattered light and

ISZ(S]] _S12)[i Qs: =1 Us = Vs=0~

e If the incident wave is unpolarized (Q; = U; = V; = 0), the scattered light
is nevertheless usually polarized; in this case,

Is = Si1 1 Os = S121; Us =Vs=0.

When one defines the quantity p as the difference of the intensities |S;|> and
|S>|? divided by their sum,

_ISiIP =18 Si

p= b P2 (2.77)
1S11% + 15212 S

the absolute value | p| is equal to the degree of linear polarization of (2.71).
We will not compose a new name for p but also call it degree of polarization,
although it contains, via the sign, additional information. In the forward
direction, S1(0) = $2(0) and p = 0.

e The sign of p, or of Sy2, specifies the direction of polarization. Usually,
S12 is negative and then linear polarization is perpendicular to the scattering
plane. But Sy2 can, from (2.76), also be positive, as happens for big spheres
(see figures 4.7 and 4.8). Then polarization is parallel to the scattering plane.

In the general case, when the particles are not spherical (anisotropic) and
which is outside the scope of what we calculate here, none of the matrix elements
in (2.69) vanishes. Then the polarization vector can have any inclination towards
the scattering plane and p may also be non-zero in the forward direction.
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2.5 The Kramers—Kronig relations

The formulae of Kramers and Kronig establish a link between the real and
imaginary parts of the material constants, like x, e, 4 or o (see section 1.1).
Their deduction is very abstract and the result baffling. The relations have some
fundamental consequences, however, their practical value is, at present, moderate.

2.5.1 Mathematical formulation of the relations

We have to digress briefly into the theory of complex functions. Let

f@ =u)+iv(z)

be a function of the complex variable z = x + iy. The integral over a path p
in the z-plane, described through the parametrization z(t) = x(¢) + iy(¢) with
o <t < B,is defined by

B
/f(z) dz=/ fz@) -7 () dt. (2.78)
p a

The fundamental theorem of complex functions states that if f(z) is regular
in a region G, i.e. it is single-valued and has a derivative, then the integral over
any closed path p in G vanishes:

/f&Mz=0 (2.79)
p

For the function f(z) we choose

(2.80)

where
g8(2) =g81(2) +ig2(2)

is also a complex function and x¢ a real and positive number. If f(z) is regular
in the upper half of the z-plane, the integral along the closed path p, which is
depicted in figure 2.5, is zero according to (2.79). The path p runs along the x-
axis from left to right, makes a small semicircle of radius § around x¢, and returns
in a big half—circle of radius R to the starting position; we have divided it into
four segments pj to pa.

Now assume that R is very big and that g(z) has the property to vanish for
|z| — o0; the integral along the big half—circle p4 then vanishes too. The small
semicircle p, may be parametrized by z() = xo — e with 0 < t < 7. The
integral over p» gives

e
—i/ g(xo — e dt = —img(xo) for§ — 0. (2.81)
0
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Figure 2.5. To derive the Kramers—Kronig relations, we integrate a function f that is
related to the dielectric susceptibility x, or permeability ¢, over a closed path (thick line)
in the complex (x, y)-plane. The path consists of four segments, p; to p4. The points
in this plane are identified with complex frequencies w. Only the positive x-axis has a
physical meaning but equation (2.88) allows us to define x for any complex argument w.

We thus have for the whole path p, from (2.79),

][ 8X) v~ ing(xo) = 0. (2.82)

00 X — X0

The integral with the bar is the Cauchy principal value defined by

00 x0—§ 00
][ 85 4 = lim{/ ) dx+/ ) dx}. (2.83)
—00 X — X0 5—0 —00 X — X0 xo+8 X — X0
Equation (2.82) holds separately for the real and imaginary parts. Let the function
g be symmetric (for real x) such that g(—x) = g*(x) or

g1(—x) = g1(x) and g2(—x) = —ga(x).

Writing the integral in (2.82) over the whole x-axis as the sum of two
integrals with limits from —oo to 0 and from O to +4oo and exploiting
the symmetry of g, one obtains the Kramers—Kronig relations after small
manipulations

2 % xga(x)
gi(xp) = = ][ B2 dx (2.84)
T Jo x°-— X0
2x0 [ g1(x)
gy = — 24 Sy, (2.85)
T Jo X — X5
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Putting in (2.84) xo = 0 yields the special case (no Cauchy principal value)
2 o
21(0) == f &™) (2.86)
T Jo X

In formula (2.83), both integrands within the big brackets go at x¢ to infinity
like 1/x at x = 0. Therefore, each of the integrals alone diverges; however, their
sum is finite.

2.5.2 The electric susceptibility and causality

In the application of equations (2.84)—(2.86) to a physical situation, the complex
function g is identified with the electric susceptibility y of (1.6) and the variable
x with the frequency w. Likewise, we could use the dielectric permeability €, with
the small modification that we have to put g1 = ¢1 — 1 and g, = &>. We reiterate
that, in the constitutive relation (1.6),

P=xwE

the polarization P depends linearly on the electric field E because E is so much
weaker than the fields on the atomic level. In the most general case, the vector
P at time ¢ is not determined by the present value of E alone but by the whole
preceding history. We, therefore, write the linear relation in the form

P(t) = /Oo FO)E@t —1)dr. (2.87)
0

This equation specifies how P responds to the application of an electric field
E. Besides linearity, formula (2.87) also expresses causality because P(¢) results
from an integration over the past. The function F(7r) depends on time and on
the properties of the medium. It has values substantially different from zero
only in the immediate past over an interval At corresponding to the time scale
for polarizing the molecules. At times much larger than Az, the function F(7)
vanishes because the distant past does not influence the present.

When we consider monochromatic electric fields, E(r) = Ege ', the
polarization P = x E has exactly the form of (2.87), if the dielectric permeability
is given by

x (@) = /oo ¢TF (1) dr. (2.88)
0

Although only a real and positive frequency has a physical meaning, this
equation formally extends x to any complex argument w of the upper half of
figure 2.5; in the lower half where Im{w} < 0, the integral (2.88) diverges. Such
an extension is necessary to perform the integration in (2.79). We summarize here
some of the properties of the electric susceptibility of (2.88):

e If |[w| — o0, x goes to zero. For large and real frequencies, it is
physically understandable because the electrons cannot follow the field, so
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the polarization is zero; for large imaginary w, it is mathematically clear
because of the factor e~1“I” in (2.88).

e The function F(t) in (2.87) must for physical reasons, and to guarantee
causality, be finite over the integration interval [0, oo], i.e. over the past. As
a consequence, the susceptibility x of (2.88) has no singularities in the upper
half of the complex w-plane and this is a necessary condition for obtaining
the Kramers—Kronig relations (see (2.79)).

e  x fulfils the symmetry relations

x(—w) = x*(w) for real w (2.89)
x(—o*) = x*(w)  for complex w.

The last equation expresses the fact that a real field E produces a real
polarization P.

When, in (2.80), we replace g(z) by x (w), we may convince ourselves that
X (w) has all the desired mathematical properties to obey the formulae (2.84)—
(2.86), if wq is a real and positive frequency.

2.5.3 The Kramers—Kronig relation for the dielectric permeability

Here is the final result formulated explicitly for the dielectric permeability. For an
arbitrary medium, £1 and ¢, are not completely independent of each other but for
any frequency wo,

2 o0
e1(wp) — 1 = = ][ %(“’)zdw (2.90)
T Jo o?—wf
2 o
er(wp) = — -2 Lw)zdw. 2.91)
7 Jo ?-— (O
For the static limit of & at zero frequency,
2 o0
£1(0)—1 =2 / 2 4. (2.92)
T Jo w

Similar relations hold for the electric susceptibility y, the electric
polarizability o or the optical constant m = n + ik. Whenever the vacuum
value of the material constant is one (as for ¢), the —1 appears on the left-hand
side (see (2.90) and (2.92)), when the vacuum value is zero (as for x), the —1 is
missing.

2.5.4 Extension to metals

In a metallic medium, the conductivity o of (1.119) also follows the Kramers—
Kronig (KK) relations. We may either put g(w) = o (w) or

(@) = i47rc7(w)
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which is the expression that appears in the generalized permeability of (1.115).
However, for a metallic medium we have a pole not only at wg (see figure 2.5)
but also at w = 0. When, on itegrating the function g(w)/(w — wp) along the real
frequency axis from —oo to 400, we circumvent this additional pole at @ = 0
into the upper half of the complex plane in the same way as w (see (2.81)), we get
an additional term —47 20 (0) /wo on the left-hand side of equation (2.82) where
o (0) is the direct-current conductivity.
When we consider a conducting medium with a dielectric constant

Adro .
E=¢g+i—=¢€1+1&
w

from (1.115), equation (2.91) for &2 (wp) has to be replaced by

o]

Zﬂ e1(w) doo+ 4o (0)

T Jo a)z—a)g w(Q

&2(wo) = — (2.93)

Equation (2.90) for €1 (wg) stays in force as it is but the long wavelength limit
£1(0) must be adapted because €>(w) has a singularity at w = 0. Going back to
the more basic formula (2.84) for €1 (wo), there now appears a term

][‘X’ dw
0 w2—w(2)

which is always zero. What remains is the following modification of (2.92):

£1(0)—1= 2 foo £2(0) —4noO)/w -
T Jo

w

2.5.5 Dispersion of the magnetic susceptibility

The magnetic susceptibility xm is defined in equations (1.16) and (1.17) and
connects the field H with the magnetization M through

M = xnH.

M has, from (1.13) and (1.14) the physical meaning of a volume density of
magnetic moments. To speak of a magnetic susceptibility y, makes sense only
if, neglecting free charges, in the expression (1.21) for the total current density
Jiot the magnetic current dominates over the polarization current:

Jinag = crotM > Jpo1 = P.

With the help of Maxwell’s equation, rotE = —B/c, we get the order of
magnitude estimate

P= XeE ~ XewE ~ Xea)Z/LHl/C.
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Assuming x., u ~ 1 and a typical length / that must be much greater than
an atomic radius, the condition Jiag 3> Jpol Tequires frequencies

w K cxm/l.

Therefore xm(w) becomes constant and real above some critical value we;.
In practice, magnetic dispersion stops well below optical frequencies, so w¢r <K
105 s7!. Whereas at high frequencies the dielectric permeability & approaches
one, the magnetic permeability p goes to a value ue = u(wer) which may be
different from unity. This necessitates the following modification in the KK

relations:
2 [ ou(w)
wi(@) — per = = ——— dw
T Jo

2 _
w a)o

2.5.6 Three corollaries of the KK relation
2.5.6.1 The dependence between e and &>

Any set of physically possible values 1 (w) and &3 (w) for any grain material must
obey the KK relations (2.90) and (2.91). They thus serve as a check for the internal
consistency of data measured, for example, in the laboratory or derived otherwise.
It is even sufficient to know one of them over the entire wavelength range, either
e1(w) or g3(w), to compute the other. Whereas €1 (w) is not restricted at all, &2 (w)
is associated with the entropy and must be positive everywhere. A data set for
£1(w) is wrong if it yields at just one frequency a negative value for &3 (w).

As an example of a dispersion formula that obeys the KK relations we
may take equation (1.77) or (1.121). They apply to the harmonic oscillator or
a metal, respectively. That they fulfil the KK relations may be verified from
general mathematical considerations for the function &(w), which is the smart
way; or by doing explicitly the KK integrals for (1.77), that is the hard way; or
numerically, which is the brute way. Even the last method requires some delicacy
when handling the Cauchy principal value. Numerical integration is inevitable
when ¢(w) is available only in tabulated form.

When we look at the dispersion relation (1.77) and realize that ¢; and
&2 have the same denominator and contain the same quantities e, me, ¥, @ and
wp, equations (2.90)—(2.92) which link e; with &> are no longer perplexing.
However, when we discussed the physics associated with the optical constants n
and k, which determine the phase velocity and the extinction, the two parameters
appeared very distinct and independent so that any general connection between
them comes, at first glance, as a surprise.

2.5.6.2 Dust absorption at very long wavelengths

In a slowly varying electromagnetic field, a dielectric grain of arbitrary shape and
composition absorbs, from (1.55), the power

W = IVolIm{a} Ef = C*™(w) - §
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where V is the volume of the grain, C?* its cross section and S = (c/ 871)E§ the
Poynting vector. The particle has to be small, which means that the frequency
of the wave must stay below some critical value, say w;. We now apply
equation (2.86) to the polarizability o of the grain and split the integral into two:

al(w=0)=%/ az(a)) __/ oez()»)
0
A
Zg/ ‘az(/\) ng/ Otz(?») dr
7 Jo A T S A

Note that we have swapped the integration variable from frequency to wavelength.
Because o is positive and the integral over ra /A in the total interval [0, oo] finite,
the last integral must also be finite. If we make in the range A > A} = 27c/w
the replacement
() _ C™ 0
A 8wV

and write C%S = Oge 005 where Ogeo is the geometrical cross section, we get
the following convergence condition:

/wmeﬁ<m.
0

Therefore, the absorption efficiency of any grain must, at long wavelengths,
fall off more steeply than A ~!. But this last constraint attains practical importance
only when we know the threshold wavelength after which it is valid.

We could also have derived the result for Q2°(1) at long wavelengths using
the dielectric permeability ¢ instead of « but then metals would have required
some extra remarks because in conductors ¢, — oo for o — 0, whereas their
polarizability . stays finite (see, for instance, (3.9)). A similar discussion to the
one we carried out for . holds for the magnetic polarizability o,

2.5.6.3 Total grain volume

One may apply the KK relation not only to grain material but also to the
interstellar medium as such [Pur69]. Because it is so tenuous, its optical constant
m = n + ik is very close to one. A small volume V in the interstellar medium of
size d may, therefore, be considered to represent a Rayleigh—Gans particle. This
class of grains, for which [m — 1| <« 1 and d|m — 1|/} < 1, is discussed in
section 3.5. Of course, the particle is inhomogeneous as it consists of a mixture
of gas, dust and mostly vacuum but for its absorption cross section we may
nevertheless use (3.42)

47V 27V
cabS(x)=”Tk(A)= z

e2(A).
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The static limit (2.92) of the KK relation then gives

2 [ e(r 1 o
e1(0)—1= —/ £2}) dr = —/ C®()) dh. (2.94)
7 Jo A 72V Jo

In a static electric field E, a volume V of interstellar medium with dielectric

permeability €(0) has, from equations (1.3), (1.6) and (2.94), a dipole moment
e(0)—1 E [
p= O =Tgy _ —f C™ (0 da.

4 47‘[3 0
Alternatively, we may express p as resulting from the polarization of the
individual grains within V. They have a total volume V,; and at zero frequency a
dielectric constant &, (0), so, from (3.8),

3 &(0)—1

T “eg(0) +2
When we crudely evaluate the long wavelength limit of this ratio from figure 7.19,
we obtain a value of order one,

eg(0)—1
gg(0) +2

Along a line of sight of length L, the optical depth for absorption is t(A) =
LC?s, Therefore, the total grain volume Vgys in a column of length L that
produces an optical depth 7(1) and has a cross section of 1 cm? is

1 00
Viust =~ 37/0 T(A) dA.

When we take the standard normalized interstellar extinction curve of
figure 7.8 for t(A), which refers to a visual extinction Ay = 1 mag, we obtain
for the previous integral in the interval 0.1-10 xm a value of about 2 x 10~%.
Consequently, the total dust volume in a column of 1 cm? cross section with
Ay = 1 magis

Viust =~ 6 x 1070 cm™3. (2.95)

Such an estimate is of principal value, although its precision does not allow one
to discriminate between grain models.

2.6 Composite grains

Interstellar grains are probably not solid blocks made of one kind of material
but are more likely to be inhomogeneous so that the dielectric function within
them varies from place to place. There are many ways in which inhomogeneity
can come about. For instance, if particles coagulate at some stage during their
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evolution, the result will be a bigger particle with voids inside. The new big
grain then has a fluffy structure and for its description, even if the grains before
coagulation were homogeneous and chemically identical, at least one additional
dielectric function is needed, namely that of vacuum (¢ =1). If chemically
diverse particles stick together, one gets a heterogenous mixture. We note that
purely thermal Brownian motion of grains (see section 9.3) is too small to
make encounters between them significant but omnipresent turbulent velocities
of 10 m s~! are sufficient to ensure coagulation in dense clouds. Another way to
produce inhomogeneities is to freeze out gas molecules on the surface of grains;
this happens in cold clouds. A third possibility is that during grain formation
tiny solid subparticles, like PAHs (section 12.1.1) or metal atoms, are built into
the bulk material and contaminate it chemically. The chemical composition of
interstellar dust is discussed in section 7.4 and in chapter 12.

2.6.1 Effective medium theories

The cross section of composite particles can be computed exactly in those few
cases where the components are homogeneous and the geometrical structure is
simple; examples are spherical shells, cylinders with mantles or coated ellipsoids.
For any real composite particle, where different media are intermixed in a most
complicated manner, such computations are out of the question.

To estimate the optical behavior of composite particles, one has to derive
an average dielectric function &,, representing the mixture as a whole. Once
determined, &,y is then used in Mie theory, usually assuming a spherical shape
for the total composite grain. The starting point is the constitutive relation

(D) = eqv (E). (2.96)

Here (E) is the average internal field and (D) the average displacement
defined as

1 1
(E) = V/E(x)dV (D) = v f e(x)E(x)dV. (2.97)

The integration extends over the whole grain volume V. If we envisage the
grain to consist of a finite number of homogeneous components (subscript j),
each with its own dielectric function ¢; and volume fraction f;, we can write

(B)=>"fE, (D)= fieE;. (2.98)
j j

The E; are averages themselves (from (2.97)) over the subvolume f;V; we
have just dropped the brackets. The constitutive relation (2.96) is thus replaced
by

> e fiEj =en Y fiE;. (2.99)
j ]
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We envisage the components to be present in the form of many identical
subparticles that are much smaller than the wavelength. When such a subparticle
is placed into an extended medium with a spatially constant but time-variable field
E/, there is a linear relation between the field in the subparticle and the field in the
outer medium (see sections 3.1 and 3.3),

E; = fE. (2.100)

When one assumes that such a large-scale average field E in the grain exists,
one can remove the local fields E; and find the average &,y.

2.6.2 Garnett’s mixing rule

To exploit (2.99), we first imagine the grain to consist of a matrix (subscript m)
containing inclusions (subscript i). For simplicity, let there be only one kind of
inclusions with a total volume fraction f; so that f; + f,, = 1. For the constant
large-scale field E’ in (2.100), we take the field in the matrix and obtain

i fiB + &mfim = eavfiB + €av fm-

For spherical inclusions, the proportionality factor 8 in equation (2.100) has

the form
3em

p= g + 2¢ep,
which is a generalization of equation (3.7) when the medium surrounding the
sphere is not a vacuum but has some permeability ¢,,. We thus arrive at the
Garnett formula:

e 1+ 2fi(ei — &m)/ (i + 2&m)
"1 — fi(ei — em)/(5i + 2em)

The expression is evidently not symmetric with respect to the inclusion and
matrix. One has to make up one’s mind which component should be regarded
as the inclusion that pollutes the matrix. If the concentration of the inclusions, f;,
is small, equation (2.101) simplifies to

E —&m
Eav = Em <1+3ﬁm).

The Garnett mixing rule is very similar to the Clausius—Mossotti law (see
(3.55)). Indeed, the latter follows almost immediately from (2.101). The
Clausius—Mossotti law gives the dielectric constant of an inhomogeneous medium
that consists of a vacuum matrix (g, = 1) with embedded spherical inclusions,
the latter being atoms of polarizability o = (3/4w)(e; — 1)/(e; + 2).

The Garnett rule can be extended to an arbitrary number of components.
One still has to make the distinction between the matrix (subscript m) and the
inclusions (index i = 1, 2, 3, ...). Putting as before

E; = BiEn

(2.101)

Eav =
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we get the following generalization of (2.101),

_ Smém + Zfiﬂigi
YT X fiBi

where the sum of the volume fractions is unity,

fut Y fi=1.

(2.102)

Written in the form of (2.102), the restriction that the inclusions are spheres
has been lifted. They may be of any shape, for example ellipsoids, for which
Bi can be calculated as outlined in Section 3.3. One can also take a mean over
randomly oriented ellipsoids.

2.6.3 The mixing rule of Bruggeman

Next we suppose that none of the components of the grain is special, like the
matrix in the Garnett theory. Then the components distinguish themselves only
through their permeability and volume fraction; no assumption is made about the
average field E’. Inserting (2.100) into (2.99) yields the Bruggeman rule:

0= Z(Sj — eav) fiBj (2.103)
J
with )~ f; = 1. Contrary to the Garnett rule, this formula is symmetric in all
components j. If they consist of spherical entities,
Ej — &av

0=> fi—t—" (2.104)
j

a
£j + 264y

Thus for n components, &,y is determined from a complex polynomial of nth
degree. When we imagine the interstellar dust to be a democratic compound
of silicate, amorphous carbon, ice and vacuum, the Bruggeman mixing rule is
preferred. However, when ice becomes dirty through contamination by tiny
impurities (metal atoms or PAHs) that amount to only a small volume fraction
(fi < fm), the Garnett rule is more appropriate.

An illustration of how the dielectric permeabilities of two components
combine to an avarage €,y is shown in figure 2.6 for the two mixing rules and for
a very idealized situation. The materials have the optical properties of harmonic
oscillators with different resonance frequencies. In the mixture, the resonances
are damped, broadened and shifted.

2.6.4 Composition of grains in protostellar cores

Likely and astronomically relevant candidates for composite grains are the solid
particles in cold and dense protostellar cloud cores (see section 15.3). Such grains
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o T O L
i a mixture of two
4 components: S1 and SR

UJ
TN B

Figure 2.6. Let the dielectric permeability of two substances, S1 and S2, be represented
by harmonic oscillators (see figure 1.2) and given by the dotted curves (top, real part &1;
bottom, imaginary part &,). The average permeability of a mixture of these two substances
calculated from the Bruggeman mixing rule is shown by the broken curve, that calculated
from the Garnett mixing rule, by the full line. Both components have equal volume and
both averaged permeabilities obey KK’s relations, as do, of course, the dielectric constants
of S1 and S2.

are also expected to be found in the cooler parts of stellar disks or in comets.
We figure them as fluffy aggregates, probably substantially bigger than normal
interstellar grains. They are composed of refractory (resistant to heating) and
compact subparticles made of silicates or amorphous carbon. The subparticles
are enshrouded by a thick sheet of ice as a result of molecules that have frozen
out. The volatile (easy to evaporate) ice balls with their compact cores are loosely
bound together and form, as a whole, the porous grain. In this picture, the frosting
of molecules in ice layers on the surface of the subparticles precedes the process
of coagulation.

Altogether, the grains in protostellar cores have four distinct components:

compact silicate subparticles,
compact carbon subparticles,
ice sheets and
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[ vacuum.

The possible diversity of such grains is infinite and their structure can be
extremely complex. The volume fractions of the components, f, add up to one,

fSi +fC+fice+fvac =1.

To be specific, we adopt for the volume ratio of silicate-to-carbon material
in the grain
fSi
F
compatible with the cosmic abundances in solids, and for the specific weight of
the refractory subparticles

=14...2

Pref ®25¢g cm ™3 Pice X 1g cm .
The available mass of condensable material is determined by the gas phase
abundances of C, N and O and their hydrides. Standard gas abundances imply a
ratio of volatile-to-refractory mass of

M.
X —1...2.
Mref

Consequently, the ice volume is 2.5 to 5 times bigger than the volume of the
refractories.

2.6.5 How size, ice and porosity change the absorption coefficient

These composite grains differ in three fundamental aspects from their compact
silicate and carbon subparticles:

they are bigger because of coagulation,
they contain ices because of frosting and
they are porous, again because of coagulation.

Coagulation, deposition of ice and porosity each affect the absorption
coefficient and we now illustrate how. In the following examples, we fix A to
1 mm, which is a wavelength where protostellar cores are frequently observed.

2.6.5.1 Grain size

We first investigate the influence of grain size. The mass absorption coefficient
Ks (defined in subsection 2.1.3) is for a fixed wavelength a function of grain
radius a, so K2 = K#5(q). To demonstrate the size effect, we normalize Kb
to its value when the grains are small (@ < X); it is then insensitive to a. We
adopt a = 0.1 um, which is a typical radius of an interstellar grain and certainly



Composite grains 77

102 E"I LR | T rrrT LR LR | 'E
10" b E
P i Si ]
X | |
1 3 3
. mg; = 3.5+i-0.04 3
[ Mg = 14+i5 ]
] i A= 1mm

10_ il sl R | sl co il R

107 1072 107" 1 10"

a/ A\

Figure 2.7. The influence of grain growth on the mass absorption coefficient K abs for
silicate (Si) and amorphous carbon spheres (aC) at a wavelength of 1 mm. The curves
show the normalized coefficient K| f,‘bs defined in the text. For example, the mass absorption
coefficient K2 of carbon grains increases by a factor K2° ~ 50 when the radius of the
particles grows from 0.1 um (a/A = 10~%) to 30 um (a/» = 0.03).

smaller than the wavelength (1 mm). The normalized coefficient is denoted Kfl‘bs
and defined as
K abs ( a)

abs _
Ko@) = 101 o)

It gives the relative change with respect to ordinary interstellar dust particles
and it is plotted in figure 2.7 for silicate and carbon spheres. The spikes in
figure 2.7 for silicates are resonances that disappear when the grains are not all of
the same size but have a size distribution. When a < A, the normalized coefficient
Kfl‘bs equals one and is constant because this is the Rayleigh limit. However, when
a > A, the normalized coefficient K f,‘bs o a~! because Qabs ~ 1; big lumps
are not efficacious in blocking light. For sizes in between, one has to do proper
calculations. They reveal an enhancement in the mass absorption coefficient K20
which can be very significant (> 10) and which would strongly boost millimeter
dust emission because the latter is proportional to K2 (see section 8.1.1).

One can create plots like those in figure 2.7 for other wavelengths and optical
constants. The qualitative features stay the same but some details are quite
interesting. For example, if all particles in the diffuse interstellar medium had
a radius of 1 um (without changing the total dust mass), the extinction optical
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15 [ Si + ice
mg; =3.5+i-0.04
Miee=1.7+ikKice
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refractive index ki

Figure 2.8. The influence of kj¢e, the imaginary part of the optical constant of ice, on the
absorption coefficient C abs of grain that consists of silicate and ice with a mass ratio 1:1.
The grain radius a is much smaller than the wavelength; here A = 1 mm. The ordinate
Cﬁbs gives the increase in the cross section with respect to the bare silicate core. The
solid plot refers to a coated sphere with a silicate core and an ice mantle, the broken line
to a homogeneous sphere where ice and silicate are mixed and the optical constant m,y
of the mixture is computed after the Bruggeman theory. Both curves are based on Mie
calculations.

depth at 2.2 um (K-band) would be almost ten times larger than it really is.

2.6.5.2 Ice mantles

Next we illustrate the influence of ice in the grain material, again for a wavelength
A = 1 mm. We take a silicate sphere of arbitrary radius a < A and deposit an
ice mantle of the same mass on it; such a mass ratio of ice to refractory core is
suggested by the cosmic abundances in the case of complete freeze—out. The total
grain’s volume is then three and a half times bigger and the mass twice that of the
bare silicate core. The relevant parameter for the absorption coefficient C2° is
kice, the imaginary part of the optical constant of ice. It depends on how much the
ice is polluted by impurities. Estimates for kjc. at this wavelength are around 0.01
but uncertain. Defining the normalized absorption coefficient of a single grain by

C¥s(core + ice)

Cabs —
n Cabs(core)
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Figure 2.9. The influence of porosity on the grain cross section. The normalized cross
section Cfl‘bs is defined in the text. The mass of the grain is kept constant and does not vary
with the vacuum fraction fyac, while the optical constant of the grain, which is calculated
here after Bruggeman, changes with fluffines. The compact particle has mg; = 3.5+4i0.04.

we learn from figure 2.8 that an ice mantle enhances C by a factor C3* ~ 3 if
kice = 0.01. Note that an ice mantle increases C?s even when kice = 0 because
the mantle grain is larger than the refractory core and collects more light. We also
show in figure 2.8 the value of C2% when the ice is not in a mantle but mixed
throughout the grain.

2.6.5.3 Fluffiness

A porous grain also has a greater absorption cross section C2 than a compact one
of the same mass. We consider, in figure 2.9, silicates with vacuum inclusions;
the normalized cross section C2% is defined by

cibs _ Cs(fluffy grain) .
f Cabs(compact grain of same mass)

When the volume fraction of vacuum, fY%¢, equals zero, the grain is
compact. Fluffy grains are obviously better absorbers because they are bigger.
A porosity parameter f¥2 between 0.4 and 0.8, which may or may not be
a reasonable estimate for interstellar conditions, suggests an increase in the
absorption coefficient by a factor of two.



Chapter 3

Very small and very big particles

In sections 2.3 and 2.4, we presented general solutions of the field equations
in the case when a plane wave interacts with a particle with simple geometry;
there we stressed the mathematical aspects. Usually, when we want to extract
numbers from the theory for a specific astronomical application, we have to
deliver ourselves to the mercy of a computer. No matter how efficient such a
machine is, it is wise to retain some mental independence and bring to one’s
mind the physical aspects: computing must not be confused with understanding.
In a few simple configurations, analytical solutions are possible and we turn to
these in this chapter. They illuminate the problem and are useful for checking the
correctness of a computer program.

3.1 Tiny spheres

We derive the efficiencies for small spheres of dielectric material. This is the basic
section for understanding how and why interstellar dust absorbs and scatters light.

3.1.1 When is a particle in the Rayleigh limit?

When a sphere has a radius, a, which is small compared with the wavelength A,

i.e. when the size parameter
2ra
r=—x1 3.1
A

the calculation of cross sections becomes easy. The particle itself is not required
to be small, only the ratio a/A. In fact, a may even be big. So the heading of
this section is suggestive but not precise. With regard to the thermal emission of
interstellar grains, which occurs at wavelengths where the condition A > a is
usually very well fulfilled, one may use for the computation of cross sections, the
approximations given here. If we additionally stipulate that the product of the size
parameter multiplied by optical constant, m = n + ik, be small,

Im|x <1 (3.2

80



Tiny spheres 81

we ensure two things:

because kx < 1, the field is only weakly attenuated in the particle; and
because nx <« 1, the wave traverses the particle with the phase velocity
Uph = ¢/n in a time T nxw~! which is much shorter than the inverse

circular frequency w~!.

Grains for which conditions (3.1) and (3.2) hold are said to be in the Rayleigh

limit. This concept can be applied to any particle, not just spheres, if one
understands by the size parameter the ratio of typical dimension over wavelength.

3.1.2 Efficiencies of small spheres from Mie theory

A purely mathematical approach to finding simple expressions for the efficiencies
of small spheres is to develop the first coefficients aj, by in the series expansion
(2.50) and (2.51) for Q%' and Q%@ into powers of x and retain only terms up to

XSZ

a

2
203m2 -1 23 m?=2(m*—1) 4x° (m?—1 ;
i— —i— — +O0(x")
3 m242 5 (m? +2)2 9 \m242
5
—i:—s(m2—1)+0(x7).

Usually non-magnetic materials (i« = 1) are considered. Then the term with
x3 in the coefficient a; yields the electric dipole absorption, the one with x°
electric dipole scattering:

0% ~ % Refay) ~ 4x Im m o e
x2 m2+2 e+2

8ma 6nk 8ma 3e&

=— =— < 3.3
A2 —k2+2)2+4n%k> A e +2)? G
2
6 8 ,|m*—1
sca 2 4
~ — >~ — 34
0 2 lai] 3 12 34

If x is small, both Q%' and Q%® approach zero. Because
Qabs & x and Qsca x x4

scattering is negligible at long wavelengths and extinction is reduced to
absorption:

Qabs ~ Qext_
With respect to the wavelength behavior, this suggests the frequently cited

dependences
05 o 17 and Qibs o 371
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for scattering and absorption. However, they are true only if m()) is more or
less constant.
e  Because the optical constant m is, from (1.46), symmetric in € and pu,

m*=m+ik)>=eu (k>0

equation (3.3), which contains only the coefficient ay, is for purely magnetic
material (1 # 1, & = 1) replaced by

8ma 3un

abs _ . 35

Q5 it 2P (3.5)

The dissipation process refers to magnetic dipole oscillations and is relevant
only at frequencies w < 1012 571,

e The coefficient b; is discussed in section 3.2 for a non-magnetic conductor

and presents magnetic dipole absorption (see (3.26)).

3.1.3 A dielectric sphere in a constant electric field

Besides cutting off the series expansion in Mie theory after the first term, there is
another approach to obtaining Q¢ and Q°*' for small particles that gives physical
insight. We now restrict the discussion to a dielectric medium. When x < 1 and
|mx| <« 1, the electric field in the grain changes in a quasi-stationary fashion.
When we want to calculate the field in such a configuration, we are reduced to an
exercise in electrostatics. The basic equations valid everywhere are

rotE=0 divD = 0.

They impose the boundary conditions that the tangential component of the
electric field E and the normal component of the displacement D are continuous
on the grain surface. For a homogeneous medium (¢ = constant), this leads to the
Laplace equation

Ap =0

where ¢ is the potential related to the field through E = —V.

When we place a sphere of radius a, volume V and dielectric constant ¢ into
a constant field E, the field becomes deformed. Let the sphere be at the center of
the coordinate system. We label the field inside the sphere by E! and outside it
(external) by E®. For the potential ¢ of the deformed field we make the ansatz

E-r .
0= { —E-r+c¢ e outside sphere (3.6)
—E-r inside sphere

where r is the position coordinate of length r = |r|, and c1, ¢» are constants. In
the absence of the sphere, the potential is simply

oo=—-E-r.



Tiny spheres 83

Equation (3.6) reflects the expected behavior of the field. Inside the sphere,
E! is constant and parallel to E; outside, E® is the sum of a dipole, which is
induced by E and goes to zero at large distances, plus the constant field E. We
determine c¢; and c¢p from the conditions on the grain surface. Continuity of
the tangential component of the electric field implies continuity of the tangential
derivative of ¢, from which it follows that ¢ is itself continuous (parallel and
perpendicular to the surface). This gives ¢ = 1 — ¢1/a>. Continuity of the
normal component of the displacement D yields eco = 1 4 2¢ /a3. Hence we
derive

36 —1 3
cl=a —— ) =
e+2 e+2
and, therefore,
. 3
E' = E forr <a. (3.7)
e+2

Note that the field is smaller inside the body than outside, £ i <« E. Because
the polarization is given by (see (1.6))

—1
p="2
A7

Ei
the induced dipole moment of the grain is

1
SE=aVE (3.8)

8_
=PV =43
1Y 618+

and the electric polarizability o becomes (see (1.8))

_ 3 e—1
T dme+2

(3.9)

Qe

For other grain geometries there would be other dependences of o, on ¢.
Equation (3.7) gives the internal field. If e denotes the unit vector in the direction
r, the outer field E€ is the sum of E plus a dipole field:

3e(e-p)—p

3

Egip = (3.10)

o)
R E-r
E°=E — «.V grad — = E + Egip. 3.11)
r

3.1.3.1 A coated sphere in a constant electric field

It is not difficult to repeat the previous exercise for a sphere covered by a
homogeneous shell. There is then a core (index 1) enveloped by a mantle (index
2) of a different substance. One now has boundary conditions at the interface
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between the two materials and, as before, on the outside. If f denotes the volume
fraction of the inner sphere relative to the total sphere,

expression (3.9) for the polarizability becomes a bit lengthy:

oo — = 2= Dl +26) + fe1 — £2)( +282)

T4 (e +2)(e1 +262) + f2e2 — 2) (61 — £2)

3.1.4 Scattering and absorption in the electrostatic approximation
3.1.4.1 Scattering

The field E is not really static but oscillates proportionally to Ege "' and so,
synchronously, does the dipole moment p. The oscillating dipole, which is now
the grain as a whole, emits radiation. Its average power integrated over all
directions is W = [p|?>/3¢> and follows from (1.97). However, W must also
equal the total power scattered from the incident wave by the particle, therefore,

1
W= —p|* =SsC* (3.12)
3c-

For the dipole moment, we have to insert p = o VE and for the time-
averaged Poynting vector § = (¢/ Sn)Eg from (1.39), therefore

8 4
cser — ?” (%) V2ol (3.13)

The electric polarizability o, for spheres is given by (3.9). It was obtained
in the electrostatic approximation. Can we use it in the case when w # 0? Yes,
we can because the variations of the field are assumed to be slow, so the electron
configuration is always relaxed. This means the electrons always have sufficient
time to adjust to the momentary field, just as in the static case. Of course, the
polarization of the medium is not that of a static field. Instead, the dielectric
permeability must be taken at the actual frequency w of the outer field. Because
w # 0, the permeability €(w) is complex, which automatically takes care of the
time lag between P and E. We thus find
2473y2 2
)\4

e—1
e+2

C** = 1a* Q= (3.14)

which agrees with equation (3.4) for the scattering efficiency Q5.



Tiny spheres 85

3.1.4.2 Absorption

We can find the absorption coefficient of a small dielectric or magnetic grain if
we use (1.55) or (1.57) and set the absorbed power equal to SC2%S. This gives

4
s = v Im{a). (3.15)
Cc

But let us be more elaborate and assume that the grain consists of NV
harmonic oscillators excited in phase, V being the volume and N the oscillator
density. The power W absorbed by the oscillators can be expressed in two ways,
either by the dissipation losses of the harmonic oscillators given in (1.69) or via
the Poynting vector S multiplied by the absorption cross section C2°, so
VE(%ez w2 abs

W =VN =
2me (wg —w?)2 + w2y2

When we substitute the dielectric permeability of the harmonic oscillator
after (1.77), we can transform this equation into

Ve 2 b

H‘”EO = SC™, (3.16)
' For the electric field Eg which drives the oscillators, we must insert the field

E' inside the grain according to (3.7), and not the outer field E. When we do

this, we recover the efficiency for electric dipole absorption of (3.3) but now we

understand the physics:

Cabs —

6 —1
”—Vlm{g }—V‘” Oe2 (3.17)

A e+2| ¢ |le+22

3.1.5 Polarization and angle-dependent scattering

For small spheres, the scattering matrix given in (2.75) reduces further (we drop
the factor in front of the matrix):

I Il +cos?0)  —1sin’6 0 0 I;
1.2 1 2 .
Os | _ —5sin” 6 7(14cos*6) 0 0 0Oi (3.18)
Us 0 0 cos @ 0 U;
Vs 0 0 0 cosh Vi

6 = 0 gives the forward direction. There are several noteworthy facts:

e The scattering pattern no longer depends on wavelength, as the matrix
elements contain only the angle 6.

e  Scattering is symmetrical in 6 about /2 and has two peaks, one in the
forward, the other in the backward (6 = ) direction.
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e The matrix element S;» < 0, so the polarization is perpendicular to the
scattering plane.

e  If the incident radiation has unit intensity and is unpolarized (l; = 1, Q; =
U; = V; = 0), we have

Iy = (1 + cos® 0) Qs = —%sin?0 Us = Vs =0.
The degree of linear polarization becomes

sin? 6

= 3.19
1 4+ cos? 6 (3.19)

p
Consequently, the light is completely polarized at a scattering angle of 90°.
The intensity of the scattered light, and thus the phase function f (6, ¢), is
proportional to 1 + cos>#. As a result, the integral in (2.6) vanishes and
the asymmetry factor becomes zero, g = 0, although scattering by a small
sphere is not isotropic.

3.1.6 Small-size effects beyond Mie theory

A real grain is not a homogeneous continuum but a crystal built up from atoms,
rather regularly spaced and separated by a distance ry, the lattice constant. Mie
theory, which is based on the classical electrodynamics of a continuous medium,
fails when the structure of matter or quantum effects become important. A more
general theory is then needed to describe the optical behavior of particles. We
will consider some quantum effects when we discuss PAHs, a specific kind of
very small carbon grains. Here we only remark on the influence of the surface in
the case of small grains.

Whereas atoms inside the particle are surrounded from all sides, the situation
is different for those on the surface which have bonds only towards the particle’s
interior. This has consequences, for example, for their ability to bind to gas atoms
or for the specific heat of the grain. If the particle has a diameter a, the ratio of
the number of surface atoms Nyt to all atoms N in the grain is roughly

Nourt ~ 620
N a

As the lattice constant is of order 2 A, a substantial fraction of atoms is on
the surface only when the particle is small. One way in which the surface affects
the optical grain properties can be understood when we interpret the damping
constant y in the motion of an electron (see (1.59)) as a collision frequency with
atoms of the crystal. If the particle is small, an additional term must be added to
the damping constant that comes from collisions (reflections) at the surface. Free
electrons in a metal move with the Fermi velocity

h
vp = — /3721,

ne
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which is the threshold speed of fully degenerate (non-relativistic) electrons and
follows from the Fermi energy of (6.54). For example, in graphite with an electron
density ne ~ 102 cm™ and y = 5 x 10'? s7!, one estimates that noticeable
changes in y, and thus in the dielectric permeability, occur for sizes a < 50 A.

3.2 A small metallic sphere in a magnetic field

The case of a small metallic sphere in an electric field is included in the previous
derivation for the dipole moment p by making € in equations (3.9) very large, then

p= a’E.

The charges on the metal surface become polarized in the outer field but
the electric field does not penetrate into the particle. One might, therefore, think
there would be no absorption and just scattering with an efficiency Q% = 8x*/3
(because Im{(e — 1)/(¢ + 2)} = 0, one has to use the x0 term in the coefficient
ay of equation (3.3)). But not quite because we have neglected in our small-size
approximation the magnetic field which is also present in a wave. Let us now
include it; Mie calculations automatically do.

When we place a particle in a constant magnetic field H, there is a formal
identity with electrostatics. There are the same types of equations,

rotH=10 divB =0

and the same boundary conditions on the surface: the tangential component of
H and the normal of B = pH are continuous. So there is nothing new in
magnetostatics.

3.2.1 Slowly varying field

The situation becomes interesting when the magnetic field H is slowly alternating,
say, proportionally to e/’ Slowly means that H is spatially uniform over the
dimension of the body or, in other words, that the particle is small. The magnetic
field H' inside the sphere is then also changing and induces an electric field E.
The presence of E in the conductor implies a current and, therefore, ohmic losses;
their time average is o E2. When one knows Hi, one can derive the induced field
E either from the Maxwell equation (1.25),

w_
rotE = iu“—H1
c

or for a slowly changing field from (1.114),

4 .
T[GE =rotH'".

Cc
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But one cannot use the static solution Hg,e because it fulfils div Hgi,e = 0 and
rot Hgiat = 0 and thus gives no electric field at all. Instead, to determine the
internal field H', we start with the wave equation (1.34),

AH +K2H =0 (3.20)

together with divH' = 0. The square of the wavenumber is given by (1.116).
When metallicity dominates (w|eq| K 4mw0),

drow
K= 22

c

We solve (3.20) by noting that the scalar function

sin(kr)
flr)=
is a spherically symmetric solution of
Af +K2f=0

(see the Laplace operator in (2.33)). Because H is constant, the vector potential,
A, defined by the function

A = Brot(fH)

also fulfils the wave equation
AA +K*A = 0.

We have used this result before in section 2.3 (see equations (2.26)—(2.28)).
The constant 8 will be adjusted later. If we now put

H =rotA

the equations divH! = 0 and AH' + K*°H' = 0 are fulfilled, as required.
To evaluate the somewhat complicated expression H' = S rotrot(fH), we use
formula (A.6) and the easy-to-prove relations

div(fH)=H-Vf Vf=

exeosk =/ ) = k2
r

Here e is a unit vector in the direction of r. When one works it out, one obtains
for the magnetic field inside the sphere

Hi=ﬁ<f/+k2f)H—ﬂ<3T/+k2f)e(e~H).

r
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3.2.2 The magnetic polarizability

In analogy to (3.11), the (perturbed) field H® outside the sphere, for which
rot H® = 0 and div H® = 0, can be written as

R 3e(e-H) — H
H =H+Vaon————.
-
om denotes the magnetic polarizability and
m= Vo,H

is the magnetic dipole moment of the sphere of radius a and volume V. The
factors oy and B follow from the boundary conditions on its surface by equating
H =H°¢fore-H=0ande - H=H. We find 8 = 3/[2k? f(a)] and

3 3 3
o = (1 _m—kacotak). (3.21)

With o, we can determine the dissipation rate W in a grain after (1.57), we
do not have to integrate o E? over the particle volume. When we divide W by the
Poynting vector, we get the absorption cross section of a magnetic dipole.

3.2.3 The penetration depth

Even when the particle is small compared to the scale on which the outer magnetic
field changes, as we assume in this chapter, the magnetic field may not fully
pervade it. To see how far it can penetrate, we apply the wave equation (3.20) to
a simple one-dimensional situation, where a plane wave falls on a metal surface.
Suppose the field vector H is parallel to the x-axis and a function of z only,

H = (Hx(2),0,0)

and the (x, y)-plane marks the surface of the metallic body. Then with u = 1,

9%H 4 2
L+ KPH, =0 where k = Vidnow = Varow

022 ; A+0). (322

At the boundary of the body, H = Hoe " and inside it (z > 0), the field
has the form
Hi — Hoe—iwteikz — Hoe—z/(Sei(—wH—z/(S).

It falls off exponentially in the metal and, therefore,

c _1+i

S =
2row k

(3.23)
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is a characteristic scale for the penetration depth of the magnetic field into the
particle: the lower the frequency, the greater 6 becomes. The electric field has the
same penetration depth and follows from (1.114),

E=(—-i) /-2 Hxe, (3.24)
8o

where e, is the unit vector in the direction of the z-axis. E is parallel to the y-axis.

3.2.4 Limiting values of the magnetic polarizability

The formula (3.21) for the magnetic polarizability oy, of a sphere simplifies
further when the penetration depth §, which we just introduced, is small or large
compared to the grain radius. At any rate, the grain is always small compared to
the wavelength, a < A = 27 c/w.

e  If the penetration depth is large (@ < §), we develop the cotangent function
in (3.21) to fifth order in ka, where

a a/2row
ka = (1+i)g = (1+i)f < 1.

Then the first two terms in the bracket of (3.21) cancel out and we obtain for
the magnetic polarizability in the low frequency limit

T RTEO S

A metallic sphere of radius a and conductivity o has then at frequency w the
cross section for magnetic dipole absorption

8720
abs __ 25
C*™ = —15c3 wa’. (3.26)
e  If the penetration depth is small (§ < a < 1), the magnetic polarizability
becomes
3 1 39 +'98 (3.27)
op=——|1—— i—— .
m 8 2a 167 a
and

c®s =3 /%azw]/z. (3.28)

3.3 Tiny ellipsoids

The treatment of a sphere in a constant electric field may be extended to ellipsoids.
In analogy to the previous discussion, we can determine their scattering and
absorption cross section once we have worked out the dipole moment that they
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acquire and the strength of their internal field. An ellipsoid has three principal
axes a, b, c. We use here the convention

a>b>c

and that a is aligned along the x-axis of a Cartesian coordinate system.

3.3.1 Elliptical coordinates

Ellipsoids are naturally handled in elliptical coordinates. They are defined as
follows: For any three numbers a, b, ¢ with

a>b>c>0

the function
x2 y2 22
2 + 2 + 2
ac+u bc4+u c*+u
2

fu) = —1 (3.29)
is of third order in u. It has poles at —a?, —b?, —c? and for reasons of continuity
must vanish somewhere in each of the intervals (—a2, —b?), (—b%, —c?) and
(—cz, +00). Therefore, f(u) has three real roots, named &, 7, ¢, with

£ > —c? —c*>n>—b* —b’ > > —d’. (3.30)

(&, n, ¢) are called elliptical coordinates because for u = &, the equation f(§) =
0 describes an ellipsoid that has the same foci as the ellipsoid

38
)
38

+ =4+ =1. (3.31)

Q|><
)
@‘|‘<
S}
QN|N

For u = n or u = ¢, one obtains confocal hyperboloids. The essential point
is that £ is constant on the surface of an ellipsoid. If a = b = ¢, we are reduced
to a sphere and f () has only one root.

Equation (3.29) constitutes a set of three equations when we putu = £, u =
noru = ¢. To transform the elliptical into Cartesian coordinates, one has to solve
this set for x, y and z. This gives, for example,

J@+a%w+a%@+a%
x ==

B2 — ) = a?)

and corresponding expressions for y and z. We will again need the Laplace
equation Agp = 0, this time in elliptical coordinates. Dividing the Laplace
operator Ag by 7(€ —1)({ — &)(n — ), one gets

R (R R (r,22 R (22} =0
n—=29) ga‘g( gag>+(é—$) na"( nan)+($—ﬁ) ;85( §8§>_ .
(3.32)
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The expressions

Ry =V u+a)u+b)u+c)  w=%§n7)
are related to the length element ds in elliptical coordinates by

ds® = hid&> + hydn® + hid¢?

with

I _NVE=mE =) n N =0m=§) n _NE =8 —n)

E= —F"75 n= " A5 ¢ =" hH5p
2R: 2R, 2R,

3.3.2 An ellipsoid in a constant electric field
3.3.2.1 The dipole potential

Imagine an ellipsoidal grain with principal axes a > b > c at the center of a
Cartesian coordinate system. Its boundary is given by (3.31) or, equivalently, by
& = 0. Let the outer electric field E be directed parallel to the x-axis and thus to
the axis a of the ellipsoid. In analogy to (3.6), we write

_ Jooll + F(§)] outside ellipsoid (3.33)
| 290 inside ellipsoid )
where o9 = —E - r is the potential of the unperturbed field. The function F

depends only on &, and ¢oF is the perturbation evoked by the grain; c; is a
constant. When we insert ¢ = @o(1 + F) into (3.32) and take into account that
also for the perturbation A(goF) = 0, we arrive at the differential equation

o= r 4 (LR —F”+F’il[R )] 3.34
= (p2 Ré = dén (& +a’)l. (3.34)
0

A prime here and later denotes the derivative with respect to £. There are two
solutions to (3.34): F = constant, which applies to the interior of the grain, and

o dx
F(&) = Cl‘/%: m (3.35)

Far away from the grain, the perturbation ¢oF has the form characteristic
of a dipole. At great distance r = /x2 + y2 + z2, at least one of the Cartesian
coordinates is large, so the terms a%, b2, c%in (3.29) are negligible and r ~ él/z.

This allows us to evaluate the integral in (3.35) and one obtains the dipole
potential

2c1, _ _
FE) = 56 ocr™,
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3.3.2.2  The shape factor

As in the case of a sphere, we derive the constants cq, ¢ from the continuity
conditions on the surface where £ = 0. Continuity of the tangential electric field,
or of ¢, gives c = 1 + F(0). The normal component of the displacement yields

£c2¢0(0) = ¢5(0) - [1 + F(0)] + ¢0(0) - F'(0)

and from there follows

F'(0
) = ZaZL.
e—1
Defining the shape factor
I - abc /Oo dx (3.36)
T2 ) r+addR, '
we find
1 abc(e — 1)
=—— (go=—-—"———.
1+ La(e—1) 2[1+ La(e = 1)]

3.3.2.3 The polarizability of an ellipsoid

With ¢; and ¢, being determined, we know the electric field in and around an
ellipsoid. The internal field is constant and parallel to E,

i E
E=———. (3.37)
1+ Ls(e—1)
With the same arguments as in (3.8) for a sphere, the dipole moment of the
ellipsoid becomes

e—1
=———— K 3.38
P =30+ Lae — 1] -39
and its polarizability, when the electric field is parallel to axis «,
-1
w0y = ¢ (3.39)

47[1 + Lo(e — D]

3.3.3 Cross section and shape factor

Because of our experience with spheres, we can immediately write down the
formulae of the scattering and absorption cross section, C*? and C2, for
ellipsoids. In the case of scattering, equation (3.12) for dipole radiation is
applicable with the dipole moment p from (3.38). Absorption is still proportional
to grain volume V, so we use (3.16) but now with Eq = |E!| from (3.37). This
gives

2 —1
cibs = Vo © (3.40)
py 1+ Lae — 1)
873V?2 e—1 2
cser = . 3.41
3t I+ La(e —1) ( )
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light c a

1 2

Figure 3.1. A cigar rotating about axis b, which is perpendicular to the page in this book.
Light is traveling in the indicated direction. After a quarter of the rotation cycle, the cigar
has changed from position 1 to position 2.

When the electric field is parallel to axis b or ¢, and not to axis a as we have
assumed so far, the only thing that changes for the cross section is the shape factor
of (3.36). We then have to replace L, by

abc [ dx abc [ dx
Ly, = — e or L.=— D r—
2 Jo (x+bHR, 2 Jo (x+cAR,

respectively. We can easily check that the sum over all shape factors is one:
Lo+ Lp+L.=1

so only two of the three L values are independent. Obviously, witha = b = c,
all Ls are equal to % and we recover the formulae of the polarizability and cross
sections for spheres.

Only in the Rayleigh limit does the cross section C depend solely on the
direction of the electric field and not on the direction of wave propagation.
Consider, for example, the cigar in figure 3.1 and let the electric vector E swing
parallel to axis c. The cross section is then the same for light that falls in parallel
to axis a or parallel to axis b (which is perpendicular to a and ¢). In the first case,
the projected surface is a small circle, in the second it is a broad ellipse and much
bigger.

When the small ellipsoid is very transparent (|¢| =~ 1), the shape factors
loose their importance, the electric field inside and outside are more or less equal,
E' = E, and the polarizability @ = (¢—1) /4w = yx. The absorption and scattering
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coefficient are then independent of the axial ratios and of orientation,

27V

() = ”Tsz(x) (3.42)
83?2 2

) = Zle — 112 (3.43)

3.3.4 Randomly oriented ellipsoids

When an ellipsoid of fixed orientation in space is illuminated by an
electromagnetic wave, the grand principle of superposition allows us to split
the electric field vector E of the wave into components along the orthogonal
ellipsoidal axes a, b, c:

E = (Ecosa, Ecosf, Ecosy).

Here E = |E| and cos” « 4 cos” B 4 cos” y = 1. Interestingly, for arbitrary
grain orientation the internal field E' is not parallel to the outer field E, even if
the grain material is isotropic; E' and E are parallel only when E is directed along
one of the principal axes.

If Cg4, Cp, C. denote the cross sections of the ellipsoid when the principal
axes a, b, ¢ are parallel to the electric vector E of the incoming wave, the total
cross section of the grain can be written as

C=C, cos®a + Cp cos? B+ C. cos® Y. (3.44)

Without alignment, we expect, in interstellar space, random rotation and thus
random orientation of the grains. For an ensemble of particles, all directions are
equally likely and the mean of cos? x over 47 is (see (2.2))

1 2 T 1
(coszx) = —/ dy/ dx cos® xsinx = —
4 0 0 3

As the terms on the right-hand side of (3.44) are independent of each other,
the average cross section for identical ellipsoids under random orientation is equal
to the arithmetic mean:

(C) = $Ca + 3Cp + 1Ce. (3.45)

Equations (3.44) and (3.45) are true only in the electrostatic approximation.

3.3.5 Pancakes and cigars
When two of the principal axes are equal, the ellipsoid is called a spheroid.

e If then the two equally long axes are larger than the third one, a = b > c,
the body has the shape of a pancake.
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0.3 pancake

0.2 -

0.1

O L L L L 1 L
0 0.5 1
eccentricity e

Figure 3.2. The shape factor for oblate (pancake) and prolate (cigar) spheroids. It can be
found by numerically evaluating the integral in (3.36) or by using the analytical expressions
(3.47) and (3.48).

e Otherwise, if a > b = ¢, it resembles a cigar.

More educated terms are oblate and prolate spheroids. We will see in
chapter 10 that pancakes and cigars, besides being nourishing or fragrant, can
explain why and how stellar light is polarized by dust clouds. The shape factor of
(3.36) now permits an analytical solution (figure 3.2). Defining the eccentricity e
through

2=1-5 (3.46)

e cigarshavea > b =c, Ly, = L. and

g, =1 14 L lEe (3.47)
= — — In .
4 e? 2e 1—e

e pancakeshavea =b > ¢, L, = Ly, and

2 1 —¢2
Ly, = % [% - arctang(e)] - 2(6) with g(e) = eze - (3.48)
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For very long cigars (needles) and very flat pancakes e = 1 and L, = 0, so
L,=L;,= % A sphere is the subcase when e = 0 and all shape factors are equal
to 1.

Figure 3.3 displays, over a broad wavelength band, what happens to the
optical depth when we replace spheres of a fixed radius by randomly oriented
spheroids, identical in shape and of the same volume as the spheres. It turns out,
although not as a strict rule, that ellipsoids have a higher average cross section,
Cay, than spheres and the effect increases with eccentricity. We can understand
this because C,y is, from (3.45), the arithmetic mean over C,, Cp, C.. When we
evaluate the Cs assuming a > b > ¢ we find that (mostly) C, > Cp > C, in such
a way that the increase in C, more than offsets the decline in Cp, or C,.

With fixed eccentricity, the cross section is still a function of the optical
constant m and thus of wavelength A. Any wiggle in m due to a resonance will
be reflected in the curves. We show results for silicate and carbon particles and
we can readily identify the resonances in silicate at 10 and 18 um by comparison
with figure 7.19. The difference between cigars and pancakes is mild. Overall,
the effect of particle elongation on the optical depth is more pronounced in the far
than in the near infrared. For example, grains with an axial ratio of two, which
implies an eccentricity of 0.866, are at A > 100 um by some 30% better emitters
or absorbers than spheres.

As a further sophistication, one can treat optically anisotropic ellipsoids.
Graphite particles are an example. When the carbon sheets are stacked parallel
to the (x, y)-plane, one has &, = &, # &,. It is also not difficult to extend the
computations of cross sections to coated ellipsoids but for particulars.

3.3.6 Rotation about the axis of greatest moment of inertia

The cross section of spinning particles changes periodically and one has to take
time averages. Suppose a spheroid rotates about the major axis where the moment
of inertia is greatest. For cigars, this is axis b or ¢, for pancakes it is axis c. The
rotation axis stays fixed in space, while the other two are spinning. Let the light
propagate in a direction perpendicular to the rotation axis and let

CE|rot CE 1ot

denote the time-averaged cross sections in the case when the electric vector of the
incident wave is parallel and perpendicular to the rotation axis, respectively.

Figure 3.1 shows such a situation for a spinning cigar with rotation axis b.
Because the mean of cos” x over a half-cycle is

1 [7 1
(coszx) = —/ cos’xdx = —
T Jo 2

we find that the average cross sections, Cg|rot and CE_Lrot, depend on the direction
of linear polarization of the incident wave,

CElrot = 5[Ca + C¢]
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Figure 3.3. The cross section of spheres over that of randomly oriented spheroids of the
same volume. Calculations are done in the electrostatic approximation implying grains
much smaller than the wavelength. The eccentricity of the spheroids defined in (3.46) is
indicated. The grains consist of amorphous carbon (aC, top) or silicate (Si, bottom); optical
constants for the two materials from figure 7.19.

CEllrot = Cp < CELrot-

If a pancake rotates about its axis of maximum moment of inertia, which is
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¢, and light comes in perpendicular or parallel to ¢, no averaging is necessary and
Cilrot = Cq
Cgjrot = C¢ < CELrot-

The effective cross section for incident unpolarized light is

C = L [CEjrot + CELrot] -

To calculate in chapter 10 the degree of polarization produced by grains, we
need the difference
AC = Cgrot — CE|rot-

e Forcigars (@ > b =cand Cp, = C.):

C=1c,+3c. AcC=1i[c,-c] (3.49)
e for pancakes (¢ = b > cand C, = Cp):

C=1Lc.+C] AC=Ci—C.. (3.50)

If the light travels parallel to the rotation axis of the spheroid (axis b for
cigars, axis ¢ for pancakes), there are, on average, no polarization effects.

3.4 The fields inside a dielectric particle

3.4.1 Internal field and depolarization field

We determined in equation (3.7) the field E! inside a dielectric sphere that sits
in a time-constant homogeneous outer field E. In section 3.3 we generalized to
ellipsoids. In both cases, the polarization P of the medium is constant and the
field inside smaller than outside. Writing the internal field E' in the form

E =E+E

defines a new field E;. It arises from all atomic dipoles and is directed opposite
to the polarization P. Because E' < E, one calls E| the depolarization field (see
figure 3.4). For example, from (3.7) we find for a sphere

4
E,=—-—P. (3.51)

3
It is important to make a distinction between the local field at exactly one
point and macroscopic averages. E| and E' are such averages over many atoms,
a hundred or so but at least over one unit cell in a crystalline structure. On a
microscopic level, the field has tremendous gradients. Atoms are not at random
positions but at privileged sites (lattice grid points are loci of minimum potential
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energy) and the local field E'°¢ acting on an atom is usually different from the
average field E!, so generally
Eloc 7& Ei.
To find E'°° at a specific locus in the grain, say at xo, we have to add to
E the fields from all dipoles. As the dipoles are at discrete lattice points, their
distribution is not smooth, at least, it does not appear to be so close to xo. We,
therefore, imagine a spherical cavity around Xy of such a size that beyond the
cavity the dipole distribution may be regarded as smooth, whereas inside it, it is
discontinuous, so
E° = E + Z Edgip + Z Edgip- (3.52)

outside cavity

The field arising from the smooth distribution outside the cavity can be
expressed as a volume integral, the field from the dipoles within the cavity has
to be explicitly written as a sum.

3.4.2 Depolarization field and the distribution of surface charges

A body of constant polarization P has, on its outside, a surface charge o of
strength
oc=e-P (3.53)

where e is the outward surface normal. This expression for o follows when
we recall that according to (1.20) a non-uniform polarization creates a charge
Ppol = — div P. Inside the body, the divergence of the polarization vector is zero
and ppo1 = 0 but on its surface, P is discontinuous and a charge appears.

There is a theorem which states that for any body of constant polarization
P, the depolarization field E; is identical to the field that arises in vacuum from
the distribution of surface charges as given by (3.53). Let ¢(r) be the electrostatic
potential from all dipoles in the body. We prove the theorem by writing ¢(r) as a
volume integral,

o(r) = —/(P-w*‘)dv.

This is correct because a single dipole p has a potential

1
wn=—p-VI|-).
Pdip |y <V>

Now we transform the volume integral into a surface integral employing the
relation div(fP) = fdivP+P-Vf. With f(r) = 1/r and divP = 0, we get

1 o
(p(r)z—f—PdS:%—dS.
r r

The second integral sums up the potentials from all surface charges and their
total field is thus equivalent to the field of all atomic dipoles.
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3.4.3 The local field at an atom

The ‘outside’ sum in (3.52) may be evaluated by an integral. According to our
theorem, it is equivalent to the field from the surface charges. However, there are
now two boundaries. The outer, S;, gives the depolarization field E;. The inner,
S>, has the same surface charge as a sphere in vacuum of constant polarization P,
only of inverted sign. Comparing with (3.51), we find that the surface charge on
S produces the field (47 /3)P.

It remains to include the atoms in the spherical cavity S». Suppose we have
a cubic lattice, the dipoles are at positions (xi, i, zi), their moments are all of
strength p and aligned in the z-direction, the point X is at the origin. Then the
z-component of the total field from all dipoles at xq is (see (3.10))

9,2 _ 42 _
Z(Edlp)z—pz _PZ % X yl =0

cavity

where r; = 1/xl.2 + yi2 + zl.2 is the distance of dipole i to the origin. The sum

is zero because of the symmetry of the grid. Likewise the x- and y-components
of the total field vanish. So we can neglect the influence of the nearest atoms
altogether. We expect that we may also neglect it if there is no grid order at all,
i.e. in an amorphous substance. For such a situation, therefore,

4
El — Ei + ?”P. (3.54)

Given the outer field E, the local field E!°° at an atom depends on the shape
of the particle. For example, for a spherical grain we derive from (3.54) with the
help of (3.7) and (3.8):

EIOC — E

For a body in the shape of a thin slab with parallel surfaces perpendicular to
E, which is the configuration of a parallel-plate condenser, one finds

El° — E — 8?”1’.

3.4.4 The Clausius—Mossotti relation
The local field E!°° produces in each atom of volume V a dipole moment
p=aVE".

Hence « is called the atomic polarizability. The formula is analogous to (1.8)
which we applied to a grain as a whole. If there are N atoms per unit volume, the
polarization of the matter is, in view of (3.54),

4
P = NVaE" = NVa (E’ ;TP) .
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Figure 3.4. A field E produces on a dielectric grain a surface charge o. According to
a theorem of electrostatics, o gives rise to a field E; that combines with E to form the
average internal field E!. The latter is not necessarily equal to the local field E!°¢ at a
particular atom or unit cell (central larger dot in inner circle) in a crystal. To find E'°, one
has to take into account the regularly but discontinuously arranged dipoles (small dots)
in the vicinity as well as those farther away which can be considered as being distributed
smoothly (shaded area). S| and S, denote surfaces.

Because P = x E' (see (1.6)), one can relate the dielectric susceptibility x
of the medium to the polarizability « of the atoms. This is done in the Clausius—
Mossotti formula:

NVa

— (3.55)
1—2ZNVa

X:

The field exerts forces on an atom and distorts the cloud of electrons; it
attracts them one way and pushes the heavy nuclei the opposite way. This can
be modeled with the harmonic oscillator of section 1.3. When we take for
the amplitude of the electron, xo, the value from (1.67) but without damping
(y = 0), and equate the dipole moment p = exg to @ E'°, we get the electronic
polarizability

62

a() = (3.56)

me(a)g — w?)

It is relevant at optical frequencies because the electrons have little inertia
and can swiftly follow the field. The resonance frequency wqg of the atom lies
typically in the ultraviolet. The static value of the atomic polarizability in a
constant field is o = €2 / mea)g.



Very large particles 103
3.5 Very large particles

A particle is defined to be very large when its size is much bigger than the
wavelength. As in the case of tiny grains, the definition is relative and the same
particle may be both small and large, depending on the wavelength. To quantify
the diffraction phenomena that occur around very big grains, we have to study
basic optical principles.

3.5.1 Babinet’s theorem

For any very large particle the extinction efficiency,

Qext — Qabs + Qsca

approaches two, independently of the chemical composition or shape of the
particle. This important result is called Babinet’s theorem or extinction paradox.

For spheres,

0% 52 whenx= 2% oo (3.57)
== . .

We illustrate Babinet’s theorem with an experiment carried out in three steps
as sketched in figure 3.5:

(1) When a parallel wavefront falls on an orifice, which is much bigger than the
wavelength, it produces, on a far-away screen, a bright spot with a blurred
rim. Outside the bright spot and the rim, the screen is dark. We restrict the
discussion to this dark area.

(2) If one places a small, but still much bigger than A, obstacle into the orifice, a
diffraction pattern appears and light is scattered beyond the blurred rim into
the former dark area.

(3) If we cover the orifice with black paper leaving just a hole of the same size
and shape as the obstacle, the diffraction patterns of the hole and the obstacle
are identical. According to Huygens’ principle for wave propagation (this
result will be shown later), the diffraction pattern of the obstacle arises
because each point in the plane of the orifice, except for the obstacle itself,
is the origin of a spherical wave; the diffraction pattern of the hole arises
because each point in the plane of the hole is the origin of a spherical wave.

In the case of the completely uncovered orifice (1), both diffraction patterns
are present simultaneously. Because the region beyond the blurred rim is then
dark, the patterns from the obstacle and the hole must cancel each other exactly,
i.e. they must have the same intensity but be phase-shifted by 180°. As the hole
scatters all the light falling onto it, the obstacle must scatter exactly the same
amount. Altogether the obstacle thus removes twice as much light than that which
corresponds to its projected geometrical surface: half of it through scattering, the
other half by absorption and reflection,
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Figure 3.5. A diffraction experiment to explain Babinet’s theorem.

Scattering at the edge of a large obstacle is, however, predominantly forward.
Therefore QX' = 2 can only be verified at far distances; it is always valid for
interstellar grains. At short distances, we know from everyday experience that a
brick removes only as much sunlight as falls onto its projected surface and not
twice as much.

3.5.2 Reflection and transmission at a plane surface
3.5.2.1 Normal incidence

A ray of light travels in the positive z-direction and hits, under normal incidence,
a large particle as shown in figure 3.6. We wish to evaluate which fraction of the
incident flux is reflected. This quantity is denoted by r and called the reflectance.
If k; = /eip1w/c is the wavenumber from (1.41) in the medium on the left
(z < 0),and ko = /e2p420/c in the medium on the right (z > 0), we obtain for
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incident
transmitted
—_—
reflected
P —

optical constant m

0 z

Figure 3.6. Light falls perpendicular on a plane surface, some is reflected and some
transmitted. The medium to the right (z > 0) has an optical constant m = n + ik.

the electric field

E = Eje!®ri=e 4 | ei(-kiz—en for z<0 (3.58)
E = E'kaz=on for z > 0. (3.59)

To the left-hand side, we have the incident and the reflected wave (indices
i and r), to the right only the fransmitted wave (index t). At the surface of the
particle (z = 0), the tangential components of the electric and magnetic field are
continuous. When we express the magnetic field via the rotation of the electric
field (see (1.32)), we find, at z = 0,

E;+ E, = E;
€241

E;— E, = E; .
E1M2

This immediately allows one to calculate the reflectance r = | E;/E;|*. The
most common case is the one where there is a vacuum on the left and the grain is
non-magnetic (12 = 1). The optical constant of the particle then equals m = /&2
and the reflectance is given by

2 =Dk
(D2 4R

1—m
14+m

(3.60)

For a large sphere (x = 2mwa/) > 1), the reflectance equals the backscatter
efficiency QP2 of (2.67).

Should n or k be large, the reflectivity is high and absorption low. Metal
surfaces make good mirrors because they have a large optical constant m and
n =~ k (see (1.117)). However, if k >~ 0, the reflectivity grows with n. A pure
diamond sparkles at visual wavelengths because k is small and n = 2.4, so the
reflectivity is high (» = 0.17). If the stone in a ring is a fake, of standard glass
which has n = 1.5, it will catch less attention because it reflects only 4% of the
light, not 17%.

We see from (3.59) how the light that enters into a large and absorbing
particle is attenuated.  The amplitude of its electric field is weakened
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proportionally to exp(—2mkz/A), so the intensity [; of the transmitted light
diminishes like exp(—4mk/Az). Per wavelength of penetration, the intensity
decreases by a factor exp(—4mk). Unless k is very small, the transmitted light
is removed very quickly and the penetration depth is only a few wavelengths.

One may wonder about the implications of formula (3.60) for a blackbody.
By definition, it has zero reflectance and would, therefore, require the optical
constant of vacuum (m = 1). But a vacuum is translucent. So no real substance
is a perfect absorber. A blackbody can be approximated by a particle with n — 1
and k — O; the particle must also have a very large size d such that kd /A is much
greater than one, despite the smallness of k.

3.5.2.2 Oblique incidence

We generalize the reflectance r of (3.60) to the case of oblique incidence. If the
incident beam is inclined to the normal of the surface element of the particle by
some angle 6; > 0, the reflected beam forms an angle 6; = 6; with the normal.
The angle of the transmitted beam is given by Snell’s law:

sin 6;

sin 6y = 3.61)

Whereas for a non-absorbing medium, m and 6 are real, in the generalized
form of (3.61) m and also 6; are complex. One now has to specify in which
direction the incident light is polarized which is not necessary under normal
incidence. For incident unpolarized light the reflectance is

2 1 2

2

1
r==

2

cos 6 — m cos b; cosB; — m cos 6,

(3.62)

cos 6; + m cos 6; cos b + m cos 6,

Using this formula, we can determine the limiting value of Q% and Q% for
very large spheres. If the particle is translucent (k = 0), it only scatters the light;
then 0 = 0 and Q%? = Q! = 2 according to Babinet’s theorem. If k > 0,
any light that enters the grain will, under the assumption of ray optics, eventually
peter out within it. One can define a reflection efficiency Q™' for spheres by

na? Q™ = f 27 (x) dx (3.63)
0

where r(x) is the reflectance after (3.62) for an incident angle 8; = arcsin(x/a)
and a is the grain radius. Q™' lies between 0 and 1 and is related to Q" through
0% = 1 — Q'f. So the absorption efficiency for large particles can never be
greater than one, only smaller if some fraction of light is reflected off the surface.

3.5.3 Huygens’ principle

In figure 3.7, a point source Q emits isotropically radiation. On any spherical
surface S around Q, the oscillations of the electromagnetic field are in phase
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S!

Figure 3.7. A spherical wavefront traveling from a point source Q at velocity c.

forming a wavefront. According to Huygens’ principle, each surface element
do is the source of an elementary (or secondary) spherical wave. The strength
of the elementary waves is proportional to the amplitude of the primary field
and to the area do. It also depends on direction, being greatest radially away
from Q and zero towards the rear; a more detailed description is not given. The
superposition (interference) of all elementary waves of equal radius originating
from the surface S fixes the position of the wavefront in the future and thus
describes the propagation of the primary wave. For instance, if the wavefront
is, at time ¢, on the surface S of figure 3.7, a time Ar = r/c later it will be again
on a spherical surface but of radius ro + r. The new surface S’ is the envelope
of all elementary waves of radius r. Outside §’, the field of elementary waves is
extinguished by interference.

Applied to plane waves, which are spherical waves of very large radius,
Huygens’ principle makes understandable why light propagates along straight
lines. It also explains the laws of refraction and reflection in geometrical optics.
To derive them from Huygens’ principle, one just has to assume that all surface
elements on the plane separating two media of different optical constants, n; and
n, oscillate in phase and emit elementary waves which propagate with the phase
velocity v = ¢/n of the respective medium.

If there is an obstacle in the way of the primary wave, some region on the
surface of its wavefront, corresponding in size and shape to the projected area
of the obstacle, does not create secondary waves. Then the superposition of the
remaining elementary waves leads to diffraction patterns. Interesting examples
are the intensity distribution of light behind a straight wire or a slit, or the fuzzy
edges of shadows. Light no longer travels only on straight lines but can bend
around corners.
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Figure 3.8. To evaluate the field u at point P inside a region G when u is known on its
surface S.

3.5.3.1 Kirchhoff’s strict formulation of Huygens’ principle

Kirchhoff put Huygens’ principle in a mathematically rigorous form. He was able
to determine the electromagnetic field # at any point P inside a region G when u
is known on the surface S of the region G (see figure 3.8). The field # must obey
the wave equation:

Au+Ku =0. (3.64)

We have already discussed plane waves, u = e!®X=@) a5 a solution to
(3.64) in section 1.2. Spherical waves where u depends only on the distance

r =+/x% 4 y2 + z2 so that
1 d°
w0 K =0

are another type of solution. By introducing the auxiliary function v = ru, one

finds
ei(kr—wt)

U=— (3.65)

-
Equation (3.65) describes an outward-going spherical wave; the time factor e~/
is again included.

As formula (3.64) is akin to the Laplace equation, A¢ = 0, which is
encountered in electrostatics and where ¢ is the electric potential, one can use
the familiar formalism of electrostatics to solve it. To determine u at a point
P inside a bounded region G when u is given on its surface S, we use Green’s

identity (see (A.14)),

d d
/(uAv—vAu)dV:% u—v—v—u do
G S Bn 8]’1

where the function v is defined as
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Figure 3.9. A point source Q isotropically emits light. The field u in P at a distance
R = QP is calculated from Huygens’ principle in the form (3.66). It is assumed that u is
known on the spherical surface S around Q with radius rg. To carry out the integration,
one constructs Fresnel zones Z1, Zy, Z3,.... They are the intersection of S with shells
around P of inner and outer radius R —rg + (j — 1)A/2 and R — rg + jXA/2, respectively,
j=12,3,....

The radius r counts the distance from the point P where we want to evaluate
the field u. At P, there is a singularity because r = 0. To circumvent it, one
cuts out from G a small sphere around P of surface S’. The volume integral in
Green’s identity is then taken only over the remaining region without the small
sphere; this remaining region is called G. The surface integral in Green’s identity
now extends over S and §’. Because in G, the wave equation is fulfilled for u and
v, i.e. Au +k*u = 0 and Av + k*v = 0, the volume integral vanishes and only
the surface integral is left. Letting the radius of the small sphere around P go to
zero, one eventually arrives at an equation that incorporates Huygens’ principle,

9 ikr ikr 9
dmuy = _7§ <u—e— - e——”) do. (3.66)
s\ on r r on

3.5.4 Fresnel zones and a check on Huygens’ principle

To convince ourselves that (3.66) is indeed a strict form of Huygens’ principle,
we show, as had been asserted before (figure 3.7), that the field from a point
source emitting spherical waves can be considered to result from interference of
secondary spherical waves. The new configuration is depicted in figure 3.9. At
P, a distance R from the point source Q, the field is, of course,

eikR

Mp: R
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We claim to obtain the same result from superposition of all secondary waves
emitted from the spherical surface S. So we calculate u ), from (3.66) supposing
that we know the field and its normal derivative on S. On the surface S,

eikro ( 1)
=— ik——]).
0 ro ro

The region G surrounding P, over whose surface one has to integrate,
comprises now all space outside the sphere of radius ryp. The contribution to the
integral (3.66) of the surface which is at infinity may be neglected, we only have
to consider the surface S. Because

9 eikr eikr . 1
— = ik — — ) cos(n, 1)
r

on r r

eikro 8u

_— —
ro on

U=uy=

where r is the radius vector from P to S and r = |r|, we get

eik(r+r0)
Ay = _f ¢ {(ik —rYcosm, 1) + (ik — ro_l)} do.  (3.67)
S

rro

If the distances are much greater than the wavelength (r, ro > k= = A/2n),

eikro ezkr
dmu, = —ik yg [14 cos(n,r)]do.
ro s r
We evaluate this integral as a sum and, for this purpose, divide the surface S
into so called Fresnel zones. These are segments on S lying between constant radii
r and r 4+ A /2. The surface normal n of a given segment forms an approximately
constant angle cos(n, r) with the radius vector r. The area of a segment is

27rro
do =
R

r.

The contribution u ; of the jth zone Z; to the field at P follows from a simple
integration over r, in the limits R — rg 4+ jA/2and R —rg + (j — 1)A/2, at fixed
[1 4 cos(n, 1)],

ikR

eR (—1)”1[1 + cos(n, 1)].

uj =
The first zone alone, if all others were covered by some dark material, yields

zeikR
R

Uy =

The contributions from the following zones alternate in sign. The first two zones
together produce almost nothing but darkness. The last zone is the one on the far
side of the sphere which, like the first, is intersected by the straight line through
P and Q. It is not difficult to work out the sum ) _ u; over all Fresnel zones. One
really obtains ¢’*R /R, and this strengthens our confidence in Huygen’s principle.
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7

Figure 3.10. Light falls from Q though an orifice S and is observed at P.

3.5.5 The reciprocity theorem

As very big particles block practically all light that falls onto them, interesting
phenomena occur only through diffraction at their edges. Suppose we have a
source Q behind an opaque plane with an orifice S of arbitrary shape and we want
to determine the intensity u, at a point P in front of the plane (see figure 3.10).
We compute it from superposition of secondary waves from the orifice S.

To first order, geometrical optics is valid and the hole deflects light only by
small angles. Therefore we approximate equation (3.67) under the assumption
rorg > k! by

st
Uy = —— = f KTH0) gy (3.68)
A rro Js

Here cos 6 ~ %[cos(n, r) — cos(n, ro)], and 6 is the angle between QP and
the normal of the plane. The distances r and r( are also almost constant and may
therefore stand before the integral; however, e’k +70) varies of course over the
hole because it is many wavelengths across. The symmetry of formula (3.68)
with respect to r and ro implies that when a source at Q produces a field u,, at P,
the same source brought to the point P produces the same field at Q. This is the
reciprocity theorem of diffraction theory.

3.5.6 Diffraction by a circular hole or a sphere

Equation (3.68) gives the field of an electromagnetic wave that has passed through
an orifice. We now apply it to a circular hole of radius a and remember from the
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y
A r
r, 'S P
Q . %
R, .1C z

Figure 3.11. The source Q is behind a circular hole (dash-dot line) and illuminates the
point P on a screen. The hole is in the (x, y)-plane of the Cartesian coordinate system
with origin C. The x-axis is perpendicular to the page of the book.

subsection on Babinet’s theorem that a spherical obstacle will produce the same
diffraction pattern.

The configuration is shown in figure 3.11. It is assumed that the hole is small
(s € R, Rp) and that Q, C and P lie roughly on a straight line so that cos 6 (see
figure 3.10) is close to one and may be omitted. Ry and R are the distances from
the center C of the Cartesian coordinate system (x, y, z) to the source Q and
the observing point P, respectively; r is the distance between P and an arbitrary
surface element do located at A; rg is the distance between Q and do. The
coordinates of the points marked in figure 3.11 are

A=(x,y00 0=(0,0,—R) P=0y.2) C=(0,00).

As we have to integrate over the hole, it is advantageous to use cylindrical
coordinates (s, ¢, 7), where

s2=)c2—i—y2 X =ssing y = §COS Q.

Because
r§=R8+s2 r2=x2+(yp—y)2+z]2) R2=y§+z]2,

it follows that ro ~ Ro+s2/2Ro and r ~ R + (s> — 2yyp)/2R. Neglecting terms
of order s or higher, which implies s < yp, one obtains

r+ro ~ R+Ro—yfpscos<p.
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Because do = s - ds dg, the integral in (3.68) becomes,

a 2
%eik(r+r0) do = eik(R+R0)f dssf d(p e*ikascosw.
S 0 0

We have introduced the deflection angle « = y,/R. To evaluate the double
integral, one uses complex integer Bessel functions J,(z) defined in (A.21). The
formulae (A.22)—(A.24) yield for the double integral

5 J1(aka)

a
271/ ds sJo(kas) =2ma
0 aka

and thus

lupl? = (3.69)

4d72q* ( Ji(aka) >2

)\zrzrg akoa

The Bessel function Jj (x) is tabulated in mathematical encyclopediae. For
small x, J1(x) — %x; at x = 1, this approximation has an error of roughly 10%.
The intensity |u |2 drops to half its maximum value at « = 0 at a deflection angle

Ohalf =~ 1.617L. (3.70)
2mwa
For example, in the visual bound, for a grain with 1 mm diameter, opqif is about
1 arcmin.

It may seem puzzling that the intensity of the light which one observes at
P and which is equal to |u, |? rises with the fourth power of the hole radius a,
although the flux passing through the hole increases only with . But as the
hole becomes bigger, the diffraction pattern gets smaller and, in the end, as much
energy as falls onto the hole from the source emerges on the other side; energy is
conserved.

3.5.7 Diffraction behind a half-plane

As a final example, we derive the intensity pattern on a screen behind a half-plane
(wall). This problem affords a nice graphical solution. The situation is depicted
in figure 3.12. To determine the field at P, opposite to S, one has to sum up
all elementary waves from the plane in which the wall lies. Because we assume
yp—y < R, the path T P is approximately equal to R+ (y, —y)?/2R. Therefore,
the wave from T has, relative to the wave emitted from S, a phase lag

2 (=)
A 2R

8

Note that the phase lag § increases quadratically with (y, —y). At P, the field
vectors E; of all elementary waves have to be added up. They have practically all
the same length but different directions. This leads to the so called cornu-spiral



114 Very small and very big particles
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Figure 3.12. Light comes in from the left, is blocked by a wall and observed at various
points on a screen. A blurred rim appears near P;.

of figure 3.13. The asymptotic points of the spiral are A and B. If one connects
any two neighboring dots in figure 3.13 by a small arrow, this arrow corresponds
to a particular vector E;. The following vector E;; is rotated by an angle that
increases as one approaches the asymptotic points, thus the curvature of the spiral
increases too. The sum of all field vectors E; at the point P has two parts:

o the first includes all E; of elementary waves emitted from points above S,
up to infinity; and

e the second consists of all E; from points below S, down to the edge of the
wall.

Their sum, which is the resulting field at P, is represented in figure 3.13 by a
large arrow. It starts at A and ends at the dot which corresponds to the elementary
wave from the rim of the wall.

If we observe at position P,, opposite to the edge of the wall, the large arrow
in figure 3.13 would end in the middle of the spiral at the fat point. Observing at
Py, a position below the edge of the wall, it ends in the lower half of the spiral.
At point P3, which is far up on the screen, the arrow goes from A almost to B.
Obviously, the intensity at P; is four times smaller than at P3.

Figure 3.14 also gives roughly the variation of light at the ‘blurred rim’
around the bright spot mentioned in the discussion of Babinet’s theorem (see the
top of figure 3.5); the hole was assumed to be much bigger than the wavelength so
that sections of its rim can be approximated by a straight line. But exactly behind
a sphere at large distances there is, from (3.69), always a maximum intensity
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Figure 3.13. The cornu-spiral. The squared length of the plotted vector gives the intensity
at a point somewhere above P, in figure 3.12, see text.

normalized intensity
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Figure 3.14. The normalized intensity around position P, in figure 3.12. On the bright
side of the screen, the intensity oscillates and approaches unity. On the dark side, it falls
smoothly to zero which is geometrically clear from figure 3.13. At exactly P, (yp, = 0),
the intensity equals 0.25.

because the waves from the circular rim are all in phase on the center line and
interfere there constructively.

The separation between the first two maxima in figure 3.14 is 1.42 in
units «/AR/m. Here is an astronomical application of this result which can,
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and has been, observationally checked. The silvery moon on its heavenly orbit
(R = 384000 km) moves relative to the stars with an angular velocity of
0.54 arcsec s~!. If it occults a quasar, which happens to lie on its path, its
intensity will oscillate as shown in figure 3.14. If the quasar is observed at the
radio wavelength A = 11 cm and if it is much smaller than 1 arcsec and crosses
the rim of the moon at a right angle, the second intensity maximum follows the
first after 5.2 s.

3.5.8 Particles of small refractive index

A grain that fulfils the conditions that
e its optical constant is close to unity,
m —1] K1 or n>~1, k>0 3.71)

e and that it is more or less transparent,
d
X|m 11«1, (3.72)

is called a Rayleigh—Gans particle. Otherwise it may be of arbitrary shape and
size; it may, therefore, be big compared to the wavelength. Inside such a particle,
the electromagnetic field is only weakly deformed and practically the same as in
the incoming wave. If we imagine the total grain volume V to be divided into
many tiny subvolumes v; with > v; = V, each of them absorbs and scatters
independently of the others. For example, if the subvolumes are ellipsoids, their
absorption and scattering cross sections are given by (3.42) and (3.43), which we
derived in the Rayleigh limit. Consequently, the absorption cross section C?° of
the total grain is also given by formula (3.42). Therefore, the absorption efficiency
of a Rayleigh—Gans sphere for any x is

8
0 — ?xlm{m —1).

To find the scattering cross section or the scattered intensity in a certain
direction, one cannot simply sum the contributions of the subvolumes because
there is a phase difference between them which leads to interference. It is this
effect which, for large bodies, tends to reduce C*“*(1) with respect to (3.43).
The formalism for how waves originating from different points (subvolumes) are
added up is basically the same as that discussed in section 2.2 on the optical
theorem. The analytical computation of the scattering cross section or the
phase function is, however, complicated, even for simple grain geometries (see
examples in [Hul57]). Of course, everything can be extracted from the full Mie
theory but not in analytical form.
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Here are some results for spheres: If x is the size parameter and y =
0.577 215 66, Euler’s constant,

0% = |m — 1Pp(x)

with

5 sindx 7
2 4x 16x2

1 ® cosu
+|=—=—2) |y +logdx + du |.
2x2 Ax u

For x <« 1, we obtain the Rayleigh limit

(1 — cos4x)

QSC& — %W’l _ 1|2X4

and for x > 1, we get
0% = 2|m — 1%x°.

The latter is much smaller than for large, non-transparent spheres which
always have Q% ~ 1. The scattered intensity /() is proportional to

1(0) o< G*(2x sin $0)(1 + cos® 6)

97 \1/2
G@u) = (ﬁ) J3/2(u)

where J3,2(u) is a half-integer Bessel function.

with

3.5.9 X-ray scattering

We now apply the results obtained for particles of small refractive index to X-
rays. At a wavelength of, say 10 A, interstellar dust particles are always big
because x = 2mwa/A > 1. The value of the dielectric permeability in this range
may be estimated from the high-frequency approximation (1.79), which gives

2
_ %Y

~1 82——3<<1
w

81\3 | 'USI\J

e1=1-—

where wy is the plasma frequency and y a damping (not Euler’s) constant. As
the frequency w is large, we expect €] to be close to one and ¢; to be small, so
le — 1] <« 1; likewise for the optical constant, [m — 1| <« 1. The grains are,
therefore, very transparent and even satisfy condition (3.72):

2jm| I«
—|m — .
A
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For big spheres, scattering is very much in the forward direction defined by
6 = 0. Therefore, the angular dependence of the scattered intensity is given by

1) o G*(w)  withu = 2xsin 36.

When one numerically evaluates the function Gz(u), one finds that it has
its maximum at # = 0, drops monotonically, like a bell-curve, reaches zero at
about 4.5 and then stays very small. Consequently, there is forward scattering
over an angle such that §x ~ 2. For grains of 1000 A radius, this corresponds to
0 ~ 10 arcmin. One can, therefore, observe towards strong X-ray sources located
behind a dust cloud an X-ray halo of this size. The intensity towards it follows
from the fact that the total scattered X-ray flux is smeared out over the halo.



Chapter 4

Case studies of Mie calculus

We have collected the tools to calculate how an electromagnetic wave interacts
with a spherical grain. Let us apply them. With the help of a small computer,
the formulae presented so far allow us to derive numbers for the cross sections,
scattering matrix, phase function, and so forth. In this chapter, we present
examples to deepen our understanding. To the student who wishes to perform
similar calculations, the figures also offer the possibility of checking his computer
program against the one used in this text.

4.1 Efficiencies of bare spheres

4.1.1 Pure scattering

As a first illustration, we consider the scattering efficiency of a non-dissipative
sphere, i.e. one that does not absorb the incident light. The imaginary part k& of
the optical constant m = n + ik is, therefore, zero, the absorption coefficient
vanishes! and

sca — QCXI.

The efficiency depends only on m and on the size parameter x = 2wa/A. To
better interpret the dependence of Q%® on x, we may envisage the wavelength A
to be fixed so that x is proportional to grain radius a. Figure 4.1 demonstrates two
features valid for any particle:

e When a particle is small, we naturally expect the cross section C to be
small, too. But even the extinction efficiency, which is the cross section
over projected area, goes to zero,

0%t -0 for x — 0.
I Astronomers sometimes call a non-dissipative medium, i.e. one with a purely real optical constant,

a dielectric. However, we understand a dielectric to be the opposite of a metal. So a dielectric may
well have a truly complex m, where the imaginary part is not zero.

119
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Figure 4.1. The extinction efficiency Q%X as a function of size parameter x and its inverse
x~! for an optical constant m = 1.5; this value is appropriate for glass in the visible
part of the spectrum. The left box shows the range 0 < x < 20, the right the range
0.002 < x ! < 0.05 corresponding to 20 < x < 500. Because in any real material, m
depends on wavelength, whereas we have kept it fixed in the figure, it is best to envisage A
as constant. Then the abscissa of the left frame is proportional to the grain radius.

e In accordance with Babinet’s theorem, when the grain is very large, the
extinction efficiency approaches two (see the right-hand frame of figure 4.1),

ot 52 forx~! = 0.

There are two interesting aspects pertaining to a pure scatterer or weak
absorber:

e Q% displays an overall undulating character with broad waves on which
semi-regular ripples are superimposed. The phenomenon of ripples and
waves can be traced to the behavior of the coefficients a,,, b, of (2.50), (2.51)
and is due to interference in the scattered wave (see(2.46)). The ripples
correspond to small denominators in a;,, by, the broad crests of the waves to
maxima in the sum aj,, + b,,. The first maximum of Q®*' is achieved roughly
at 8(n — 1), in our particular example this occurs at x =~ 4; it is followed by
gradually declining maxima around x = 11, 17, . ... The minima in between
stay more or less all around two.

e The extinction efficiency can be quite large. In figure 4.1, its maximum value
is 4.4 times (!) bigger than the projected surface of the particle.

4.1.2 A weak absorber

Figure 4.2 exemplifies the effects of adding impurities to the material. The
top frame is identical to the left box of figure 4.1 and displays a medium with
m = 1.5. In the middle, the optical constant is complex, m = 1.5 4+ i0.02. Now
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Figure 4.2. The efficiencies for absorption (dashes), scattering (dots) and extinction (full
line) for three different substances: one is not dissipative, the others are weakly absorbing.
An optical constant m = 1.5 4+ 0.05i may be appropriate for astronomical silicate around
A =6 pum.

the particle not only scatters the light but also absorbs it. Impurities effectively
suppress the ripples and they also lead to a decline in the amplitudes of the waves.
The damping is sensitive to k, as can be seen by comparing the two bottom panels
where k changes from 0.02 to 0.05.

For interstellar grains, the ripples and the waves are irrelevant. For example,
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Figure 4.3. The efficiency for absorption, scattering and extinction, as well as the
asymmetry factor g for a strongly absorbing material with m = 1.5 + 0.5i.

when we measure the intensity of a star behind a dust cloud, the observation is not
monochromatic but comprises a certain bandwidth AA. The optical constant m(X)
will change somewhat over this bandwidth and, more importantly, interstellar dust
displays a range of sizes, so the peaks produced by particles of a certain diameter
are compensated by minima of slightly smaller or bigger ones.

4.1.3 A strong absorber

In figure 4.3 we retain the value of n = 1.5 of the previous two plots but choose for
the imaginary part of the optical constant k = 0.5. This implies strong absorption.
The efficiencies change now very smoothly and there are no signs of ripples or
waves left. Because of the strong absorption, Q% increases quickly with x at
x < 1. We discern, in this particular example, the general features of small-sized
grains. When x — 0:

e (0% and x are proportional, as predicted by (3.3).
e  The scattering efficiency changes after (3.4) as

Qsca x x4

s0 Q% falls off more steeply than Q2" (see logarithmic plot of figure 4.5).
e  Absorption dominates over scattering,

Qabs > Qsca.
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e  The asymmetry factor g of (2.6), which describes the mean direction of the
scattered light, vanishes. Although isotropic scattering implies g = 0, the
reverse is not true.

Figure 4.3 plots only the range up to a size parameter of five but the behavior
for larger x is smooth and can be qualitatively extrapolated. In this particular
example of m = 1.5 4 i0.5, a very large particle (x > 1)

scatters mostly in the forward direction, so g is not far from one; and

it has a large absorption efficiency and, therefore, a small reflectance Q™ =
1 — Q3, as defined in equation (3.63). The asymptotic values for x — 0o
are: g = 0.918, 0% = 0.863 and Q™f = 0.137.

Surprisingly, the absorption efficiency can exceed unity, which happens here
when x > 0.9. Unity is the value of Q®* of a blackbody and may thus appear to
be an upper limit for any object. Nevertheless, the calculations are correct, only
the concept of a blackbody is reserved to sizes much larger than the wavelength.

4.1.4 A metal sphere

e Ideally, a metal has (at low frequencies) a purely imaginary dielectric
permeability so that n >~ k goes to infinity (see (1.117)).
A metallic sphere is, therefore, very reflective and Qabs tends to zero.
When the sphere is big, Q! is, as always, close to the Babinet limit of two.
When the sphere is big, of all the light removed, half is scattered isotropically
and it alone would yield an asymmetry factor g = 0. The other half is
scattered at the particle’s rim entirely in the forward direction, which alone
would produce g = 1. The combination of both effects gives g = %

e  When the sphere has a size comparable or smaller than the wavelength,
backward scattering dominates (g < 0).

e  For small values of |mx|, the metallic sphere also obeys the relation Qabs >
Q5. But as x grows, the scattering increases and soon takes over, whereas
the absorption stays at some low level.

Figure 4.4 illustrates these items in case of large but not extreme metallicity
(m =20 +1i20).

4.1.5 Efficiency versus cross section and volume coefficient

In figure 4.5, we compare efficiencies, cross sections and volume coefficients
using an optical constant m = 2.7 4 i 1.0 which applies to amorphous carbon at a
wavelength & = 2.2um. The presentation is different from the preceding figures
as we choose for the abscissa the grain radius a, and not the size parameter x; the
wavelength is kept constant at 2.2 pm. The logarithmic plots reveal the limiting
behavior of small and large particles. These features, compiled in table 4.1, are
independent of the choice of m or A.
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Figure 4.4. Same as figure 4.3 but now for a metal for which n and k are large and equal.
The situation applies approximately to amorphous carbon at millimeter wavelengths (see
figure 7.19). Note that g becomes negative.

Table 4.1. The asymptotic dependence of efficiciency, cross section and mass or volume
coefficient on the radius, a, of a spherical grain.

Large radii Small radii
Symbol a > A a <A

Efficiency 0 0%s = constant 0 x a

Q% = constant QS o a*
Cross section per grain Cc Cabs ¢ ¢2 Ccabs o3

Csea o 42 Csea a6
Mass or volume coefficient K K2bs o g~ K2bS = constant

K@ o g1 K g3

4.1.5.1 Spheres of small radii

e The efficiencies depend on wavelength as given by (3.3) and (3.4). If m is
constant, Q%% oc 17! and Q%@ o« A7*. Scattering is, therefore, negligible
relative to absorption.

e Asinterstellar dust has typical sizes of 0.1 um, one may assume the Rayleigh
limit to be valid at all wavelengths greater than 10 um.

e  The mass absorption coefficient K i‘bs is proportional to the grain volume V,
irrespective of the size distribution of the particles.
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Figure 4.5. The top frame gives the absorption and scattering efficiency Q; the middle
one the cross section per grain C = 7a?Q; and the bottom one the volume coefficient

K referring to 1 cm? of grain volume. The optical constant m = 2.7 + i1.0, wavelength

A=22pum.

e The mass scattering coefficient K3 follows V2. Although the scattering
process is identical in all subvolumes of a grain, the net effect is not linear
but proportional to the square of the grain volume because of interference of

the scattered waves.
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e  The emission coefficient
6. = KB (Taus))

also depends linearly on the grain volume; Bj (Tqyst) is the Planck function
at the dust temperature (see (8.1)). Provided the infrared photons are not
trapped in the cloud, a condition that is usually fulfilled, the observed flux is
directly proportional to the total dust volume.

4.1.5.2 Spheres of large radii

The efficiencies, Q, reach a finite value with Q%' = Q%S 4 Q5@ = 2. The cross
sections per grain, C, increase without bounds proportional to the projected area
of the grain. The mass or volume coefficients, K, decrease inversely proportional
to the radius.

4.1.6 The atmosphere of the Earth

The atmosphere of the Earth presents another instructive example. We can
now understand why the daylight sky is blue. If there were no atmosphere, it
would appear black, except for the stars, Sun and planets. However, the tiny air
molecules scatter the sunlight towards us. Because Q% o< A™* and Apjue < Areds
the sky is painted blue. An additional requirement is that the air molecules
are randomly moving, as otherwise interference would cancel out the intensity
except in the forward direction. The scattered light is polarized and maximum
polarization occurs 90° away from the Sun (see (3.19)), or at night time 90° away
from the moon.

As preferentially blue light is removed in scattering, the transmitted light
becomes redder. But this does not explain the occasional romantic sunsets. More
relevant for the reddening towards the horizon is the removal of blue light through
absorption by tiny solid particles. These may arise from industrial exhausts, a
sand storm or a volcano eruption. The dependence of absorption on A is less
steep than for scattering but qualitatively similar (Q® o« A~!) and also results in
reddening.

We can also explain why we see the water in the air only when it has liquefied
into clouds, and not as vapor. When on a summer day the solar heating induces
convection and a parcel of air rises we see the parcel only at the moment the water
condenses, although the H>O molecules were there before. This seems puzzling
because upon condensation the water molecules do not drastically change their
properties as radiating oscillators. The reason that they become visible when they
cluster into droplets is the following: The mass scattering coefficient K5 is,
according to table 4.1, proportional to the volume V of a single scatterer (one
H>0O molecule or one water droplet). During the phase transition from gas to
liquid, V grows by a factor of ~ 109, The size of the water droplets is then still
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Figure 4.6. Diagrams of the intensity distribution of scattered light for three sizes for
parameter x and two optical constants m. Light enters from the left and the grain is at the
position (0, 0). Each diagram is normalized in such a way that the intensity equals one
in the forward direction (¢ = 0); its value in any other direction is given by the distance
between the frame center and the contour line. All contours are mirror-symmetric with
respect to the horizontal arrows, see also table 4.2.

smaller than the wavelength of visible light so that the dipoles in the droplet swing
in phase.

4.2 Scattering by bare spheres

4.2.1 The scattering diagram

The pattern of how the intensity of scattered light changes with angle is described
by the phase function of (2.63) and visualized in figure 4.6. In these examples,
the left frame refers to a non-dissipative sphere with m = 1.5. The curve labeled
x = 0.01 represents a dipole pattern which is characteristic for a particle small
compared with the wavelength irrespective of the choice of the optical constant
m. Itis symmetric relative to the scattering angle of 90° (vertical line in the figure)
and therefore has equal maxima in the forward (¢ = 0) and backward (6 = 180°)
directions. Note that the scattering is not isotropic, although g = 0. The pattern is
sensitive to the size parameter x = 2wa/A. When x > 1, scattering becomes very
forward and for a grain diameter just equal to the wavelength (x >~ 3), almost all
light goes into a forward cone.

In the right frame where m = 10 + i10, we are dealing with a reflective
material. The change in m relative to the non-dissipative sphere shown on the
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Table 4.2. Scattering efficiency, asymmetry factor and back scatter for spheres whose

scattering diagram is displayed in figure 4.6.

Asymmetry

x =2ma/r m Qsea factor g Qback

0.01 1.5 231x107% 1.98x 1075 35x107?
1 1.5 2.15 0.20 0.19

3 1.5 3.42 0.73 0.53

0.01 10410 267 x107% 1.04x 107> 4.0x 1078
1 10+i10  2.05 0.111 3.31

3 10+i10 2.08 0.451 0.42

left does not affect the curve x = 0.01. There is also not much difference for

X =

3, although curious tiny rear lobes appear. However, at the intermediate

value x = 1, we now have preferential backscatter and the asymmetry factor is
negative (g = —0.11), whereas in the left-hand panel, at x = 1, the scattering is
mainly forward.

4.2.2 The polarization of scattered light

For the same optical constants and size parameters as previously, figures 4.7 and
4.8 depict the degree of linear polarization p of light scattered by a sphere (see
(2.77)). They display the basic features, although the details are sensitive to size,
shape and optical constant of the particle.

The polarization curve p (@) of tiny and weakly absorbing spheres (x = 0.01,
k < 1; dashes in figure 4.7) is symmetric around 90° and has the shape of
a bell. The polarization is 100% at a scattering angle of 90°. For weak
absorbers, p(6) hardly changes as x grows from 0.01 up to 1.
Tiny metallic particles (x = 0,01, m = 10 4 i 10; figure 4.8) have the same
pattern as tiny dielectrics but at x = 1, the polarization p(#) is no longer
symmetric and attains a maximum value of only 78%.
The behavior of p(@) at intermediate sizes (x = 3) is more complicated
in both materials. The polarization changes sign and there are several
maxima and minima of varying height. In our examples, p vanishes at three
intermediate angles. Here the matrix element Sjp switches sign (see (2.75))
and the direction of polarization with respect to the scattering plane changes
from perpendicular to parallel or back. The scattering plane is defined by the
unit vectors in the direction from where the light is coming and where it is
going.

When one measures the linear polarization of scattered light at various
locations around the exciting star of a reflection nebula. the observed values
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Figure 4.7. The degree of linear polarization p of scattered light as a function of scattering
angle for various size parameters x and an optical constant m = 1.5. For intermediate
sizes (x = 3), the polarization at certain scattering angles goes through zero and becomes
negative. At the points where p = 0, the polarization vector flips. The dotted line depicts
a very large sphere (x = 1000) with some slight contamination (m = 1.5 4-i0.003).
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Figure 4.8. The degree of linear polarization p of scattered light as a function of scattering
angle for various size parameters x and an optical constant m = 10 + i 10.
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Figure 4.9. The infrared source IRS4 (at figure center) in the bipolar nebula S106
illuminates its vicinity. Some light is scattered by dust particles producing in the K-band
(2.2 pm) a polarization pattern of wonderful circular symmetry (adapted from [Asp90]).
Reproduced from [Asp90] with permission of Blackwell Science.

are always an average along the line of sight. If the particles are small,
S12 < 0 and the polarization vector is perpendicular to the radial vector
pointing towards the star. However, as the figure suggests, it can happen,
although it is an unfamiliar scenario to astronomers, that the radial and
polarization vectors are parallel.

e Very big dielectric spheres (x =~ 1000) again show a simple pattern with
no sign reversals. There is 100% polarization in a slightly forward direction
(6 =~ 65°). For metals of this size, p(6) has more structure.

e Polarization is always zero in the forward and backward directions (6 = 0
or 180°).

An impressive example of a very regular polarization pattern is presented by
the bipolar nebula S106 (figure 4.9). This is a well-known star-forming region.
At optical wavelengths, one observes light from two nebulous lobes separated by
a dark lane that is interpreted as a disk inside which sits the central and exciting
source named IRS4. We are viewing the disk from the side. There is plenty of
visual obscuration towards IRS4 (~20 mag) but in the near infrared one begins
to penetrate most of the foreground and outer disk material. IRS4 is an infrared
source and its radiation is reflected by the dust particles that surround it. When
looking directly towards IRS4, the angle of deflection is close to 0° or 180°
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Figure 4.10. The term (Az/a3)S11(cos 0) in equation (4.1) for right angle scattering
(cos® = 0). It is computed as a function of wavelength for silicate and carbon grains
with radiia = 3 x 107%,1073 and 3 x 107 c¢m (i.e. ¢ = 0.03, 0.1, 0.3 wm). Optical
constants from figure 7.19. The 10 um feature of silicates is discernible.

and the ensuing degree of linear polarization is small. But at positions a few
arcseconds off, scattering occurs at right angles and the light becomes strongly
polarized. Note that S106 must be optically thin to scattering in the K-band (see
table 7.2) as otherwise multiple scattering would lead to depolarization.

4.2.3 The intensity of scattered light in a reflection nebula

To evaluate the intensity of scattered light, we consider 1 g of dust in interstellar
space, consisting of Ny = 3/4ma®pqy identical spherical grains of radius a and
density pg = 2.5 g cm™3, which is illuminated by a flux Fp; from a nearby star.
Some of the radiation is scattered under an angle cos 6 towards the observer who
is at a distance D. The flux F), that he receives is found from formula (2.1), where
we replace L(0, ¢) by the element S1; of equation (2.63),

3 Fo

)»2
Fo=—F—— =S 0). 4.1
e T o A 11(cos 0) 4.1

The expression (2 /a3)S1 1(cos 0) is delineated in figure 4.10 for a scattering
angle 6 = 90°.

In the infrared where a < A, the matrix element S11(cos 0) is very sensitive
to both grain size and wavelength, roughly S1; o (a/A)°. The size of the largest
grains, therefore, determines the intensity of the scattered infrared light. Of
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course, the shape of the particle also plays some role. Elongated grains, even
of arbitrary orientation, scatter more efficiently than spheres of the same volume.
For spheres, isotropic scattering at infrared wavelengths is not a bad assumption.

In the ultraviolet, the dependence of S;i(cosf) on the scattering angle is
complicated and the curves in figure 4.10 may only be used if 8 is not too far
from 90°.

As an exercise, we apply figure 4.10 to answer the question: What is the
approximate V-band surface brightness of scattered light in a reflection nebula?
The nebula is D = 1 kpc away and excited by a main sequence star of spectral
type Bl with L = 10* Ly and T, = 2 x 10* K. We calculate this quantity at a
projected distance from the star of » = 0.1 pc assuming that the extinction along
the line of sight through the nebula equals Ay = 0.1 mag.

An extinction of 0.1 mag corresponds after (7.23) to a hydrogen column
density Ng = 2 x 10%° cm™2. This gives, with a gas-to-dust mass ratio of 150
and accounting for 10% of helium, a dust mass of 7.0 x 10?® g in a column with
a cross section of 1 arcsec?. If the star is approximated by a blackbody, its visual
flux at a distance r = 0.1 pcis Fo.y = 9.80 x 1071 erg s~! cm™2. For a rough
estimate, we neglect that the distance of the scattering dust to the star changes
along the line of sight. Let the particles have radii @ = 107> cm. Then we
read off from figure 4.10 at a wavelength of 0.55 um for right angle scattering
that (Az/a3) x S11 =~ 8 x 10°. With the factor w; = 3640 to convert Jy into
magnitudes from table 7.2, we find a surface brightness in the nebula at V of

18.5 mag arcsec 2.

4.3 Coated spheres

The mathematical formalism of Mie theory presented in section 2.3 can readily
be extended to coated spheres. Only the appearance of two more boundary
conditions at the interface between the two dust materials is new. The relevance
of calculating coated particles stems from the observational fact that grains in
cold clouds acquire ice mantles. Such particles may be approximated by two
concentric spheres. There is a refractory core of radius acqre and optical constant
Mmcore surrounded by a volatile shell of thickness d and optical constant mgpep. So
the total grain radius is
Aot = deore + d.

The left box in figure 4.11 shows the absorption efficiency Q2 as a function
of size parameter x for homogeneous particles with optical constants m = 2.7 4 i
and m = 1.33 4+ 0.03i. In the right box, we plot Q%S for coated spheres as a

function of
dcore

Atot

For r = 0, the grain consists only of core matter with m = 2.7 4 i; for
r = 1, only of mantle material (m = 1.33 4 0.037). The four curves represent



Surface modes in small grains 133

qus_= | T | TTr T rrrprrT | T I- QGbS-I TTr[rrrrrrrprrr|rT I-
- [\__bare sphere - coated sphere ]

15 ) 4 15F '
[ m= 2.7+ ] [ Mgpey = 1.3+i0.03 ]
[ : ] [ Meore = 2.7+i ]
TF 1E =
05| 4 osf :
] [ x=2 ]
0 ~m = 1.3+i0.03 : x=0.5 -
0 i L1 | MR TS A BT A | [ |- O M R A |-
0 2 4 6 8 10 0O 02 04 06 08 1

x = 2ma/\ Ocore / Oot

Figure 4.11. The left frame gives the absorption efficiency as a function of size parameter
for homogeneous spheres. The optical constant m = 2.74i is representative of amorphous
carbon at A = 2.2 um and m = 1.33 + 0.03i is applicable to dirty ice at the same
wavelength. Dotted vertical lines for reference to right box. The right frame shows the
absorption efficiency of a coated sphere, x denotes the size parameter of the total grain.

size parameters x = 2mag/A of the total sphere between 0.5 and 8. For easy
comparison, these values are also indicated by dotted lines in the left frame. The
right figure demonstrates how the absorption efficiency of a coated grain changes
when the core grows at the expense of the mantle while the outer radius ao is
fixed.

4.4 Surface modes in small grains

4.4.0.1 Small graphite spheres

When grains display, at some wavelength, an extinction peak, the reason is
generally a resonance in the grain material. However, in the case of grains which
are small compared with the wavelength, the extinction cross section may be large
without an accompanying feature in the bulk matter. As the extinction efficiency
is in the Rayleigh limit after (3.3) proportional to £3/|e + 2|%, we expect a large
value for Q% at a wavelength where

e+2>~0.

Because ¢ = m?, this happens when the real part n of the optical constant is close
to zero and k% &~ 2. The phenomenon bears the name surface mode.
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For the major components of interstellar dust, amorphous carbon and silicate,
there is no wavelength where the condition of small e+2 is approximately fulfilled
(see figure 7.19) but graphite around 2200 A is a candidate. Graphite is optically
anisotropic and the effect appears when the electric vector of the incoming wave
lies in the basal plane of the stacked carbon sheets; the dielectric constant is then
denoted by &;. The left-hand side of figure 4.12 shows ¢; = &1 + igp and
the resulting extinction efficiency for spheres of different sizes. The wavelength
interval stretches from 1670 to 3330 A or from 6 to 3 um~!. To underline the
effect of the surface mode, Q! is normalized to one at A~' = 3 um~!. Small
particles (a < 300 A) clearly display a resonance around 2200 A, which is absent
in the bulk material because particles with a radius greater than 1000 A do not
show it. The graphite surface mode is invoked to explain the strong feature around
2200 A in the interstellar extinction curve (fi gure 7.8).

For the Rayleigh approximation to be valid, the particles must have diameters
of 100 A or less. But the position of the resonance contains further information on
grain size. The upper left box of figure 4.12 illustrates how the peak in Q°** drifts
towards smaller wavelengths (greater A~ ') with decreasing radius a; it moves
from 2280 to 2060 A as the radius shrinks from 300 to 30 A. There is no further
shift for still smaller particles.

In astronomical observations of the extinction curve, the relevant quantities
are, however, not the extinction efficiencies Q% but the extinction coefficients per
cm? of dust volume, K ', They are shown in the upper right frame of figure 4.12.
The dependence of K%' on A~! is qualitatively similar to that of Q% but the
discrimination against size is more difficult and not possible below 100 A.

4.4.0.2 Ellipsoids

From comparison of the electric polarizability for spherical and ellipsoidal
particles (see (3.9) and (3.39)), it follows that the condition ¢ + 2 =~ 0, necessary
for the appearance of a surface mode in spheres, must for ellipsoids be replaced
by

14+ Li(e—1)=~0

or similar expressions for the y- or z-axis. The form of the particle therefore
influences, via the shape factor Ly, the strength of the surface mode as well as its
center wavelength.

4.4.0.3 Metals versus dielectrics

Figure 4.13 illustrates the interplay between & and Q! in a surface mode for a
dielectric consisting of identical harmonic oscillators. The variation of ¢ is, of
course, similar to figure 1.2, only the resonance is here sharper (y = 0.05). We
see that a surface mode cannot happen far from a resonance in the bulk material
and if it does, only at a higher frequency. We wish to make two points:



Surface modes in small grains 135

- graphite a<100A
. (perp)

N

graphite
(perp)
300A

—_
[T T [rrrr T

o
&)

K™ [10° cm?/cm’]
(&4}

So

PN BT E T B
N

—_
LI B B B B B
PRI S S B SRS N AAY [

n

_5....I....I.... O""I""I""
3 4 5 6 4 5 6

/% [um™'] /% [um™']

Figure 4.12. The upper left frame gives the extinction efficiency for graphite spheres of

w

various radii, a, in the 2200 A wavelength region when the electric vector lies in the basal
plane. The efficiencies are normalized to one at 3 um~!. The increase for small sizes
is due to a surface mode and not to an intrinsic quality of the bulk material. The lower
left frame gives the dielectric constant ¢ = & + ¢3; the upper right frame the volume

coefficients, not normalized; and the lower right frame the optical constant m = n + ik.

There is a clear offset between the peaks in &, and QX

Although the grain is in the Rayleigh limit (|mx| < 0.1), the extinction
efficiency is around one and, surprisingly, not small. Nevertheless, 0 — 0
for |mx| — 0 is always correct.

Not every dielectric material displays a surface mode but for metallic grains
the phenomenon is inevitable when damping is weak. With the dielectric
permeability for metals given in equation (1.123), the denominator in (3.3)
vanishes when

B+ —1]0? +y* =0.

Here the frequency w and the damping constant y are in units of the plasma
frequency wp. As y is usually much smaller than wp, a surface mode, i.e. a strong

enhancement of QS appears at w = wp/ V3 (see figure 4.14).
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Figure 4.13. For small spheres, the absorption efficieny QX! can be calculated from the
Rayleigh limit (3.3). The dielectric permeability € of the grain material in the figure is that
of an harmonic oscillator (see (1.77)). When the resonance frequency wq and the damping
constant y are measured in units of the plasma frequency, wg = 1 and y = 0.05. The grain
radius a is determined by the condition that the size parameter equals x = wa/c = 0.05 at
the frequency wg. The peak in the absorption efficiency is due to a surface mode, because
Q%X attains its maximum, where the denominator |¢ 4 2| in (3.3) has its minimum. The
dotted curve of |¢+2|? is not always within the box. For better visibility, Q! is magnified
by a factor of 10.

4.5 Efficiencies of idealized dielectrics and metals

4.5.1 Dielectric sphere consisting of identical harmonic oscillators

The functional form of the dielectric permeability ¢ of an harmonic oscillator
with resonance at frequency wq is given by equation (1.77). We plotted ¢ in
figure 1.2 for a damping constant y = 0.2wq and a plasma frequency w, = wo.
It is instructive to compute in Mie theory the efficiencies of a particle with such
an idealized dielectric constant to see how the complex ¢ translates into QS or
Qext.

Figure 4.15 shows the extinction efficiency Q°*' when there is a broad
resonance in the bulk material (y = 0.2wy, as in figure 1.2). When the grains
are large, Q%' is basically constant over the resonance and does not seem to
depend on ¢ at all. At intermediate sizes, one can discern some correspondence
between Q! and the imaginary part &,. When the grain is much smaller than
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Figure 4.14. As figure 4.13 but for a metal with a dielectric permeability ¢ from the Drude
profile (1.123): y = 0.05wp, size parameter x = wpa/c = 2mwa/r = 0.05.

the wavelength, all charges move synchronously in the electromagnetic field.
Scattering is then negligible and one would expect O to mimic &5 rather closely.
However, as already discussed in figure 4.13, this is not so.

Figure 4.16 shows the same Q%' as in figure 4.15 but over a wider frequency
range and on a logarithmic scale. One may wonder why Q%! falls and does not
approach two when the particle is much bigger than the wavelength. However,
there is no conflict with Babinet’s theorem. The latter states that Q%! — 2 for
a/A» — oo if the dielectric permeability is kept constant, whereas here ¢ becomes
smaller and smaller as the frequency rises.

The curve in figure 4.16 labeled big grains (radius a = 10c/wp)
demonstrates that when there is a resonance in the bulk material at some frequency
wy, the corresponding signature in the emission or absorption of the grain gets lost
if the particle is very large. For example, silicate grains of a size much exceeding
10 um will not display the famous 10 um feature. Another way to swamp a
resonance is by high optical depth; this will be discussed in section 8.3.

When we insert the low-frequency limit of the dielectric permeability ¢ of
an harmonic oscillator after (1.78) into the Rayleigh approximation (3.3) for the
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Figure 4.15. Broken lines represent the extinction efficiency of spheres with the dielectric
constant ¢ of a harmonic oscillator given in equation (1.77); here with y /wg = 0.2 and
wo/wp = 1, where wy is the resonance frequency. Q% is plotted for three grain radii, a.
When a = 10c/wq, the particle is big (size parameter x = 10 at frequency wy); the case
a = c/wq represents medium-sized grains (x = 1 at wg) and a = 0.1c/w small ones
(x = 0.05 at wy); this line is enhanced for better visibility by a factor of 5. The full curves
represent € = g1 +ig».

absorption efficiency, we get
@y a
2,2
4 ©
w; (3 + w(%)

The behavior at long wavelengths far away from the resonance is, therefore,

0% = 48¢7? 4.2)

0% o v? for v — 0.

This is the reason why one often assumes that optically thin dust emission follows
a modified Planck curve v2B,(T) in the long wavelength limit..
4.5.2 Dielectric sphere with Debye relaxation

The dielectric permeability for Debye relaxation is given by formula (1.146). The
absorption efficiency Q2 is now temperature-dependent and varies with 1/7.
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Figure 4.16. The efficiencies of figure 4.15 but now on a logarithmic plot and over a
broader frequency range.
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The inverse of the relaxation time f is a characteristic frequency denoted
by wrel = tr;l; it corresponds, in some sense, to the resonance frequency of an
harmonic oscillator. The efficiency Q depends on w/wre and on the grain radius

in a way that is qualitatively similar to what is plotted in figure 4.15.

4.5.3 Magnetic and electric dipole absorption of small metal spheres

We derived in equation (1.57) the average rate W at which a small grain of volume
V and polarizability oy, oscillating at frequency w in a time-variable magnetic
field of amplitude Hy dissipates energy:

W = IV Im{om}Hj.

In section 3.2 we learnt that a piece of metal in an electromagnetic wave
becomes such an oscillating magnetic dipole because circular currents are induced
in its interior which are surrounded by a magnetic dipole field. We also evaluated
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Figure 4.17. The ratio of magnetic dipole absorption over total absorption for metallic
spheres with dielectric permeability ¢ = i4wo/w as a function of the conductivity o. The
size parameter x = 1072 is small and kept constant. Therefore, given the particle radius
a, the wavelength follows from x. For example, A = 62.8 um fora = 1073 cm.

in section 3.2 the magnetic polarizability oy, of small metal spheres analytically.
We thus have all the tools to calculate the cross section due to magnetic dipole
absorption.

But the metal sphere in the electromagnetic wave is also a variable electric
dipole because its mobile electrons are shifted about by the electric field. The
dissipation rate of the latter is given by (1.55), an expression formally identical
to (1.57). There is also magnetic dipole scattering but it is much weaker in the
Rayleigh limit and we neglect it here.

In figure 4.17, we assess the importance of magnetic dipole absorption for
pure metal spheres by comparing the corresponding efficiency Q™€ with the total
Q'™ which also contains electric dipole absorption. Barring quadrupole terms,
we have

Qtot — Qmag + Qel
We assume that ¢ has no dielectric contribution and put (see (1.115))

Ano
e=1

(0]

where o is the direct-current conductivity of (1.120). We then calculate the fotal
absorption efficiency Q' correctly from formula (2.55) of Mie theory. The size
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parameter in figure 4.17 is small and kept fixed, x = 2mwa/A = 10~2. Therefore
we can write 5
mag _ 327”4 :

oM = B Im{an}; 4.4)
the magnetic polarizability oy, is taken from (3.21). An equivalent formula for
the Rayleigh limit of the electric dipole absorption efficiency Q¢ is not valid
everywhere in figure 4.17; although the particle itself is small, being a metal, the
relevant quantity |mx| is not necessarily so.

Obviously, magnetic dipole absorption increases with the conductivity and it
can be the dominant absorption process. We consider in figure 4.17 the Q’s for
three radii in the likely range of interstellar grains. Because the size parameter is
constant, the implied frequencies w lie between 3 x 10'2 and 3 x 10 s~ 1.

A large size favours magnetic dipole dissipation.

At low conductivities, where the curves in figure 4.17 still increase, the
penetration depth of the magnetic field, as defined in equation (3.23), is large
compared with the grain size and (see (3.26))

0™ o g3 /32 §>a (for small o).

e At high conductivities, where the curves are flat, the penetration depth is
small. Q™?2& does not depend on radius and is proportional to the wavelength
(see (3.28)):

o™ A 71/2 §Ka (for large o).

4.5.4 Efficiencies for Drude profiles

We have already computed the efficiency Q of a metal-like sphere in figure 4.4. It
applies to the low frequency limit where ¢ ~~ i4mwo/w and o is the direct current
conductivity. The optical constants n and k are then large and roughly equal.
As m = n + ik is constant in figure 4.4, the plotted values of Q refer to a
fixed frequency, and in the size parameter x only the grain radius changes. In
figure 4.18, however, we use, for ¢, the Drude profile from (1.123) and keep the
grain diameter constant. We now plot Q as a function of frequency (in units of
wp) in the same manner as in figure 4.17 for a dielectric. The damping constant is
the only free parameter (here y = 0.1wp).

o Atlong wavelengths, we get for the electric dipole absorption (see (3.3)),

6 487%cy a

0% = SRefar} = ———— (4.5)
P
e and for the magnetic dipole absorption

2.2 3

6 T Wy a”
mag — _ Re{by} = L 4.6
Q™ = S Relbr) = 2o (4.6)
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Figure 4.18. The left panel shows the extinction and absorption efficiency of a metal
sphere whose dielectric permeability ¢ follows a Drude profile with a ratio of damping
constant over plasma frequency y /wp = 0.1. The grain radius equals a = c¢/wp. The
right panel shows the extinction efficiencies for three particle radii, a, for the same ¢, as
indicated. They are plotted here on a logarithmic ordinate to demonstrate their low- and
high-frequency behavior. The dotted line gives the scattering efficiency for a = ¢/wp; note
that Q5¢* ~ Q%X holds only at low frequencies (w/wp L 1).

e Both decline at low frequencies like v2; however, their dependence on radius
is different:
Qel X a Qmag o<a3.

Figure 4.17 suggests that for graphite grains (¢ = 7 x 10" s~!) of sizes
~0.1 um, magnetic dipole absorption is important in the far infrared around
100 um. We, therefore, repeat in figure 4.19 the calculations of Q™ and Q°
for a metal sphere with damping constant and plasma frequency like graphite
but without a dielectric contribution. The permeability e(w) is computed from
the Drude profile and the particle size (¢ = 0.1 um) is small enough for the
Rayleigh limit to be valid for both Q™ and Q°.. We learn from figure 4.19
that in graphitic particles magnetic dipole absorption dominates at wavelengths
greater than 100 pwm.

4.5.5 Elongated metallic particles

The absorption by infinitely long cylinders, which are an extreme version of
elongated particles and are treated in section 10.1, depends on the polarization
of the wave. An example is plotted in figure 4.20 for idealized graphite material
(see previous subsection) and a cylinder radius @ = 10~ cm. When the direction



Efficiencies of idealized dielectrics and metals 143

Q AR T T T ;
10—4 B "graphite” sphere __
a=10">cm
107° & 3
107° L E
1077 L
o L M S S A L L L

102 10°
A [um]

Figure 4.19. The magnetic and electric dipole absorption efficiency of a metal sphere of
radius @ = 107> cm that has the damping constant and plasma frequency of graphite in
the basal plane (y = 5 x 1012 571, wp = 6.7 x 10 s=1). The permeability ¢ is from
(1.123).

of the electric vector is perpendicular to the cylinder axis, the corresponding
efficiency Q is similar to that of a sphere of the same radius, at least for
w < wp. At very low frequencies, O is due to magnetic dipole absorption
and proportional to a>.

The behavior of Q, when the electric vector is parallel to the cylinder axis,
is radically different. The efficiency does not fall with wavelength but levels off
at some high value. To understand this behavior, we consider a spheroid with
an eccentricity e close to unity so that it resembles an infinitely long cylinder.
In the long wavelength limit, Q| is due to electric dipole absorption and can be
computed from equation (3.40). As we keep stretching the cigar, e approaches
one and the shape factor L, goes to zero, as displayed in figure 3.2. For Ly =0
and @ — 0, we indeed find that Q2 is constant:

l6émroa

abs __
o= 3¢

where a is the short major axis. All real cigars are finite, and their efficiency
is, in the long-wavelength limit, proportional to ax~2. But if the cigars are very
elongated, the steep A ~2-decline sets in only when A is much larger than the big
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Figure 4.20. The absorption efficiency of an infinitely long cylinder under normal
incidence. The cylinder is purely metallic with damping constant and plasma frequency
like graphite (y = 5 x 1012 g1, wp = 6.7 x 1014 5! corresponding to a wavelength
Ap = 2.8 um). For comparison, the dotted curve presents 0s for a sphere composed of
the same metal and with the same radius. The permeability ¢ is from (1.123).

major axis of the cigar, i.e. at extremely long wavelengths, outside the observable

range.
The cylinder with Q% = 167wca/3c absorbs per unit length from an
electromagnetic wave with Poynting vector § = (c/87)E? the power W =

(4/3)a2cr E2. A constant field E in the cylinder, however, leads to a current and
the ohmic losses per unit length are wa?c E2. So the infinite cylinder is similar to
a wire in which a current flows.



Chapter 5

Particle statistics

This chapter presents purely physical topics selected for our study of the
interstellar medium. They concern the statistical distribution of atoms and
photons, basic thermodynamic relations and the radiation of blackbodies.

5.1 Boltzmann statistics

For a large number of atoms in thermodynamic equilibrium, their distribution in
energy space is just a function of temperature and described by the Boltzmann
equation. We outline the derivation of this fundamental statistical relation and
append a few loosely connected items.

5.1.1 The probability of an arbitrary energy distribution

We first compute the number of ways in which the energy of N identical particles,
for example atoms, can be distributed and then find among them the most likely
distribution. To this end, we divide the energy space, which ranges from zero to
some maximum Ep,, into n ordered cells with mean energy E; so that

Ei<Ey<---< E,.

Each cell has a size AE; which determines its statistical weight g; =
AE;/Enax. The statistical weight gives the fractional size of a cell, so

Z&‘:l
i

Let each level E; be populated by N; atoms. If the atoms are labeled from a;
to ay, this particular configuration is represented, for example, by the following
sequence:

aiaz ...an; ANy+1 -+ -aANy+Ny - - -AN—N,+1 - - - AN, -

Ny Ny Ny

145
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The N; under the horizontal brackets give the number of atoms in the energy
bins E;. But there are many others ways in which the same energy distribution can
be realized. According to elementary probability theory, a configuration where N
particles are grouped as shown here can be achieved in

N!
Q= —
Ni!Ny!...N,!
ways. Here it is assumed that the particles are distinguishable. 2 is called the
thermodynamic probability and is a very large number. When the N atoms are

arbitrarily distributed over the available cells, the probability that the first Nj
atoms fall into cell E, the following N> atoms into cell E», and so forth equals

G.D

Ny N> N,
8 & - 8"

The probability w for the particular configuration of the N atoms is,
therefore,
sz.g’Vl.gM. gl (5.2)
NiINa! . N0 o1 %2 ren s ‘
Equation (5.2) is at the heart of classical statistics. w is, of course, smaller
than one. Summing the probabilities w of all possible distributions gives the total
probability. In view of the binomial theorem, this sumis (g1 + g2+ --- + g,,)N ,
which equals one, as it should. When all cells are of the same size, each cell has
the same chance that a particular atom will fall into it. Then g; = 1/n for all i
and the probability w in equation (5.2) becomes

N!
@= nN [T N:! )
5.1.2 The distribution of maximum probability

As the numbers N; in the expression for the probability w are large, their faculties
are much larger still. To handle them, one uses Stirling’s formula:

9
In N! :NlnN—N—i—ln\/ZnN—i—WN O<oy<1). (53

The accuracy of this formula is quite remarkable (see the error estimate Jy).
Retaining only the first term, this yields for (5.2)

n
8i
Inw>~NInN + Niln —.
Z N
i=1
In the equilibrium distribution achieved by nature, the probability has the
maximum possible value. Because N In N is constant, we are looking for an
extremum of the function

n
g
f(N1, Na, ..., Np) =2Ni .lnﬁli_
1=
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There are two additional and obvious requirements:

e  The total number of particles N should be constant and equal to ) N;,
n
¢=> Ni—N=0.
i=1

e The mean particle energy (E;) is related to the total energy E of all particles
through
E =N -(Ej)

therefore

v = N(E;) — ZM E; =0. (5.4)

The maximum of f, subject to the conditions expressed by the auxiliary
functions ¢ and v, can be found using the method of Lagrangian multiplicators.
If we denote them by o and 8, we get the equation for the differentials

df +adp+Bdy =0
leading to
> an; (mﬁ —lta —ﬂEi> —0.
N;
In this sum, all brackets must vanish. So for every i,
N; = gje* lePEi
Exploiting > N; = N eliminates & and gives the fractional population

N: .o~ BEi
Nio &€ T (5.5)

N Zgje_’sE".
j

5.1.3 Partition function and population of energy cells

We have found N; /N but we still have to determine 8. When we define, in (5.5),
z=) gt
J
equations (5.1), (5.3) and (5.5) yield

Q= —ZNiln% =—Y Ni(lngi — BE; —In Z)

=BE+NInZ-) Nilng.
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We now plug in some thermodynamics from section 5.3. The entropy S
of the system equals the Boltzmann constant multiplied by the logarithm of the
thermodynamic probability 2 of (5.1),

S =kIn<2,
and the differential of the entropy is (see (5.51)),

_dE+PdV
= T .

ds

This allows us to express the multiplicator 8 in terms of the temperature. Because

at constant volume V,
1 _ aS . kaan
T \9E/), = OE

it follows that

1 d Eje PEi 9
L gk gy s 0B
T IE Y gje Pl OE

The last two terms on the right-hand side cancel and thus
B=-—. (5.6)
The expression Z introduced above now becomes

Z(T) =Y gje Bil*T. (5.7)
j

This is called the partition function, which depends only on temperature. The
fractional abundance of atoms with energy E; is, therefore,

N; giefE,-/kT giefE,-/kT
= _ = (5.8)
N Z gje_E//kT Z
and the abundance ratio of two levels i and j,
N; i )
N 8] (EjE)/KT (5.9)

N; gi

Although the population numbers are statistical averages, they are extremely
precise and, practically, important deviations from the mean never occur.
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5.1.4 The mean energy of harmonic oscillators

With some reinterpretation, equations (5.7)—(5.9) are also valid in quantum
mechanics (more general forms are given by (5.26) and (5.36)). For atoms with
internal energy levels E;, the statistical weight g; denotes then the degeneracy of
the level.

We compute the partition function of a system of N quantized identical
harmonic oscillators in equilibrium at temperature 7. The energy levels are non-
degenerate (g; = 1) and equidistant, E; = (i + %)hw fori =0,1,2,... (see
(6.25)). With p~! = «T,

o o
Z(T) = Ze—ﬂE,- _ e—%ﬁhwze—iﬂhw.
i=0 i=0

The last sum is an infinite series where each term is a factor e~ # smaller
than the preceding one, therefore,
e~ % Bhw

2 = T fha

(5.10)

We can also easily compute the mean oscillator energy (E). If N; oscillators
have an energy E;, the average is

N; E; N; —BEi 1937 dlnZ
(E):L:ZE_’:ZE,-@ .2z __9n
N N 4 Z 3p 9B

Because In Z = —%,Bhw —In(1 — e’fm‘”), it follows that

| h
(E) = ~ho 4+ ——2

> Rk T (5.11)

At high temperatures (hw < kT), we get the classical result that the sum of
potential plus kinetic energy of an oscillator equals kT,

(E) = kT.

At low temperatures (hw >> kT), the average (E) is close to the zero point
energy,

(E) = (3 + e /F ) py,

5.1.5 The Maxwellian velocity distribution

The probability that an arbitrary gas atom has a velocity in a certain range follows
as a corollary from the equilibrium energy distribution (5.8). We substitute in this
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formula for E; the kinetic energy of an atom, p®/2m. All directions of motion
are equally likely and the square of the length of the momentum vector is

pPr=pl+pi+p
For the size of an energy cell, i.e. for the statistical weight, we take
g =4np*dp. (5.12)

In the ratio N;/N of (5.8), it is the relative not the absolute value of the
statistical weight g that matters;, therefore, the sum over all g need not be one.
When we replace the sum in the partition function Z(7T') of (5.7) by an integral,
we obtain the momentum distribution. Changing from momenta p = mv to
velocities gives the familiar Maxwellian velocity distribution (figure 5.1) which
states that if there are N gas atoms altogether, the number of those whose absolute
velocities are in the range v. .. v 4+ dv equals

32
N(v) dv = Nz v? (2 nllcT) e~V /AT gy (5.13)
T

with
o0
/ N(@)dv = N.
0

In any arbitrary direction x, the number of atoms with velocities in the
interval [vy, vy + dv,] is given, except for a normalizing constant, by the

2
Boltzmann factor ¢ "Vx/2kT

_ m\1/2 —mv? /2kT
N(v,)dv, = N (271”) e~MURIT gy (5.14)

N (vy) is symmetric about v, = 0 and has its maximum there (contrary to
N (v) in (5.13)) because near zero velocity, N (vy) includes all particles with any
velocity in the y- or z-direction. The total number of atoms, N, follows from
(5.14) by integrating from —oo to co.

There are three kinds of averages of the absolute velocity v. To compute
them, we exploit the integrals (A.27)—(A.29) in appendix A associated with the
bell-curve.

e  The most probable velocity, vp, is the one at the maximum of the curve N(v),

[2kT

e  The mean velocity (v) is relevant for calculating collision rates,

8kT
W) =/ —. (5.16)
Tm
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Figure 5.1. The Maxwellian velocity distribution for hydrogen atoms at 100 K. The
ordinate gives the probability density N (v) after (5.13) with respect to one atom (N = 1).
The vertical dotted lines show from left to right the means vp, (v) and v/ (v2) according to
(5.15)—(5.17).

e The mean energy of the atoms is given by the average of v such that
%m(v2) = %kT or

By 3kT
(v7) = —. (5.17)
m
The averages are ordered (see also figure 5.1),
vp < (V) </ (v?). (5.18)

5.2 Quantum statistics

5.2.1 The unit cell 43 of the phase space

In deriving the energy distribution for an ensemble of particles after Boltzmann,
we divided the energy or momentum space into arbitrarily small cells. The real
coordinate space was not considered. In quantum statistics, one divides the phase
space, which consists of coordinates and momenta, into cells. If V' is the volume
and p the momentum, we form cells of size

d® =V -4xp*dp
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where 47 p%dp is the volume of a shell in momentum space with radius p and
thickness dp. According to the uncertainty principle, position ¢ and momentum
p of a particle can only be determined to an accuracy Ap and Ag such that

Ap-Agq 2 h.

This relation results from the wave character possessed by all particles, not
just photons. The wavelength of a particle is related to its momentum (after
de Broglie) by p = h/A. Because of the wave character, particles in a box of
volume V can only have discrete momenta, otherwise they would be destroyed
by interference. The situation is formally almost identical to standing waves in a
crystal, which we treat in section 8.4. We may, therefore, exploit equation (8.31)
of that section and find that the possible number of eigenfrequencies within the
momentum interval p to p + dp in a box of volume V is

V -4xp*dp
=3

The eigenfrequencies are the only allowed states in which a particle can exist
and correspond to standing waves. The quantity g (named d Z in (8.31)) is called
the statistical weight (see also (5.12)). It states how many unit cells, each of
size 13, fit into the phase space element d®. Note that classically the number of
possible (physically different) states is unlimited, which would correspond to a
unit cell of size zero.

To determine the state of a particle with non-zero spin, one needs, besides
place and momentum, the spin direction. Therefore, the number of quantum states
of an electron (spin %) is twice the value given in (5.19). The same is true for
photons (spin 1) which, traveling at the speed of light, also have two (not three)
spin directions.

(5.19)

5.2.2 Bosons and fermions

Particles are described by their position in phase space. Any two particles of the
same kind, for example, two photons or two electrons, are otherwise identical.
This means that when we swap their positions in phase space, nothing changes
physically, the particles are indistinguishable.

In quantum mechanics, particles are represented by their wavefunctions. Let
W (x1, x2, ..., X,) denote the wavefunction of a system of n particles, all of one
kind and not interacting. Their identity then implies that |W|? stays the same
when any two of the particles are interchanged. So after they have been swapped,
either W itself is not altered, then one speaks of a symmetric wavefunction, or W
is transferred into —W, then the wavefunction is called anti-symmetric.

Let particle i have the coordinate x;, the wavefunction ¥; and the energy E;.
The total energy of the system is then

E = Xn:Ei.
i=1
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Because the particles are non-interacting, the wavefunction of the whole
system can be factorized into the N wavefunctions ; of the individual particles.
We, therefore, write W(xy,x2,...,Xx,) as a sum of such terms but with
interchanged arguments; this corresponds to swapping particles. For example,
the first term of the sum is

Y1) Y2 (x2) - ... - Ya(xn) (5.20)

and the next, where particles 1 and 2 have been exchanged,

Y1(xe2)¥a(x1) - .. Y (xn)

and so forth. Each such product is a wavefunction that gives the same total energy
E but fails to fulfil the symmetry condition. Note that in a multi-dimensional
function it does not matter by which symbols the arguments are presented,
what counts is the sequence in which they appear. So f(x1,x2) = x1x22 and
g(x2,x1) = x12x2 are identical functions but f(x, x2) and h(x1, x2) = x12x2 are
different.

e It can readily be checked that the linear combination

WBose (X1, X2, ..., Xn) = D PY1(x)¥2(02) .- Yulxa)  (5.21)
P

and no other, is symmetric and yields the correct energy E. Here P is an
operator that performs a permutation of the coordinates x1, x3, ..., x,; the
sum extends over all N! possible permutations. All coefficients before the
products Y1 Y1 . .. ¥, equal one (we neglect normalization).

e Likewise, the only anti-symmetric wavefunction of the whole system is the
linear combination formed by the determinant

Yi(x)  Yax) ... Yn(x1)
1(x2 2(X2 Ce X2

Wrermi (X1, X2, ..., X,) = det Vitx2)  ¥a(x2) Vn(x2) . (5.22)
Y1) Yalxn) oo Yn(xn)

As indicated by the subscripts on W, if the wavefunction is symmetric,
the particles are called bosons, if it is anti-symmetric, fermions. When two
rows or columns of the matrix (5.22) are equal, ¥; = 1;, they are linearly
dependent and the determinant in (5.22) vanishes. This has the fundamental
consequence, known as Pauli’s exclusion principle, that two fermions cannot have
the same wavefunction, i.e. they cannot occupy the same quantum state or unit
cell. Bosons, however, are not subject to Pauli’s exclusion principle. It is an
experimental fact and is also claimed theoretically that particles with half-integer
spin, like electrons, protons or neutrons are fermions, while particles with integer
spin, like photons, are bosons.
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5.2.3 Bose statistics
5.2.3.1 Counting states

Let us assume N identical particles of mass m in a box of volume V and with a
total energy E. We divide the phase into cells of size d® = V4n pi2 dp. Each cell
contains N; particles of energy

)

E; =
2m

and comprises

d® Van pl.2 dp
W3 h3
unit cells. A particular distribution of the system is completely determined by
specifying for each cell d® its population N;, energy E; and statistical weight g;
(size), i.e. through the three sets of values

gi = (5.23)

N]s NZ, e le e
Ey, E,, ... E; ... (5.24)
g1, 82, ... &

The probability of finding this particular distribution is proportional to the
number of ways W in which it can be realized.
First, we consider only one cell, say cell i of size d®. Its N; atoms constitute
a subsystem. We ask in how many ways can one distribute its N; particles
over its g; unit cells (quantum states). Let us label the unit cells within d® by
Z1,2Z3, ..., Zg and the atoms by ay, ay, ..., ay;. If we write behind each unit
cell the atoms which it contains, one particular distribution is given, for instance,
by the sequence
Ziayaras Zor Zzagas Zaaeg Zsaj .. ..
—_—— N —— — ——

In this sequence, the atoms a1, az, a3 are in Zy, cell Z; is empty, the atoms
aq, as are in Z3, and so forth. In boson statistics, there is no limit as to how
many atoms can be squeezed into one unit cell. All such sequences of symbols Z;
and ay, like the one here, start with some Z, because we always first specify the
cell and then the atoms it contains. Therefore the total number of mathematically
different sequences is g;(g; + N; — 1)!. As permuting the atoms or unit cells does
not result in a new quantum state of the subsystem d®, only

gi(gi +Ni — D! (gi+ N — D!
Nilgi! N;il(gi — )

of the sequences are physically different. Therefore, when considering the fotal
phase space, there are

(i + Ni = !
“= H Nil(gi — D! 02
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ways in which the configuration of (5.24) can be achieved. The maximum of €2,
which is what nature chooses, is found in the same manner as the maximum of
the probability w in (5.2) for Boltzmann statistics. One forms the logarithm using
the first two terms of the Stirling formula (5.3),

Q=2 [(gi+Ni— DIn(g + Ni — 1) = (g — DIn(gi — 1) = Ni In N;]

l

and exploits the conditions for the conservation of energy and number of particles,
E-) NE =0 N-» N =0.
i i

Following the procedure outlined in section 5.1, this leads to

5.2.3.2  The occupation number in Bose statistics

When, in the last formula, we drop the subscript i, write dn instead of N; (dn is
the number of particles in the phase space element V47 p? dp), and insert (5.23)
for the statistical weight, we get

_ Vax p? dp g

dn = 13 satBE ] = gaiPE - (5.26)

As the g unit cells are, according to this formula, populated by dn particles,
one calls

¢ o PE 1 (5-27)

the occupation number, which is the number of particles per unit cell. We still
have to determine the coefficients @ and . Using the same thermodynamic
arguments as for Boltzmann statistics gives (see (5.6))

= 1
kT
o follows from the requirement that the number of particles is conserved, i.e. from
4V p*dp
/dn: 3 /eaJrﬂE_] =NV. (5.28)

The coefficient « is always positive, as otherwise the denominator under the
integral might vanish, so e~ lies between zero and one. We only mention that
« is related to the chemical potential u by @ = —pu/kT. When e*TAE > 1, the

integrand in (5.28) becomes p2e~%e~E/*T which yields
N h3
I A 5.29
¢ V QrumkT)3/2 (5.29)
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and one recovers the Maxwell distribution (5.13),

dn = _dnptdp ¢~ P*/2mkT
QrmkT)3/2 '

5.2.4 Bose statistics for photons

For photons, which have a momentum p = hv/c, the statistical weight is

2V47rv2dv‘

= (5.30)

g =
The factor 2 accounts for the two possible modes of circular polarization. As
radiative equilibrium is established through emission and absorption processes,
in which photons are created and destroyed, their number is not conserved.
Consequently, there is no such constraint as

N=Y Ni=0
i

the parameter « in (5.26) is zero and

g _ V8mv? dv

dn= T 1= 3 ik _ 1

The radiative energy density u, now follows from u, dv = hvdn/V,

8h 3
wy =20V (5.31)

3 /KT _ 1

Formula (5.31) describes the distribution of photons in equilibrium at

temperature 7—the so called blackbody radiation. Although we did not explicitly

prescribe the total number of photons within a unit volume, nphot, the average is
fixed and follows from integrating u,, / hv over frequency,

© u, kTN [ x2
Nphot = —dv=8x | — dx
o hv hc o e*—1

(see (A.17) for an evaluation of the integral). A unit volume of gas in
thermodynamic equilibrium, however, may be filled by an arbitrary number of
atoms.

The occupation number of photons in equilibrium is, from (5.27),

1
ehv/kT _ 1°

Nequil = (5.32)

The occupation number equals dn/g and, therefore, also has a value when the
photons are out of equilibrium and no temperature is defined. Because there
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are dn = g\ photons in the phase cell d®, which have a total energy g\ hv,
the occupation number may be used to specify the radiative energy density at a
particular frequency,

8w hv3
U, = 3

N. (5.33)

C

Likewise, N/ may define the intensity of radiation. We will return to

blackbody radiation in section 5.4 and rediscover the basic equation (5.31) from
less abstract and less strict arguments.

5.2.5 Fermi statistics

Fermi statistics deals with particles that have an anti-symmetric wavefunction and
which, therefore, obey Pauli’s exclusion principle, like electrons. We again divide
the phase space into cells of size d® = V4mp? dp. Now there can only be one
particle per unit cell 73 with a given spin direction, so the statistical weight is

A p?
gi = V+M. (5.34)
However, there may be two particles of opposite spin per unit cell because
their quantum states differ. In counting states, we repeat the steps which we
carried out for Bose statistics. We consider a cell d® consisting of g; unit
cells, each harbouring N; electrons. A unit cell is either empty or filled with
one electron. The essential difference from Bose statistics is that there are now

gi!
(gi — N)!N;!

ways to distribute N; electrons over the g; unit cells, thus in all
gi!
Q= _ (5.35)
H (& — Ni)!N;!

i

different possibilities. This gives, with the same procedure as before, the
counterpart to (5.26) for the number of particles dn in the phase space element
V4 p? dp which contains g unit cells,

8

and for the occupation number (cf. (5.27))
d 1
N= (5.37)

g eOt+ﬂE +1 :

In the denominator, it is now +1, and not —1. Of course, as before § = 1/kT
and the parameter « follows from the condition that the total number of particles
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comes out correctly (cf. (5.28)),

/dn:NV.

But now o, which is also called the degeneracy parameter, may be positive as well
as negative (from —oo to +00). Degeneracy is absent for large positive o, when
the gas is hot and rarefied (see (5.29)). As in Bose statistics: « = —u/kT where
u is the chemical potential, and if e*tBE 5 1, we are in the realm of classical
physics.

When the temperature T goes to zero, the occupation number A" changes
discontinuously from one for energies below the Fermi limit Efr to zero for
E > Er (subsection 6.4.2); in Bose statistics, all particles are in their lowest
(zero momentum) state at 7 = 0.

In quantum statistics, particles are indistinguishable and states are counted
either after Bose as in (5.25) or after Fermi as in (5.35). The quantum mechanical
way of counting is the right way and takes into account the fact that the phase
space is partitioned into unit cells 3. In Fermi statistics, there is not more than
one particle (of the same spin) per unit cell. In classical statistics, however,
particles are distiguishable and the probability is, from (5.2),

Ni
g .
Qelass = N!H ]\l/,'! .
1
In accordance with the correspondence principle, the quantum mechanical
probabilities (5.25) and (5.35) approach Q2jass when the Planck constant 4 goes
to zero and the g; become very large (g; > N;).

5.2.6 Ionization equilibrium and the Saha equation

In a hot gas, the atoms of any element X exist in different stages r of ionization.
Denoting the corresponding ion by X;, there are ionizing and recombining
processes symbolized by

Xf — Xr+l +e.

Suppose that in 1 cm? there are N, electrons and N, particles of species X,
of which Nj , are in their ground state. The Ns of two neighboring ionization
stages are related in thermodynamic equilibrium by the Saha formula

3/2
NirsiNe _ 2(27Tme]§T) 8Lrtl —x/kT (5.38)
Nl,r h 81.r

g1, is the statistical weight of the ground state of ionization stage r, and x > 0
is the energy difference between the ground state of ion X, and X,;;. The
very form of (5.38) suggests that the Saha equation can be derived from the



Quantum statistics 159

Boltzmann equation. For simplicity, we restrict the discussion to pure hydrogen
gas consisting of electrons, protons and neutral hydrogen atoms. Let us consider

e the atom with the electron bound in level n=1 as the ground state
e the proton fogether with a free electron of momentum p as the excited state.

The energies of the excited states form a continuum because the electrons
may have any velocity. Energies are counted in the following way: for the
hydrogen atom in level n, E,, is negative. Thus in the ground state, —E1 = x > 0,
where y is the ionization potential of hydrogen. At the ionization threshold, the
energy is zero, and for the proton—free-electron system it is positive and equals
p2/2me.

Let N(p)dp be the number density of excited particles (one such particle
consists of a proton and an electron) where the electron has momentum in the
range [p, p + dp]. Let g(p) be the statistical weight of the excited state. If
N1 H, 81,1 are the corresponding numbers for the hydrogen atoms in the ground
state, then according to (5.9)

Npydp _gp) (_ x+p*/2me
Nin g1.H P kT ’
The statistical weight g(p) is the number of quantum states of the proton—free—

electron particle and thus the product of the statistical weight of the proton and
the electron,

g(p) =gp- &e-

After (5.34), ge = 2 - 4wp®>dp V/h3. The factor 2 comes from the two electron
spin directions. Because

o0
/ N(p)dp = Ne = Np,
0

one gets

Np 22(271mekT)3/2€,X/kTVi.
Nin h3 g1,H

To determine the volume V, we note that the phase space cell of a free electron,
which always pertains to one proton, must contain exactly one electron, so

V =1/Ne.

The statistical weight of the neutral atom with the electron in level n is equal to
the maximum number of electrons in that level, so gn g = 2n? and g1LH/8g = 2,
altogether
NpNe _ (anekT)3/267X kT
NiH h3

(5.39)
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When the partition function of the neutral hydrogen atom Z = 3" gie™ /KT is
approximated by its first term g1e~£1/%T | which is often possible and implies that
almost all atoms reside in the ground state, then N y is equal to the number Ny
of all hydrogen atoms and

NpNe _ QumekT)2 iy
Ny h3 ’

We can also immediately calculate the number N, of atoms in level n under
conditions of thermodynamic equilibrium,

Ny, _ h3n? —En/kT
NeNp,  (2mmekT)3/? ’

(5.40)

Note that — E}, is positive and for high levels very small.

The Saha equation goes wrong when the mean distance d between ions
becomes comparable to the size 2r of an atom. This happens in stellar interiors
where the density is high, although LTE (local thermodynamic equilibrium)
certainly prevails. An atom is then closely surrounded by ions and the overlap
of their electric fields disturbs the higher quantum states and lowers the ionization
energy. Atoms in high quantum number n are big. For hydrogen, their radius
is r = aon?® where ag is the Bohr radius. In the central region of the Sun
(p ~ 10? g ecm™3, T ~ 15 x 10° K), d is less than the Bohr radius and even
the ground state of hydrogen cannot exist, although the Saha equation predicts
that about half of all atoms are neutral.

5.3 Thermodynamics

This section summarizes the results of thermal and statistical physics. For
the computation of the population of energy levels in the smallest grains (see
section 12.1) we have to recall the definition of temperature, entropy and
number of accessible states. The formulae around the specific heat find their
application mainly in the theory of magnetic dissipation in section 11.2. Some
of the thermodynamic elements presented here are also indispensable in the
discussion of phase transition during the formation and evaporation of grains (see
section 9.5).

5.3.1 The ergodic hypothesis

Boltzmann’s equilibrium population of the energy levels of a system was derived
by determining the energetically most likely distribution. More generally, instead
of energy space one considers the phase space of the system; the path of the
atoms in phase space contains the full mechanical information. A system of f
degrees of freedom is described by the spatial coordinates gy, ..., g and the
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conjugate momenta p1, ..., py. Usually one needs three coordinates (x, y, z)
for one particle, so if there are N particles,

f=3N.

Let the system be isolated so that it cannot exchange energy with its surroundings.
The total energy E is, therefore, constant or, rather, it is in a narrow range from
E to E + S E, because in quantum mechanics, E cannot be defined with absolute
precision in a finite time.

At any instant, the system may be represented by a point in the 2f-
dimensional phase space with the coordinates gi,...,qf, p1,..., ps. As
the system evolves in time ¢, it describes a trajectory parametrized by
(q1(®), ..., pp(t)). If one divides the phase space into small cells Z of equal
size, the microstate of the system at a particular moment is determined by the
cell in which it is found. The cells may be enumerated. All cells (states) Z;
that correspond to an energy between E and E + S E are called accessible. In
equilibrium, the probability to find the system in a certain accessible cell Z, is,
by definition, independent of time.

e The fundamental (ergodic) postulate asserts that when the system is in
equilibrium, all accessible states are equally likely, none has any preference.

Let Q(E) be the total number of accessible states (cells), i.e. those with
energy in the interval [E, E 4+ §E]. If there are many degrees of freedom
(f > 1), the function Q(FE) increases extremely rapidly with the total energy
E of the system. To see how fast Q(F) rises, we make a rough estimate. Let
our system consist of identical quantum oscillators, each corresponding to one
degree of freedom. Their energy levels are equally spaced in multiples of hAw.
Each oscillator has on average an energy E/f. After equation (6.26), it is spread
out in one-dimensional phase space over a region AxAp = E/fw where it thus
occupies E/f hw cells of size h. It does not make sense to consider cells smaller
than / because one cannot locate a particle more accurately. The number of states,
N, of the total system whose energy does not exceed E is, therefore,

E
Ne=|—1] . 5.41
() (541)
Hence the number of cells, 2 (E), with energies from [E, E 4 § E] becomes
d Ny
Q(E) = Ns(E+68E) — Ny(E) =~ 1E SE.
We denote by
) = 2
P =0E

the density of states around energy E. It is independent of the width of the chosen
energy interval § E, contrary to €2(E) which obviously increases with §E. As a
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first approximation, one gets p(E) ~ fE/~1/(fhw)’. If one counts the states
more properly but neglects powers of E with exponents f — 2 or smaller, one
finds

E/-!

(f = Di(hw)S

If the total energy E of the system is n times greater than the natural energy
unit Aiw, the density of states becomes proportional to n/~!/(f — 1)!. Note that
p and Q rise with E/~!. When we evaluate Q for something from everyday life,
like the gas content in an empty bottle, the number of degrees of freedom of the
atoms is ~ 10%*. This, by itself, is a huge number but because f appears as an
exponent, 2 is so large that even its logarithm In € is of order f, or 10°4.

The probability that all gas atoms in a box are huddled in the upper left-hand
corner and the rest of the box is void is extremely low, one will never encounter
such a configuration. After the ergodic principle, all accessible cells in a phase
space have an equal chance of being populated. The probability of a particular
microstate which actually is encountered and where the atoms are very evenly
distributed must, therefore, be equally low. There is no contradiction because
there is just one cell corresponding to all atoms being clustered in one corner
but a multitude corresponding to a very smooth distribution of atoms over the
available box volume.

p(E) ~ (5.42)

5.3.2 Definition of entropy and temperature

In statistical physics, the starting point is the number of accessible states Q2 (E)
with energies from [E, E + 6 E]; it determines the entropy,

S =kInQ. (5.43)

Of course, 2(E) depends on the width of the energy interval § E but because
Q2 is so large, one can easily show that § E is irrelevant in (5.43). The absolute
temperature 7 is then defined by

19SS 0dlnp 1
kdE  OE kT’
Let us see what these two definitions mean for a bottle of warm lemonade
(system A) in an icebox (system A’). The two systems are in thermal contact, i.e.
heat can flow between them but the external parameters (like volume) are fixed.
The total system, A + A’, is isolated (we do not have an electric icebox), so the
joint energy Ey = E + E’ is constant; otherwise E and E’ are arbitrary. The
number of accessible states of the whole system, subject to the condition that
subsystem A has an energy E, is given by the product Q(E)2' (Et — E), where
Q and Q' refer to A and A’, respectively. The probability P(E) of finding the
whole system in a state where A has the energy E is evidently proportional to this
product,

(5.44)

P(E) « QE)  Q (Ew — E).
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When Q(E) rises, ' (Ewt — E) must fall. Because of the extreme
dependence of the number of accessible states Q2 on E, or of Q' on E’, the
probability P(E) must have a very sharp maximum at some value Eeq. To find
system A at an energy E # E¢q is totally unlikely. The probability P(E) is
almost a §-function, the value where it is not zero determines equilibrium. The
energy E where P, or the entropy S + S, of the whole system has its maximum
follows from

dln P
=0.
oE
This equation immediately gives
aS 3y
O |p_p,, OE

E'=E},

which means that in equilibrium the temperature of the icebox and lemonade are
equal, the lemonade is cool. Note that nothing has been said about how long it
takes, starting from some arbitrary microstate, to arrive at equilibrium.

5.3.3 The canonical distribution

Let a system A be in thermal contact with a much larger heat bath A’ of
temperature 7. The energy of A is not fixed, only the joint energy Eio of the
combined system A + A’. Suppose now that A is in a definite state r of energy
E,. The heat bath has then the energy E’ = Eiot— E, and Q' (Eot— E) accessible
states. The probabity P, for A being in state r is proportional to the number of
states of the total system A + A’ under that condition, therefore, as A is fixed to
state r,
P, =C'Q(Ew— E).

The constant C” follows from the condition ) Py = 1 in which the
sum includes all possible states s of A, irrespective of their energy. Because
Etot > E,, one can develop In Q' around Ey,

In Q/(Etot —E;)=In Q/(Etot) — BE,

where B = 9InQ/dE’ = (kT)~! (see (5.44)), and obtains the canonical

distribution
e - /3 E, r

e

The sum in the denominator represents the partition function Z(7). The
probability P(E) to find system A in the energy range § E around E becomes

P = (5.45)

Q(E) e PEr
P(E) = —— (5.46)

> hE:

N
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where Q2(E) is the corresponding number of states accessible to A. Formula
(5.46) is in agreement with the Boltzmann distribution (5.9): As the size of system
A has not entered the derivation of P(FE), the expression is also correct when A
is a microscopic system. Thermal contact then just means that A can exchange
energy with A’. If A consists of just one atom with discrete energy levels Ej,
there is only one state for which £ = E;, so Q(E) = 1 and one recovers the
Boltzmann distribution (5.9).

5.3.3.1 Constraints on the system

Sometimes a macroscopic system A may have to fulfil additional constraints,
besides having an energy between E and E + § E. For example, some parameter
Y may have to take up a certain precise value y, or lie in the range [y, y + §y];
we then symbolically write ¥ = y. The parameter ¥ may be anything, for
example, the energy of ten selected atoms or the integrated magnetic moment of
all particles. The states for which ¥ = y form a subclass of all accessible states,
and we denote their total number by Q(E; y). In view of the ergodic postulate,
the probability P of finding the system in the desired configuration Y = y is

Q(E;

Likewise the probability P can be expressed by the ratio of the densities of
states,

(5.47)

_ ,O(E;y).

P
) 2(E)

(5.48)

5.3.4 Thermodynamic relations for a gas

When one transfers to a system a small amount of heat § Q and does the work
8 A on the system, then, according to the first law of thermodynamics, its internal
energy U is altered by the amount

dU =680 + 8A. (5.49)
If the infinitesimal work is due to a change of volume dV,
8A =—pdV.

So when V is decreased, A is positive. If U depends on temperature and
volume, U = U(T, V) and

U U
dU = (== ) dT +(==) aVv
T ), v ),

and because of equation (5.49),

U AU
50 = (8_T)V dT + [<W>T + p] dv. (5.50)
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The second law of thermodynamics brings in the entropy S. When the heat

8 Q is added reversibly to a system at temperature T, its entropy increases by

80 dU—35A
T T

ds (5.51)

The entropy is a state function and the integral [§Q/T in the (p, V)-plane
along any closed path is, therefore, zero. Because d .S is a full differential, i.e.

9’S 9%
aToV — dVaT
we get from (5.51) with A = —pdV,
U B]
Y (22 ). (5.52)
v )r aT )y

Other common thermodynamic state functions besides U and S are as
follows.

e  The free energy or Helmholtz potential
F=U-TS. (5.53)

To connect a physical meaning to F, we note that if, in an isothermal
reversible process, one applies the work §A on a system, for example, by
compressing a gas, the free energy of the system increases by AF = §A.
e  The enthalpy
H=UH+pV. (5.54)

When one presses gas through a small hole from one vessel to another, as in
the famous Joule-Thomson experiment, it is the enthalpy that stays constant.
e  The free enthalpy or Gibbs potential

G=U+pV-TS. (5.55)

As convenient variables one usually uses for G temperature, pressure and
number N; of atoms of the jth gas component, G = G(T, V, N;). With
some elementary calculus manipulations one obtains the full differential

dG—aGdT+8Gd + 9G N = SdT +Vdp+» ujdN
=97 op p aN; i= p ,' HjaiNj
where 9G
= 5.56
M 3Nj ( )

defines the chemical potential. In a homogeneous phase, in which for any «

S@U,aV,aN;) =aSU, V., N;)
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one finds (without proof but it is not difficult)
G = Z i Nj .
J

Therefore, the free enthalpy of a system consisting of a one-component fluid
and its vapor (only one kind of molecules, i.e. j = 1) is

G=0Gq+ Ggas = uadNp + ﬂgasNgas- (5.57)

5.3.5 Equilibrium conditions of the state functions

Let us recall the conditions under which a system is in equilibrium. For a
mechanical system, all forces F; acting on the particles must vanish. The forces
derive from a potential ¢, so F; = —d¢/0dx;. In equilibrium, the potential ¢ is at
its minimum and the differential A¢ = 0.

For an isolated thermodynamic system A of constant energy U and volume
V, the entropy Sa attains its maximum. Therefore, the differential AS4 is zero
under small variations of the variables (U, V, N;). If A is not isolated but in
contact with a heat bath A’, the equilibrium condition for the total system A + A’
reads:

ASiot = A(SA + Sa) = 0.

System A receives from the environment A’ the heat §Q = —T ASas which
increases its internal energy by AU and does the work §A on the system (see
(5.49)),

3Q =TASA = AU —§A.

As all variables here refer to system A, we may drop the index A in the
entropy and get
AU —-TAS —6A=0.

In the case of pure compressional work, A = —p AV and
AU —-TAS + pAV =0. (5.58)

Equation (5.58) leads in a straightforward way to the following equilibrium
conditions:

(1) In a system A of constant temperature and volume (AT = AV = 0) and in
contact with a heat reservoir A’, the differential of the free energy vanishes
under small changes of the variables,

AF=AU-TS) =0.

F has then its minimum because Sy of the total system A + A’ is at its
maximum. Note that all variables without an index refer to system A.
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It is reassuring that the condition AF = 0 is also in line with the
Boltzmann equation (5.9): Suppose the N particles of the system
possess only two levels, 1 and 2. In an equilibrium state a, the lower
level 1 is populated by N; and the upper level 2 by N, atoms with
N1+N> = N. In anearby, almost-equilibrium state b, the corresponding
populations are N1+ 1 and Ny —1. The thermodynamic probability 2 for
the two states states is given by (5.1) and the entropy changes between
state a to b by

Q N N
AS = k[InQp —In Q] = kIn -2 = kIn —2— ~ kln L,
Qa4 Ny +1 Ny
At constant temperature and volume, the condition AF = AU —

TAS = 0, where AU is the excitation energy of level 2, implies
Na/Ni = e AU/KT a5in (5.9).
Let system A depend on some parameter Y. The number of accessible states
where Y takes up values between y and y + §y is (see (5.43))

Quiot(y) = St/ k

and the probability P(y) of such states is proportional to Q(y). Likewise,
P(y) & Qiot(y) = e5)/k for another value y’ of the parameter Y. As
Y varies from y to y’ (this need not be a small step), the entropy of the total
system changes by
TAS — AU + 5A
T

where § A is the (not necessarily infinitesimally small) work done on system
A and AS = S(y) — S(Y) and AU = U(y) — U(y’). As the volume
is constant, there is no compressional work and §A = 0. With AF =
F(y) — F(y'), we get, for the population ratio of states where ¥ = y and
Y =y,

ASior =

PO — o AF/KT
P(y") '
This result follows also from the canonical distribution (5.45).
At constant temperature and pressure (AT = Ap = 0), the differential of
the free enthalpy
AG=AU+pV -TS)=0

and G has its minimum. In an analagous manner as for the free energy, one
derives ASiot = —AG/T and, putting AG = G(y) — G(y'), a population
ratio of states where the parameter Y has values y and y’

P
(y/) = ¢~AG/KT (5.59)
P(y)
At constant pressure (Ap = 0) and constant entropy (AS = 0, adiabatic
process), AH = A(U + pV) = 0 and the enthalpy has its minimum.
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5.3.6 Specific heat of a gas

The specific heat at constant pressure, Cp, and at constant volume, Cy, are defined

by
80 aU
Cp = <_d )P Cy = <_8 >v . (5.60)

Let us determine C, — Cy. Because at constant pressure (dp = 0)

9 9 9 9 IV
dp= (Y ar+ (22} av=(2Z) ar+(2Z) (Z) ar
T ), v ), oT ), ov ), \o1 ),

we obtain, using (5.50), (5.52) and (5.60),

3 v ap\> [ ap\ !
Cp—cv=T<—p> <—> :—T(—p> (—p> . (5.61)
o1 ), \o7 ), ar ), \av )/,

It follows immediately that

s0==C i dp+C or dv (5.62)
—\ap )y P PNov/)p .

5.3.7 The work done by magnetization

Consider a magnetic body of unit volume in a field H and with magnetization
M. lts internal energy depends on the temperature and on the magnetic field,
U = U(T, H). If afield H is needed to produce in the body the magnetization
M, to change the magnetization by d M requires the infinitesimal work

SA = HdM. (5.63)

This follows from the following thought experiment:

We move an unmagnetized body of unit volume along the x-axis from a
position X, where there is no magnetic field, to another place Y where there
is some field Hy, say, near a coil through which runs an electric current. The
body is attracted by the coil and in the field Hy, it acquires the magnetization
My. Then we pull the body back to X but while doing so, we fix the
magnetization My (that is why it is a thought experiment). The force acting
on the body is, at each position, M(d H /dx) as follows from (11.16) for
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the potential energy of a dipole. The total mechanical work A done on the
system over the whole path from X to Y and back becomes

Hy Hy My

A=— MdH + ModH = HdM.
0 0 0

The last equality is obvious when one identifies the integrals with the area
under the curves M (H) and H(M). So indeed A = H dM and, therefore,

80 =TdS=dU — HdM.

5.3.8 Susceptibility and specific heat of magnetic substances

The previously derived formulae for Cp and Cy now come in handy. To obtain
the relations for the specific heat at constant magnetic field H and at constant
magnetization M, defined by

_ (U _ (%<2
wn(l), oe(8), o

we just have to interchange
M < p and H < V.

In complete analogy to (5.61) and (5.62), we write

IM OH aMN\> [aM\"!
Cu—Cu=T(— — ) =-1(— —— (5.65)
aT ), \ ot /), oT ), \oH )

and
oT aT
30 =Cq <W>H dM + Cyv <E>M dH. (5.66)
The adiabatic and isothermal (or static) susceptibility are defined as
oM oM
Xad = (ﬁ)s and XT = (E)T . (5.67)

As long as magnetic saturation is excluded, one also has xy7 = M/H. We
compute xaq from (5.66) by putting §Q = 0 (S = constant),

_ _Cm(oT\ (oM Cm
Xad =0y <8H> <8T> Cn (8H> (5.68)

where we have exploited, after the second equals sign, formula (5.65). Therefore

Cm

= —XT. 5.69
Xad Ch XT ( )
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5.4 Blackbody radiation

5.4.1 The Planck function

The Planck function gives the intensity of radiation in an enclosure in thermal
equilibrium at temperature 7. It is a universal function depending only on 7" and
frequency v. Written in the frequency scale,

2h V3

By(T) =5 —— (5.70)

hy

ekt — 1

The intensity is taken per Hz and has the units erg cm™2 s~ ! ster™! Hz .
B,(T) 1is related to the monochromatic radiative energy density u, in the
enclosure by

4 8mh v3

uy =—2=_B,(T) = -3
Cc C

s (5.71)
et — 1

Alternatively, the Planck function may be referred to wavelength and
designated B, (T); its unit is then ergem™2 s~! ster™! cm™!. The two forms

are related through
B, (T)dr = —B,(T) dv. (5.72)

Because of dv = —(c/xz) dai,

2hc?

Bu(T) = ————.
AS(efr — 1)

(5.73)

In view of the exponential factor, B,(T) is usually very sensitive to both
temperature and frequency. The Planck function increases monotonically with
temperature, i.e. at any frequency

B, (T») > B,(T1) if T > T;.

Figure 5.2 depicts the plot of the curve

X3

e —1

y:

from which one can read off the value of the Planck function for any combination
(v, T) of frequency and temperature. It starts at the origin (0, 0) with a slope of
zero, culminates at xpx = 2.822 and asymptotically approaches zero for large x.
An object that emits at all frequencies with an intensity B, (7T') is called a
blackbody. The emergent flux F, from a unit area of its surface into all directions

of the half-sphere is
F, = 7 By(T). (5.74)

This expression, for example, is approximately applicable to stellar
atmospheres when T is the effective surface temperature.
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Figure 5.2. The universal shape of the Planck function. As the abscissa x is here in the
unit 2v/ kT, one has to multiply the ordinate y by the factor k3 /23 T3 10 get By(T).

5.4.2 Low- and high-frequency limit

There are two asymptotic approximations to the Planck function depending on the
ratio x of photon energy hv over thermal energy kT,

hv
xX=—.
kT
e In the Wien limit, x > 1 and
3 hv
B,(T) — 5 e kT, (5.75)
c

With respect to dust emission, where wavelengths are typically between
1 um and 1 mm and temperatures from 10 to 2000 K, Wien’s limit is never
appropriate.

e In the Rayleigh—Jeans limit, x < 1 and

202
By(T) —» —kT. (5.76)
c

As the photon energy hv is much smaller than the thermal energy kT
of an oscillator, one can expand the Planck function into powers of x
and enter the realm of classical physics where the Planck constant A
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vanishes. The dependence of B, (T") on frequency and temperature is then no
longer exponential. The Rayleigh—Jeans approximation is always good for
centimeter radio astronomy, and sometimes also applicable to dust emission.
However, one must check whether

1.44 .
X =— (A in cm)
AT

is really small compared to 1.

5.4.3 Wien’s displacement law and the Stefan-Boltzmann law

In the wavelength scale, the Planck function B, (T') reaches its maximum at Amgax
given by d B, /oA = 0. Therefore

AmaxT = 0.289 cm K. (5.77)

In the frequency scale, maximum emission is determined by 9B, /dv = 0
and occurs at vyax for which

T

=170 x 107" Hz ' K. (5.78)

Vmax

Note that Apmax from (5.77), which refers to the wavelength scale, is a
factor 1.76 smaller than the corresponding wavelength ¢/vmax from (5.78). The
wavelength where the flux from a blackbody peaks depends thus on whether one
measures the flux per Hz (F,) or per cm (F}). The total energy per s over a certain
spectral interval is, of course, the same for F) and F),. If one wants to detect a
blackbody with an instrument that has a sensitivity curve S, one usually tries to
maximize [ S, B, (T) dv.

When Amax is known, the displacement law determines the temperature of a
blackbody. Interstellar grains are certainly not blackbodies but the shape of the
spectral energy distribution from a dusty region may at far infrared wavelengths
be approximated by v B, (T) (see (8.1) for the correct expression) if the emission
is optically thin and the absorption coefficient has a power-law dependence
K, o v™. The term

V" B, (T)

is sometimes called the modified Planck function. Maximum emission follows
now from d(v™B,)/dv = 0. For K, v2, one finds Amax? = 0.206 cm K,
so the Amax Of radiating dust is shifted to shorter wavelengths with respect to a
blackbody emitter of the same temperature.

Integrating the Planck function over frequency, we obtain (see (A.17))

B(T) = /Oo By(T)dv = Z1* (5.79)
0 T
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where
275k*
77 Tsem3
is the radiation constant. The total emergent flux F from a unit area of a
blackbody surface into all directions of the half-sphere is given by the Stefan—
Boltzmann law (see (5.74)):

=5.67x 107> ergecm 2 s~ K™ (5.80)

F=/dev:aT4. (5.81)

Applying this to a star of radius R, and effective temperature T, we find for
its bolometric luminosity:
L, =4noR2TS. (5.82)

For the total radiative energy density u, we get
u :/uvdv:aT4 (5.83)

with constant
4o -15 —3 -4
a=—=756x10""ergcm™ K™". (5.84)
c

5.4.4 The Planck function and harmonic oscillators

Because the Planck function is fundamental for the emission processes of dust
and molecules, we wish to understand it well. We, therefore, derive it once more
by representing the atoms as harmonic oscillators. Consider a harmonic oscillator
in an enclosure in thermal equilibrium with its surroundings. According to (1.71),
it loses energy through emission at a rate

—E=yE (5.85)

where y is the damping constant. In equilibrium, it must pick up the same energy
from the radiation in the enclosure. If we denote the radiative intensity by I (w),

n2e?

yE:/ 471[(w)a(a))dw:4rrl(wo)/ a(a))dw:47'rl(wo)2 .
0 0

mecC

(5.86)

The cross section o (w) is taken from (1.106). Because the resonance curve is

very narrow, we can take 4w a)(z)l (wp) out from under the integral. The integrated

absorption cross section is from (1.108). When we substitute for y the radiative

damping constant from (1.100), remembering that / (w) = I (v)/2m, and drop the
subscript 0 in the frequency, we obtain

1) 2 o (5.87)
V) = ——0~L. .
3c2
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In (5.86), the integration extends over the solid angle 47 implying that the
oscillators absorb radiation from all directions. The oscillators must therefore
be able to move freely and have three degrees of freedom, not just one. In the
classical picture, (E) = kT is the average total energy per degree of freedom, i.e.
potential plus kinetic energy. Inserting

E =3(E) = 3kT

into (5.87), one recovers the Rayleigh—Jeans formula of (5.76) which is valid for
blackbody radiation at low frequencies,

202

This formula, however, fails at photon energies Av comparable to or larger
than k7T because the intensity would rise infinitely with frequency. Something
is wrong with the classical ideas. The cross section o (@) in (5.86) still holds in
quantum mechanics but we have neglected that light comes in packages (photons).
We obtain the correct Planck function if we assume equally spaced energy states
E; =ihvwithi =0, 1,2, ..., for which the average (E) per degree of freedom
is not kT but, from (5.11),

X _hv
e —1  CTkr

(E) = kT

The quantum mechanical mean energy (E) is smaller than k7. Only when
x < 1, does one obtain the classical result.

It is also enlightening to apply the first principles of thermodynamics to a
photon gas in equilibrium. A gas of volume V and internal energy U(T) =
u(T)V has the gas pressure P = u/3. Because dU = udV + V du, the
differential dS = d Q/ T of the entropy is given by

_dU+PAV _ udV +Vdu+ u/3)dV
= . = - .

ds

As d S is a full differential, we get the equation

S ldu 4d (u)_ 9’
dTOV ~ TdT  3dT \T/ 9VOT’

Solving for the energy density u, we obtain a function that is proportional to
the fourth power of the temperature, u(T) o« T*, in agreement with the Stefan—
Boltzmann law in (5.83).



Chapter 6

The radiative transition probability

Almost all astronomical information eventually comes from light which we detect
with our telescopes. Photon emission is, therefore, a fundamental process and a
major goal of this chapter is to explain the concept of induced and spontaneous
emission. The final section deals with transmission and reflection of a free particle
at a potential barrier. It helps to understand quantitatively very diverse topics: how
atoms can wander about the grain surface by way of tunneling through a potential
barrier; how protons can fuse to deuteron in the interior of the Sun; how electrons
are energetically arranged in white dwarfs; or how electronic bands appear in
crystallized grains.

6.1 A charged particle in an electromagnetic field

6.1.1 The classical Hamiltonian

Consider a system of particles with generalized coordinates ¢; and velocities ¢;.
If velocities are small (non-relativistic), one finds the motion of the particles from
the Lagrange function

L=T-V

where T is the kinetic energy of the particles and V the potential, by integrating
the second-order Lagrange equations

d (0L oL
— =)= (6.1)
dt \ 9q; aq;
Alternatively, using the conjugate momenta
aL
pi = = (6.2)
9qi

one constructs the Hamiltonian,
H=2) gipi—L (63)

175
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and integrates the first-order equations

oH . oH
dpi L 0gi

qi (6.4)

If H does not explicitly depend on time, it is a constant of motion. Moreover,
in our applications, H equals the total energy E of the system,

E=T+YV = H(q pi). (6.5)

6.1.2 The Hamiltonian of an electron in an electromagnetic field

We are interested in the equation of motion of one particle of charge e and mass m
moving in an electromagnetic field. We now use Cartesian coordinates (x, y, z).
The kinetic and potential energy equal

2

T = 5mv

N —

V=ep—A-v (6.6)
C

which leads to the non-relativistic Lagrangian
I, e
L= Emv —ep+ —A-v. 6.7)
c

As usual, ¢ denotes the scalar potential and A the vector potential. The latter is
connected to the magnetic field through

B =rotA

and the electric field is given by
1.
E = —grad¢ — —-A. (6.8)
c

Remembering that the full-time derivative of the x-component of the vector

potential is

dA, . DA, 0A,  9A,
— A x4, 28, S
dr AT Ry

with similar expressions for A, and A;, we may readily convince ourselves that
equation (6.1) with the Lagrangian of (6.7) yields the Lorentz force

1
F:e<E+—VxB).
c

Often the potential V is only a function of coordinates and the force F = mv
on a particle is given by the gradient of the potential, F = — grad V. However, in
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the case of an electromagnetic field, V of (6.6) is a generalized potential that also
depends on velocity and the force follows from

P 3V+d v
YT 9x;  dr \ 9%

where we put (x1, x2, x3) = (x, y, z). Using the conjugate momenta

oL e
pi = =mv; + -A; (6.9)
0X; c
the Hamiltonian becomes
1 2
H=— (p— EA) +eg.
2m c

It equals the total energy E of the system,

If we think of the motion of an electron in an atom, we may regard ¢ as
representing the static electric field of the nucleus and, therefore, separate, from

the Hamiltonian, the part
2

P
Har = 3 +ed
m

which describes the electron without an electromagnetic wave. (In fact, for slowly
moving charges one can always make a transformation of the given potentials to
new ones such that div A = 0 for the new A. The new ¢ is then constant in time
and refers only to the static field. This is because of the gauge condition (1.85),
divA + ¢ /¢ = 0.) The remaining part of the Hamiltonian,

2

e
Hwavez%(p'A‘i‘A'p)‘i‘ A-A (6.11)

2mc?

describes the perturbation of the electron by an electromagnetic wave.

6.1.3 The Hamilton operator in quantum mechanics
6.1.3.1 The Schrodinger equation

In quantum mechanics, the formulae (6.4) governing the motion of the particles
are replaced by the Schrodinger equation

0w N
ih— = HW. (6.12)
ot
This equation follows from E = H (x;, p;) of (6.5) by turning the energy
E and the Hamiltonian H into operators using the standard prescription for the

conversion of energy, conjugate momentum and coordinates,

0
E — ih& pi — pi = —ih— Xj = Xj = Xxj. (6.13)
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Operators are marked by a hat on top of the letter. One has to keep in mind
the commutation rules, in particular

[%i, pjl =Xipj — pjXi = ihéjj (6.14)
from which one readily deduces
S U
[x;, Hl=x;H — HXx; = i— pj. (6.15)
m
For the Hamiltonian of an electron in an atom perturbed by an

electromagnetic field we write

e A~ A~ ezA

P-A+A-p)+ A-A. (6.16)

H=
2mec 2mec?

This follows from (6.11), omitting the subscript ‘wave’.

6.1.3.2 Stationary solutions of the Schréodinger equation

The wavefunction ¥ in (6.12) depends generally on space and time,
U = W(x,1).

Stationary solutions correspond to fixed energy eigenvalues E. In this case,
the wavefunction can be written as

W(x,t) = y(x)e BN 6.17)
W (x, 1) contains the time merely through the factor e £*/ h which cancels
out on forming the probability density |W|2. The eigenfunction ¥ (x) depends
only on coordinate x. The time-independent Schrodinger equation of a particle of
energy E in a potential V (x) follows from (6.12),
hZ
—AY+[E-Ux)]y =0. (6.18)

2m

The eigenfunctions v, each to an eigenvalue E,, form a complete set so
that an arbitrary wavefunction W (x, f) can be expanded into a sum of ¥,;:

W(x, 0) =Y an(x) e Bl (6.19)

n

with expansion coefficients a,,.



A charged particle in an electromagnetic field 179

6.1.4 The dipole moment in quantum mechanics

The Hamiltonian operator H is Hermitian, which means
/ V() dx = / () ¢ dx

for any ¥ and ¢ and guarantees real expectation values. The asterisk denotes the
complex conjugate. It follows, with the help of equation (6.15), that

- f Vi pvndx =i T (E; - Ey) / Vi dx

so one can substitute in the left-hand integral for the momentum operator the
coordinate operator (but for a constant). If we put iw;x = E; — Ey and call

Mjk=e / Y () x Y (x)dV (6.20)

the dipole moment with respect to the states described by the eigenfunctions
and Y, we get

e A .
- / Vi pyrdx =i jk. 6.21)

6.1.5 The quantized harmonic oscillator

We review the solution of the time-independent Schrodinger equation for the
undamped free linear harmonic oscillator. The oscillator obeys the equation of
motion

¥4+aw’x=0

where w? = k/m is the square of the frequency of oscillation, m the particle mass,
and —« x the restoring force (see section 1.3). The total energy of the system

P 1
E:T—i—V:%—i—Emwzxz

and the time-independent Schrodinger equation is, therefore, (see (6.18))

h? 024,
2m 9x?

[
+ | E, — Emw x“ |y =0. (6.22)

This second-order differential equation looks much better in the form
MZ + Ay — yz)un =0
where we have introduced the function u,, («x) = ¥, (x) with

) maw
=" (6.23)
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. harmonic oscillator
0.4 - i quantized vs. classical m

probability P(x)

location x

Figure 6.1. The undulating quantum mechanical probability P(x) = [ (x)|% for finding
the particle at locus x when the oscillator is in its third energy level above ground (n = 3).
For comparison, we show the corresponding probability of a classical oscillator (dots) of
the same energy; here the particle is strictly confined to the allowed region. For high n, the
dotted and full curve converge.

and put y = ax and A, = 2E,/fio. An ansatz for u, (y) of the form e ™"/ H,,(y)
yields the normalized eigenfunctions of the harmonic oscillator:

—aox2 . o
Yn(x) = Npe ¥ ?H,(ax)  with N, = /W' (6.24)

H, are the Hermitian polynomials described in appendix A. The energy levels E,,
of the harmonic oscillator in (6.22) are equidistant:

E,=m+Hho n=012,... (6.25)

and the lowest level
Eog = %hw

is above zero. Figure 6.1 displays, as an example, the square of the eigenfunction
|, (x)|* forn = 3 and o® = 1.
With the help of (A.3) we find that the mean position and momentum of an
oscillator, (x) and (p), always disappear for any energy E,. So
dix) _(p)

dt m
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is fulfilled in a trivial way but (x2) and (p?) do not vanish. For the product of the
uncertainties we have

Axdp =) — () = (PP = =+ Dh (626

6.2 Small perturbations

6.2.1 The perturbation energy

Let us introduce, to a system with Hamiltonian H and energy eigenvalues E,, a
small perturbation, H', so that the Schrodinger equation (6.12) reads:

(FI +H — zh%) V(x, 1) =0. (6.27)

We expand ¢ after (6.19) into eigenfunctions v, but now with fime-
dependent coefficients ay, (t) because of the additional term H’ which causes the
system to change:

Y1) =Y an(t) Ya(x) e Er0, (6.28)

Inserting this sum into (6.27) gives

ZefiEnt/ﬁ (anﬁ/% _ iﬁc’znxlfn) =0 (6.29)
n

the dot over a,, means time derivative. As the eigenfunctions are orthogonal,
multiplication of (6.29) with the eigenfunction w;ﬁ and integration over the space
coordinate x yields

S et Enilhay (0 HY, — ihp (e Eh =0 (6.30)
n

with the matrix coefficients
Hj, = / Vi H Y dx. (6.31)

For equal subindices (f = n), the matrix element H,, gives the perturbation
energy. This means when the Hamiltonian H is replaced by H + H', the energy
eigenvalues change from E, to E,, + H,,.

6.2.2 The transition probability

We consider a transition s — f, from a starting state s to a final state f. Suppose
that our system was at time ¢ = 0 in state s,

Yx, 1 =0) =y (x).
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Then all a,(0) in (6.28) vanish, except for az(0) = 1. If the interaction
operator H' is weak and the perturbation time ¢ not too long, we can substitute in
(6.30) the a, () by their values at t = 0, so

a, (0) = &g,
where Jg;, is the Kronecker symbol. If
hw s = Ef — Ej

is the energy difference between the two states, equation (6.30) yields for the time
derivative of the expansion coefficienta s,

) i
ar = _ﬁ

After integrating from the starting value a7 (0) = 0 and assuming that H_
is not time-variable,

Hj,e' s (6.32)

i , 1— eiwfst
The probability of finding the system at a later time ¢ in the final state f is
o1 —coswgst

2 /
pis@® = lagO = o5 |Hp| —a, (6.34)

6.2.3 Transition probability for a time-variable perturbation

When the perturbation varies harmonically with time, we have to write H'e—iot
in equation (6.29) for the perturbation operator, instead of H’. The time derivative
of the expansion coefficient, a s, given in (6.32), then becomes

i .
df — _ﬁH_)/‘nel(wa_w)t

and
—cos(wrs — w)t

2 2 / 2]
prs) =lay@®)]” = ﬁlesl (6.35)

(wfs - w)2
One just has to replace w s5 by s — w and the probability p ¢s(¢) now has
its spike when w >~ w ;.
If the time ¢ in (6.35) is large compared to the oscillation period, t > @™/,

the function
—cos(wrs — w)t
2

1
flw) = (6.36)

(fs — )
resembles the §-function: it has values close to zero almost everywhere, except
around @ = wyy in the small interval Aw from —m /2t to 7 /2¢. Integrated over
frequency,

® 1 - . — w)t
/ cosrs — oy (6.37)

—00 (wfs - w)2
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2000

-0.2 0 0.2
frequency [w—ws]

Figure 6.2. The transition probability from a starting state s to a final state f under the
influence of a perturbation potential is proportional to a characteristic function given in
(6.36) and shown here for r = 100.

The function f(w) is plotted in figure 6.2 for + = 100. The probability
prs(t) in (6.35) is not negligible and transitions from state s to state f* occur only
when |w—wyg|t < 7. If one waits long enough, one has almost exactly @ = wys.

6.3 The Einstein coefficients A and B

6.3.1 Induced and spontaneous transitions
6.3.1.1 How A and B are defined

We consider radiative transitions in atoms between an upper level j and a lower
one i of energies E; and E; such that

Ej—E,':hU.

Let the atoms have number densities N; and N; per cm’, respectively, and
be bathed in a radiation field of energy density u,. As atomic energy levels and
lines are not infinitely sharp but have some finite width, let

Ni(v)dv = N;®(v)dv

be the number of atoms in state i that can absorb radiation in the frequency interval
[v, v + dv], where, of course,

/ d(wv)dv =1.
line
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Radiative transitions between level j and i may be either spontaneous or
induced. Setting

u:/ u,®()dv (6.38)
line

the Einstein coefficients A j; and Bj; are defined such that per cm’

e NjAj; =rate of spontaneous downward transitions,
e NjuBj; =rate of induced downward transitions and
e  N;uB;; =rate of induced upward transitions.

6.3.1.2 How A and B are related

Aji, Bj;, Bjj are atomic quantities and do not depend on the radiation field. If we
assume blackbody radiation (u,, = 47 B,,(T)/c) and thermodynamic equilibrium,
we can derive the relations between the As and Bs. The Boltzmann formula (5.9),

N; i E; — E;

8 withx = =L "

N; gj kT
yields

Aji+uyBj; = &Bi./uvex.
J
If we fix v and let T go to infinity, we are in the Rayleigh-Jeans part of the

spectrum and u, becomes arbitrarily large so that u, Bj; > Aj;. As then also
e* — 1, we get the symmetry relation between the Einstein- B coefficients,

gjBji = giBij. (6.39)
Consequently,
Uy = ————.
Bji(e* — 1)

If we now let the temperature tend to zero, we are in the Wien part of the spectrum
and
Sn—Wefhv/kT — @67<E_/7E,-)/kr
c3 Bj; )
As this equation holds for any small 7', we obtain
hv=FE; — E;.

This looks trivial but expresses the non-trivial fact that the radiation field
stimulates absorption and emission at the frequency corresponding to the energy
difference of the levels. It also follows that

8hv’
Aji =—5 le' (6.40)

Cc

which connects the A coefficients with the B coefficients.
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6.3.1.3 The quantum mechanical expression for A

The quantum-mechanical correct expression for the Einstein coefficient A j; for
spontaneous emission from upper state j to lower state i is
647403

2
Aji = WW,/H (6.41)

where
mji=e / Ui (X)X Y (x)dV (6.42)

is the dipole moment corresponding to the transition (see (6.20)). v; and ¥;
are the eigenfunctions of the energy states. A rigorous derivation of formula
(6.41) requires quantum electrodynamics; the non-relativistic limit is discussed
in section 6.3.4.

6.3.1.4 A classical analogy

The essence of formula (6.41) can already be grasped using classical arguments
by equating the emission rate A ;hv to the average power radiated by a harmonic
oscillator (see (1.97)). If x = xpe ®" is the time-variable coordinate of the
electron and py = exy its dipole moment, then

2 4
Pyw
3¢3 7

Ajihv =

This yields (6.41) exactly if one puts u = % po and w = 2mv. Note that
according to equation (6.41), A j; increases with the square of the dipole moment
and with the third power of the frequency. We see from (6.41) that, cum granu
salis, Aj; is high for optical transitions and low at radio wavelengths. To get a
feeling for the numbers, we apply the formula:

(1) to an electronic transition in the hydrogen atom. Let xo be equal to the
atomic radius in the ground state (0.5A), the dipole moment is then u =
2.4 x 1078 cgs = 2.4 Debye. At an optical frequency v = 6 x 10'* Hz,

corresponding to A = 5000A, the Einstein coefficient becomes Aji ~
107 51,

(2) To the lowest rotational transition of the CO molecule. The dipole moment
in this case is fairly weak, © = 0.11 Debye, and the frequency low,
v ~ 1.15 x 10!! Hz. Now Aji ~ 10~7 s—!, which is 14 powers of ten
smaller!

6.3.1.5 Transition probability for general forces

Equation (6.41) may also be put in the form

=5 ()
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where @ = €2 /hic is the fine structure constant, £ = 2xq the size of the system,
¢/ the inverse crossing time by light, p = hv/c the photon momentum and (p£)3
the volume in the phase space necessary for the creation of photons by the atomic
oscillator. In other words, the transition probability is the product of the coupling
constant of the electromagnetic radiation, ¢, multiplied by the number of cells in
the phase space divided by the crossing time. When the transition probability is
expressed in this way, it can also be applied to other basic forces in the universe,
besides electromagnetism. The coupling constant is then, of course, different.

6.3.2 Selection rules and polarization rules

Formulae (6.41) and (6.42) incorporate the selection rules because when the
integral (6.42) is zero for two eigenfunctions ; and vr; (which is usually the
case), the transition is forbidden. For instance, from that part of the eigenfunctions
of the hydrogen atom which is radius-independent, namely

P/" (cos 0)e™
follow the selection rules
Al = =41 Am =0, £1.

If they are not fulfilled, no emission is possible. However, a perturbation,
like an electric field, can make an otherwise forbidden line to become observable
because the eigenfunctions are then deformed so that the integral (6.42) no longer
vanishes. One can also derive the polarization rules in the presence of a magnetic
field by separating the dipole moment g of (6.41) into its Cartesian components,

we=e [wixvav wo=e [uivwiav pwo=e [vizvav

and evaluating the expressions. For example, when the field is in the z-direction
and uy = py = 0 but u, # 0, the radiation is linearly polarized with its electric
vector parallel to the applied magnetic field.

6.3.3 Quantization of the electromagnetic field

So far we have learnt that radiative transitions occur at a rate given by the Einstein
coefficients. Now we want to understand why they occur and how the As and Bs
are computed. For this end, we have to quantize the electromagnetic field and we
sketch how this can be done.

6.3.3.1 The spectrum of standing waves in a box

Imagine a big box of volume V' and length L with an electromagnetic field inside,
consisting of standing waves. The vector potential A is a function only of z. It
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oscillates in the x-direction (Ay, = A, = 0) and vanishes at the walls of the box,
which are nodal surfaces. We expand A into a Fourier series:

o .
. jmz
Ac(z, 1) = Zlq]-(t) sin = (6.43)
j:

the coefficients ¢ (t) are time-dependent. With H = rotA and E = —A/c, and
the orthogonality of the sine function,

T T
f sinix - sin jxdx = §jj—
0 2
the energy of the field in the box becomes

! 2, 2 Vo2, 20
Efield = g/(Ex + Hy)dV = WZ(%’ + wjiq;)
j=1

where the frequencies are
jme

If the box is very big, there is an almost continuous frequency spectrum.

6.3.3.2 Equation of motion of an elastic string

There is a strong analogy between the field and an elastic string. Suppose a string
has alength L, is fixed at its ends and vibrates exactly like the vector potential Ay
of (6.43). As it vibrates, it bends and becomes distorted. Hooke’s law of elasticity
states how strong the internal deformations are: When we pull with a force F
at the end of a rectangular block of length £ and cross section o, the change in
length d€/¢ is proportional to the force per unit area, F/o = Y d{ /£, where the
proportionality factor Y is Young’s elasticity module. This law implies that the
potential energy stored in the deformation of the volume element goes with (d¢).

If the shape of the bent string is described by the curve y(z), its local
deformation d¢ is proportional to the derivative of the curve, d¢ o y'(z). So
the potential energy of the string that vibrates like the magnetic field A is

1L raA N icm? 5 5
U= — dz = — i ;
2K/() (az> “Tar Z] 4

where « is some elastic constant. If the string has a mass density p, its kinetic
energy equals
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We can form the Lagrange function L = T — U and find, from (6.1), the
equation of a loss-free harmonic oscillator

jj +@3q; =0
with frequency
- jm [k
wj =— [—.
LYp

The total energy equals the sum of kinetic plus potential energy of all oscillators,
Lo, ., -
Egtring = 4 Z(qu + w?q;)
j=1

6.3.3.3 Mathematical identity between field and string
The expressions for the energy of the string and the field, Egying and Efeyd,

become identical when we put ¢ = /k/p and

. \%
m=Lp= e

(6.44)

m may be considered to be the mass of the oscillator. The frequencies of field and
string then coincide, ®; = wj, as well as their energies. The g;s of the string are
coordinates of an harmonic oscillator of frequency w;. Such an oscillator has, in
quantum mechanics, discrete energy levels

Eyj=hoj(n+3)  withn=0,1,2,....

The quantization of the string implies that the electromagnetic field is
quantized, too. Naturally, we associate the oscillator of frequency w; with
radiation at that frequency and identify the quantum number n with the number of
photons in the box at that frequency, more precisely, with the occupation number
N, which is related to the radiative energy density u, through formula (5.33).
Because the field is, from (6.43), completely described by the coefficients g (¢),
in quantum mechanics one replaces the field A, by the amplitudes ¢g;; the g; are
called normal coordinates.

6.3.4 Quantum-mechanical derivation of A and B

6.3.4.1 Coupling between oscillator and field

Emission or absorption must result from the coupling between the oscillator and
the electromagnetic field but how? The trick is to perceive the atom and the field
as one system consisting of two subsystems:

e the atom described by coordinz}tes (1) with Hamiltonian H 1, eigenvalue E
and eigenfunction ¥, so that Hjyr (1) = E1¢(1); and
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e the electromagnetic field for which we use the subscript 2; here 1:121//2(2) =
Exy(2).

The total uncoupled system has the Hamiltonian H = PAll + ﬁg, the
wavefunction

Y(1,2) = ¥1(1) - ¥2(2)
and the energy E1 + E3,

Hy = (E1 + E)) Y.

In reality, the two subsystems couple. For the perturbation operator H' we
use the Hamiltonian derived in (6.16),

A =-—"p-A (6.45)

and neglect the quadratic term A2. Note that p- A commutes with A - p; this
follows from the definition of the momentum operator p in (6.13) and the Lorentz
gauge div A = 0 (see (1.85)).

6.3.4.2 The matrix element H}S

Let us consider the process of emission or absorption of the atom as a transition
of the whole system: atom plus field. The transition probability from the starting
state s to the final state f as a function of time is given by (6.35). To compute it,
we have to evaluate the matrix element H } , 0of (6.31) which contains the operator

H' = —(e/mc)p - A. The integral that appears in the matrix element H canbe
separated into

e A N
I 2_/1//rfpw1sdx and 12:/1/[§wa2$‘1‘]
mc

so that H}-S = Iy - . For the first, we get from (6.21)

2
1)

0P = —F gl

To evaluate the second integral I, for ¥, we insert the eigenfunctions of the
electromagnetic field and thus of an harmonic oscillator. They read ¥»; = N; H},
where H; are the Hermitian polynomials of (6.24) and N; their normalization
coefficients. The field operator Ais replaced by the normal coordinate g. In this
way, we get

N

N, 2
e / Hy()yHs(e™ dy

I, = Ny N / Hy(ag) qHS(otq)e_O‘Zq2 dg =
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N
—— {8541+ 258751}

2aNy
Ns Vst e 511 (emission)
_ 20Ny a2 (6.46)
N; \/E . . )
= if f =s — 1 (absorption).
ZOCN}‘ a\/i

Here we have exploited formula (A.3). In the event of atomic emission, the
energy of the atom makes a downward jump hws. For the field it is the other
other way round, its final state is higher than the initial state. Therefore in (6.46),
which refers to the field, atomic emission corresponds to f = s+ 1 and absorption
to f = s — 1. During the transition there is an exchange of energy between the
two subsystems by the amount hw rs but the overall energy stays constant. With
respect to the parameter o> = mw/h from equation (6.23), we have to insert the

field mass m after (6.44), so
5 Vw

o = o (6.47)
This gives
s+1  2mc’h
bf = 5 ="+ 1)
and finally
2
“r

27 ch
2 2 2 s 2
|Hf 1> =017 L) = s | .W,(SJFI).

c2
6.3.4.3 The transition probability

The transition probability p,(¢) as a function of time from one discrete state to
another, s — f, is given in (6.35). Because of the presence of the field, the
energy levels of the fofal system are not discrete, like those of the atom alone,
but closely packed, like a continuum. Furthermore, we do not have one final state
but many. If p(w) is the density of these states, there are p(wsy) dw of them in
the frequency interval dw around the energy hwyrs. The density is equal to the
number of unit cells 43 in phase space, from (5.30),

2
) = —F——.
p(w) 1.3

To find the total transition probability of our coupled system, we, therefore,
have to multiply p rs(¢) by p(wfs) dw and integrate over frequency. The integral
is according to (6.37), proportional to wzp (@ fs). When we make the time ¢ large,
the total transition probability per unit time becomes

2n /2
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We introduced the correction factor % to account for the fact that the

orientation of the dipole with respect to the field is arbitrary. It only remains to

insert the expressions for p(wfs) and |HJQS |2. When we do this, the volume V of

the box luckily disappears. Here are the final results for the transition probability
per unit time of an atom in a radiation field:

e Ifexciting radiation is absent (s = 0), the transition probability P equals the
Einstein A coefficient of (6.41),

4w 3
P=Aj = |IL11|2
: 3hc 3hc3

It is puzzling that a seemingly unperturbed atom in an eigenstate (above the
ground state) with energy E; should emit radiation at all. One might expect
it to stay there forever because the only time dependence in the eigenfunction
is, from (6.17), an oscillation of the form e iEjt/h, Howeyver, there are
downward transitions (A;; > 0), even when the atom sits in the dark. The
reason is that the perturbation operator (where the field is represented by
eigenfunctions of an harmonic oscillator) does not vanish when photons are
absent.
e In aradiation field, the radiative density is, from (5.33),

Uy = —=ws.
e

When there are many photons flying around, s ~ s + 1 and the induced
emission rate is

4w’ 5
P = —3503 |[l,]l| (S + 1) ~ Bjiuv.

The same expression holds for induced absorption (if the initial and final
states of the atom have the same statistical weight). Note that the symmetry
of |H }-S|2 with respect to s and f accounts for the symmetry of the B
coefficients, Byy = B ;.

The transitions described here involve one field photon because they are
rooted in the perturbation operator p -A, which is linear in A. When we include the
much weaker operator A2 in the Hamiltonian of (6.16), it follows, again from the
orthogonality of the Hermitian polynomials which we employed for the derivation
of (6.46), that the A2-term describes processes involving two photons at a time,
either in emission or absorption, or one in emission and the other in absorption.
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6.4 Potential wells and tunneling

6.4.1 Wavefunction of a particle in a constant potential

Consider in one dimension a free particle of mass m and energy E in a potential
V (x). To facilitate writing, in this section we often put

Ux) = Zh—n;V(x) e = 2ﬁ—";E (6.49)

In this notation, the wavefunction of a stationary state satisfies the equation
v =[Ux) —e]y. (6.50)
If U is constant, the general solution reads
Y(x) = A1€ + Are ™ a=e—U (6.51)
with complex A;. There are two cases:

e & —U > 0. Then ¢ > 0 and the wave has an oscillatory behavior. It could
be represented by a combination of a sine and a cosine.

e¢ ¢ —U < 0. Then ix is real and the two solutions correspond to an
exponentially growing and declining function. The former is only allowed
in finite intervals because the integral [ v¥* dx must be bounded.

If the potential U (x) is a step function, i.e. if it is constant over intervals

[xi, xi4+1] but makes jumps at the connecting points x;, with x; < x» < x3 <

.., the wavefunction v and its derivative /' must be continuous at these

points; otherwise the Schrodinger equation would not be fulfilled. The boundary

conditions of continuity for ¢ and v’ at all x; fully determine the wavefunction.
To find it is straightforward but often tedious.

6.4.2 Potential walls and Fermi energy

If the particle is trapped in an infinitely deep well of length L, as depicted on the
left-hand side of figure 6.3, the wavefunction must vanish at the boundaries. It
cannot penetrate beyond the walls, not even a bit. The situation is reminiscent of
a vibrating string fixed at its ends. If . = &/ p is the de Broglie wavelength and p
the momentum, the condition nA/2 = L leads to the discrete energies

2m n’m?

and sine-like wavefunctions

Yn(x) = Asin (%x) .
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Figure 6.3. The left side shows an electron in a square potential with walls of infinite
height. The stationary states correspond to energies E, n? (see (6.52)). The right
side shows, for comparison, the parabolic potential and the equidistant energy levels of an
harmonic oscillator.

There is a zero-point energy (¢ > 0 for n = 1) because the particle is
spatially localized in the interval from —L/2 to L/2, and so its momentum cannot
vanish. The spacing between energy levels increases quadratically with quantum
number n. This is very different from an harmonic oscillator which has a parabolic
potential and equally spaced energy levels (see figure 6.3).

If a system with N electrons is in its lowest state, all levels n < N/2 are
filled. The threshold or Fermi energy of the topmost filled level is

I*n?N?
= — 6.53

8meL? ( )
and the velocity of those electrons is vp = /2Eg/me.

If the walls of the potential well are finite and of height U and the particle
energy ¢ < U, there is some chance, exponentially decreasing with distance, to
find it outside the well. The energies of the eigenstates depend then in a more
complicated manner on 7.

In three dimensions, for a cube of length L and infinite potential barrier, the
eigenfunctions are

¥(x) = Asin (%x) sin (%y) sin (nzn z)
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with positive integers ny, ny, n;, and the Fermi energy is

2/3
> (37N
Fp= — <’2—3> . (6.54)

2me

6.4.2.1 Examples of Fermi energy and Fermi statistics

e  White dwarfs are burnt-out stars with extreme densities up to 10® g cm™3.

But only the electrons are degenerate, the more massive atomic nuclei are
not because their degeneracy parameter is much smaller (see (5.29)). When
the Fermi energy is very high as a result of a high density p = N/L>, the
electrons are relativistic and

Er = he(N/V)'/3. (6.55)
If one expresses the Fermi energy as a temperature,
Eg
Tp= —
=%

one finds T ~ 10° K for p ~ 10 g cm 3.

e Aneven more spectacular case is presented by neutron stars with densities up
to 10! g cm™3. The neutrons do not disintegrate into protons and electrons,
as one would expect, only a few do, because the energy liberated in the decay
n — p+e produces only ~10° eV, which is miles below the Fermi threshold
of (6.55) in a fictitious sea of electrons and protons at density 10'> g cm™3.

e The conduction electrons in a metal have values 7g between 10* and
10° K, so at temperatures T ~ 100 K, the energy distribution of the
conduction electrons given by (5.26) is highly degenerate, only few of them
are thermalized. For graphite particles of interstellar dust grains, the Fermi
temperature is somewhat lower, T ~ 103 K.

e Observing astronomers use both isotopes of liquid helium to cool their
detectors. The *He atoms are made of five elementary particles (two protons,
one neutron and two electrons), they have half-integer spin and are fermions.
The main isotope 4He, however, contains one more neutron, has zero total
angular momentum and follows Bose statistics. The two isotopes show
radically different behavior at low temperatures: *He becomes a superfluid
below 2.2 K, whereas *He does not. Superfluidity is explicable by Bose
statistics because Bose statistics allows many (even all) atoms to be at the
lowest energy state.

6.4.3 Rectangular potential barriers
6.4.3.1 A single barrier

Let a particle travel from the left to the right and encounter a potential wall,
as in figure 6.4. If its energy ¢ is greater than U, it can, of course, overcome
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0 L X

Figure 6.4. Rectangular potential barrier for a particle coming from the left. Part of the
beam is reflected and part goes through the barrier.

the barrier but contrary to classical physics, part of the wave is reflected. Most
relevant is the case when ¢ < U. Then the particle can tunnel through the barrier
which is classically forbidden. What happens, as the particle approaches the
barrier, obviously depends on time and therefore stationary solutions may not
seem possible in this scenario. However, one may interpret the infinite wave
e®(PX=ED of o particle with definite energy E as a stationary particle beam, and
then the time drops out.
The wavefunction is constructed piece-wise:

Ael®* 4 Be~iax x <0
V(x) = CeP* + De P* 0O<x <L
Fel®® 4 Ge—iax x> L.

The coefficient G = 0, as there is no wave coming from the right, and
a=4+c>0 B=~vU—¢>0.

Exploiting the boundary conditions and keeping in mind that (e* +
e~ )2 /4 = cosh?x = 1 + sinhzx, the transmission coefficient 7', which is the
fraction of the particle beam that penetrates the barrier, becomes

T — 4e(U —¢)
" 46U — &) + U2sinh® (LU —¢)

When the barrier is high compared to the kinetic energy of the particle

(U > ¢) and sufficiently broad (LU'/? > 1), the tunneling probability can be
approximated by

(6.56)

16
T = {f“ﬁ . (6.57)
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Figure 6.5. A periodic square potential of a one-dimensional lattice. The length of the
period is a, the length of one barrier is c = a — b. In region 1, where 0 < x < b, the
potential is zero, in region 2, where b < x < q, it has the value U.

6.4.3.2  Periodic potential

Regularly arranged atoms in a solid (crystal) produce a periodic potential. We
discuss this important case in one dimension. Let the potential be periodic with
period a, as depicted in figure 6.5. The wavefunction ¥ of a particle with energy
& < U is then given by

_ | Ae'** 4 Be~iox O<x<b
v = {Ceﬂx + De=P* b<x<a
with
a=+¢ B=+U-~-s.

Two equations for determining A—D are found from the condition that v
and v' must be continuous at x = 0. Another two equations follow from a
result detailed in section 7.2.3: In a periodic potential, any eigenfunction v, with
respect to wavenumber k and energy ¢ = k%, must have the form

Ilfk — ukeikx

where uy is periodic such that
uk(x) = ux(x + a).

Therefore, ux(b) = wux(—c) and u(b) = wu(—c), where ux(x) =
Y (x)e ¥ Altogether, this gives
A+B=C+D
ia(A — B) = B(C — D)
e—ikb[Aeiab + Be—iab] — eikc[ce—ﬂc + Deﬂc]
ieT [Ae (@ —K)—Be T (@ + k)] = e*[Ce™P¢ (B — ik)—DeC (B +iK)].
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Figure 6.6. The quasi-sinusoidal variation of the right-hand side of equation (6.58) as a
function of particle energy ¢. It is calculated for the periodic potential of figure 6.5 with
U =100, a = 2, ¢ = 0.04. Energies for which |f(¢)| > 1 are forbidden. This is, for
instance, the case when e 2~ 4, 11 or 24.

Non-trivial solutions of this linear system of equations, those for which
A = B = C = D does not equal zero, have a vanishing determinant. The
condition Det = 0, after some algebra, leads to

2 2

coska = /327; sinh Bc - sinab + cosh Bc - cosab. (6.58)
o

For fixed values a, b, U of the potential in figure 6.5, the right-hand side of
(6.58) is a function of particle energy € only; we denote it by f (¢). Because of the
cosine term on the left-hand side of (6.58), only energies for which f(¢) € [—1, 1]
are permitted and those with | f(¢)| > 1 are forbidden. The function f(¢g) is
plotted in figure 6.6 for a specific set of values U, a, c.

In the potential well on the left-hand side of figure 6.3, which is not
periodic and where the walls are infinite, the energy ¢ rises quadratically with
the wavenumber, ¢ = k. If the length L of the well in figure 6.3 is large, there
will be a continuous spectrum as depicted by the continuous line in figure 6.7.
In a periodic potential, however, the function ¢ (k) is only aproximately quadratic
and there are now jumps at integral values of |ka/x|. Figure 6.7 is the basis for
explaining why electrons in crystals are arranged in energy bands.
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Figure 6.7. The energy spectrum e(k) of particles in a periodic potential as in figure 6.5
calculated for U = 100, @ = 2 and ¢ = 0.04. The function (k) has discontinuties at
integer values of ka/m. The curve without discontinuties is explained in the text. See also
figure 6.6.

6.4.4 The double potential well
6.4.4.1 Splitting of energy levels

Next we consider an atom of mass m and energy ¢ in a potential U (x) consisting
of two symmetric adjacent wells with a barrier Up between them as depicted in
figure 6.8. Classical motion is allowed in the intervals [—b, —a] and [a, b], where
U(x) < e. When the barrier Uy is infinitely large, the particle can only be in the
left- or right-hand well. The corresponding wavefunctions are denoted by ¥_ and
Y4, respectively, and satisfy the Schrodinger equation (see (6.18)):

Ve +[e U =0 v +[e— U]y =0. (6.59)

If the barrier Uy is finite, there is a certain chance of tunneling from one
well to the other. The particle is now not localized in either of them and its
wavefunction is a symmetric and anti-symmetric combination of ¥4 and v¥_,

"=Rta PTaT A



Potential wells and tunneling 199

——
T

b —a a b x

Figure 6.8. A particle in a double potential well with a barrier Uy between the minima.
Because of tunneling, an energy level ¢ splits into two with a separation Ae given by (6.61).

The probability of finding the particle either in the left or right well is unity
and the integral of |/;|> over the whole x-axis equals one. The wavefunctions v
and Y, also obey the Schrodinger equations,

Ui+ —UWY1 =0 ¥ +[e2-U®]¥ =0 (6.60)

but with slightly different energies €1 and €. To obtain the difference &7 — €1,
we multiply the left equation in (6.59) by v and the left equation in (6.60) by
¥4, subtract the two products, and integrate from x = 0 to x = oco. Exploiting
¥1(0) = ¥4(0), ¥1(0) = 0 and assuming that the tunneling probability is small
such that ¢ >~ ¥4 forx > 0 givese; — ¢ = —21/2x[/jr(0)xlf+(0). Likewise we
find e — ¢, and finally get

g2 — &1 =Y (0) - ¥/ (0).

So the energy difference is determined by the wavefunction v in the
classically forbidden region at x = 0. If p = hye— U(x) denotes the
momentum and py its value at x = 0, one finds

h Vvom 1 a
Y+ (0) = —¢,(0) = /——exp [——/ IPIdX]
Po Po h Jo

where v is the classical oscillation frequency, i.e. vy !'is the time for the particle
to go from a to b and back, and, therefore,

4 1 ¢ 4 2a/2mV,
by oy = ";;Oexp[_ﬁ / |p|dx]:$exp[_aivh"ﬂ>] 6.61)
—da
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The possibility that the particle can tunnel to the adjacent well leads to two
wavefunctions, ¥ and ¥». Their space probabilities [/;| are different, although
only in the forbidden region but there they couple differently to the potential U (x)
resulting in the splitting of the energy ¢ into two levels €1 and ¢5.

6.4.4.2 Tunneling time

To find the approximate time #y,, that the particle needs to tunnel from the left to
the right well or back, we turn to the time-dependent wavefunction

W(1) = Y BBV e R B,

Here we have used again E = (h2/2m)a and V = (h2/2m)U (see (6.49)).
At time ¢ = 0, the wavefunction has the value W(0) = /2y, so the particle
starts in the right well. It reaches the left well when W (¢) = ¢ _, which happens
after a tunneling time
wh
|E1 — Ea|’

This equation expresses the uncertainty principle AE - At >~ h. A precisely
defined energy means that the particle is fixed in one well and does not tunnel. A
broad energy band A E, however, implies a high mobility, the particle is then not
localized anywhere.

From (6.61) and (6.62) we see that with increasing potential barrier Vj, the
energy splitting E> — E1 becomes smaller and the tunneling time longer. Inserting
the energy difference of (6.61) into (6.62), we find

2a«/2mV():|

(6.62)

ftun =

(6.63)

—1
fun =V €Xp |: 7



Chapter 7

Structure and composition of dust

We study in section 7.1 the way in which atoms are arranged in a solid and in
section 7.2 what holds them together. Then we make our first serious acquaintance
with observations and examine the interstellar extinction curve (section 7.3). Its
interpretation requires a basic knowledge of stellar photometry and the reddening
law. In view of the overall cosmic abundance of elements, the extinction curve
rules out major dust constituents other than silicate and carbon grains. We,
therefore, proceed in section 7.4 to discuss their atomic structure and bonding.
The shape of the extinction curve can only be explained if the grains are not
of uniform dimension but display a size distribution. What kind of distribution
and how it can be achieved in grain—grain collisions is sketched in section 7.5.
Equipped with a quantitative idea about size and chemical composition of
interstellar dust, we present typical and likely grain cross sections based on a
reasonable set of optical constants.

7.1 Crystal structure

7.1.1 Translational symmetry
7.1.1.1 The lattice and the base

Interstellar grains probably contain crystalline domains of sizes 10-100 A. In a
crystal, the atoms are regularly arranged in a lattice which means that the crystal
can be built up by periodic repetition of identical cells. A cell is a parallelepiped
defined by three vectors a, b and ¢ such that for any two points r, r’ in the crystal
whose difference can be written as

r —r =ua+ vb + we (7.1

with integral u, v, w, the environment is exactly the same. If any two points r and
r’ with an identical environment are connected through (7.1), the vectors a, b, ¢
are said to be primitive and generate the primitive cell. This is the one with the
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smallest possible volume. There is an infinite number of ways how to construct
cells or vector triplets (a, b, ¢), even the choice of the primitive cell is not unique;
figure 7.3 gives a two-dimensional illustration. Among the many possibilities,
one prefers those cells whose sides are small, whose angles are the least oblique
and which best express the symmetry of the lattice. These are called conventional,
elementary or unit cells.

For a full specification of a crystal, one needs besides the lattice points
ua + vb 4+ we, a description of the three-dimensional cell structure, i.e. of the
distribution of charge and matter in the cell. The cell structure is called the base.
The spatial relation between the lattice points and the base is irrelevant. So lattice
points may or may not coincide with atomic centers. A primitive cell may contain
many atoms and have a complicated base but it always contains only one lattice
point.

7.1.1.2  Physical consequences of crystalline symmetry

Geometrically, the existence of a grid always implies spatial anisotropy
because in various directions the structures are periodic with different
spacings. Furthermore, the periodic arrangement of atoms are manifest by
the morphological shape of the body; in non-scientific language: crystals are
beautiful. The physical relevance of crystalline order reveals itself, among others,
by

e the appearance of long-range, i.e. intensified, forces which lead to sharp
vibrational resonances observable at infrared wavelengths;

e bonding strengths that are variable with direction: in one or two directions,
a crystal cleaves well, in others it does not; and

e a generally anisotropic response to fields and forces. For example, the
way crystals are polarized in an electromagnetic field or stretched under
mechanical stress depends on direction.

7.1.1.3 Miller’s and other indices

To find one’s way around a crystal and to identify points, axes or planes, one uses
the following notation:

e If the origin of the coordinate system is at a cell corner, a point r =
xa + yb + zc within the cell is designated by xyz with x,y,z < 1. For
example, the cell center is always at %%% .

e Suppose a plane intercepts the axes of the crystal coordinate system at the
three lattice points #00; Ov0 and 00w. One then denotes, after Miller, the
plane by the triplet in round brackets (hkl) where h, k,[ are the smallest

possible integers such that

<
<
SHIE
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Table 7.1. Lengths and angles in the unit cells of the seven crystal systems. See figure 7.1
for definition of sides and angles. The monoclinic, orthorhombic, tetragonal and cubic
system are further split into lattice types that are either primitive or centered. For the cubic
crystal system, this is shown in figure 7.2. The cells of the triclinic and rhombohedral
system are always primitive, without centring. Altogether there are 14 lattice types or
Bravais cells, only seven of them are primitive.

1. Triclinic: a#xEb#c a#FBFvy Lowest symmetry

2. Monoclinic: a#xb#c a=y=90°p8#90° Not shown in figure 7.1
3. Orthorhombic: a#b#c¢ a=pf=y=90°

4. Tetragonal: a=b#c a=B=y=90°

5. Hexagonal: a=b#c a=pB=90°y=120°

6. Rhombohedral: a=b=c aoa=B=y #90° Not shown in figure 7.1
7. Cubic: a=b=c a=B=y=90° Highest symmetry

For instance, the plane (436) runs through the points 300, 040 and 002. A
plane that is parallel to b and ¢ and cuts only the a-axis at a distance a from
the coordinate center is identified by (100). The plane (200) is parallel to
(100) but cuts the a-axis at %a.

e A direction within the lattice may be specified by an arrow that goes from
the origin of the coordinate system to the point r = xa + yb + zc where
X, Yy, z are integers. There is an infinite number of such vectors pointing in
the same direction. Among them, let ua + vb 4+ wc be the one with the
smallest integers u, v, w. The direction is then denoted by the triplet [uvw]
in square brackets. In the cubic system (see later), the direction [uvw] is
always perpendicular to the plane (hkl) withh = u, k = vand/ = w.

7.1.2 Lattice types
7.1.2.1 Bravais cells and crystal systems

In the general case, the lengths of the vectors a, b, ¢ in the conventional cell and
the angles between them are arbitrary. When lengths or angles are equal, or when
angles have special values, like 90°, one obtains grids of higher symmetry. There
are 14 basic kinds of translation lattices (Bravais lattices) which correspond to 14
elementary cells. These 14 lattice types can be grouped into seven crystal systems
which are described in table 7.1 and shown in figure 7.1.

The cubic system has the highest symmetry: a, b, ¢ are orthogonal and their
lengths are equal, a = b = c¢. The polarizability is then isotropic, whereas for
other crystal systems, it depends on direction. Figure 7.2 shows the three lattice
types of the cubic family: simple (sc), body centred (bcc) or face centred (fcc)
of which only the sc cell is primitive. The bcc cell is two times bigger than the
primitive cell and the fcc cell four times; furthermore, primitive cells do not have
a cubic shape (see the two-dimensional analog in figure 7.5).
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triclinic orthorhombic tetragonal
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Figure 7.1. There are seven crystal systems of which five are shown here. The angle
between the vector pair (b, ¢) is denoted «. If, symbolically, we write « = (b, ¢), we
define likewise 8 = (¢, a) and y = (a, b). See table 7.1.

SC bcce fcc

Figure 7.2. The three lattices types of the cubic crystal system: simple cubic (sc),
body-centered cubic (bcc) and face-centered cubic (fcc). To avoid confusion, for the
fce lattice the face-centring atoms are shown only on the three faces directed towards the
observer.

7.1.2.2  Microscopic and macroscopic symmetry

Under a symmetry operation, a crystal lattice is mapped onto itself. A linear
translation by one of the vectors a, b, ¢ is one such operation but it becomes
apparent only on an atomic scale because the shifts are of order 1 A and thus
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much smaller than the dimensions of a real (even an interstellar) crystal. The
translational symmetry is revealed from X-ray images and is described by the
Bravais lattices. However, there are symmetry operations that also are evident on
a macroscopic scale, such as the following ones.

e Inversion at a center. If the center is in the origin of the coordinate system,
the operation may be symbolized by r = —r’.

e Rotation about an axis. One can readily work out that the only possible
angles compatible with translational symmetry, besides the trivial 360°, are
60°, 90°, 120° and 180°. However, for a single molecule (not a crystal),
other angles are possible, too.

e Reflection at a plane.

In each of these symmetry operations, there is a symmetry element that
stays fixed in space (the inversion center, the rotation axis or the mirror plane,
respectively).

Macroscopically, a crystal has the shape of a polyhedron, like a gem in an
ornament or the grains in the salt shaker. When one subjects it to a symmetry
operation, the normals of the faces of the polyhedron do not change their
directions.

All crystals can be divided into 32 classes where each class represents
a mathematical group whose elements are the symmetry operations described
earlier. These 32 classes completely define the morphological (macroscopic)
appearance of crystals. Macroscopic symmetry is, of course, the result of the
microscopic structure, although the latter is not explicitly used in the derivation
of the 32 crystal classes. Without proof, when the 14 Bravais lattices of the
atomic world are combined with these symmetry elements, including two further
symmetry elements (screw axis and glide plane), one arrives at 230 space groups.

7.1.2.3 Two-dimensional lattices

The classification scheme is much simpler and easier to understand in two-
dimensions. The basic unit of a two-dimensional crystal is a parallelogram. Now
there are only five (translational) Bravais lattices and 10 crystal classes. When the
Bravais lattices are combined with the symmetry elements permitted for a plane
(rotation axis, mirror plane and glide plane), one obtains 17 planar space groups.
The parallelograms of Bravais lattices may be

oblique (a # b, y # 90°, figure 7.3);

hexagonal (a = b, y = 120°);

quadratic (@ = b, y = 90°);

rectangular (a # b, y = 90°, figure 7.4); and
centered rectangular (a # b, y = 90°, figure 7.5).

Any two vectors a’, b’ with lengths ¢’ = b’ and angle y between them
describe a centered cell of a rectangular lattice but the cell with vectors a, b
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a g ®

Figure 7.3. A two-dimensional lattice. There is an infinite number of ways to generate
cells. Here it is done by the vector pairs (a, bj) with i = 1,2, 3,4. All define primitive
cells, except a, by which has an area twice as large.

[ [ [ [

[ [ o
b

[ a [

Figure 7.4. A simple rectangular lattice is generated by the primitive vectors a and b.

Figure 7.5. In a centered rectangular lattice, a primitive cell is generated by a, b; and has
half the area of a conventional cell generated by a, b. Note that a’, b’ with a’ = b’ are also
primitive vectors.

as in figure 7.5 seems to better convey to us the symmetry. Likewise in three
dimensions, the body-centered (bcc) and face-centered (fcc) cubic type can be
generated from primitive rhombohedra (where all three lattice constants are equal,
a = b = c) but then again, one loses the advantage of a rectangular coordinate
system because the angles are no longer 90°.
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7.1.3 The reciprocal lattice

Because the structure in a crystal is periodic, it is natural to expand the density
p(x) in a Fourier series. If a, b, ¢ form the primitive vectors of the lattice
according to (7.1), then

pex) =) pce®. (7.2)
G

The pg are the Fourier coefficients and the sum extends over all vectors
G = ua™ + vb* + we* (7.3)

where u, v, w are integers and a*, b*, ¢* are the primitive vectors of the reciprocal
lattice. The first, a*, is defined by

bxc

a*=2r———
a-(bxc)

(7.4)
so that a* is perpendicular to b and ¢ and a* - a = 2. The unit of a* is one over
length. There are corresponding definitions and relations for b* and c*.

Suppose a plane wave of wavevector k falls on a crystalline grain. Any
small subvolume in the grain, let it be at locus X, scatters the incoming light. The
amplitude of the scattered wave is proportional to the electron density p(x). Two
outgoing beams with the same wavenumber k’ which are scattered by subvolumes
that are a distance r apart have a phase difference !XT with

Ak =K —k.

The vectors k and k’ have the same length but point in different directions.
To find the total scattered amplitude E, one must integrate over the whole grain
volume V, so modulo some constant factor

Es=/ p(x)e ARX gy
v

With respect to an arbitrary direction K’, the integral usually vanishes as a
result of destructive interference. It does, however, not vanish if Ak is equal to a
reciprocal lattice vector G of (7.3), i.e.

Ak=KkK —k=G. (7.5)

Equation (7.5) is another way of formulating the Bragg law for reflection in
crystals.

7.2 Binding in crystals

Solids are held together through electrostatic forces. Five basic types of bonds
exist and they are discussed here. All five types are realized in cosmic dust.
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7.2.1 Covalent bonding

In a covalent or homopolar bond between atoms, a pair of electrons of anti-
parallel spin, one from each atom, is shared. The more the orbitals of the two
valence electrons in the pair overlap, the stronger the atoms are tied together.
The bonding is directional and follows the distribution of the electron density
which has a significant high concentration between the atoms. One finds covalent
binding in solids and in molecules.

The wavefunctions in covalent bonding are not extended and only nearest
neighbors interact. We sketch the simplest case which is presented by the H2+ -
molecule, although it contains only one electron, and not an electron pair. A stable
configuration with two protons and one electron is possible only if the protons
have the right distance and the electron cloud is properly placed between them.
The motion of the protons can be neglected for the moment; it may be included
afterwards as a correction and results in quantized vibrational and rotational
states. The Hamiltonian H of the H;‘ -molecule then represents the kinetic energy
of the electron (mass m, momentum p) and the electrostatic potentials among the
three particles (figure 7.3),

. 2 1 1 1
H=p—+e2<—————>. (7.6)

When one assumes the distance R between the protons to be fixed, the
Hamiltonian of the electron, P}e(r), has the property that I-}e(r) = I-}e(—r) with
r = (x, y, z). Any eigenfunction v is then even or odd if there is no degeneracy,
and a linear combination of even and odd functions in the case of degeneracy.
One therefore seeks ¥ in the form of the symmetric or anti-symmetric functions

Ys =¥1+ ¥ Ya = Y1 — V2.

Here 1, Yr» are the usual hydrogenic wavefunctions with respect to proton
1 and 2 with energies E1 = E». The electron is either at proton 1 or 2, one cannot
say at which. When the distance R between the protons is very large, there is
degeneracy and the system has zero binding energy (E, = 0). For smaller R,
the degeneracy is removed. The electron is then in a double potential well and
this leads to a splitting of energy levels. The analysis is completely analogous to
the discussion of the double well in section 6.4.4. There is a binding (1) and an
unbinding state (y,) and their separation increases as R becomes smaller. The
lowering of the potential energy as a function of R is [Lan74]

AE = 4xyRe k-1

when R is expressed in Bohr radii, ag, and yy denotes the ionization potential
of hydrogen. The qualitative reason for the existence of a binding state (of lower
energy) follows from the uncertainty principle: a hydrogen atom in its 1s ground
state has a radius Ax = ag and a momentum Ap = mec/137,50 AxAp = h. The
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Figure 7.6. A sketch of the configuration between the two protons and one electron in the
H;r-molecule. The protons are labeled 1 (right) and 2 (left).

binding energy of the hydrogen atom is Ey, = g = p?/2me. If the electron can
spread out and be at two protons, as in the molecule H; , more space is available
to the electron and its momentum and the binding energy will be lower.

The electronic wavefunctions and the electron energies are schemtically
drawn in figure 7.7 for intermediate R. When one includes the repulsion among
the protons and considers the full Hamiltonian (7.6), the binding energy of the
H; molecule has its minimum Ep = 2.65 eV at a distance of about two Bohr
radii. This is the stable configuration of the molecule and Ej, is the dissociation
energy. When R is further reduced towards zero, repulsion between the protons
dominates and the system is again unstable.

7.2.2 Tonic bonding

In ionic or heteropolar bonds, the adhesion is due to long-range Coulomb forces.
In a crystal, the ions of opposite sign attract and those of the same sign repel each
other but in the end, attraction wins. At short distances, there is an additional
kind of repulsion but it acts only between adjacent atoms. It results from Pauli’s
exclusion principle which restricts the overlap of electron clouds.

Let us take a sodium chloride crystal (NaCl) as an example of ionic bonding.
One partner, the alkali metal, is relatively easy to ionize (5.14 eV) and the other,
the halogen CI, has a high electron affinity (3.61 eV). Although the transfer of the
electron from Na to Cl requires 5.14 —3.61 = 1.53 €V, the Na™ and CI~ ions can
supply this deficit. They can provide even more than that in the form of potential
energy by coming close together. Indeed, at the equilibrium distance of 2.8 A, the
binding energy per molecule equals 6.4 eV.

As the ions of heteropolar bonds have acquired full electron shells, like
inert gases, their electron clouds are fairly spherical and the charge distribution
between the ions is low. Ionic bonding is, therefore, non-directional and usually
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Figure 7.7. Left: A sketch of the wavefunction ¥ in the H;‘ molecule. It may be either
anti-symmetric (¥3) and anti-binding, then the electron density is zero midway between
the protons, or it may be symmetric (1/s) and binding, then the electron density is enhanced
at x = 0 reducing the repulsive potential between the protons. Right: As the protons come
closer, the degeneracy is removed and the atomic levels split into an unbinding and binding
state.

found only in solids.
To estimate the binding energy of an ionic crystal, we write the potential ¢;
at the locus of atom i resulting from all other atoms j in the form

:I:q2 o

gi=) ——+Y e lP (1.7)
PR Y

In the first term representing the interaction between ions of charge g, the
plus sign refers to like, the minus sign to unlike charges and r;; is the distance
between them. The second term heuristically describes the repulsive potential
at very close distance. Because its range p is only about one-tenth of the
equilibrium separation req between adjacent atoms, one can replace the second
sum by nie™"/?, where n is the number of nearest neighbors and r the nearest-
neighbor separation. The constants A and p have to be determined from quantum
mechanical calculations or from experiment. We put p;; = r;; /r and introduce
the Madelung constant

+
A= Z Q. (7.8)
—. Dij
J#
If atom i is negative, there is a plus sign when atom j is positive and a minus

sign when it is negative. For a crystal of N ion pairs, the total potential energy
becomes

q2
Ot = Ngi = N [nre P — 14
r
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The equilibrium distance req follows from d ®¢/dr = 0, which yields

Ng*A P
PR (1__).

I’eq I’eq

The Madelung constant A is evaluated in special routines. It must obviously
be positive as @y is negative; for NaCl, A = 1.748.

Pure ionic bonding is, however, an idealization; one finds it neither in
molecules nor in crystals. Even when compounding alkali metals with halogenes,
there is some homopolar component or overlap of orbitals. In the extreme case
of CsF, homopolar binding still amounts to 5%. There are also no pure covalent
bonds, even in Hj or diamond, because of the fluctuations of the electron clouds.
In the real world, there are only blends between the two bonding types.

7.2.3 Metals

Another type of strong binding exists in metals. One may imagine a metal as
a lattice of positive ions bathed in a sea of free electrons; metallic binding is
therefore non-directional.

7.2.3.1 Sodium

As as an example, we consider the alkali metal sodium (Na), the 11th element of
the Periodic Table with an electron configuration 1s*2s? 2p%3s!. The two inner
shells are complete and the 3s valence electron is responsible for binding. In
sodium metal, the 3s electrons form the conduction band.

In an isolated sodium atom, the 3s electron is bound to the Nat ion by
an ionization energy xNa = 5.14 eV. The electron is localized near the atomic
nucleus and its wavefunction ¥ goes to zero at large distances from the nucleus.
When, however, the 3s electron is in the potential of a lattice of Na*-ions,
as in a metal, its wavefunction v is very extended and subject to a different
boundary condition: symmetry requires that the gradient of the wavefunction
vanishes midway between atoms. The quantum mechanical calculations now
yield a binding energy of the electron to the ionic lattice of 8.2 eV.

Because sodium has a density of 1.01 g cm™, the concentration of 3s
electrons is 2.65 x 10> cm ™ and the Fermi energy after (6.54) Er = 3.23 eV.
From (6.54) also follows the density of states,

3/2
ppy =N _ Y (2'”6) EY2,

dE ~ 2722\ m2
The average energy (E) of a conduction electron, is therefore,

(E) =N*‘/p(E)dE: 2EF~19eV.

Consequently, in a metal each sodium atom is bound by 8.2 — xna — 1.9 =~
1.16 eV.
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7.2.3.2  Conductivity and heat capacity

The free and mobile electrons of a metal are responsible for the high electric
conductivity. In a constant electric field E, they are accelerated but collide after
an average time t with phonons (thermally oscillating atoms). The resulting
current density J is equal to the charge density ne, where n is the number of free
electrons per cm’, multiplied by their drift velocity v. An electron experiences
an acceleration e E /m. over an average time t, so that v = teE/m.. Because
Ohm’s law (1.112) asserts J = o E, the conductivity o is

At very low temperatures, collisions of the electrons with lattice
imperfections are more important than collisions with phonons.

Because of free electrons, the heat capacity has a peculiar behavior at very
low temperatures. Below the Debye temperature, which is typically several
hundred K and thus not low, the specific heat C due to the lattice falls rapidly,
like 77 (see (8.39)). The heat capacity of the electron gas, however, declines less
swiftly, it is proportional to T and, therefore, dominates at very low temperatures.
Crudely speaking, when there are n free electrons per cm?, heating of the metal
from zero Kelvin to temperature 7 thermally excites those conduction electrons
which lie T degrees below the Fermi temperature T, altogether a fraction 7/ Tk.
Their total mean energy is then U ~ nkT and, therefore,

_ oUu nkT

C =
oT Tk

x T.
For an exact relation, one has to use the Fermi distribution (5.37).

7.2.3.3 Energy bands and Bloch functions

It is a general property of crystals that the electronic states are clustered in bands,
with energy gaps between them. The basics of their formation was explained in
section 6.4.3 on one-dimensional periodic potentials. To derive the energy states
and eigenfunctions of an electron in the three-dimensional potential U (x), we first
note that as U (x) comes from the lattice ions and is strictly periodic, it may, from
(7.2), be written as

U(x) = Z Ug ¢'C* (7.9)
G

where the G are the reciprocal lattice vectors of (7.3). The general solution for
the wavefunction 1/ (x) is sought in a Fourier expansion,

Y(x) =) Cre*™ (7.10)
k
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where the wavenumber K fulfils the periodic boundary conditions and is connected
to the momentum p by
p = hk.

The coefficients Cx are found by inserting (7.10) into the Schrodinger
equation:
)

Ay (x) = [ P

2me

+ 0<x>] Y(x) = EY(x) (7.11)

and solving the resulting set of algebraic equations. In (7.11), the interaction
among electrons is neglected. After some algebra, one is led to Bloch’s theorem,
namely that the eigenfunction ¥ (x) for a given wavenumber k and energy Ek
must have the form

Yk(x) = uk(x) e™*

where ux (x) is a function periodic with the crystal lattice. So if T is a translation
vector as given in (7.1), then

ug(x) = ug(x + T).

The wavefunction 1 (x) itself does not generally display the periodicity.
It is straight forward to prove Bloch’s theorem in a restricted form, for a one-
dimensional ring of N atoms, where after N steps, each of the size of the grid
constant, one is back to the starting position.

It is instructive to consider the formation of bands from the point of view of
the tightly bound inner electrons of an atom. When we imagine compounding a
solid by bringing N free atoms close together, the inner electrons are afterwards
still tightly bound to their atomic nuclei, only their orbits have become disturbed.
Because of the disturbance, a particular energy state E; of an isolated atom will
be split into a band of N substates due to the interaction with the other N — 1
atoms. The shorter the internuclear distance, the stronger the overlap of the
wavefunctions and the broader the band; the energetically deeper the electrons,
the narrower the band.

There will be a 1s, 2s, 2p, ... band. One can determine the energy states of a
tightly bound electron by assuming that its wavefunction is a linear superposition
of the atomic eigenfunctions. In this way, one finds the width of the band and the
average energy in a band. The latter is lower than the corresponding energy in a
free atom, which implies binding of the crystal.

7.2.4 van der Waals forces and hydrogen bridges

The van der Waals interaction is much weaker than the bonding types discussed
earlier and is typically only 0.1 eV per atom. It arises between neutral atoms or
molecules and is due to their dipole moments. The dipoles have a potential U that
rapidly falls with distance (U o r~9, see section 9.1).
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If the molecules do not have a permanent dipole moment, like COg,
the momentary quantum mechanical fluctuations of the electron cloud in the
neighboring atoms induces one; its strength depends on the polarizability of the
molecules. This induced dipole moment is usually more important even for polar
molecules. Its attraction holds CO; ice together and binds the sheets in graphite.

Hydrogen can form bridges between the strongly electron-negative atoms N,
O or F; the binding energy is again of order ~0.1 eV per atom. For example,
when a hydrogen atom is covalently bound to oxygen, it carries a positive
charge because its electron has been mostly transferred to the oxygen atom. The
remaining proton can thus attract another negatively charged O atom.

The double helix of the DNA is bound this way but so also is water ice.
In solid H>O, every oxygen atom is symmetrically surrounded by four others
with hydrogen bonds between them. Because of these bonds, the melting and
evaporation point of water is unusually high compared, for instance, to H;S,
which otherwise should be similar as sulphur stands in the same Group VI of
the Periodic Table right below oxygen. This thermodynamic peculiarity of water
is crucial for the existence of life.

7.3 Reddening by interstellar grains

Our knowledge of interstellar dust comes from the following measurements:

e Interstellar extinction. The interstellar extinction or reddening curve
specifies how dust weakens the light from background stars as a function
of wavelength.

e Dust emission. We receive this from all kinds of objects: protostars, old stars
with shells, interstellar clouds and whole galaxies.

e Infrared resonances. These are features observed in absorption and emission
which allow us to identify the chemical components of the dust material.

e  Polarization. It refers to light from stars behind dust clouds but also to
scattered radiation and dust emission.

e  Scattered starlight. Examples are reflection nebulae, the diffuse galactic light
or the zodiacal light of the solar system.

The items in italics are our five observational pillars. In this section, we are
concerned with interstellar extinction and the clues it provides to dust properties,
the other pillars are discussed elsewhere. We first describe the principles of stellar
photometry because it is the basis for the reddening curve.

7.3.1 Stellar photometry

The interstellar extinction curve is obtained from stellar photometry. The
wavelength resolution in such measurements is usually poor, typically L/AL >~
10 but the broadness of the observational bands enhances the sensitivity. The
standard photometric system is due to H L Johnson and W W Morgan and rooted
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Table 7.2. The standard photometric system. The center wavelengths Ac and the
conversion factors w; between magnitudes and Jansky after (7.14) are averages gleaned
from the literature. The last column gives the conversion factors for a blackbody of 9500 K,

see text.
Historical
Band meaning Ac (um)  wy w;, (bb)
U Ultraviolet  0.365 1810 2486
B Blue 0.44 4260 2927
v Visual 0.55 3640 3084
R Red 0.70 3100 2855
I Infrared 0.90 2500 2364
J 1.25 1635 1635
H 1.65 1090 1116
K 2.2 665 715
L 3.7 277 294
M 4.8 164 184
N 10 37 46
Q 20 10 12

in optical astronomy. It was later expanded into the infrared; there the choice
of wavelengths was dictated by the transmission of the atmosphere of the Earth.
The observational bands are designated by letters: U, B, V,R,1,.... Table 7.2
lists their approximate center wavelengths A, and the conversion factors, w,, for
translating magnitudes into Jansky and back (see (7.14)). The precise effective
observation wavelength follows only after convolving the spectrum of the source
with the transmission of the instrument and the atmosphere.

In photometry, especially at shorter wavelengths, it is customary to express
the brightness of an object in apparent magnitudes. These are logarithmic
quantities and they were appropriate units in the days when the human eye was
the only detector because according to the psycho-physical rule of W Weber and
G T Fechner: the subjective impression of the eye changes proportionally to the
logarithm of the physical flux. But to the pride of many astronomers, magnitudes
are still in use today. As they are laden with five millenia of history, only he who
has thoroughly studied the 5000 year period can fully appreciate their scientific
depth. An exhaustive explanation of magnitudes is, therefore, beyond the scope
of this book.

The brightest star of all, Sirius, has a visual apparent magnitude my =
—1.58 mag. Capella, Rigel and Vega are around zeroth and Spica (« Virginis) is
only of first magnitude. Generally, a step of one up in magnitude means a factor
of 2.5 down in observed flux. Whereas the apparent magnitude m, at wavelength
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A depends on the stellar distance D, the absolute magnitude M, , defined by

D
my — M, =510g]0(—> -5 (7.12)
pc

does not and thus measures the intrinsic brightness of a star. At a distance of
10 pc, the apparent and absolute magnitude are, by definition, equal. When there
is intervening dust, one adds, to the right-hand side of equation (7.12) a term A
to account for the weakening of starlight through interstellar extinction:

D
m;L—M;L=510g10 ([)_C>_5+A)“ (7.13)

A, is related to the optical depth 7, through
A)L = 1.0861’)“

The strange conversion factor of 1.086 between the two quantities arises
from their definitions: stellar magnitudes are scaled by a factor of 2.5, the optical
depth by e >~ 2.718. The term m — M in (7.12) is called the distance modulus.
So ingenious astronomers have contrived a means to express length in stellar
magnitudes.

To convert a flux Fj in Jy into an apparent magnitude m; or vice versa, we
use the relation

mj, = 2.5log;, (%) . (7.14)

F) is expressed in Jy, w,, is given in table 7.2. The formula is simple, the
difficulty lies in the calibration factors w,. The values in the literature scatter
by about 10% and, furthermore, they do not refer to identical center wavelengths
because of the use of different filters.

The magnitude difference between two bands is called the color. 1t is
equivalent to the flux ratio at the corresponding wavelengths and thus determines
the gradient in the spectral energy distribution. By definition, the colors of main
sequence AQ stars are zero. The most famous AOV star is o Lyr (= Vega,
D = 8.1 pc, my = 0.03 mag, L = 54 Lg). Such stars have an effective
temperature of about 9500 K and they can be approximated in the infrared by
a blackbody. Indeed, if we calibrate the emission of a blackbody at 9500 K in the
J band and put all colors to zero, we find the conversion factors w; (bb) listed in
table 7.2. In the infrared, they are not very different from w; (adjacent column);
however, the discrepancies are large at U, B and V because of the many absorption
lines in the stellar spectrum that depress the emission relative to a blackbody.

7.3.2 The interstellar extinction curve

7.3.2.1 The standard color excess Eg_vy

The interstellar extinction curve is obtained from photometry at various
wavelengths A on two stars of identical spectral type and luminosity class, one
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of which is reddened (star No. 1), whereas the other is not (star No. 2). In the
case of pure extinction, without dust emission along the line of sight, one receives
from the stars the flux

LG
CORRRN!

)=

i=1,2.

LX) and t;(A) are the spectral luminosity and optical thickness. Because the
apparent photometric magnitude m is a logarithmic derivative of F; (1),

mi(A) =InL(A) — t;(A) +21n D; + constant

and because 1o = 0, the difference in magnitude Am(X) between the two stars
becomes

D;
Am(A) =—1(A) —2In{ — ).
D;
The difference in Am at two wavelengths, A and A/, gives the color excess
E ) =Am) — Am() = —[t1(A) — 11 (A)]

which no longer contains the distance D. At A = 0.44 um and A’ = 0.55 pum, the
center wavelengths of the B and V band, the color excess is denoted by

Eg_v=E(B,V)

and called the standard color excess. The band symbol is also used for the
apparent magnitude, for example, V = my or B = mp. The intrinsic color is
denoted (B — V)g in contrast to the observed color B — V, which includes the
effect of the selective weakening by interstellar dust. With this notation, we can
write

Eg_v=(B-V)—(B—-V) (7.15)

and likewise for any other pair of wavelengths.

7.3.2.2 How the extinction curve is defined

Fixing the wavelength A’ in the color excess E (A, A') at 0.55 um and normalizing
E(\, V) by Ep_v, one arrives at the extinction curve in its traditional form,
EA,V) _ A, — Av Ty

Ext(A) = = = .
Ep_vy Ap—Ay 1B —TY

(7.16)

A, is the extinction in magnitudes at wavelength A; it is the result of
absorption plus scattering but observationally one cannot separate the two. The
normalization of the extinction curve by Ep_vy is important because it allows
a comparison of the wavelength dependence of extinction towards stars which
suffer different amounts of reddening. Obviously,

Ext(B)=1  Ext(V)=0.
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The quantity
Ay

Ry =
Eg_v

= — Ext() = 00) (7.17)

is called the ratio of total over selective extinction or, simply, Ry. The visual
extinction in magnitudes Ay, which also appears in the distance modulus of
(7.13), is the most common quantity to characterize the opaqueness of a cloud. It
is not a directly observable quantity. To obtain Ay from photometry, one measures
Ep_v, assumes an Ry value and then uses (7.17).

One can also express the reddening by dust through the mass extinction
coefficient K normalized at the V band. Because K, /Ky = 1, /Ty, one gets

T Ext(})

2% Ry

+1 (7.18)

7, /Tty and Ext(A) are mathematically equivalent. Still other forms, containing the
same information, are sometimes more suitable for displaying certain trends, for
example, A, /Ay (the J band is at 1.25 um) or (A, — Ay)/(Av — Ay).

7.3.2.3 Remarks on the reddening curve

The interstellar extinction curve (figure 7.8) is observationally determined from
about 0.1 to 10 um. At longer wavelengths, the optical depth is small and the
extinction of background light weak; moreover, the dust begins to emit itself. The
reddening curve displays the following salient features:

e In the diffuse interstellar medium, Ext(}) of equation (7.16) is, at optical
and infrared wavelengths, fairly uniform over all directions in the sky and
Ry equals 3.1; deviations occur only in the UV.

e Towards clouds, however, the shape of the curve Ext(X) varies from one
source to another, even in the infrared. The reduction in UV extinction for
large Ry suggests that the small grains have disappeared. Photometric data
exist only for cloud edges, their cores are too obscured.

e The extinction curve refers to broad-band observations but nevertheless it
is remarkably smooth. If one plots instead of Ext(A) the ratio 7, /tv then,
to first order, all extinction curves look alike for A > 0.55 um; at shorter
wavelengths, they can differ substantially. The curves are largely (but not
totally) fixed over the entire wavelength range by the one parameter Ry of
equation (7.17). The observed variations of Ry range from 2.1 to well over
5, the larger values being found towards molecular, the smaller ones toward
high latitude clouds.

e The only resonance in the extinction curve is the broad bump at 4.6 um™
or 2175 A which is always well fit by a Drude profile. The central position of
the bump stays constant from one star to another to better than 1% implying
that the underlying particles are in the Rayleigh limit (sizes < 100 A);
however, its width varies (AA™! ~ 1 4+0.2 um_l). There is also scatter

1
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in the strength of the bump. It is correlated with Ry in the sense that the
resonance is weak in clouds where Ry is large. A plausible explanation is
coagulation of dust particles in clouds as a result of which the small grains
disappear.

e From the infrared to the hump at 2175 A, the extinction curve rises
continuously. Over this range, stellar light is reddened because extinction
decreases with wavelength. Beyond 2175 A, the ratio ) /ty first declines
and here the light is made bluer(!). In the far UV (A~! > 6 um™!), the curve
rises again.

e If one had good albedo measurements (which one does not have), one could
subtract scattering from extinction to obtain a pure absorption curve. This
would provide a touchstone for any dust model.

e The two extinction curves in figure 7.8 suggest that the grains are modified
when they change their environment. This should happen several times
during their lifetime as they pass from dense into diffuse medium and back.
The modifications may be due to energetic photons, condensation of gas
atoms or collisions among grains. The latter would imply fluffy particles
built up of smaller subunits (section 2.6).

At higher spectral resolution, one finds superposed on the extinction curve
diffuse interstellar bands (DIBs but they are not shown in figure 7.8). There are
altogether more than a hundred, mainly between 0.4 and 0.9 pum, of variable
strength, shape and width, the broadest being about 2 A wide. Although
discovered 80 years ago, the identification of the DIBs is still unclear.

7.3.3 Two-color diagrams

In two-colour-diagrams (TCDs), one plots one color against another. TCDs are
a simple and efficient tool with which to separate distinct or identify similar
astrophysical objects. As an example of a TCD, we show in figure 7.9 the UBV
diagram of unreddened main sequence stars. All luminous stars of type BO or
earlier cluster in a tight strip with B—V between —0.30 and —0.32 mag. The
position in the UBV diagram of blackbodies with temperatures from 3500 to
40000 K is always well above the main sequence. So compared to a blackbody
of the same color BV, a stellar photosphere is much weaker at U. The reason
for this behavior is that photoionization of the n = 2 level in hydrogen falls into
the U-band. As this is the dominant process for the photospheric opacity at this
wavelength, it greatly supresses the stellar flux. The characteristic wiggle in the
main sequence line in figure 7.9 reflects the variation of this supression (called
the Balmer decrement) with effective temperature.

Interstellar reddening with the standard extinction law (Ry = 3.1) shifts any
star in the UBV diagram from the main sequence in the direction parallel to the
arrow of figure 7.9. The length of the shift is proportional to the foreground Ay
and in figure 7.9, it corresponds to Ay = 5 mag. In the case of another extinction
law, say, with Ry = 5, the slope and length of the arrow would be different
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Figure 7.8. The observed interstellar extinction curve in the form 7, /ty and as Ext(X)

according to equation (7.16). The ratio of total over selective extinction, Ry = 3.1, refers
to the diffuse medium, Ry = 5 to the edges of molecular clouds. Whereas 1) /Ty is
normalized at V, Ext(}) is zero at V and equals one at B.

(for the same Ay). If we observe an object somewhere in the right-hand part
of figure 7.9 and know, for some reason, that it is a main sequence star, we can
determine the amount of extinction by moving it up, parallel to the arrow, until it
reaches the main sequence. This dereddening is unique as long as the star is of
type B5 or earlier so that the reddening path does not intersect the wiggle of the
main sequence curve.

7.3.4 Spectral indices

Akin to a color is the spectral index, commonly defined in the infrared as

_ dlog(AF))

7.19
dlogh (7.19)
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Figure 7.9. UBV diagram for unreddened main sequence stars (thick line) and for
blackbodies (thin line). The arrow shows the direction and distance by which a star is
displaced from the main sequence under the standard reddening law with Ry = 3.1
(figure 7.8) and Ay = 5 mag of foreground extinction. The main sequence locations
of a few spectral types are indicated. The lower tip of the blackbody line refers to a
temperature of 3500 K, the upper to 40 000 K. The data for the main sequence are taken
from the literature, the blackbody and reddening curve have been calculated. The figure is,
therefore, quite accurate and may be used to find the position of a main sequence star that
suffers a certain amount of extinction Ay ; see text.

Hence, a spectral index depends on wavelength. In practice, « is calculated
not as a derivative but as the slope of A F, between two wavelengths A1 and Aj:

o _log(AaFy,) —log(h1 Fy,y)
log Ay — log Aq '

(7.20)

For a blackbody obscured by a foreground extinction 7(A), one has, in the
limit of high temperatures,

o= 3 L0 Z @) (7.21)
In(A2/X1)
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Figure 7.10. The spectral index « in the wavelength interval from 2.2 to 20 pm after (7.20)
of a source at temperature 7" that is observed through a foreground of visual extinction
Avy. In the right box, the object is a blackbody or, to first approximation, a star. In
the left box it is an optically thin dust cloud with the standard mixture of silicate and
carbon grains (see section 12.4). The curves show how the spectral index is modified as
the foreground extinction increases from O to 20 mag and 40 mag. Because « is sensitive
to both 7 and Ay, it is used in the classification of protostars. Without extinction, «
of a blackbody approaches —3 at high temperatures. The weak dotted lines are drawn to
alleviate comparison between the two frames. Notice the different temperature ranges right
and left.

An important example is the spectral index between 2.2 and 20 um which
serves as a classifier for protostellar objects. In this case, for standrad dust (see
figure 7.20 or 12.10)

o — =3+ Ay -0.036 for T — oo.

Of course, other wavelength intervals fulfil the same purpose; for instance,
one also uses the index between 2.2 and 5 um. Figures 7.10 and 7.11 demonstrate
how the indices change as a function of source temperature.

7.3.5 The mass absorption coefficient

The reddening curve yields only a normalized extinction coefficient, for instance,
K, /Kv. To obtain the absolute value of the cross section per gram of interstellar
matter, K, one has to know Ky. For this purpose, one measures towards a star
the standard color excess Eg—_vy and the total hydrogen column density Ny to
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Figure 7.11. As figure 7.10 but for the spectral index « between 2.2 and 5 pm.

which both atomic and molecular hydrogen contribute:
Nyg = N(HI) + 2N (Hy).

The observations are performed in the far UV from a satellite and consist of
absorption measurements towards early-type stars in the Ly« line of HI and the
Werner and Lyman bands of H,. For technical reasons, one chooses stars that are
only slightly reddened and located in the diffuse interstellar medium. The average
value over a large sample of stars is

Ny =~ 5.8 x 10*'Eg_y cm™> (7.22)
or with (7.17) and Ry = 3.1,
Ny =~ 1.9 x 10*'Ay cm™2. (7.23)

As Ay = 1.086 x Ny Kv, one finds Ky =~ 4.9 x 10722 ¢cm? per H-atom and
a mass extinction coefficient

Kv =~ 200 cm? per g of interstellar matter. (7.24)

This value is easy to remember. In combination with the interstellar
reddening curve, we know K in the range from about 0.1 to 5 um. Equation
(7.23) also allows us to estimate the dust-to-gas mass ratio Ry if one makes
reasonable assumptions about the composition of the grains, their shape and sizes.
The amount of dust relative to the gas follows then from the condition (7.22) that
a hydrogen column density of 5.8 x 102! cm~2 produces a standard color excess
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Ep_v of 1 mag. Any dust model compatible with the interstellar reddening curve
gives, quite independently of its particular choice,

_ M gyst

Ry
Mgas

~05...1%. (7.25)

The lower limit may be appropriate for the diffuse interstellar medium, the
higher for dense clouds where grains are ice-coated. Because at least half a
percent of interstellar matter is in the solid phase, the dust can only consist of
the most abundant elements, like C, N, O, Fe, Si, or Mg.

According to equations (7.23) and (7.25), the total dust volume in a column
of 1 cm? cross section with Ay = 1 mag is Vgust ~ 1.2 x 107> cm™3, assuming
a bulk density of 2.5 g cm™>. Considering the uncertainties, this is in agreement
with the dust-to-gas ratio derived from the Kramers—Kronig relation in (2.95) but
the method employed here is probably superior.

How dusty is the interstellar medium? Very dusty! If the atmosphere of
the Earth, which has a density p ~ 1072 g cm™>, had the same relative dust
content, the optical depth T = £p Kv would become unity over a distance of only
£ = 10 cm and we could not see our feet!

7.4 Carbonaceous grains and silicate grains

7.4.1 Origin of the two major dust constituents

Interstellar grains, at least their seeds, cannot be made in the interstellar medium,
they can only be modified there or destroyed. Observational evidence points
towards the wind of red giants on the asymptotic branch of the Hertzsprung—
Russell diagram as the place of their origin (section 9.4). At first, tiny refractory
nuclei are created in the inner part of the circumstellar envelope which then grow
through condensation as they traverse the cooler outer parts (section 9.5). The
type of dust that is produced depends on the abundance ratio of carbon to oxygen:

e If there is less carbon than oxygen, [C]/[O] < 1, as in M-type and in OH/IR

stars, no carbon is available for the solid phase because all C atoms are
locked up in CO which is a diatomic molecule with an exceptionally strong
bond.
In such an environment, mainly silicates form, besides minor solid
constituents like MgS, MgO and FeO. The observational characteristic of
silicates is the presence of an Si—O stretching and an O-Si—-O bending
mode at 9.8 um and 18 um, respectively. Silicon has a cosmic abundance
[Si]/[H] = 3 x 107, it is heavily depleted in the gas phase (depletion factor
Jaep1(Si) ~ 30), so almost all of it resides in grains.

e If[C]/[O] > 1, as in C-type stars (these are carbon-rich objects like C, R, N
stars), carbonaceous grains form.
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Carbon has a cosmic abundance [C]/[H] = 4 x 10~%, or somewhat less, and
a depletion factor fyepi(C) ~ 3. Two out of three atoms are built into solids,
one is in the gas phase. There are several forms of carbonaceous grains:
mainly amorphous carbon, graphite and PAHs.

Carbon and silicates are the major constituents of interstellar dust. Other
types of grains, for whose existence there are either observational or theoretical
indications, include metal oxides (MgO, FeO, Fe3z0O4, Alp03), MgS and SiC.
The last substance, silicon carbide, is only seen in C-stars through its emission
signature at 11.3 um but it is not detected in the interstellar medium.

Generally, interstellar grains are beyond the reach of spacecraft, because of
their distance, so they cannot be brought to Earth and studied in the laboratory.
However, as the Sun moves relative to the local interstellar cloud (it is of low
density, ng ~ 0.3 cm™3), dust particles of this cloud sweep through the solar
system. Some of them were detected by spacecraft at the distance of Jupiter and
identified as belonging to the local interstellar cloud by the direction and value
(~26 km s~ 1) of their velocity vector [Grii94]. In the process of detection they
were destroyed. Their masses, which could also be determined, correspond to
um-sized grains which we think are rather atypical for the interstellar medium.
Smaller grains are probably prevented from penetrating deep into the solar system
by radiation pressure and, if they are charged, by the interplanetary magnetic field.

In interplanetary dust particles and in primitive meteorites which have been
collected on Earth, one can identify inclusions which distinguish themselves by
their isotopic pattern from the solar system. Because the isotopic abundance ratios
are explainable in terms of nucleosynthesis in AGB stars or supernovae, these
subparticles are hypothesized to be of interstellar origin. If so, they have probably
undergone considerable reprocessing in the solar nebula.

7.4.2 The bonding in carbon

Carbon, the sixth element of the periodic system, has four electrons in its
second (n = 2) uncompleted shell: two s-electrons denoted as 2s> with angular
momentum quantum number/ = 0 and two unpaired p-electrons (2p?) with [ = 1,
in units of 7.

The ground state of carbon is designated 3Py. It is a triplet (prefix 3) with
total spin § = 1, total orbital angular momentum L = 1 (letter P) and total
(including spin) angular momentum J = O (suffix 0). In the ground state, there
are only two unpaired p-electrons. However, one 2s-electron may be promoted
to a 2p orbital and then all four electrons in the second shell become unpaired;
this is the chemically relevant case where carbon has four covalent bonds. The
promotion requires some energy (4.2 eV) but it will be more than returned in the
formation of a molecule.

The bonding of carbon to other atoms is of the covalent type and there are
two kinds:
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In a o-bond, the electron distribution has rotational symmetry about the
internuclear axis.

In a r-bond, the wavefunction of the two electrons has a lobe on each side
of the internuclear axis.

The s and p wavefunctions can combine linearly resulting in hybrid orbitals.

The combination of one s and three p electrons is denoted as an sp> hybrid,
likewise there are sp> and sp hybrids. Here are examples:

In methane, CHy, the coupling of carbon is completely symmetric to all
four H atoms and the difference between s and p valence electrons has
disappeared. In the identical hybridized sp’ orbitals, the C-H binding is
through o -bonds. They point from the C atom at the center of a tetrahedron
towards the H atoms at its corners. The angle « between the internuclear axes
follows from elementary geometry, one gets cosa = — %, so o = 109.5°.
The situation is similar in ethane, H3C—CHj3, although the symmetry is no
longer perfect. Each of the two C atoms has again four sp> hybrid orbitals
connecting to the other carbon atom and to the neighboring three hydrogen
atoms. Because of the o-bond between the two Cs, the CH3 groups can
rotate relative to each other (see figure 7.12).

An sp? hybrid is present in ethylene, HC—CH,, which is a planar molecule,
where the angle from C over C to H equals 120°. There are o -bonds between
C-H and C-C. But the two remaining 2p orbitals in the carbon atoms,
besides the sp? hybrids, overlap to an additional -bond, so altogether we
have a C=C double bond (one o and one 7), which makes the CH, groups
stiff with respect to rotation (see figure 7.13).

In the linear molecule acetylene, HC—CH, the C atoms are sp hybridized
yielding C-C and C-H o-bonds. There are two more m-bonds, whose
orbitals are perpendicular to each other and to the internuclear axis; in total,
the carbon atoms are held together by a triple bond, C=C. Acetylene is
believed to be the basic molecule for the nucleation of carbonaceous grains
in the wind of giant stars (see figure 7.14).

Benzene, C¢Hg, is an especially simple and symmetric hydrocarbon (a
so called PAH, see later). In this planar ring (aromatic) molecule, each
carbon atom has three sp? hybrid orbitals connecting through o-bonds to
the adjacent two C atoms and one H atom. There is still one unhybridized
2p electron per C atom left. The carbon atoms are sufficiently close together
so that neighboring 2p orbitals can pair to form an additional r-bond; the
p-orbitals are perpendicular to the plane. Because of the complete symmetry
of the ring, the unhybridized electrons in the 2p-orbitals are not localized but
equally shared (resonant) in the ring. So, on average, two adjacent C atoms
are coupled by a o- and half a w-bond. The binding is therefore intermediate
in strength between a single and a double bond. The more bonds between
two C atoms there are, the stronger they are bound and the shorter their
internuclear distance (see figure 7.15).



Carbonaceous grains and silicate grains 227

ethane

(S(Csp3 ,Csp3 ) 3
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Figure 7.12. Four types of carbon binding are exemplified in figures 7.13-7.15. Here
a single bond in ethane (CyHg); big circles, C atoms; small ones, H atoms. o-bonds are
drawn with full lines, r-bonds with broken lines. In the description of the bond, the type (o
or ) is followed by the atomic symbol and the participating orbitals, for instance, G(Csp2,
Hls).
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Figure 7.13. Double bond in ethylene (CoHy).
acetylene

m (C2p,C2p)

6 (Csp,Csp)

o (Csp,Hl1s)

Figure 7.14. Triple bond in acetylene (C,Hj).

7.4.3 Carbon compounds
7.4.3.1 Diamond

In diamond, a crystalline form of carbon, the bonding is similar to methane. Each
C atom is linked tetrahedrally to its four nearest neighbors through sp® hybrid
orbitals in o-bonds. The distance between the atoms is 1.54 A, the angle between
the internuclear axes again 109.5°. As a C atom has only four nearest (and 12
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benzene

c (Cspz, Hls)

cs(Cspz,Csp2 )

Figure 7.15. Resonance structure in benzene (CgHg) with three 7-bonds shared among
six C atoms.

graphite sheets

Figure 7.16. Graphite is formed by sheets of carbon atoms, each with an hexagonal
honeycomb structure. The side length of the hexagons equals 1.42A, the distance between
neighboring sheets is 3.35 A. In analogy to close packed spheres (figure 7.17), besides the
sheet sequence ABABAB. .. also ABCABC... is possible and combinations thereof.

3.35A

next nearest) neighbors, the available space is filled to only 34% assuming that
the atoms are hard spheres. This is to be compared with a close-packed structure,
either face-centered cubic or hexagonal close-packed (see figure 7.17), where
in both cases each atom has 12 nearest neighbors and the volume filling factor
amounts to 74%.
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next higher layer B

Figure 7.17. A ground layer A of equal balls (dashed), each touching its six nearest
neighbors, is covered by an identical but horizontally shifted layer B (full). There are
two ways to put a third layer on top of B; one only needs to specify the position of one
ball in the new layer, all other locations are then fixed. (a) When a ball is centered at
the lower cross, directly over a sphere in layer A, one obtains by repetition the sequence
ABABAB. ... This gives an hexagonal close packed structure (hcp). (b) When a ball is
over the upper cross, one gets by repetition a sequence ABCABC. .. and a face-centered
cubic lattice.

The bonding in diamond is strong (7.3 eV per atom) and due to its overall
bonding isotropy, diamond is extremely hard with hardness number 10; diamond
is used for cutting and drilling. The stiffness of the bonds also explains
the exceptionally high thermal conductivity (several times greater than that of
copper). As there are no free electrons, diamond is electrically insulating.

On Earth, diamonds are formed under high pressure and temperature at a
depth of about 200 km. They are mined in Kimberlite pipes which are vents
associated with volcanoes where the deep material is transported upwards so that
it can be reached by man. The upward transport during the volcano eruption
occurs sufficiently rapid without a phase transition. In fact, diamond is not in
equilibrium at the conditions at the surface of the Earth, it is metastable in our
environment but well separated by a large activation barrier from graphite, which
is the energetically lower phase. So diamonds are long lasting presents that will
outlive the affluent donors as well as the pretty recipients of the gems. Big raw
diamonds are cleft parallel to octahedral crystal faces. In the subsequent cutting,
however, into brilliants, which is the standard gem with a circular girdle and 33
facets above and 25 facets below the girdle, the angles between the facets are not
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related to the crystalline structure but to the refractive index n. The angles are
chosen to maximize the fire (brilliance) of the stone.

Diamond grains are also found in meteorites but they are extremely small
(~30 A), so that not a negligible fraction of C atoms is at the surface. They
contain many H atoms and their density p is considerably lower than in perfect
crystals for which p = 3.51 g cm™3. The origin of the meteoritic diamonds is
unclear but probably interstellar (carbon stars, supernovae, interstellar shocks?).

7.4.3.2 Graphite

Carbon atoms combine also to planar structures consisting of many Cg
hexagonals. The distance between adjacent C atoms is 1.42 A, the angle between
them 120°. The bonding is similar to that in benzene as again the -bonds are not
localized in the rings and the electrons of the unhybridized 2p orbitals are free to
move in the plane. This mobility endows graphite with an electric conductivity
within the sheets. Graphite consists of such C¢ sheets put on top of each another.
The stacking is arranged in such a way that above the center of an hexagon in the
lower sheet there is always a C atom in the upper one. The distance from one
sheet to the next is 3.35 A (figure 7.16). The sheets are only weakly held together
by van der Waals forces. Therefore, graphite cleaves well along these planes and
owing to this property, its name is derived from the Greek word for writing: when
gently pressing a pen over a piece of paper, tiny chunks peel off to form sentences
of rubbish or wisdom, depending on who is pressing.

Graphite has a density of 2.23 g cm™> and a very high sublimation
temperature (7Tcy > 2000 K at interstellar pressures). We reckon that in interstellar
space about 10% of the carbon which is in solid form is graphitic.

7.4.3.3 PAHs

A polycyclic aromatic hydrocarbon, briefly PAH, is a planar compound made
up of not too large a number of aromatic (Ce) rings (chapter 12). At the edge,
hydrogen atoms are attached but only sporadically; the coverage need not be
complete, as in benzene. Possibly one finds at the periphery also other species,
besides hydrogen, like OH or more complex radicals. PAHs are unambiguously
identified in the interstellar medium and account for a few percent by mass of the
interstellar dust.

A fascinating kind of PAHs are fullerenes. The most famous, Cgp, has the
shape of a football. It is made of 12 pentagons (Cs), which produce the curvature,
and 20 hexagons (Cg). The diameter of the spheres is ~7.1 A. Fullerines do not
contain hydrogen. Their existence in interstellar space is hypothetical.

7.4.3.4 Amorphous carbon

Diamond and graphite are very regular (crystalline). If there are many defects and
if regularity extends only over a few atoms, the material is said to be amorphous.
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Figure 7.18. Left: The building blocks of silicates are SiOy4 tetrahedra. Middle: In
pyroxenes, which have a chain structure, two adjacent tetrahedra share one oxygen atom;
an example is bronzite, (Mg,Fe)SiO3. The triangles represent the SiO4 units. In interstellar
grains, the chains are probably not very regular and linear, as in crystals but may more
resemble worms because of widespread disorder. Right: Other chain types are realized in
silicates, too; here a double chain where more than one O atom per tetrahedron is shared
(amphiboles).

Most interstellar carbon grains are probably amorphous (aC). These amorphous
particles should also contain hydrogen because it is present in the environment
where they are created (wind of mass loss giants); pure carbon grains could
only come from the hydrogen deficient atmospheres of WC stars or R CrB stars.
We may tentatively think of such Aydrogenated amorphous carbon, abbreviated
HAC, as a potpourri of carbon compounds with all types of the bonds discussed
earlier, or as a disordered agglomerate of PAHs, some of them stacked, with many
unclosed rings and an endless variety of carbon—hydrogen connections.

7.4.3.5 The 2175 A bump in the interstellar extinction curve

The bump at 4.6 um~! in the interstellar extinction curve (figure 7.8) is usually
attributed to small graphite-like grains (section 4.4.0.1). As we have seen in
section 7.2.3, the o- and m-electrons in such grains form the o- and m-band,
respectively. Since the m-states are weakly bound, the 7-band lies energetically
above the o-band. When the electric vector of the radiation field is parallel to
the plane of the carbon rings, the m-electrons can be excited into the 7 *-band,
and this may cause the 4.6 um~! hump. The splitting into a 77- and 7*-band is
analogous to the splitting into a binding and anti-binding state as illustrated in
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figure 7.7 for the H;r molecule, only in a solid the levels are broadened because
of the interaction with many lattice atoms. Note that whereas the 7 -band is filled,
the 7*-band is empty and responsible for electric conduction. The assignment of
the 4.6 um_l hump to 7 — 7* transitions is, however, controversial because of
the overall messy character of the binding in carbon with its multitude of hard-to-
identify bonds.

7.4.4 Silicates
7.4.4.1 Silicon bonding and the origin of astronomical silicates

Silicon stands right below carbon in Group IV of the Periodic Table. Its inner
two shells are filled, in the third (n = 3) it has, like carbon, two s and two p
electrons (3s®>3p? configuration). The ground state is also *Py. There are two
basic reasons why silicon is chemically different from carbon. First, it takes more
energy to promote an s electron in order that all four electrons become available
for covalent bonding. Second, silicon atoms are bigger, so their p orbitals cannot
come together closely enough to overlap and form a w-bond. Therefore, there
are no silicon ring molecules and double bonding (Si=Si) is rare (it involves d-
electrons).

The dust particles formed in oxygen-rich atmospheres are predominantly
silicates. Silicates consist of negatively charged SiO4 groups in the form of
tetrahedra with a side length of 2.62 A. They are the building blocks which form
an ionic grid together with positively charged Mg and Fe cations. We may idealize
an SiOy4 tetrahedron as an Si*t ion symmetrically surrounded by four O~ ions;
however, there is also substantial covalent bonding in the tetrahedron.

7.4.4.2 Coordination number

Itis intuitively clear that the relative size of adjacent atoms in a crystal is important
for the crystal structure. Let us define

r = ratio of the radii of neighboring atoms.

In silicates, the radius of the central Si** ion is 0.41 A and much smaller
than the radius of the 0%~ ion which is 1.40 A, therefore, r = 0.41/1.4 ~ 0.3.
This implies, first, that oxygen fills basically all the volume and, second, that the
coordination number N of a Si*t ion, which is the number of its nearest equal
neighbors, is four.

In other crystals, r is different. The coordination number and the
coordination polyhedron for the limiting values of », which assumes that the ions
are hard spheres touching each other, are summarized in table 7.3. For crystals
with 0.23 < r < 0.41, the coordination number N equals 4 and the nearest
neighbors form a tetrahedron; for 0.41 < r < 0.73, one has N = 6 and an
octahedron as coordination polyhedron. The case r = 1 is depicted in figure 7.17.
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Table 7.3. The limiting ratio of the radius of the central ion to that of its nearest neighbors
determines the coordination number and the kind of polyhedron around it.

Ratio r Coordination ~ Polyhedron

of ionic radii  number around central ion

0.15 3 flat triangle

0.23 4 tetrahedron

0.41 6 octahedron

0.73 8 cube

1 12 hexagonal or cubic close-packed

7.4.4.3  Silicate types

The (negative) [SiO4] anions and the (positive) metal cations can be regularly
arranged in various ways. The basic silicate types are determined by the following
criteria:

e No oxygen atom is common to two tetrahedrons. The latter are then
isolated islands. The prototype is olivine (Mg,Fe)>SiO4 which belongs to
the orthorhombic crystal family. By writing (Mg,Fe), one indicates that
magnesium is often replaced by iron. To visualize the three-dimensional
structure of this mineral, imagine that each Mg>* or Fe>* cation lies between
six O atoms of two independent tetrahedra. These six O atoms are at corners
of an octahedron around the cation. The ratio r of the ionic radius of the
metal cations to that of O~ is about 0.5. Because the O atoms are so big,
they form approximately an hexagonal close packed structure (figure 7.17).

e One, two, three or even all four oxygen atoms are shared with neigboring
tetrahedra. We mention bronzite, (Mg,Fe)SiOs3, also of the orthorhombic
crystal family (the form without Fe is called enstatite, MgSiO3). In this
mineral, there are chains of SiOg4 tetrahedra in which two O atoms are
common to neighboring units. The repeating unit has the formula [SiO3]%.

7.4.5 A standard set of optical constants

We have learnt in this section what dust is made of. We can now proceed to
present a reasonable set of optical constants m()) for the two major interstellar
solid substances, amorphous carbon and silicate. The wavelength ranges from
0.03 to 2000 um, which is a sufficiently broad interval for most applications.
We will call these data our standard set and it may be used as a benchmark for
comparison between dust models. For some applications, one also needs m (X) for
the two minor solid constituents: graphite and PAHs (section 12.4).

Optical constants vary with time; at least, in the literature they are. The
question whether the choice displayed in figure 7.19 is up-to-date or out-of-date
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Figure 7.19. Optical constant m = (n, k) and dielectric permeability ¢ = (e1, &p) for
silicate material after [Lao93] and amorphous carbon after [Zub96] (their type BE). The
data fulfil the Kramers—Kronig relations of section 2.5.

degrades to secondary importance in view of our general ignorance about grain
properties.

The absorption and extinction efficiencies resulting from figure 7.19 for a
typical grain size are shown in figure 7.20. For amorphous carbon, the extinction
is basically flat up to A ~ 0.7 um and then falls steadily at longer wavelengths;
in the far infrared, it declines proportionally to v!->. For silicate, the wavelength
dependence is more complicated. There is also a flat part in the ultraviolet up to
0.2 um, very low absorption in the near infrared, two resonances at 10 and 18 um
and a far IR decline proportional to v2. For both substances, the albedo is of order
0.5 in the UV and usually negligible beyond 3 pm.

7.5 Grain sizes and optical constants

7.5.1 The size distribution

Because the extinction curve covers a large frequency range, particles of different
sizes must be invoked to explain its various sections. The infrared part requires
large grains, the optical region medium-sized and the UV, the 2175 A bump and
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Figure 7.20. The absorption (dots) and extinction (full line) efficiency for spherical dust
grains of 0.1 um radius with the standard set of optical constants from figure 7.19. The
scattering efficiency can be found as the difference between extinction and absorption.
Amorphous carbon = aC, silicate = Si.

the far UV small particles. Qualitatively speaking, we expect that at wavelength
A, the radii a of the relevant grains are given by 2mwa/A ~ 1, smaller ones
are inefficient as absorbers or scatterers. To quantify this supposition, one can
ask how the grains have to be distributed in size in order that their wavelength-
dependent extinction follows the observed interstellar reddening curve. Assuming
that they are spheres and defining the size distribution n(a) such that

n(a) da = number of grains per cm? with radii in the interval [a, a + da]
one obtains a power law:
n(a) cca™? with g >~ 3.5 (7.26)

which is called the MRN size distribution [Mat77]. The result is widely accepted
and follows from binning the radii into intervals [a;, aj4+1] with a;+1 > a; and
optimizing the number of grains n; in each bin until agreement with the extinction
curve is achieved. For the dust composition, one assumes silicate and carbon
material with optical constants similar to those in figure 7.19; composite grains
made of these materials are also possible.
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To fix the size distribution, one must additionally specify its upper and lower
limit, a4 and a_, roughly,

a_~10A and ay~03um (7.27)

but the outcome is not very sensitive to either boundary. Not to a4, because
extinction becomes gray for large grains, and even less to a_ because small grains
are in the Rayleigh limit (a— < ) where only the total volume of the grains
counts, and not their individual sizes. It is, therefore, no wonder that the smallest
grains (@ < 100 A) were detected through their emission and not from studies of
the extinction curve.

For an MRN distribution, which has an exponent g = 3.5, the total mass or
dust volume V is supplied by the big particles and the geometrical surface F by
the small ones:

1% afa+ n(@a’da o« (Jay —Ja-) ~ Jar (7.28)

Fo</a+n(a)a2dao<< L >~ ! ) (7.29)
a Vay o Ja- Va-

If g were greater than four, the small grains would also contain most of the
volume.

7.5.2 Collisional fragmentation

One can theoretically obtain a size distribution n(a) o« a~3 by studying grains
undergoing destructive collisions [Hel70, Dor82]. Consider a time-dependent
mass distribution N (2, t) such that

N(m, t) dm = number of particles in the interval m . ..m + dm;
P(m, t) dt = probability that particle of mass m is collisionally
destroyed during time dt;
&(u, m) dp = number of fragments in the interval u to i 4+ du resulting

from the collision of a body of mass m.

If fragmentation is the only process that determines the mass distribution,
N(m, t) is governed by the formula

AN (m, 1) M
= —N(@m,t)P(m,1) +/ NQu, ) P(u, )§(u, m)du.  (7.30)

M is the maximum mass of the particles and the total mass of the particles is
conserved. To solve (7.30), one separates the variables:

N(m, 1) =n(m) - (1).
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The probability P (m, t) for destruction of a particle of mass m is obviously
proportional to an integral over relative velocity v of the colliding particles
multiplied by the collisional cross section. If we assume, as a first approximation,
that v iS constant, we may write

M
Pm,1) = Q/, NG O[ut +m3 ] dp=2(t) - y(m) (731)

with
M

y(m) = Q// n(w s +m3]  du.

Q is some proportionality factor. The lower boundary on the integral, m’, is the
minimum mass for destructive collisions, very small particles are not destroyed.
Equation (7.30) now becomes

) R
é =—ym)+ mf n(w) y () §(u, m)dpu. (7.32)

The equation is completely separated as there is a pure time dependence
on the left and pure mass dependence on the right. Both sides may be set to a
constant. The solution for ¢ (7) is

o
() = ———
14+1tC¢%
where ¢ is the value of ¢ atr = 0 and C is a positive constant. To solve
(7.31) with £/¢? = —C for n(m), we need to know the mass distribution of

the debris, £(u, m), after each shattering event. One expects that the number of
debris, £(u, m), is related to the ratio of initial mass over fragment mass, m /.

When one puts
X

m
E(u, m) = QW

empirical evidence suggests for the exponent that 0.5 < x < 2. The constant 6
follows from the condition of mass conservation:

m mx

With a power law ansatz
n(m) =m="

one finds with a little algebra that y = 1.83 over a wide range of x values
(0.5 < x < 3). Because for spheres m a® and dm azda, We recover, in
terms of sizes, the MRN distribution n(a) o a3¥ =2 ~ qa=33.
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There are two dissatisfactory aspects to this scenario when applied to
interstellar dust. First, the particles have to be born uncomfortably big, for
example, in the outflow of giants [Bie80], before they can be ground down by
collisions or shocks to the saturation distribution n(a) o a=>-. Second, the
scenario does not include further modifications in the interstellar medium, such
as accretion or coagulation, which do exist as one observes, for instance, varying
values of Ry or ice mantles.



Chapter 8

Dust radiation

We treat, in this chapter, the physical background of dust emission. A single grain
radiates according to Kirchhoff’s law and we strictly derive this law in section 8.1
under the assumption that a grain consists of an ensemble of coupled harmonic
oscillators in thermal equilibrium. In section 8.2, we show how to compute the
temperature to which a grain is heated in a radiation field and add a few common
examples as well as useful approximation formulae. Section 8.3 illustrates the
emission of grains for a typical dust type; it also presents a first example of
radiative transfer, for a dust cloud of uniform temperature. For evaluating the
emission of very small grains, which are those whose temperature does not stay
constant, we have to know the specific heat and the internal energy of the dust
material. We, therefore, investigate, in section 8.4, the calorific properties of dust.
Finally, section 8.5 presents examples of the emission of very small grains.

8.1 Kirchhoff’s law

8.1.1 The emissivity of dust

A grain bathed in a radiation field acquires an equilibrium temperature 7y which
is determined by the condition that it absorbs per second as much energy as it
emits. According to Kirchhoff, in local thermodynamic equilibrium (LTE) the
ratio of the emission coefficient €, to the absorption coefficient K 3bs is a function
of temperature and frequency only. This discovery had already been made in the
19th century; later it was found that €, / K f}bs equals the Planck function.

Of course, a grain in interstellar space is not at all in an LTE environment.
But whenever it is heated, for example by a photon, the excess energy is very
rapidly distributed among the very many energy levels of the grain and the
resulting distribution of energy states is given by the Boltzmann function and
depends only on the dust temperature, Tyq. Therefore, grain emission is also only
a function of Ty and, as in LTE, given by

€, = K¥® . B,(Ty). 8.1)

239
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The emission over all directions equals 4w€,. The quantity €, is called the
emissivity. It can refer to a single particle, a unit volume or a unit mass. The
dimensions change accordingly. For example, the emissivity €, per unit volume
is expressed in erg s~! cm™3 Hz~! ster .

8.1.2 Thermal emission of grains

To understand how and why an interstellar grain emits according to equation
(8.1), we assume that it consists of N atoms and approximate it by a system
of f = 3N — 6 (see section 8.4.2) weakly-coupled one-dimensional harmonic
oscillators, each of mass m; and resonant frequency w;. Classically, the total
energy E of the system is

2

i=1

p o1 ! pi2 22
E=FxmnWw+V+H ~— E E—i—miwiqi (8.2)
L

and consists of kinetic ( Exip), potential (V) and interaction (H’) energy. The latter
is small compared to Exin and V but it must not be neglected altogether. Otherwise
the oscillators would be decoupled and unable to exchange energy at all: starting
from an arbitrary configuration, equilibrium could never be established. In (8.2),
gi and p; denote coordinates and momenta.

In the thermal (canonical) description, the level population of the quantized
harmonic oscillators is described by a temperature 7. The ith oscillator has levels
v; =0,1,2,...and can make transitions of the kind v; — v; — 1. If the energy
difference is lost radiatively, a photon of frequency v; escapes. The probability
P; , of finding the ith oscillator in quantum state v is given by the Boltzmann
equation (5.8):

1
Py = e~ Phvi(v+3) o e—ﬂhvi]e—vﬂhui
Z(T)
with the partition function Z(T') from (5.10) and 8 = 1/kT. The sum over all
probabilities is, of course, one:

00
Z P, =1
v=0

To obtain 4mwey (i, v), the radiation integrated over all directions from
oscillator i in the transition v — v — | at temperature 7, we have to multiply
P; , by the Einstein coefficient Aiv’ 1 (here the superscript i is not an exponent)
and the photon energy hv;,

Aen(i,v) = PiyAl ,_hvp = [1— e PP e BiAl | by (8.3)

The Einstein coefficient Aiv ,—1 1s calculated according to the general formulae

(6.41) and (6.42). For a harmonic oscillator, the eigenfunctions i are the
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Hermitian polynomials H,(y) of (A.1). We, therefore, have to evaluate the
integral

/ Hy(»)y o1 (v)e > dy

and its solution is given in (A.3). The Einstein coefficient is thus proportional to
the quantum number v and we may put

A =vAly =) (8.4)

All one has to know is Ail,o’ the coefficient for the ground transition. Note
that for an ideal harmonic oscillator there is no upper limit to its maximum energy
and v; is the same for all levels v, whereas a real oscillator has a maximum energy
above which the system is unbound and only its lowest levels are approximately
energetically equidistant; towards the boundary their spacing decreases. To
compute the total emission per solid angle of oscillator i, we sum up over all
levelsv > 1,

en(@) =Y _ eni, v).

v>1
Because of the mathematical relations (A.16), we obtain

Ad
hlel,O

en(i) = hv,-Ai],OZv[l o P T

v>1

(8.5)

This is the total emission of the grain at frequency v;. For the integrated radiation
€ of the particle over all frequencies, one must add up all oscillators,

€th = Zéth(i)~

8.1.3 Absorption and emission in thermal equilibrium

According to the theory of line radiation, the absorption coefficient in the
transition v — v — 1 of the oscillators with frequency v; can be expressed through
the Einstein B coefficients and the level populations (see (13.61)),

. . hv;
Ky =[Pio-1Byy = PiuBy ]

Vi v,v—1

As the statistical weight of the levels is one, Bf},v_l = Bli)_l,v and a change from
B to A coefficients, according to (6.40), yields

2
v o__ c Al
) -1
Vi 87'[‘}’2 v,V

[1 _ efﬁhvi][ef(vfl)ﬁhvi _efvﬁhv;]'
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Summing over all levels v > 1 gives the absorption coefficient K, of the
grain at frequency v;,
c? A} 0
K,, = K! = . 8.6
i Xv: Vi 8?2 (8.6)

We might drop the subscript i in equations (8.5) and (8.6), but we have to be
aware that the frequency v; refers to a certain oscillator. When we combine the
two formulae, we retrieve Kirchhoff’s law (8.1).

Note that the absorption coefficient K, which is taken with respect to a
particular pair of levels (v, v — 1), still contains the temperature via § = 1/kT.
However, the radiation of frequency v; interacts with all level pairs and in the
tfotal absorption coefficient K, the temperature has disappeared. Also note that
K, does include stimulated emission because it is incorporated into the formula

for K },’i; however, the typical factor (1 — e~ Mi/kTy has canceled out.

8.1.4 Equipartition of energy

We conclude with remarks on the distribution of energy under equilibrium
conditions. Let us first consider a gas where the atoms are unbound. A gas of
N atoms possesses 3N degrees of freedom and each degree of freedom has an

average energy (E) = %kT. As the atoms have only kinetic energy, altogether

Ewor = Exin = 3NKT.

When the atoms are not free but bound to their neighbors by electric forces,
as in a solid, there is, rather interestingly, the same average kinetic energy %kT.
Furthermore, there is also potential energy V. The total energy Eo is now twice
as large as for a gas and evenly split between V and Eyiy:

Eiot = Exin + V = 3NkT.

Quite generally, thermal equilibrium implies equipartition of energy when
for each particle i of the system the kinetic energy is quadratic in its momentum
pi and the potential energy is quadratic in its space coordinate ¢;, and when the
total energy of the rest of the system, E’, depends neither on p; nor g;. Then the
total energy E of the system, including particle i, can be written as

E =ap; +bq + E'.

The mean kinetic energy, (a pi2) of particle i is found by averaging apl.2 over
the phase space with the Boltzmann distribution as the weight:

(ap?) = fefﬁ(ﬂpiz*E/)apizch] ...dpy fe*/‘%’pizapi2 dpi 1 1
2y = - _

e P@riHE) agy dpy [ePriap, 282

Likewise, one finds (bql.z) = %kT. This derivation of equipartition
presupposes, however, that energy between the members of the system can
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be exchanged continuously. Therefore, it holds only for classical systems or,
equivalently, at high temperatures. When T is small and the energy levels are
quantized, (E) # %kT. Different oscillators, although in thermal equilibrium,
then have different mean energies equal to hv/(e""/kT — 1) after (5.11).

8.2 The temperature of big grains

8.2.1 The energy equation

Equation (8.1) permits us, in a straightforward way, to calculate the dust
temperature Ty from the balance between radiative heating and radiative cooling:

/ K% J, dv = f KB, (Ty) dv. (8.7)

K f}bs is the mass (or volume) absorption coefficient of dust at frequency v, and J,
is the average of the radiation intensity over all directions. For spherical grains,
our standard case, of radius a and absorption efficiency Q‘Ulbs (a),

/ 0™ (a) - Jydv = f 0¥ (@) - By(Ta) dv. (8.8)

If other forms of heating or cooling are relevant, for instance, by collisions
with gas particles, they have to be added in equations (8.7) and (8.8). We neglect
them for now.

It is evident from (8.8) that it is not the absolute value of Qibs that determines
the dust temperature in a given radiation field J,,. Two efficiencies, Qal‘t,’s and Q%?S,
that differ at all frequencies by an arbitrary, but constant factor, yield exactly
the same Ty. Qualitatively speaking, a grain is hot when Qﬁbs is high at the
wavelengths where it absorbs and low where it emits.

8.2.2 Approximate absorption efficiency at infrared wavelengths

When one wants to determine the dust temperature from equation (8.8), one first
has to compute the absorption efficiency Qf}bs(a) for all frequencies from Mie
theory and then solve the integral equation for Ty. These procedures require a
computer. However, there are certain approximations to Qﬁbs which allow us to
evaluate Ty analytically, often with only a small loss in accuracy.

For a quick and often sufficiently precise estimate, one exploits the fact that
dust emits effectively only in the far infrared where the Rayleigh limit is valid.
According to (3.3), the absorption efficiency Qﬁbs of spheres is then proportional
to the size parameter 27 a /) multiplpied by a function that depends only on
frequency. Simplifying the latter by a power law, we get

abs
Q\) =

8ma m2(n) — 1
A m2(\) + 2

} =aQo?. (8.9)
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Figure 8.1. The ratio of absorption efficiency over grain radius, Qﬁbs /a, for amorphous
carbon (aC) and silicate (Si). The curves have been calculated with a = 0.1 um but
are quite generally valid in the infrared. The optical constants are from figure 7.19. The
broken line shows the approximation from (8.10). See also figure 7.20 which shows Q;a,bs
fora = 0.1 pm.

Estimates of the exponent § range from 1 to 2. Values smaller than 1 are
excluded for very long wavelengths because of the Kramers—Kronig relations
(section 2.5). A blackbody would have 8 = 0 and aQ¢p = 1. When the complex
optical constant m()) deserves its name and is truly constant, 8 = 1. When the
expression Im{. . .} in (8.9) varies inversely proportional to wavelength, § = 2.
This is the value we favour.

We, therefore, propose for quick estimates at infrared wavelengths

Qibs ~ 10" Pav? [a in cm, v in Hz]. (8.10)

Figure 8.1 gives a feeling for the quality of the approximation. The curves
display the ratio of absorption efficiency over grain radius, Qﬁbs/a, for the
particular value a = 0.1um. At wavelengths A > 10 wm, which is the relevant
range of emission, they are fairly independent of radius provided the grains are
not very big (¢ < 0.3 um). We see that the fit Qf}bs/a from (8.10) is not bad at
A > 10um for both interstellar silicate and amorphous carbon dust.
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When we follow the suggestion of (8.9) and use a power law for the
absorption efficiency,

Qi ocvf  g=1

Qﬁbs is, of course, overestimated at high frequencies. But this is irrelevant for
the evaluation of the integral on the right-hand side of (8.8) describing emission,
as long as the grain temperature stays below a few hundred K so that the Planck
function at these frequencies is small. With the power law (8.9) for Qﬁbs, the
energy equation (8.8) becomes

/00 QabsB (T)d 0 2h (kT\**P foo X3P dx
V= — |\ — .
0 v ! “ OC2 h 0 e* —1

The right-hand integral is evaluated in (A.17). Approximate values are:
o x3+B dx
fo er —1

8.2.3 Temperature estimates

2489 ifp=1 8.11)

{ 6.494 ifp=0
122.08 if B =2.

8.2.3.1 Blackbodies

Easiest of all is to find the temperature of a blackbody, a perfect absorber with
Qﬁbs = 1 everywhere. Equation (8.8) then reduces to

O 4
Jydv=—T (8.12)
T

o being the radiation constant of (5.80). The temperature is now independent
of particle size. In a given radiation field, a blackbody is usually colder than
any other object. But this is not a law, one can construct counter examples. If
a blackbody is heated by a star at distance » and bolometric luminosity L, its
temperature follows from

=40T*. (8.13)

42

For example, we find that a blackbody r astronomical units from the Sun
heats up to

=172
T =279 (—) K
AU

For r = 1, this value is close to the average temperature of the surface of the
Earth, although our planet does not emit like a perfect blackbody and its clouds
reflect some 30% of insolation.
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8.2.3.2 Interstellar grains directly exposed to stars

For real grains, we may use, for the absorption efficiency Qﬁbs, the approximation

(8.10) together with the integral (8.11) for 8 = 2. The energy equation (8.8) then
transforms into

o0
/ Q™ J,dv ~ 1.47 x 107%TS  (cgs units). (8.14)
0

In cgs units, a is expressed in cm, v in Hz, Ty in K, and J, in
erg cm~2 s7! Hz7! ster™!. The equation is applicable as long as the grain
diameter stays below ~1 pm, which is usually true in the interstellar medium.

According to (8.14), the heating rate of a grain and, in view of
equilibrium, also its total emission rate are proportional to Td(’.

Consequently, a moderate temperature difference implies a vast change in
the energy budget. For example, to warm a particle, or a whole dust cloud, from
20 to 30 K requires a tenfold increase in flux.

To determine Ty in (8.14), it remains to evaluate the integral on the left.
There is a further simplification if the radiation field is hard. For an early-type
star or even the Sun, one may put, at all wavelengths relevant for absorption,

bs
ol > 1

so that ~
f Jodv = 1.47 x 107%T?  (cgs units). (8.15)
0

If, additionally, J,, is the diluted blackbody radiation of temperature T, the
integral over J, is directly proportional to T*. Consider a grain at distance r
from a hot star of luminosity L, effective temperature 7, and radius R,. From
the position of the grain, the star subtends a solid angle nRz /r? and the intensity
towards it is B, (7). The average intensity over all directions is, therefore,

_ Bu(T)nR;

J, =
Y 47r?

When we insert this expression of J, into (8.15) and use L = 47w o R2T,} after

(5.82), the stellar radius disappears and we find (a, r in cm, L in erg s~h

L

T 1.47 x 107%T?  (cgs units). (8.16)
T<r

So the grain temperature falls off with distance from the star like

L\s _1 .
Tqg=40(—) r73 (cgs units). (8.17)
a
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If there is extinction along the line of sight, one must replace the
luminosity L by a frequency average over L,e” ™. In view of the usual
uncertainties regarding radiation field, grain properties and geometry of the
configuration, estimates of this kind are often no less trustworthy than
sophisticated computations.

8.2.4 Relation between grain size and grain temperature

In the estimate (8.17), the dust temperature changes with particle radius a like

Tq xa 6.

However, this relation is valid only for grains of intermediate size. If
the particles are very small so that the Rayleigh limit is applicable to both
emission and absorption, i.e. to either side of (8.8), the radius a in the absorption
efficiency Qﬁbs(a) cancels out (see (3.3)) and all tiny grains of the same chemical
composition have the same temperature. If the grains are big, much bigger than
the particles found in interstellar space, Q;‘}bs(a) in (8.8) becomes independent of
size and the grain temperature levels off to some limit, 7j;y,. This value is similar
but not identical to that of a blackbody, Tip, because Qﬁbs stays under the integrals
in (8.8) and is not constant.

As an example, we compute grain temperatures near a luminous star and in
the interstellar radiation field (ISRF). By the latter we mean the environment in
the solar neighborhood but outside clouds and not close to any star, rather in the
space between the stars. The radiation field expected there averaged over a solid
angle is depicted in figure 8.2. Its main sources are stars of spectral type A and
F, giants and interstellar dust. The ISRF should be uniform in the galactic disk
on a scale of 1 kpc. One can discern, in figure 8.2, several components. The two
major ones are of comparable strength in terms of vJ‘fSRF, one is from starlight
peaking at ~1 pm, the other from interstellar dust with a maximum at ~200 pm.
Integrated over frequency and solid angle,

4 / JUISRF dv ~0.04ergs™! cm=2.

Figure 8.3 demonstrates the size dependence of the dust temperature for
these two environments. Generally speaking, small grains are warmer than
big ones. The figure contains none of our previous approximations, the
absorption efficiencies are calculated from Mie theory with optical constants from
figure 7.19. The temperature increases from tiny to huge particles by a factor of
about three. For the size range supposed to prevail in the interstellar medium
(a < 0.3 um), the maximum temperature ratio is smaller, of order 1.5.

We will see in section 8.6 that really tiny grains may not attain an equilibrium
temperature at all, instead their internal energy fluctuates in response to the
quantum character of the absorbed photons. Then a plot of the kind of figure 8.3
becomes meaningless.
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Figure 8.2. The approximate mean intensity J‘ESRF of the interstellar radiation field (ISRF)
in the Milky Way at the locus of the Sun. The curve is based on data from [Per87] but
includes the emission of PAHs (spikes). Interstellar dust exposed to a radiation field J‘ESRF
emits at wavelengths > 3 pm a flux proportional to JJSRF. The underlying dust model is
described in section 12.2.

8.2.5 Temperature of dust grains near a star

The variation in dust temperatures in a reflection nebula, which is typically excited
by a B1V star, is depicted in figure 8.4. The grains have radii of 0.01 and 0.1 um
and consist either of silicate or amorphous carbon. In the logarithmic plot, the
curves are very smooth, almost linear in the case of carbon, and there is a wiggle
around r = 10! ¢m for silicates. Near the star, silicates are warmer, further
away colder than carbon grains. This behavior can be explained with the help of
figure 8.1: at short distances, grains are very hot and emit also below 10 um. At
these wavelengths, the emissivity of silicate particles is small, so they have to be
hotter than the carbon grains in order to get rid of their energy.

e  Writing the dependence of the temperature on distance as Tg o r~%, the
slope « is not far from 1/3. Carbon has a very constant & of 0.375.

e Small grains are always warmer than big ones. An increase in grain radius
from 0.01 to 0.1 um lowers the temperature by ~30%.

e  When we check the accuracy of the approximation formula (8.17) with the
help of figure 8.4, it turns out to be satisfactory in both variables, grain radius
a and distance r.
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Figure 8.3. The temperature of spheres of amorphous carbon (aC) or silicate (Si) as a
function of grain radius: Top, in the interstellar radiation field with mean intensity J‘ESRF
after figure 8.2. Bottom, at a distance of 10'7 cm from a B1V star with L = 10* Lg
and Ty = 2 x 10%; here the integrated mean intensity of the radiation field is about 7000
times stronger. The dotted line represents 7yq from the approximate formula (8.17). In
both boxes, the optical constants are from figure 7.19. For comparison, a blackbody would
acquire a temperature T, = 34.2 K near the B1 star and Ty, = 3.8 K in the ISRF.

8.2.6 Dust temperatures from observations

Whereas gas temperatures can often be obtained rather accurately from properly
chosen line ratios, the experimental determination of dust temperatures is always
dubious. After the basic equation of radiative transport (see section 13.1), the
intensity /, towards a uniform dust layer of optical thickness t, and temperature
Tq is

I,(t) = By(Tg) - [1 —e™™] (8.18)
so that an observer receives from a solid angle €2 the flux

Fy=By(Ty) [l —e ™]-Q (8.19)
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Figure 8.4. Temperature of amorphous carbon (aC, dotted curve) and silicate (Si, full
curve) grains as a function of distance from a B1 main sequence star with 104 Lo and
effective temperature Ty = 2 X 10* K. Particle radii are 0.01 pm for the upper full and
dotted curve and 0.1 um for the lower ones. Optical constants are from figure 7.19. The
optical depth towards the star is zero, i.e. there is no absorption between the star and the
grain.

v denotes the frequency. The flux ratio at two frequencies, marked by the
subscripts 1 and 2, becomes

A _B@ol=-erl12 (8.20)
B, By(Ty)[1 —e 2]

It is customary to extract from (8.20) the dust temperature under the
following premises:

e The emission is optically thin (r <« 1), which is usually true in the far
infrared.

e The observational frequencies, v; and v,, do not lie both in the Rayleigh—
Jeans limit of the Planck function. If they did, 7y would cancel out because
By (Tg) o Tg.

e The observations at the two frequencies refer to the same astronomical
object, for instance, a certain region in a galactic cloud. This apparently
trivial condition is sometimes hard to fulfil when the source is extended
relative to the telescope beam (see section 13.1.4) and the observations have
to be carried out with different spatial resolution.
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The dust temperature in the source is uniform.

The ratio of the dust absorption coefficients, K1/K>, over the particular
frequency interval from v to v is known or, equivalently the exponent S
in (8.9); K, itself is not needed.

If all requirements are fulfilled, (8.20) simplifies to

Fi K- Bi(Ty)

— (8.21)
F, K- By(Ty)

and yields Ty in a straightforward manner. Should the assumed value for K1/K>
be wrong, one gets a purely formal color temperature, without any physical
correspondence. We recall here that the surface temperature of a star can also be
obtained through photometry from an equation like (8.21) but with K1/K> = 1
because a star is, to first order, a blackbody.

In view of the numerous restrictions and because the exponent 8 in (8.9) is
debatable, we should always be sceptical about absolute values of Ty. However,
we may trust results of the kind

T4 (source A) > Ty (source B)

and their implications for the energy budget because they depend only weakly on
the ratio K1/K>.

The flux ratio also determines the spectral index « of the energy distribution;
it is defined by

Fi v \”

F - (1)2) )

The exponent 8 in (8.9) and the slope « are, at very long wavelengths, related
through

a=p+2

independent of temperature. In a double-logarithmic plot of F), versus v and when
A is large, all curves are parallel for any 7. The number 2 in this equation comes
from the Rayleigh—Jeans part of the Planck function. A blackbody (8 = 0), like
a planet, has a spectral index o = 2.

8.3 The emission spectrum of big grains

8.3.1 Constant temperature and low optical depth

As a first illustration of the spectral energy distribution emitted by dust, figure 8.5
displays, for silicate grains of 600 A radius, the product Qﬁbst (T). This quantity
is proportional to the emissivity ¢, of (8.1). The blackbody intensity (ijbS =1)
is shown for comparison.

The temperatures chosen in figure 8.5 represent three astronomical
environments:



N
W
\S)

Intensity [erg s~ 'cm 2Hz 'ster™']

Dust radiation
T T ||||||| T T ||||||| T T |||||||
N B,(T) (black) 1
1077+ Q,B,(T) (color)
107" I
[ 200K

107" L
1078 —

1 10' 102 10
wavelength [um]

Figure 8.5. Emission of a blackbody (full curve) and of a silicate grain of 600 A = 0.6 um

radius at different temperatures. The efficiency Qf‘,bs of the silicate grain is calculated

from approximation (8.10) (broken curve) and from Mie theory with optical constants after
figure 7.19 (dotted curve). The Planck function By, (73) as well as Q{a,bs By (Tg) have the
units of an intensity.

20 K for the bulk of the dust in the Milky Way,
60 K for warm dust in star-forming regions and
200 K for hot dust close to stars.

Several points deserve a comment:

A dust particle emits at all wavelengths less than a blackbody, especially in
the far infrared.

A seemingly unspectacular temperature change by a factor of three, say from
20 to 60 K, can boost emission by orders of magnitude.

Although the dust optical constants of figure 7.19 have some structure, the
dust emission is very smooth. For instance, only in the hot dust do we see
the 10 wm resonance.

Unless the dust is hot (100 K), the power law approximation for the
absorption efficiency ijbs from (8.10) gives acceptable results.

The spectrum of a dust grain can be crudely characterized by the wavelength
of maximum emission. This is similar to Wien’s displacement law for a
blackbody (see discussion after (5.77)).
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Figure 8.6. Bottom, the normalized optical depth of silicate grains with 600 A radius. The
wavelength scale starts at 0.55 pum where 1) /7y = 1; Top, The intensity (in units erg 5!
em~2 Hz~! ster™!) towards a cloud of temperature 7 = 600 K filled with such grains.
The visual optical thickness Ty varies between 0.1 and 103. The Planck function By (Ty)

corresponds to ty = oQ.

8.3.2 Constant temperature and arbitrary optical depth

If the dust in a cloud is at constant temperature and the emission optically thin,
the curves Qﬁbst(Td) in figure 8.5 are proportional to the observed intensity 1,
as given by equation (8.18). To obtain the absolute value of I,,, one needs the
optical depth 7,,. For small 7,, the spectral distribution of the intensity is

I, = 7, By(T).

In figure 8.6, the intensity has been calculated as a function of wavelength
and arbitrary optical depth (from 7y = 0.1 to oco) for a cloud consisting of
identical silicate spheres of 600 A radius at a temperature of 600 K. The variation
of the optical depth with wavelength is depicted in the lower part of the figure;
the curve there is normalized at 0.55 um.

The line with ty = 0.1 approximately reflects the optically thin case and may
be compared with the plots in figure 8.5 but the temperature is now higher. As
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Ty increases, I, asymptotically approaches the Planck function. For instance, the
cloud becomes optically thick at 25 um and emits like a blackbody for A < 25 um
when ty > 100. Any information about the emitters is then lost. This is
exemplified by the disappearance of the 10 um feature. At long wavelengths,
the intensity curves for all T run parallel. They are equidistant and have the same
spectral slope I, < v* with o >~ 4.

8.4 Calorific properties of solids

To investigate the calorific properties of a a dust particle, we treat the
conglomeration of atoms in the grain as an ensemble of harmonic oscillators,
determine their eigenfrequencies and density of states and evaluate the energy of
the grain under the assumption of thermal equilibrium.

8.4.1 Normal coordinates

In a simple-minded model, the atoms in a grain are replaced by mass points
connected through springs. To find the eigenfrequencies of the oscillators, one
uses normal coordinates. If there are N mass points in the grain, we describe their
positions by one vector in Cartesian coordinates,

X=(X1,...,Xp) n=23N.

At the equilibrium position, designated xg, all forces exactly balance, so the
derivatives of the potential V (x) vanish,

(&)
— =0.
axl’ X0

We introduce coordinates relative to equilibrium,
i = Xi = Xio

and put V(x9) = 0, which is always possible. If the oscillations are small, one
can approximate the potential by a Taylor expansion. Because V and its first
derivatives are zero, the first non-vanishing term is

1 3%V 1
V=23 (W) ning =5 3 Vijinj- (8.22)
0 ij

tj

As the kinetic energy T is quadratic in 7;,

T = %Zmiﬁ? (8.23)
i
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one derives from the Lagrange function L = T — V of (6.1) the equations of
motion
miﬁi-i-zvjmj:o i=1,...,n. (8.24)
J

Trying, as usual, a solution of the kind

—iwt
ni = a;e

yields a set of n linear equations for the amplitudes a;,

Z(Vji —8jimiw?) a; = 0.
J

For non-trivial values of a;, the determinant must vanish,
|Vj,‘ - Sjim,-a)2| =0. (8.25)

This is an algebraic equation of nth order in w?. It has n solutions and one
thus finds n frequencies. In fact, six solutions will be zero if there are more
than two (nonlinear) atoms but the remaining frequencies refer only to internal
atomic oscillations. The motion in any coordinate x; will be a superposition of n
harmonic oscillations of different frequencies w; and amplitudes a;.

It is a standard procedure to obtain from the relative coordinates, 7;, through
a linear transformation new, so called normal coordinates y;, with the property
that each normal coordinate corresponds to a harmonic motion of just one
frequency, and that the kinetic and potential energy are quadratic in y; and y;,

respectively,
1 -2 1 2.2
T=§Zyi Vzizwiyi-
i i

So a grain of N atoms may be substituted by f = 3N — 6 independent oscillators,
each with its personal frequency.

8.4.1.1 Oscillators in a linear chain

Instructive and well-known examples are provided by linear chains which present
the simplest configuration in which atoms can be arranged. Let all atoms be of
the same mass m, with a constant distance d between them when they are at rest,
and connected through springs of force constant k. Let us consider a longitudinal
wave. The force on any mass point depends then only on the distance to its nearest
neighbors on the left and right. It is straightforward to derive the dispersion
relation

w? = 2—'([1 — cos(kd)] (8.26)
m

where k = 27 /A is the wavenumber and A the wavelength. When there are two
kinds of atoms in the chain of mass m and M > m, in alternating sequence,
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the spectrum splits into what is called an acoustical and an optical branch. For
each wavenumber k, there are now two eigenfrequencies. In the acoustical mode,
adjacent atoms swing in phase, in the optical mode where frequencies are higher,
oppositely and out of phase. The dispersion relation reads

K
mM

where the minus sign refers to the acoustic and the plus sign to the optical branch.

o} = [M 4+ m /M £ 2mMeos2kd)|  (827)

8.4.2 Internal energy of a grain

A point-like unbound atom has three degrees of freedom corresponding to the
three independent spatial coordinates along which it can move. A solid body
consisting of N atoms has 3N degrees of freedom, although there are now forces
between the atoms. When N > 3, the number of vibrational modes in a grain is

f=3N-6

because one has to subtract 3 + 3 to account for the translatory and rotational
motion of the grain as a whole. But in most applications, we can put f ~ 3N.

An atom in a solid can be considered as a three-dimensional harmonic
oscillator. If the body has N atoms, there are f = 3N — 6 one-dimensional
oscillators. We bin oscillators of identical frequencies. Let there be s different
frequencies altogether. If n; oscillators have the frequency v;, then

N
doni=f
i=1

and the possible energy levels are

Epn=hyw+%) v=012... i=1,...,s.

At temperature 7', the mean energy of the oscillators of frequency v; is, from
(5.11),

1 /’ll)i
(Ei) = zhv; +

The zero-point energy %hvi is not necessarily small compared to the second
term in (8.28) but drops out when calculating the specific heat and is, therefore,
disregarded. The total energy content U of the solid is obtained by summing over

all oscillators:
S

/’ll)i
U(T) = § thi/kT — lnio (829)
i=1

When N is large, the eigenfrequencies v; are closely packed and one may
replace the sum by an integral:

b hv



Calorific properties of solids 257

k.a, ¥

Figure 8.7. Modes have nodes at the walls of the crystal. Here a two-dimensional sketch
for a rectangle with sides of length ax and ay. The wave propagates in the direction
of the wavevector k. The conditions for a standing wave are [A/2 = aycosa and
ml/2 = ay cos B for integer [, m.

where p (v) denotes the number density of oscillator frequencies and vp the upper
integration limit. One has to be on the alert when applying (8.30) to very small
grains, like PAHs (section 12.2), where N is only of order 100.

8.4.3 Standing waves in a crystal

The density of states, p(v), is found by determining first the low-frequency part
(sound waves). This is easy and similar to finding modes in acoustics. Then p(v)
is extrapolated to high frequencies (optical waves) assuming the same functional
dependence of p(v). The extrapolation is convenient but far from accurate.

Consider a rectangular crystal of N atoms with sides ay, ay, a; along the
coordinate axes and one corner at the originr = (x, y, z) = 0 (see figure 8.7). A
plane wave in the crystal of wavelength A has the form

ei(k~r—wt) — ‘-I’(I’)e_iwt
2w

k = (ky, ky, k;) = k(cosa, cos B, cos y) k = |K| =

At the walls, the wave must have nodes because the atoms cannot move; for
instance, W (0, y, z) = W(ay, y, z) = 0. This implies

+1 = e % = coskyay — i sinkyay

which leads to

A A
lzzaxcosa mzzaycosﬂ nizazcosy I,m,n=0,1,2,....
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Each triple (I, m,n) of positive integers specifies one mode and can be
represented by a point in a Cartesian coordinate system. The direction into which
the wave travels is given by the angles «, 8, . Because

cos® a + coszﬁ + cos® y=1

[ 2 m 2 n 2
<2ax/x> * <2ay/x> +(2az/x> =1

Thus all points (I, m, n) corresponding to wavelengths greater than or equal
to A lie inside an ellipsoid of volume V = 32w ayaya;/ 3A3. Their total number is
approximately

it follows that

7 4m 8ayaya; _ dmayaya, 3
3-8 A3 33 ’
We divided by 8 because [, m, n are positive numbers and fall into the first
octant; ¢ = Av denotes the sound velocity.

8.4.4 The density of vibrational modes in a crystal
8.4.4.1 Longitudinal and transverse waves

A disturbance can travel in a crystal in two ways:

e as a longitudinal (compressional) wave where the atoms move in the
direction of wave propagation or opposite to it; and

e as a transverse wave in which the atomic motion is perpendicular to wave
propagation.

Because the transverse wave has two kinds of polarization corresponding to
motions with perpendicular velocity vectors, there are altogether three types of
waves and we have to make separate counts for all three of them. If ¢ and ¢ are
the sound velocities for the longitudinal and for both fransverse waves, and if we
define the average ¢ by

_1+2
ES_C? ct3

we find for the frequency density in a crystal

W) dZ  4magaya; ,
V)= — = ————v°.
P dv c3

The number of eigenfrequencies in the interval v to v 4 dv is then

4
dz = 2809 04, (8.31)

&3
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8.4.4.2 The Debye temperature

The cutoff vp that appears in (8.30) for the internal energy of a crystal is the
highest possible frequency. There is a limit because Z obviously cannot exceed
3N, the number of all modes. Therefore the maximum of Z is Zy,x = 3N. If

N
n —=
axaya
is the density of atoms, we get
9
Vp =] (8.32)
4r

This is the Debye frequency. The Debye temperature 6 is related to vp through

th
0=——1- 8.33
r (8.33)

The frequency density may now be written as
ON
pv) = —v7. (8.34)
YD

Actually, the crystal does not have to be rectangular but may have any
shape. What the true frequency density might look like compared to the Debye
approximation is qualitatively illustrated in figure 8.8.

8.4.5 Specific heat

The specific heat at constant volume of a system of f one-dimensional oscillators
follows from (8.29),

aU xret hv;
o= (22) ke, 2 8.35
v <8T>V Z [exi _ 1]2 n; Xi kT ( )

It specifies how much energy is needed to raise the temperature of a body
by 1 K. For a continuous distribution of modes, we insert p(v) from (8.34) into
(8.30) to find the internal energy and specific heat,

ON ['D hv3
U T 3 p6/T 4 ,x
CTy =) =N (= f LA (8.37)
T ), o) )y (@—12

There are two important limits:
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frequency density p(v)

frequency

Figure 8.8. The frequency density p(v) of crystal vibrations. A true distribution might
look like the dotted curve, which is to be compared with the Debye approximation of (8.34)
(full curve). The latter is correct only for sound waves with wavelengths much larger than
the grid size of the crystal (~1 A). It yields at low temperatures the famous T3 dependence
of Cy. There is a cutoff at vp because the number of degrees of freedom of all atoms is
finite.

e At low temperatures, the upper bound /T approaches infinity and the total
energy of the grain and its specific heat are (see (A.17) for the mathematics):

374 T\

U="F NkT 7 (8.38)
1274 T\}

Cv=— Nk n (8.39)

The characteristic feature in Cy is the proportionality to T°3.
e At high temperatures, the formulae approach the classical situation where a
three-dimensional oscillator has the mean energy (E) = 3kT, so

U =3NkT (8.40)
and the specific heat is constant and given by the rule of Dulong—Petit,
Cy = 3Nk. (8.41)

Any improvement over the Debye theory has to take the force field into
account to which the atoms of the body are subjected.
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8.4.6 Two-dimensional lattices

When the analysis of section 8.4.4 is repeated for a two-dimensional crystal of N
atoms, one finds a density of modes

N
p(v) =—v (8.42)
Vb

which increases only linearly with frequency, not as v2. Therefore now Cy o< T2

and
6N ['D hv?
U = _2 ehv/kT 1 dv

Cy = 6kN— / o = ])2 Y=z (8.43)
The two-dimensional case is important for PAHs because they have a planar
structure. It also applies to graphite which consists of PAH sheets; however,
only at temperatures above 20 K. Although the coupling between the sheets is
relatively weak, when the temperature goes to zero, Cy eventually approaches
the 73 dependence.
For graphite sheets, one can improve the model of the specific heat by using
two Debye temperatures:

Cv(T) =kN[f(0:) +2f (Oxy)] (8.44)
2 Y x3eF
f<y>=y—2f0 Pl

With 6, = 950 K referring to out-of-plane bending and 6, = 2500 K to in-
plane stretching vibrations [Kru53], there is good agreement with experimental
data [Cha85].

Very low vibrational frequencies cannot be excited in small grains. One
can estimate the minimum frequency vy, from the condition that in the interval
[0, vmin] the PAH has just one frequency,

Vmin
1 =/ p(v)dv.
0

With p(v) from (8.42), this gives

k6
Vmin = ——-
" hV3AN

The bigger the PAH, the smaller vy, becomes. Collisional excitation of the
modes by gas atoms is possible provided kTgas > hvmin. Under normal interstellar

conditions, only the lowest levels are populated.

(8.45)
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Figure 8.9. The specific heat per gram of dust for silicate (full curve, similar to [Guh89]),
graphite (broken curve, after [Cha85]) and PAHs without hydrogen atoms (dotted curve,
after [Kru53] using (8.44)).

Figure 8.9 summarizes the specific heats Cy(T) which we use in the
calculations of the emission by small grains. At low temperatures, graphite and
silicate have a T> dependence, for PAHs Cy changes like T2. As the grains
get warmer, the curves flatten towards the Dulong—Petit rule (8.41), Cy = 3Nk.
Graphite has 5.0 x 102 and silicate about 2.6 x 10%? atoms per gram.

8.5 Temperature fluctuations of very small grains

When a dust particle is very small, its temperature will fluctuate. This happens
because whenever an energetic photon is absorbed, the grain temperature jumps
up by some not negligible amount and subsequently declines as a result of cooling.
We will speak of very small grains (vsg for short) when we have in mind particles
whose temperature is time variable because they are tiny. To compute their
emsission, we need their optical and thermal properties. The optical behavior
depends in a sophisticated way on the two dielectric functions ¢1(w) and &2(w)
and on the particle shape. The thermal behavior is determined more simply from
the specific heat.
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8.5.1 The probability density P(T')

Consider a large ensemble of identical grains in some interstellar environment.
Let us arbitrarily pick out one of them and denote by P(T) dT the chance that its
temperature lies in the interval from 7 ... T + dT and call P(T) the probability
density. It is, of course, normalized:

/Oo P(T)dT = 1. (8.46)
0

In normal interstellar grains of average size, the temperature oscillates only
a little around an equilibrium value T¢q and in the limit of large grains, P(T)
approaches the §-function § (Teq), where Teq follows from the steady-state balance
between emission and absorption from (8.8),

/QﬁbSJudu =/QﬁbSBU(Teq)du.

Even for a very small particle we will assume that its radiation, at any time,
obeys Kirchhoff’s law (8.1), so in the case of a sphere of radius a, we can express
its average monochromatic emission per solid angle by

€ = naQQf;bS/BU(T)P(T)dT. (8.47)

Although the emission of such a single grain is not constant over time, the
whole ensemble radiates at any frequency at a steady rate. We are faced with
the problem of finding P(T) and we describe below its solution (an elaborate
treatment can be found in [Guh89] and [Dra01]).

8.5.2 The transition matrix

When a grain absorbs or emits a photon, its internal energy U (T), which is a
function of temperature only, changes. We bin U(T') into N states U; of width
AU;j with j = 1,2,..., N. Each state U; corresponds to a temperature 7; or
frequency v; = U;/h with corresponding spreads AT and Av;. The probability
P; of finding an arbitrary grain in a large ensemble of N particles in state U; is
equal to the number of all grains in level j divided by A

An absorption or emission process implies a transition in U from an initial
state i to a final state f. They occur at a rate \' P; A y;, where the matrix element
Ay; denotes the transition probability that a single grain changes from state i to
f-. In equilibrium, for each level j the number of populating and depopulating
events, Npop and Ngepop, must be equal:

Npop = Ndepop-
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Therefore, for each level j,

Npop/N =Y PAji+ Y PAju=)Y PAj

k>j k<j k#j
Nacpop/N' = P; Y " A+ Pi Y Ay = P; Y Ay
k<j k>j k#j
cooling heating

In both formulae, the first sum after the first equal sign refers to processes
that cool and the second to those which heat the grain. With the purely
mathematical definition

Ajj=—) Ay

oy

we may write the condition Npop = Ngepop for all j as

Z APy =0. (8.48)
k

Only N — 1 of these N equations are linearly independent. To find the
probability density P(T) required in equation (8.47), one may first put P; = 1,
solve (8.48) for P;, ..., Py and then rescale the P; by the obvious condition that
all probabilities must add up to one (see (8.46)),

Z P =1. (8.49)

A matrix element Ay; referring to dust heating (j < k) is equal to the
number of photons of frequency vy — v; which a grain absorbs per Hz and second
multiplied by the width of the final bin Ay,

Apj = ———Ay V=1V — v Jj <k (8.50)

Jy stands for the mean intensity of the radiation field and C% is the
absorption cross section of the grain. As it should be, the number of transitions
PjAyj from j — k is thus proportional to the width of the initial (via P;) and
final energy bins. Likewise we have, for dust cooling from state j to a lower one
k,

_ 47rCf}bSBU(Tj)AVk

" V=V — k<j. (8.51)

Akj

Above the main diagonal stand the cooling elements, below those for
heating. The energy balance requires for the cooling and heating rate of each
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level j,
o
> Ay = / 4 C¥ B, (T)) dv
k<j 0
cooling
o0
> Ak = / 4 C¥8J, dv
k>j \0—,—/
heating
with vg; = |v; — vi|. As cooling proceeds via infrared photons which have low

energy, their emission changes the grain temperature very little. This suggests
that in cooling from state j one needs to consider only the transitions to the levels
immediately below. In fact, in practical applications it suffices to ignore cooling
transitions with j — k < j — 1. One can, therefore, put all matrix elements A ¢;
above the main diagonal to zero, except A;_1 ;. But the latter, in order to fulfil
the energy equation, have to be written as

o0
Aj_1j = /0 4 COBL(T)) dv - [h(v; —vj-1)] . (8.52)

The total matrix A 7; has thus acquired a new form where, above the main
diagonal, only the elements Ay; with f = i — 1 are non-zero. One now
immediately obtains from (8.48) the computationally rapid recursion formula (but
see the simple trick described in [Guh89] to safeguard against numerical rounding
errors).

1

Ajj+1

YAyPe  j=1,...N-L (8.53)
k<j

Pjj1=—

We mention that heating may not be reduced to transitions j — j + 1. This
would ignore the big energy jumps of the grain after UV photon absorption which
are important for the probability function P (7). Although heating elements of
the form

(o8]
-1
Ajyr, = /0 4rC®J,dv - [h(vj41 —v))]

do not violate energy conservation, they would result in an unrealistically small
spread around the equilibrium temperature Teq of (8.8).

8.5.3 Practical considerations

Calculating the emission of a grain with temperature fluctuations is not
straightforward. Therefore, it is good to know when such calculations are
necessary. Generally speaking, they should be carried out whenever the time
interval between the absorption of photons with an energy comparable to the heat
capacity of the grain is larger than the cooling time. Unfortunately, this is not very
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practical advice. However, we will present examples that give some feeling for
when temperature fluctuations are important and how they modify the spectrum.
Qualitatively, there are three requirements for temperature fluctuations to occur:

e The radiation field is hard to ensure the presence of energetic photons. We
are purposely vague about what is meant by hard but one may think of the
UV range.
The grains are tiny so that their heat capacity is small.
The radiation field is weak to make the intervals between capture of energetic
photons long. This point is counterintuitive but is exemplified in figure 8.13.

Evaluating the probability density P(7") when temperature fluctuations are
small is not only unnecessary but can also incur numerical difficulties. Whenever
the function P (T") becomes very sharp, it suffices to calculate the radiation of the
particle from (8.1) with a constant temperature from (8.8).

To minimize the computational effort, especially in problems of radiative
transfer, one has to avoid a large transition matrix A y; and properly select the
energy bins. As P(T') varies strongly with hardness and strength of the radiation
field as well as with particle size, a good grid is sometimes not easy to find. The
boundaries of the grid, Unin and Upnax, are hard to determine beforehand and
intuitive values like Upin = 0 and Upax = hvmax are often not adequate. An
iterative procedure is, therefore, recommended: starting with a first choice that
crudely brackets the maximum of P(T'), one can find a better adapted grid by
using as new boundaries those values of 7 where P(T) has dropped by some
large factor (for instance, 1012) from its maximum.

An indicator for the computational accuracy, but not a precise one, is the
time-averaged ratio of emitted over absorbed energy which must, of course, equal
one. Generally, a grid of 100 energy bins is sufficient provided they are properly
selected. The simplest grid has a constant mesh size, either in temperature or
energy. Because U o« T with 0 < o < 3, a grid of constant AT seems to be
better suited than one with constant AU, as the former has at low temperatures a
finer spacing in energy to handle the infrared photons.

8.5.4 The stochastic time evolution of grain temperature

The probability density P(T) describes the steady-state temperature distribution
of a large ensemble of grains. The temperature of an individual particle, however,
is time variable. Radiative cooling is not balanced at every instant by heating and
so the internal energy U changes for a spherical grain of radius a according to the
first-order differential equation:

dUu

E:47‘[ naz{/Qibs]v(t)dv—fQibst(T(t))dV}

The right-hand side describes the difference between the power absorbed
from the radiation field J, and the cooling rate. Replacing U by the specific heat
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C(T) (see (8.35)), we may write

dT . 4 wa?
dt  C(T)

Given a starting value Ty at ¢+ = 0, this ordinary differential equation yields
the time evolution of the temperature, 7 (¢). One must, however, take into account
that the electromagnetic field is quantized, although its time-averaged flux is
constant. To make equation (8.54) easier, we assume that the cooling rate, i.e.
the flux of emitted low-energy infrared photons, is continuous. Most of the grain
heating, however, occurs sporadically through absorption of individual energetic
photons (>1 eV) and leads to temperature jerks.

To solve (8.54) numerically from # = 0 until # = t, we proceed as follows.
The total period 7 is divided into small time steps At and the total frequency range
into intervals Av; = vj+1/2 —Vv;—1,2. The number of photons with frequency Av;
that are absorbed within each time step equals

J(v; abs/.,.
2 (VJ)Q (U'/)Avj.
h\)j

{ [ eanwar- [ QibSBU<T(r>>dv}. (8.54)

Nj=At-47 ma

For short time steps At, the N; are much smaller than one and represent also
the probability for photon capture. Let U; and 7; be the energy and temperature
of the grain at time ¢;, at the end of the ith time step. At the beginning of the new
time step i + 1, the particle energy is raised by an amount AU; that accounts for
the stochastically absorbed photons during the new interval Atz; the temperature
is increased accordingly by AT;. To incorporate the quantum character of the
photons, AU; is written as

AU; = Z ajhvj
J
where the a; are either one or zero. They are computed from N; with a random
number generator. The chance that a; = 1 is Nj, the probability that a; = 0
equals 1 — N;. Then we solve for the (i 4+ 1)th time step lasting from ¢# until
ti+1 = t; + At the differential equation

dT_ 47242
dt —  C(T)

with the boundary condition 7'(t;) = T; + AT;; this gives T;41. For each time
step, one thus gets a temperature.

When the evolution of the temperature, 7' (¢), has been laboriously evaluated
from (8.54), the probability density P(T") follows from counting how many times
during the period 7 the temperature attains values in the interval 7...7T 4 dT.
These numbers are then normalized according to (8.46). The emissivity €, can be
computed as an average over time t,

Q0 B, (T (1)) dv

2 T
€, = %/ Q™S B, (T (1)) dt.
0
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8.6 The emission spectrum of very small grains

We illustrate the stochastic temperature fluctuations and their effect on the
spectrum for grains in two environments:

e Near a BIV star. It is luminous (L = 10* L), has a hot atmosphere
(Teff = 2 x 10* K) and guarantees a copious amount of energetic quanta.
Its monochromatic flux, L., is proportional to the Planck function,

wL
Ly = — Bu(Tem),

O Legr

/Lud\):L.

e In the interstellar radiation field (ISRF) with a spectral shape as depicted in
figure 8.2.

and satisfies the condition

In figures 8.10-8.13, the emission coefficient €, refers to one grain and
is plotted in the unit erg s~! Hz~! ster™!. All examples deal with silicate
grains because of their 10 um resonance which occasionally shows up. The true
emission (from (8.47)) is displayed as a solid line. For comparison, the emission
under the false supposition of constant temperature from (8.1) is shown dotted.

The probability density P(7) in figures 8.10-8.13 is also computed in two
ways, either from the stochastic time evolution of the temperature 7 (¢) described
in section 8.5.4 or, more simply, from the formalism developed in section 8.5.2.
In the first case, we depict P(T') by dots, otherwise by a solid line.

8.6.1 Small and moderate fluctuations

The top panel of figure 8.10 displays the temperature variation 7'(¢) of a single
silicate grain of 40 A radius at a distance » = 10'7 cm from the star. Altogether
we followed 7'(r) over a time 7 = 2 x 10% s partitioned into 10° steps of fixed
length Ar = 0.1 s. We show an arbitrary section of 400 s. The temperature
excursions are small and amount to some 10% around a mean value.

The probability density P(T') in the lower left panel of figure 8.10 gives the
chance of finding the grain within a temperature interval of 1 K width centered
on T. The full and dotted curves for P(T') (see previous explanation) practically
coincide; the area under the curves equals one. In the emission spectrum of the
lower right panel the 10 um feature is indicated. In this example, it does not
matter whether ones takes the temperature variations into account or assumes a
(constant) equilibrium temperature Teq after (8.8). Here Toq = 116.9 K, which
is close to but not identical to the value Tyax = 115.1 K, where P(T') attains its
maximum.
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Figure 8.10. Small stochastic temperature excursions: top, time evolution of the
temperature of a silicate grain of 40 A radius at a distance of 10'7 c¢m from a BV star;
lower left, probability distribution P(T") of the temperature shown on a linear scale (the
dotted line is computed from section 8.5.4, the solid from section 8.5.2); lower right,
emissivity €, of the grain in erg s~1 Hz~! ster™!. The dots (hardly discernible) plot the
emission assuming a constant temperature; the full curve includes temperature fluctuations,
however, its effect is negligible here. See text.

In figure 8.11, the same grain is placed at a distance ten times greater
from the star (- = 10'® cm), so the rate of impinging photons is reduced by a
factor 100 and the particle is, on average, colder. As one can estimate from the
figure, it is hit by an energetic photon only once every 100 s and the temperature
excursions are no longer small. There are now discernible diffferences in the
probability P(T) depending on the way in which it is computed (see previous
explanation). Because the total time interval over which we integrated, although
large, was finite, temperatures far from the mean never occurred. One would
have to wait very long to see the grain, say, at 170 K. Therefore, the dotted
line displays a scatter, although close to the full one, and is determined well
only around the maximum of P(7T) and does not extend to probabilities below
~1073. In the bottom frame on the right, when the emission is evaluated under
the false supposition of temperature equilibrium (dotted), the spectrum is a good
approximation only at far infrared wavelengths. In the mid infrared, the errors
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Figure 8.11. Moderate fluctuations. As in figure 8.10 but the same grain is ten times
further away from the star. The temperature fluctuations have increased. The ordinate for
P(T) is now logarithmic.

are large (two powers of ten at 10 um) because the grain is occasionally at
temperatures far above the average.

8.6.2 Strong fluctuations

In figure 8.12, the grain is again at a distance r = 10!7 cm from the star but has a
radius of only 10 A. Compared to the two preceding examples where a = 40 A,
the heat capacity of the particle is now 43 = 64 times lower and photon absorption
thus induces a much larger relative change in energy. The absorption cross section
is also 4° times smaller than before (the Rayleigh limit) and photon capture is,
accordingly, less frequent.

When looking at the temperature evolution 7 (¢), which gives a better feeling
for the scatter than the probability function P(T), one hesitates to assign an
average temperature at all, although mathematically this can be done. There are
now two disparate regimes: most of the time the grain is cold and cooling is slow
but occasionally the grain is excited to a high temperature from which it rapidly
cools. The probability density P(7") has turned asymmetric; the maximum is at
Tmax = 51.9 K and far from the equilibrium temperature Teq = 116.2 K after
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Figure 8.12. Strong fluctuations. As in figure 8.10 but the grain is now small (a = 10 A).

(8.8). The dotted line, representing P(T') as determined from 7 (¢), is jerky and
inaccurate above 120 K because of the finite time over which we calculated the
evolution; a longer integration time would smooth it. To evaluate the emission
without taking into account the hot excursions no longer makes sense, even in the
far infrared. The dotted line in the bottom right-hand box bears no resemblance
to the real emission (full curve), although the frequency integrated emission is,
in both cases, the same and equal to the absorbed flux. Note the strong 10 um
silicate feature.

In figure 8.13, the grain has a radius of 40 A and is heated by the weak light of
the ISRF. Absorption here is a rare event, even with regards to low-energy photons
and occurs approximately every few hours. Note the much larger time scale in this
figure. The probability density P(T) tapers off gradually from its maximum at
Tmax = 8.3 Kto ~55 K; beyond 55 K a sharp drop sets in. The dotted line shows
the probability P(7T') as calculated from the time evolution 7 (¢).

In these examples, we can follow in detail individual absorption events and
the subsequent cooling. The cooling rate varies after (8.14) with the sixth power
of the temperature. The energy reservoir U(T) of a grain is proportional to 7*
when it is cold, and above the Debye temperature U o T (see (8.38), (8.40) and
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Figure 8.13. Strong fluctuations. A silicate grain of 40 A radius in the ISRF.

also figure 8.9). The cooling time is roughly

u)

Tcool X T6

and, therefore, falls rapidly as T increases. In the spikes of the present examples,
Teool 18 Of order 10 s.

8.6.3 Temperature fluctuations and flux ratios

Very small grains display in their emission another peculiar feature. It concerns
their color temperature or, equivalently, the flux ratio at two wavelengths, A1 and
2. In a reflection nebula, a grain of normal size (>100 A) becomes colder when
the distance to the exciting star is increased, obviously because it receives less
energy. For a very small grain, the situation is more tricky. Of course, it also
receives less photons farther from the star but its color temperature at shorter
wavelengths is only determined by the hot phases corresponding to the spikes
in figure 8.12. The interesting point is: no matter whether these spikes are rare
or common, as long as they do not overlap, the flux ratio is constant; only the
emitted power in the wavelength band from A; to A diminishes with distance.
When multi-photon events occur, i.e. when an energetic photon is absorbed before



The emission spectrum of very small grains 273

T T T rrTrTg T T T T TTITg T T T Ty T T T T TT1]

graphite

a=5A

Ty
PR

Ty
sl

10A

T
|

|

T

LT

S5A

Ty
TRt

20A

T
R RRTTT

|

€25/ €100

L R R B R L |

L1t

10

T
Lol

T

PR W | MR T | Ll

1016 1017 1015

IR S T B A

distance from star [cm]

Figure 8.14. Flux ratios for graphite grains of various sizes as a function of distance to
a B1V star. The wavelengths in micrometres are indicated as subscripts in the emissivity.
Small particles undergo strong temperature fluctuations which lead to flux ratios that are
almost independent of the distance from the star.

the grain has had time to cool from a preceding capture, such as that illustrated in
figure 8.10, the ratio of the emission coefficients, € (A1)/€(A2), is again distance-
dependent.

Figure 8.14 shows the flux ratio for several wavelengths as a function of
distance from the star. The grains are made of graphite and have radii between
5 and 40 A. For all grain sizes, the near infrared colors, like K-M corresponding
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t0 €22 um/€4.8 um, first fall as one recedes from the star. But already at distances
smaller than the typical dimension of a reflection nebula, they level off. Near IR
color temperatures do not change across a reflection nebula if the grain radius is
~10 A or smaller. For mid and far IR colors, the critical particle size is pushed
up a bit and the flux ratios are constant only at larger distances. They continue to
stay so far away from the star where the stellar UV radiation field resembles that
of the diffuse interstellar medium.



Chapter 9

Dust and its environment

9.1 Grain surfaces

9.1.1 Gas accretion on grains

In the interstellar medium, gas atoms and molecules continually collide with the
dust particles. They may either rebounce from the grain surface or stick. In
equilibrium, the number of accreted atoms per unit time is equal to the number
of atoms leaving the grain. Gas accretion has great astronomical consequences as
the following examples demonstrate.

e The transfer of energy from gas to dust and back which may strongly
influence the temperature of the components.

e A change in the optical properties of the grains and thus their emission
characteristics.

e  The depletion of molecular species in the gas phase as they freeze out on the
grains. Such species may not then be observable, whereas otherwise they
would be strong emitters and important coolants.

e  The formation of new molecules. Accretion of H atoms is the only way in
which molecular hydrogen can be made at all in relevant quantities.

Consider a gas of temperature Tg,s containing a certain species (subscript i)
with particle mass m;, number density density n; and mean velocity (see (5.16))

[8kT,
vi = [ —22, 9.1)
wm;

A grain of geometrical cross section a2, which can be considered to be at
rest, accretes the gas species i at a rate

Race = ni ma’ v; 9.2)

275
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where n; denotes the sticking probability. When the grains have a size distribution
n(a) o a3 with lower and upper limit a_ and a., their total cross section F

for gas capture per cm? is
3ngmy Ry

a 4pgrJa—ay
Here Ry is the dust-to-gas mass ratio, ng = n(HI) 4+ n(H>) the total number
density of hydrogen, either in atomic or molecular form and pg; the density of the

grain material, and it was assumed that a4 >> a_. The lifetime 7, of a gas atom
before it is swallowed by dust may be defined by Tycc Racc = 1 and thus becomes

1 dpg  Ja—ay ©9.3)

Fuin;  3muRan; npv;

Tacc =

Inserting reasonable numbers (Rg = 0.007, pgr = 2.5 g cm73, a_ =100 A,
a+ = 3000 A, v; = 0.3 km s~!), we find that an atom that sticks on collision
(n; = 1) freezes out after a time

2 x 10°

ny

~

yI. 9.4)

Tacc

Tace 1S shorter than the lifetime of a molecular cloud (t¢iouq ~ 107...108 y1),
because such clouds always have densities above 10> cm™>. If the gas density
is high (ng > 10* cm™3), as in clumps, depletion and mantle formation
proceed more quickly (tace < 107 yr) than the dynamical processes which are
characterized by the free-fall time scale (fg ~ 2 x 107/ A/TH Y1).

The growth rate da/dt of the grain radius should be independent of a, as
the impinging atoms do not see the grain curvature. Therefore, the matter will
mostly accrete on the small dust particles as they have the larger total surface area.
Consequently, large grains hardly grow any bigger through accretion, although the
mean grain size, which is the average over the total distribution, increases.

9.1.2 Physical adsorption and chemisorption
9.1.2.1 The van der Waals potential

To describe the collision between an atom on the grain surface and an approaching
gas atom, we first derive their interaction potential. Both atoms are electrically
neutral but have dipole moments: let p; refer to the surface and p, to the gas
atom.

A point charge ¢ in an external electrostatic potential ¢, which is given by
some fixed far away charges, has at position X the electrostatic potential energy
U = q¢(xp). If instead of the point charge ¢ there is, localized around xg, a
charge distribution p(x), the energy becomes

U=/P(X)¢(X)dV-
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Expanding ¢ (x) to first order around xo,
¢(x) = p(X0) + X Vo(x0) = ¢(x0) —x - E(xo)
and substituting the expansion into the volume integral for U, we obtain

U =q¢(x0) —p-E(xo)

where we have used the general definition (1.2) of a dipole p. In our case of
colliding atoms, the effective charge ¢ vanishes. Suppose the field E(x) is due to
the dipole p; on the grain surface; E(x) is then described by (3.10). Denoting by
r the vector from p; to pp, we get

pr-p2  3(p1-r)(p2-r1)
P 5 :

Ur) = 9.5)
Let us further assume that the dipole p2 of the gas atom is induced by py of

the surface atom. The strength of the former depends then on its polarizability o

(see (3.10) and (1.8)):
2ap
p2=—3

-
and the dipole moments will be parallel (py - p2 = p1p2) so that

2
dapy
—

U= -~ (9.6)

9.1.2.2  The full potential including repulsion

The absolute value of the van der Waals potential increases rapidly at short
distances, much quicker than for monopoles. But when the two dipoles are very
close, a repulsive interaction sets in because the electrons tend to overlap and
Pauli’s exclusion principle forbids them to occupy the same quantum state. This
potential bears a more empirical character and changes with distance even more
abruptly, like 1/r'2. The net result of the combination between repulsion and

attraction is b .
UQ):4D[(%> —(%)} 9.7)

with Do® = aplz. The parameter D defines the strength of the potential and o
its range. U (r) becomes infinite for » — 0, changes sign at s = o, reaches its
minimum value —D at r = /20 and remains negative as it approaches zero for
r — oo (figure 9.1).

In a collision of an atom with the grain surface, one has to include the
contribution from all force centers, i.e. atoms on the grain surface. On a regular
surface, the potential attains minima at various locations privileged by symmetry.
For a simple or body centered cubic lattice, these minima are at the mid-points
between four neighboring surface atoms (see figure 7.2).
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Figure 9.1. The potential U(R) between dipoles after (9.7); here with D = 0.25 and
o = 0.5. The curve is relevant for physical adsorption. The minimum is at r = 20 and
U@r)=-D.

9.1.2.3 Physical and chemical binding

Physical adsorption is rather weak; it needs typically only 0.1 eV to remove the
atom or molecule from the grain surface, corresponding to 1000 K if the binding
energy Ey, is expressed as a temperature 7 = Ey/k. The exact value depends on
the composition and structure of the surface and on the type of gas species.

A much tighter coupling of a gas atom colliding with the grain surface
is possible through chemical binding or chemisorption. It involves a profound
change in the electron structure of the binding partners. The interaction is
therefore much stronger (from 0.5 to 5 eV) and the range of the chemical potential
shorter than in the case of physical adsorption.

As a precondition for chemisorption, the surface must contain chemically
active sites and the gas species should not consist of saturated molecules, like Hy
or H>O but atoms, particularly hydrogen. In principle, radicals like OH could also
chemically bind to the grain surface but prior to the reaction an activation barrier
must be surmounted. This is not possible on a cold grain so that the process is
probably unimportant there.

Chemically active sites will have disappeared once the grain surface is
covered by physical adsorption by one monolayer of, for example, Hy or HO.
Therefore, the mean binding energy of atoms and molecules in an ice mantle
several A or more thick is less than 0.5 eV. Quite generally, we expect grains in
cold and dense clouds to be covered by a sheet of physically adsorbed ice. The
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sheet may be envisaged to be made either of pure water ice or to be a composite of
different ices, such as H,O, CO;,, NH3 and others, mixed in a certain proportion.

9.1.3 The sticking probability

We estimate the probability n that an impinging gas atom stays on the grain
surface; obviously, 0 < n < 1. For the gas atom to stick, it must transfer to
the dust particle in the collision an energy A E greater than its kinetic energy Ex
far from the surface; otherwise it will rebound. One can approximately evaluate
the process by studying the interaction of the gas atom (subscript g) with just one
surface atom (subscript s). We imagine the surface atom to be attached to a spring
of force constant « so that it oscillates at frequency

ws = /K[ ms.

For the interactive potential U (r) between the two atoms we use (9.7), where
r = Xg — xs > 0 is their distance and D the binding energy. Such a simple
mechanical system is governed by the equations of motion

meXs = —kxg— F (9.8)
mgXeg = F 9.9)

if the surface atom of mass mjg has its equilibrium position at x = 0. The force
associated with the potential, F(r) = —U’(r), is attractive and negative when r
is large and repulsive and positive when r is small. The gas atom passes in the
collision first through the attractive potential where its kinetic energy increases,
then encounters the repulsive part, which is almost like a wall (see figure 9.1), and
rebounces at the distance rpi, where U (rpin) = Ex.

One finds the energy A E which is transferred to the surface atom during the
impact by numerically integrating the equations of motion. An analytical solution
under simplifying assumptions is illustrative. Let us neglect the attraction in the
potential and approximate its repulsive part by a parabola [Wat75],

D + Ex 5
U(r):{_D_" 152 (r — 2b) 0<r=<2b
—D r > 2b.
The repulsive potential U is often also written as U(r) = —D + (Ex +

D)e~"/?; the constant b is then called the slope parameter and is of order 0.4 A. In
the quadratic equation, the force F' with which the gas atom is rejected becomes

2b b

Fo D+E
F(r)={F0——V 0<r<2b  yith = 2k
0 r>2b

To fix the initial conditions, let the gas atom at time ¢+ = 0 pass the point
r = 2b with a velocity 7 = —,/2(D + Ex)/myg. Its equation of motion, F' = mgF,
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then has, for times ¢ > 0, the solution

r =2b - (1 — sinwpt)

wo = | Fo/2bm,g 9.10)

is of order 104 s~ Its inverse defines the collision time,

where the frequency

—1
Wy = Teoll-

The infall of the gas atom is reversed at the turning point » = 0 at time
t = /2w where also i = 0. Altogether the force varies with time like

. b4
F([)==F0s1nwot O<t<w—0=t1 ©.11)
0 else .
Now consider the collision from the point of view of the surface atom which
is subjected to a force f(¢) of equal strength but opposite sign. During the impact,
it undergoes a forced oscillation described by

mgXs + kxs = f(1). 9.12)
Putting
& = X5 +iwxs
where wg = +/k/myg is the vibration frequency of the surface atom, one can

replace the second-order differential equation (9.12) by one of first order,

. 1

§—iwg =—f()

ng
which has the solution
. | .
E(1) = &' {/ — f(t)e "M dt + 50} .
0 Mg
In our case, & = £(tr = 0) = 0. Because the energy of the surface atom is
Es = %ms{xz + wfxsz} = %ms|§‘|2

the energy which it receives in the collision becomes

2
AEs =

1
2mg

151 .
/ Fe ' dt
0

With #; and f(t) = —F(t) from (9.11), the integrations can be evaluated
analytically because for wy # ws,
—iwst

/ e—iwst sin wot dt = 72@)0 cos wot + i wg sin a)()t).
wf — g
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This can be verified immediately by taking the derivative. For the limiting
cases, we obtain

4 wy > ws
mg 712/4 wy = ws
AE;= 2D+ E){ ot ©.13)
nmg =0
(w? — ;)

In the evaluation of the integral for wy < ws, it was assumed that the term
cos(mws/wp), which then appears, vanishes on average.

e  When wp > ws, the collision time .o is very short and e ~/®* is practically
constant.

e When wy < ws, the collision time is long compared to the oscillation
period wg ! of the crystal. Other atoms will then also absorb energy and
the assumption of just two colliding bodies is inadequate. Nevertheless, one
can get a feeling from (9.13) for whether the energy loss of the gas atom,
AE;, is bigger than its initial kinetic energy Ey, implying sticking, or not.

e Two numerical examples for the case ws = wy are presented in figure 9.2.

As under most interstellar conditions Ex < D, we learn from formula (9.13)
that the sticking efficiency is largely determined by the binding energy D for
physical adsorption and by the mass ratio of gas-to-surface atom; this ratio is
generally smaller than one, mg/ms < 1.

This simple theory can be refined in various ways: one can take into account
the reaction of the crystal; use a more suitable interaction potential because a gas
atom generally hits a spot somewhere between several surface atoms; consider
oblique incidence and the possibility that the gas atom repeatedly recoils from
the grain surface. Elaborate estimates suggest that under most astronomically
important circumstances sticking of the atoms is likely. To use a sticking
coefficient between 0.1 and 1 presents an educated guess.

9.1.4 Thermal hopping, evaporation and reactions with activation barrier

The more or less evenly spaced atoms on the surface of a grain act as force centers
and the surface potential has a semi-regular hilly structure. A physically adsorbed
gas atom or molecule finds itself in a potential minimum. It cannot travel freely
along the surface because to move, it has to overcome the surrounding potential
barrier of height Up. The value of Uy is a few times smaller than the binding
energy Ep of the gas atom, typically Up ~ 0.3Ep. The atom can jump over the
barrier classically by means of thermal excitation; alternatively, it may quantum
mechanically tunnel through the barrier (see [Tie87] for details).

e The adsorbed atom vibrates and thereby swaps its kinetic and potential
energy with a characteristic frequency vg. For two states separated by an
energy difference Up, the Boltzmann distribution gives the population ratio
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Figure 9.2. Two examples of the time evolution of a one-dimensional collision along
the x-axis between a gas atom (subscript g) and a surface atom (subscript s). The
forces between the two particles follow from the U126 potential of equation (9.7). The
vibrational frequency of the surface atom, ws, is 1.58 x 10" s~ and equal to the collisional
frequency wq. The inverse of the latter can be considered as the effective collision time,
Teoll = W ! The collisional frequency is defined by wg = /2(D + Ey) /o2mg, slightly
different from (9.10) which contains the range parameter b, whereas here we use the
range parameter o after (9.7). Full curves denote the surface atom, enlarged 20 times;
the dash-dots, the gas atom. It is evident from the figure that when the gas atom loses
energy in the collision, the elongation of the surface atom increases. Bottom: Rebounce
with mg = my, mg/mg = 50 and AEs/Ex = 1.2. Top: Sticking with mg/mg = 20
and AEg/Ey = 3.0. Both numbers for AEg/Ey agree qualitatively with the approximate
formula (9.13) according to which the gas atom rebounds for AEs/Ey < 1, or otherwise
sticks. Further parameters are: range of the repulsive potential o = 0.2 A, binding energy
D = 0.05 eV, temperature of grain and gas: Ts = 20 K, Tg = 50 K. Curves are obtained by
integrating the two second-order differential equations (9.8) and (9.9) by a Runge—Kutta
method. The time coordinate on the abscissa is in units of the vibration period of the
surface atom.

of upper over lower level or, equivalently, the time ratio of how long the
system resides, on average, in these two states. For the lower level, the
residence time is also the time #,0p, which is needed for the atom to overcome
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the energy barrier and move to a neighboring site. If the mean residence time
in the upper level is v ! the time scale for thermal hopping is

thop ~ vy U0/ KT (9.14)

where T is the grain temperature. For vy, one may use the frequency of
lattice vibration of the grain, typically a few times 10'® s~!. A more accurate
expression in the case of a symmetric harmonic potential is

vo =/ 2nsEp/m%m

where ng denotes the surface density of sites, m and E}, are the mass and
binding energy of the adsorbed atom. If Uy < kT, thermal hopping is very
quick and #yop ~ vy 1, otherwise #,0p increases exponentially.
When an adsorbed atom moves on the surface of a grain by thermal hopping,
it has no preferential direction when jumping from one site to the next and its
path is a random walk (see figures 9.4 and 9.5). If the atom takes N steps of
constant length a equal to the distance between two surface atoms, the root
mean square deviation from the starting position is o = N!/2a. Therefore,
the adsorbed atom needs a time Nzthop to move a distance Na from the
starting point.

e Replacing in (9.14) Uy by the binding energy Ey,, one gets the evaporation
time scale

fevap ~ vy | eE/ KT (9.15)

e  One can argue, as before, that a reaction in which a molecule on the grain
surface is chemically transformed but which requires an activation energy
E,, occurs on average after a time
—1 Ea/kT

~ vy teE/ KT (9.16)

Ichem

9.1.5 Tunneling between surface sites

Because of its exponential dependence on grain temperature in (9.14), thermal
hopping does not work when the grain is cold and kT falls below Up. However,
an atom has the possibility to quantum mechanically tunnel through the potential
barrier as discussed in section 6.4. When the potential barrier Uy is infinite, the
levels are degenerate (the U here is denoted V' in section 6.4). For finite Uy, there
is energy splitting with an amount E> — E| that increases as Uy is lowered (see
(6.61)). According to (6.63), the tunneling time

_ 2a
fun ~ Y ! exp (E\/ZmUo)

is short for small Up. The gas atom on the grain surface then has a high mobility
and is not fixed to any particular site. The time #,;, is very sensitive to all numbers
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in the exponent, i.e. to the lattice spacing 2a, the mass of the gas atom m and
the barrier height Uy. Obviously, tunneling can only be important for the lightest
atoms, in practice for hydrogen or deuterium. The mobility of other species is
restricted to thermal hopping.

Let us evaluate the separation of the energy levels, E2— E1, and the tunneling
time #yn from (6.61) and (6.63) for a hydrogen atom (m = 1.67 x 1072* g)
physically adsorbed on an ice layer with a spacing 2a = 2 A between force
centers and vibrating at a frequency vy = 3 x 10'2 s~!. Putting the potential
barrier Uy to 0.3 times the binding energy Ey, i.e. Up/k =~ 100 K, we obtain
fun >~ 107 s and E; — E; ~ 10 K. Because of the exponential terms, the
estimates are coarse.

The case of a one-dimensional double potential well can be generalized to
a perfectly regularly structured grain surface, where the potential is periodic in
two dimensions [Hol70]. In the earlier expression for f,, the energy difference
between the two split states | E1 — E3| is replaced by the width A E of the lowest
energy band. It consists of as many sublevels as there are interacting wells. The
full analysis gives a very similar residence time for an atom in a particular well,

- An 9.17

frun =~ N 9.17)

When it is applied to a hydrogen atom on ice, the calculations yield AE /k >~

30 K and thus fy, =~ 10712 s, an order of magnitude shorter than the crude

estimate given here, but this discrepancy does not worry us considering the
uncertainties and simplifications.

9.1.6 Scanning time

For an ideal surface, tunneling to a site n grid spacings away is not a random walk,
but the well is reached after a time #, >~ n - fn. A real grain has defects on its
surface, i.e. sites surrounded by a high potential which the atom cannot penetrate
and where it is deflected in its motion, thus leading to a random walk. The defect
sites invariably arise because the grain is bombarded by soft X-rays and cosmic
rays.

Suppose the grid constant of the atomic lattice is of unit length. Let £ be the
mean free path before the atom is scattered. The time to reach a site n spacings
away increases from n - t,, without scattering to (n2 /€)twn When defects are taken
into account because one needs (1/£)? steps of length £. If the surface contains
N sites altogether, its linear dimension is of order N 172 and the mobile particle
covers in a random walk such a distance in a time

N
Tscan =~ ?ttum 9.18)
Provided that £ < n, one calls T4,y the scanning time. Inserting numbers for a
grain of 1000 A radius, we find fsean < 1076/ s, so scanning is quick.

~
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9.2 Grain charge

A grain in interstellar space is not likely to be electrically neutral. Mechanisms
are at work that tend to alter its charge, notably

the impact of an electron
the impact of a positive ion and
the ejection of an electron by a UV photon.

In equilibrium, the processes that make the grain positive and negative
exactly balance.
9.2.1 Charge equilibrium in the absence of a UV radiation field

First we neglect the radiation field. Consider a spherical grain of radius a and
charge Z. Its cross section for capturing electrons of mass me and velocity v is

2Ze?
oe(v) = ra? (1 + ¢ 2) .

amev

The term in the brackets determines the change over the pure geometrical
Cross section Ogeo = wa?. The bracket has a value greater than one when
the dust is positively charged (Z > 0) and less or equal unity otherwise. The
enhancement in the cross section follows immediately from the two equations
describing conservation of energy and angular momentum for an electron with

grazing impact,

1 1 Ze?
Emevz = EmeVz — 7 (919)
aefv = aV. (9.20)

V is the actual impact velocity and o, = ymgff the effective cross section.
The number of electrons striking and then staying on the grain:

3/2 [ 27¢?
Yene (v0e(v)) = Yenemwa’4n ( Me ) / W1+ € ) e meV?2AT gy
2nkT v amev?

9.21)
ne is their density, Y. their sticking probability and the bracket (...) denotes an
average over the Maxwellian velocity distribution (5.13) at the temperature T
of the plasma. In the case of negative grain charge (Z < 0), some electrons
are repelled and only those whose velocity exceeds a critical value vy reach the
surface at all. This critical value is determined by

mevg Ze?

2 a
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Otherwise, if Z > 0, we must put vp = 0. There are corresponding formulae
for ion capture where the quantities m, o, n, Y bear the subscript i. For a plasma
with equal density and sticking probability for electrons and singly charged ions,
ne = nj and Y, = Y;. In equilibrium, we can write for the brackets that appear in
(9.21),

(va (v))e = (Vo (v))i- 9.22)

On the left, the average refers to a Maxwell distribution for electrons and on
the right for ions. The impact rate of electrons on a grain of charge Z is n.(v)oefr,
where
(14 Ze?/akT) ifZ >0

eZe[akT ifZ <0 ©-23)

Oeff = Ogeo {
is the effective cross section and (v) = (8kT /mwm.) 1/2 the mean electron velocity.
There is a corresponding equation for ions.

Without photoemission, the grain must be negatively charged (Z < 0)
because the electrons are so much faster than ions. When we evaluate the integrals
(vo (v)) using the relations (A.26), (A.28) for the ions and (A.30) and (A.32) for

the electrons, we get
1
Me \2 ! Ze?
mi akT |’

Ze?
NP\ ) =

Solving this equation for x = Ze?/akT and assuming that the ions are
protons, one finds

Z~-25—-. (9.24)
e

Interestingly, the degree of ionization and the density of the plasma do not
appear in this formula. Heavier ions make the grain more negative but only a
little. We see in figure 9.3 that for a fixed temperature, large grains bear a greater
charge than small ones but the potential

o
a

does not change. As one would expect, Z adjusts itself in such a way that, by
order of magnitude, the mean kinetic energy of a gas atom, k7', equals the work
Ze?/a necessary to liberate one unit charge. We notice that in a hot plasma, the
charge can become very large.

9.2.2 The photoelectric effect

9.2.2.1 The charge balance

In the presence of a hard radiation field of mean intensity J,,, one has to include a
term in the charge equilibrium equation (9.22) that accounts for the fact that UV
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Figure 9.3. The equilibrium charge of a grain (in units of the charge of an electron) in
a hydrogen plasma of temperature 7 for two particle radii. Photoelectric processes are
absent.

photons can chip off electrons from the bulk material of the grain. This certainly
happens near a star of early spectral type but also in diffuse clouds permeated by
the average interstellar radiation field. If photoemission is strong, the grain will
be positively charged; one can then neglect the impact of positive ions. Putting the
sticking probability Y. of electrons equal to one, we find for the charge balance
with respect to impinging electrons and absorbed photons that

7 2 © g abs
Ne(v) (1 + —e> - 47r/ VOV . (9.25)
a e hv

We divided under the integral by hv because we wanted the number of
absorbed photons. One can immediately solve (9.25) for the charge Z, provided
one knows the parameters v; and y,,. The first, v, represents a threshold frequency
for photon absorption leading to electron emission; the energy hv; is of order
10 eV and includes the work to liberate an electron from the solid (~4 eV) and to
overcome the potential U of the positively charged grain. The second parameter,
Yy, is the yield for photoemission.
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9.2.2.2 The photon yield

The yield y, for photoemission may be estimated from the following physical
picture based on classical electrodynamics [Pep70]. The energy absorbed by a
subvolume dV of a grain is given by (2.52). When one applies the Gauss theorem
(A.13), one gets

dW, = —divSdV

where S is the Poynting vector. Let the subvolume be at a depth x below the
surface. The likelihood P that the absorption leads to emission of a photoelectron
is assumed to have the form

P = Cexp(—x/le).

The factor C incorporates the following two probabilities: for excitation
of an electron to a ‘free’ state and, when such an electron has reached the
surface, for penetrating to the outside and not being reflected. The exponential
term exp(—x/le) gives the probability that the electron reaches the surface at
all and is not de-excited in any of the scattering processes on the way. The
deeper the subvolume dV below the grain surface, the higher the chance for de-
excitation. The mean free path of electrons in the bulk material, /., is of order
30 A, possibly shorter for metals and longer in dielectrics. Because of the factor
e/l it is evident that small grains (radii @ ~ 50 A) are much more efficient in
photoemission than big ones (¢ ~ 1000 A). From Mie theory, one can compute
the internal field of the grain (the relevant formula is (2.45)) and thus the Poynting
vector.

The yield y, for electron emission induced by photons of frequency v is now
defined via the equation

yv/ divSdVv =c/ el divSdV (9.26)
|4 |4

where the integrals extend over the whole grain volume V. The material constants
are uncertain but various evidence points towards y, ~ 0.1 [Wat72].

9.2.2.3 The photoelectric effect and gas heating

Photoemission can also be important for heating the interstellar gas. As the mean
kinetic energy of a photoejected electron, E,,, exceeds the average thermal energy
%kT of a gas particle, the excess energy, after subtraction of the electrostatic
grain potential U, is collisionally imparted to the gas. In the end, the electron is
thermalized and its own average energy will then also be %kT. The heating rate
due to one dust grain is therefore

H_y4 ) 7, Qibs 3
=47 7a — w[Ey» — U — 5kT]dv. (9.27)
D

t
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The photoeffect has to be invoked to explain the fairly high temperatures of
50...100 K observed in HI regions; there it is the dominant heating mechanism.
Of course, the temperature does not follow from the rate H in (9.27) alone but
only from the balance with the cooling processes.

9.3 Grain motion

9.3.1 Random walk

Suppose one makes, in three-dimensional space, starting from position Rp = 0, a
sequence of steps defined by the vectors L;. After N steps, one has arrived at the
position Ry = Ry_1 + Ly. If the vectors L; are of constant length L but in an
arbitrary direction, the mean square of the distance, (RI%]), grows like

(R%) = NL>. (9.28)

It is straightforward to prove (9.28) by induction because the average of
Ry -Ly—_1 obviously vanishes. Figure 9.4 shows a two-dimensional random walk
and figure 9.5 the verification of formula (9.28) in a numerical experiment.

9.3.2 The drag on a grain subjected to a constant outer force

Let us consider the one-dimensional motion of a heavy test particle (grain)
through a fluid or gas in more detail. Suppose one applies a constant outer force
F on the test particle of mass M. It then experiences a drag from the fluid or gas
molecules that is proportional to its velocity x = V and the equation of motion of
the test particle reads:

F = MX + px. (9.29)

On the right stands an accelerational term M X% and a dissipational term. The
coefficient u in the latter depends on the properties of both the fluid and the test
particle. In a steady state, X = 0and F = uV.

We determine the force F in (9.29) needed to move a spherical grain of
geometrical cross section ra? at a constant velocity V through a gas. The gas has
a number density N at temperature 7 and its atoms have a mass m < M. Let
the grain advance in the positive x-direction. The velocity distribution N (v, ) of
the gas atoms along this direction with respect to the grain is no longer given by
equation (5.14) but has an offset in the exponent,

m \1/2 _ 2
N(Ux)dvx =N (m) e m(vx+V) /2kT dvx.

The y- and z-axes are, of course, unaffected and purely Maxwellian. The
maximum of N (vy) is now at v, = —V, whereas in the rest frame of the gas it is
at zero velocity. The number of atoms in the velocity range [vy, vy + dv,] that hit
the grain head-on (v, < 0) equals —ma?v, N (vy)dv, and each atom imparts in an
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Figure 9.5. According to (9.28), in a random walk one travels after N steps a mean distance
VNL (smooth line). The actual distance in the numerical experiment of figure 9.4 is the
jittery line.

The drag is proportional to the geometrical cross section of the grain, 7a?,

and the drift velocity V. With the mean gas velocity (v) = /8kT/mm, the
friction coefficient becomes

w= szNm(v).

When the grain moves highly supersonically, there is only a force acting on
the front side and the momentum transfer is simply

F =na’NmV?>. (9.32)

F is now proportional to the square of the velocity. In elastic collisions, the
forces would be larger by about a factor of two.

An astronomically important case of an outer force acting on dust particles

is provided by radiation pressure (see formulae (2.7) and (2.8) but there the letter
F means flux). In the case of direct illumination by a star, we may approximately
set the cross section for radiation pressure, C'P, equal to the geometrical cross
section ogep = ma?, corresponding to an efficiency Q™ = 1. If L, is the stellar
luminosity and r the distance of the grain to the star, the drift velocity, for subsonic
motion, is then

_ L, (mn )1/2
" 4wcr?Nm \8kT ’
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N,m and T refer to the gas. Evaluating this formula for typical numbers
of Ly, N and T, one finds that in stellar environments supersonic drift speeds
are easily achieved. However, in many configurations grains are not directly
exposed to starlight but irradiated by infrared photons to which the starlight has
been converted through foreground matter. In such circumstances, C'? is much
smaller than the geometrical cross section and V accordingly smaller, too.

Around main sequence stars, the gas density is always low and the gas drag
unimportant. A grain is attracted towards the star of mass M, by gravitation and
repelled by radiation pressure. From the balance between the two,

GM .M _ L40geo

= 9.33
r2 4mcr? ©-33)
one obtains a critical grain radius independent of the distance:
L (9.34)
der = .
T 4me Gper M,
or '
L M.\~
e~ 024 (—*) ( *) : 9.35)
pm Lo/ \Mo

Grains smaller than a. are expelled. For instance, a 10 My star has
acr ~ 2.4 mm, so all particles with sizes of interstellar grains (~0.1 wm) are
blown away by radiation pressure. For low mass stars L, o Mﬁ's and the critical
radius falls with Mf's. The removal is always rapid as one can show by integrating
the outward acceleration v = 3L*/16nc,ograr2 (see (9.33)).

9.3.3 Brownian motion of a grain

Under equipartition between dust particles and gas, the grains perform a Brownian
motion. It has a translatory and a rotational part but for the moment we neglect
rotation. It is a fundamental result of thermodynamics that in equilibrium the
mean kinetic energy of a gas atom is equal to the mean kinetic energy Ekj, of a
grain. If M and V denote the mass and velocity of the dust particle,

3kToas = Exin = sMV?>.
The Brownian velocity V follows from

V= %. (9.36)
M
Even a small grain of @ = 100 A with bulk density P =25¢g cm™3 has
in a 20 K gas only V = 28 cm s™': it is practically at rest. The kinetic energy
of the grain, Exip, is, on average, equally distributed among the three degrees of
freedom, so
MV}=MV}=MV2.
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The one-dimensional equation (9.29) is also correct with respect to the
Brownian motion of interstellar grains when the retardation is not due to an
external force but to internal friction. The latter always involves dissipation of
energy. In a quasi-stationary state at constant velocity V, the associated heat loss
FV must be compensated by a permanent acceleration Ap?/2M, where Ap?
is the average change in the square of the momentum, p2, per unit time due
to collisions with gas atoms. Thus we require FV = Ap2?/2M and because
MV? = kT in equilibrium at temperature T, we get Ap> = 2ukT. In three
dimensions, when all directions are equal,

Ap® = 6ukT. (9.37)

To find the mean distance that a grain travels when there is no external force,

we multiply equation (9.29) by x,
F Mok . M d dx? M2 ;dez
r=Mxx = Mt T

On taking averages, we note, first, that (Fx) = 0 because x and F are
unrelated and the force F due to collisions with gas atoms is completely stochastic
in its direction. Second, the rate of change of the mean square distance, d (x?)/dt,
must be constant in time because the particle has no memory about its past. On
averaging, this equation shortens, therefore, to %u d(x?)/dt = M(%*) = kT.
Therefore, in three dimensions, the square of the distance r grows linearly with
time,

6kT
2= —t.

rP=xr+y2 4+ = (9.38)

9.3.4 The disorder time

Suppose a grain has, at a certain instant, the momentum pg. After a disorder
or damping time f4is, it will have completely lost its memory about pg. One
impinging gas atom of mass m < M and velocity v changes the momentum of
the grain statistically by mv, and Z atoms by mv~+/Z, as in a random walk. So in
equipartition, when
MV? = mv?

the momentum of the grain is profoundly altered after M /m collisions, i.e. when
the mass of the colliding atoms equals the mass of the grain. Therefore, in a gas
of number density N, the disorder or damping time is

tais = M (9.39)

= Nmvra? '

Because F' = uV = M dV /dt ~ MV /tgis, the friction coefficient can be

expressed through the damping time 7g4;s,

- (9.40)
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Figure 9.6. Numerical experiment of a two-dimensional Brownian motion: gas
parameters, hydrogen atoms at 7 = 100 K with number density 10* em—3; grain
parameters, radius 100 A, mass M = 1.05 x 1017 g. The figure shows the x- and
y-component of the velocity; initially %M sz = kT and Vy, = 0. Because of the large

time interval displayed in the plot, the actual jitter is graphically not fully resolved.

Figure 9.6 displays a numerical experiment of a two-dimensional Brownian
motion assuming inelastic collisions. The parameters are such that a gas atom
impacts the grain about once every 1000 s. To follow the stochastic evolution, we
bin the velocity distribution of the gas atoms N (v,) of (5.14) into 100 velocity
intervals, and likewise for N (vy). Choosing a time step of 103 s, the chance that
during one time step the grain is hit by an atom within a certain velocity interval,
either from the front or back, is small. The actual occurrence of such an event is
prompted by a random number generator. The disorder time according to (9.39)
equals 1.5 x 10° s. It is roughly the interval after which there is a change in the
direction of the velocity vector of the grain by 90° or in its kinetic energy by more
than 50%.

The computations pertaining to figure 9.6 also yield, of course, the time
evolution of the mean square deviation r> = (x2> + y2). Therefore one can
check whether r2(¢) fulfils the theoretical prediction of equation (9.38) with the
dissipation constant i from (9.40). One finds good agreement between numerical
experiment and (9.38) only after integrating over many disorder times f4;s because
one disorder time corresponds to one step in the random walk of figure 9.4.
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9.3.5 Laminar and turbulent friction

In this section, we consider gases of sufficiently high density such that the
mean free path £ of the atoms after (15.90) is smaller than the dimension of
the body moving through the gas. So the discussion does not apply to grains
in the interstellar medium but is relevant to dust particles in accretion disks
(section 15.4) or planetary atmospheres.

e A laminar flow of velocity v around a sphere of radius a exerts, according to
Stokes law, a force
F = 6mnav 9.41)

where n = pv, and p and v are the density and kinematic viscosity
coefficient of the gas (see the empirical relation (15.74) and equation
(15.89)). For the coefficient i in (9.29) we find, by comparison with (9.41),
that

u = 6mna.

The retarding force F in (9.41) is linearly proportional to the velocity v but
also to the radius a. This somewhat strange result can be understood from
(15.74), if one writes for a sphere:

0
F=vp Pona?
da

and replaces the derivative dv/da by v/a. To obtain the coefficient 67

rigorously is tiresome. A sphere rotating at velocity v at the circumference

is retarded by a torque T = Fa with F also approximately given by (9.41).
e  When the flow is turbulent, the decelerating force becomes

F = cwy'raz,ov2

as in (9.32). F is now proportional to the cross section a2, the gas density
p = Nm and the velocity squared. The coefficient cw depends on the
Reynolds number (15.93) and is of order one.

But even in a turbulent flow there is a laminar surface layer of thickness D,
in which the gas velocity increases from zero, on the surface of the body, to v
at the boundary of the layer. For a rectangle of area A = bl and with normal
perpendicular to the velocity v, the retarding force is

v
F =nA—. 9.42
nA5 (9.42)

The work required to renew the kinetic energy of the surface layer

continually is
2

Fo—=nbl’ = 120D
vV = — = =V v .
nbl s = 3 o
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It is assumed that the side [ of the rectangle runs parallel to the flow and b
perpendicular to it. When one takes into account that the velocity in the surface
layer increases linearly from zero to v, one finds by integration for the thickness
of this so called Prandtl layer

onl
p= |2
vp

Inserting D into (9.42) gives a force that is in between the purely laminar and
turbulent cases.

9.3.6 A falling rain drop

As an example, we study a falling rain drop. This has the advantage over an
interstellar grain that its properties are known and that it is shaped like a perfect
sphere, almost. Not to be a sphere, i.e. to have (for the same mass) a surface larger
than necessary, would be energetically quite disadvantageous. To create an area
d A of surface takes the work

dW =¢dA (9.43)

where ¢ ~ 75 erg cm™? is the surface tension of water. It is slightly temperature
dependent; a more precise formula is

¢(T) =116.82 — 0.151T ergcm 2. (9.44)

One roughly estimates that to lift a molecule from the interior of the
drop, where it is surrounded by other water molecules on all sides, to the
surface requires a few hundredths eV. By equating the p dV work (here dV =
infinitesimal volume) to the work required to create new surface, it also follows
that the pressure p inside a drop of radius a is given by

_%

a

)4 (9.45)

The pressure can become high, it is more than ten times the atmospheric
pressure at sea level for a rain drop 0.1 um in radius. Equation (9.45) is needed
when evaluating the evaporation of small grains.

The rain drop is pulled by gravity with the force F = 4ma’gpy/3
(gravitational acceleration g = 981 cm s~2, water density py = 1 g cm™3).
With the appropriate numbers for air (kinematic viscosity v ~ 0.15 cm? s~
density p ~ 1.2x 103 gem™3, = pv ~ 1.8 x 10~* gecm~! s71), the turbulent
and laminar deceleration become equal, 67naV = wa?pV?, when the drop has
aradius @ ~ 0.1 mm and sinks at a velocity V ~ 1 m s~!. The Reynolds number
Re = aV /v of (15.93) is then slightly below 10. For small Reynolds numbers,
the terminal velocity of the falling drop changes like V o< a?, for large ones,
V ocall?
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9.3.7 The Poynting—Robertson effect

Consider a grain of mass m, radius a and geometrical cross section ogeo = wa?

circling a star at distance r with frequency w and velocity v = wr. The angular
momentum of the grain is

L= mriw = mrv.

Let M, and L, be the mass and luminosity of the star. Because there is
mostly optical radiation, the absorption coefficient of the grain is C2S ~ Ogeo and
the particle absorbs per unit time the energy

L, Ogeo

AE = .
4rr?

In thermal balance, the same amount is re-emitted. Seen from a non-
rotating rest frame, the stellar photons that are absorbed travel in a radial direction
and carry no angular momentum, whereas the emitted photons do because they
partake in the circular motion of the grain around the star. If we associate with
the absorbed energy AE a mass mpphot = AE/ ¢?, the angular momentum of the
grain decreases per unit time through emission by

dl AE Lyogeo £
— = —Mphotr V = ——=FV = — —.
dt phot c? 4rc?ri m
Because for a circular orbit
2 _ GM,
r - I"2
we get v = /GM,/r and
de _ ¢ dr
dt  2rdt’

Due to the loss of angular momentum, the distance of the grain to the star
shrinks according to
dr Ly 0geo
L=

—_— = (9.46)
dt 2nr mc

When we integrate the equation dr = —((2wmc?/ L0geo)r dr from some
initial radius r to the stellar radius R, < r, we find the time 7pRr that it takes a
grain to fall into the star,

TPR = r (947)

L*Ugeo

or, in more practical units, assuming a density of pgy = 2.5 g cm ™3 for the grain

material,
Lo\ ! 2
TR _q700 (1) (== (L) (9.48)
yr pum Lo AU

The Poynting—Robertson effect is an efficient way to remove dust in the solar
system. For instance, during the lifetime of the Sun (~ 5 x 10° yr) only bodies
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with a diameter greater than 6 m (!) can have survived within the orbit of the
Earth. Particles existing today smaller than 6 m must have been replenished from
comets or asteroids.

The Poynting—Robertson effect may also be described by an observer in a
frame corotating with the grain. In such a reference frame, the stellar photons
approach the grain not exactly along the radius vector from the star but hit it
slightly head-on in view of the aberration of light. This phenomenon arises
because one has to add the velocity of the photon and the grain according to
the rules of special relativity. The photons thus decrease the angular momentum
of the grain and force it to spiral into the star. The Poynting—Robertson effect also
works when the photons are not absorbed but isotropically scattered.

9.4 Grain destruction

9.4.1 Mass balance in the Milky Way

Grains do not live forever but have a finite lifetime. As part of the dynamic,
continually changing interstellar medium, they are born, modified and destroyed
in processes such as

Birth: mainly in old (evolved) stars with extended shells but
possibly also in novae and supernovae (SN).
Accretion: in dark clouds, gas atoms condense onto grain surfaces

to form mantles.
Coagulation: in dark clouds, grains collide, stick and form larger particles.
Destruction:  partial or complete, mainly in star formation, hot gas or shocks.

In a steady state, dust formation is balanced by dust destruction. The rates at
which this happens are quite uncertain. Therefore the numbers given here are not
precise at all but they do show the order of magnitude.

As gas and dust are intimately linked, we begin with a few remarks about the
mass balance of all interstellar matter in the Milky Way; four important numbers
are listed in table 9.1. The star formation rate implies that within one billion years,
a short period compared to the Hubble time, all interstellar matter, including dust,
is processed in stars. The continuous mass loss of gas in star formation must be
offset by an equal mass input. It comes mainly from planetary nebulae which
supply about 80% of the gas, red giants (~20%) and supernovae (~10%?).

Let us denote the input rates of dust due to planetary nebulae, red giants and
supernovae by Ipn, Irg and Isn, respectively, and express them in solar masses per
year. Most grains probably form in the wind of red giants (like M stars, OH/IR
and carbon stars) as high temperature condensates. The total gas input in the
Milky Way from red giants is about 1 Mg yr~! and about 1% of this is expected
to be in the form of dust. So the input rate of dust from red giants is

IrG ~ 0.01 Mg yr~ 1.
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Table 9.1. Global parameters of the Milky Way relevant to the mass balance of dust.

Total gas mass Mgas ~ 5 x 10° Mo
Total dust mass Mgust ~ 3 X 107 Mo
Star formation rate  tgpr ~ 5 Mg yrfl
Supernova rate gN ~ 0.03 yr_1

Planetary nebulae, although they inject more gas into the interstellar
medium, are less effective than giants in forming grains so that probably Ipy <
Irg. To estimate the contribution of supernovae to the dust balance, suppose
that 3 M of heavy elements are ejected per SN explosion. Although this is
all potential dust material, a considerable fraction is locked up in CO, H,O or
otherwise and is unable to form grains. If one assumes that each explosion creates
0.3 Mg of dust and if there are three supernova events per century in the Milky
Way (see table 9.1), one gets a dust input rate from supernovae comparable to that
of red giants of

Isn ~ 0.01 Mg yr— 1.

For each input rate, one can define a formation time scale ¢ by

Mgust
7

9.4.2 Destruction processes

Grains are destroyed in various processes (recommended reading [Sea87] and
[McK89]) such as the following ones.

e  Evaporation. The solid is heated up to the condensation temperature. This
happens near luminous stars, to a certain extent in HII regions (section 14.4),
also in the diffuse medium (section 14.3) when the grains are extremely small
or have volatile mantles. But by far the greatest sink is star formation and
the destruction rate fsp gives the maximum lifetime of a grain,

ISE = Mess 10° yr. (9.49)
TSFR
If grains should live a billion years, they are cycled at least 10 times between
cloud and intercloud medium. The loss rate of dust associated with astration
equals Isp = Mgust/tsr ~ 0.03 Mg yr_l.

e  Sputtering. Atoms are ejected from a grain by colliding gas particles, either
neutrals or ions. The threshhold impact energy for liberating an atom from
the solid phase is a few times larger than the binding energy of an atom
(~5 eV). But even for impact energies above the threshhold, atoms are
chipped off only with an efficiency n smaller than one, possibly n ~ 0.1.
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Grain—grain collisions after acceleration in a magnetic field.
Shattering which is the destruction of a grain into smaller units, usually in
grain—grain collisions.

e  Photodesorption which is the ejection of grain atoms by photons.

9.4.2.1 Destruction in shocks

Besides star formation, grains are mostly destroyed in shocks associated with
supernova remnants (SNR). The observational evidence comes from clouds of
high velocity (v > 100 km s~1) where more than half of Si and Fe is in the
gas phase, whereas in normal clouds only a fraction of order 1% of these atoms
is in the gas phase. High-velocity clouds are interpreted to be fragments of an
expanding and shocked supernova shell. The mechanism of grain destruction
depends on the type of shock:

e In a fast shock, cooling is slow. The shock is adiabatic or non-radiative
and has a moderate density jump of four. Sputtering is thermal because the
velocities of the gas atoms are thermal. A shock with v ~ 300 km s~!
corresponds to a temperature T ~ 3 x 10 K. If one determines the rate of
impinging protons using (9.1) and adopts a gas density n = 1 cm™, one
finds that at least small grains are likely to be eroded.

e In a low-velocity shock, the cooling time is smaller than the expansion
time of the supernova remnant. The shock is radiative and the density
jump is much greater than four. A charged grain of mass m will gyrate
in the magnetic field B. As By, the component of B parallel to the shock
front, is compressed, the grain velocity v, increases because its magnetic
moment (4 = mvér /2B is conserved and the grain is accelerated (betatron
acceleration). The collisional velocities between the grain and the gas
atoms are now non-thermal and non-thermal sputtering dominates. The
final velocity vg, is limited by drag forces from the gas. The decelaration
is proportional to the inverse of the grain radius, so big grains become faster
than small ones and are more easily destroyed; small grains may survive.
Grains may also collide with one another. A velocity of 100 km s~!
corresponds to ~1000 eV Kkinetic energy per atom, whereas the binding
energy isonly 5...10 eV for refractory material; grains will be vaporized if
the efficiency for knocking off atoms is greater than 1%.

To estimate the importance of shock destruction, we turn to the theory of
supernova blasts. During the first (Sedov) stage, the remnant of mass MsNR
and velocity v is adiabatic and its kinetic energy £ = %MSNRUZ conserved;
at later times, the momentum vMgNR is constant. According to [McK89], the
shock becomes radiative when v < 200(nz/E51)1/14 km s~!; Es; is the energy
expressed in units of 10°! erg. In a gas of density » = 1 cm™> and with the
standard explosion energy E5; = 1, one finds for the mass of the supernova
shell Msnr ~ 103 Mg at the onset of the radiative phase. A supernova rate
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s = 0.03 yr~! then implies that all interstellar material of the Milky Way is
processed in a time

M
ISNR = ———— ~ 2 x 108 yr.
M3NR TSN

As the high-velocity clouds indicate an efficiency for dust destruction of 50%,
the associated timescale (~4 x 108 yr) is substantially shorter than the joint dust
injection time scale from supernovae and red giants (~1.5 x 10° yr). In a steady
state, this requires an additional dust source for which accretion in the interstellar
medium, especially in dark clouds, is usually invoked.

9.4.2.2 Sputtering in the coronal gas

Sputtering of refractory grains also occurs in the hot coronal gas (T = 10° K)
where all atoms are very energetic (~100 eV). Assuming there a gas density
n = 1073 cm~3, grains of 1000 A size are eroded in ~10° yr. For the total dust
in the Milky Way, destruction in the coronal gas is, however, negligible because
it contains only ~0.1% of all interstellar matter.

9.4.2.3 Sputtering of grain mantles

Similarly simple computations show that volatile grain mantle material which has
low binding energies per atom (~0.1 eV) is effectively sputtered in the diffuse
interstellar medium (7 ~ 10°...10* K, n > 10 cm™3). Low-velocity shocks
are also efficacious. Therefore the mantle material with a low binding energy is
confined to dark clouds, in agreement with observations.

9.5 Grain formation

We derive approximate equations that describe the nucleation of monomers
into large clusters. The examples refer to water because its properties are
experimentally well established but the physics apply, with some modifications,
also to interstellar grains. There, however, the material constants are poorly
known.

9.5.1 Evaporation temperature of dust

When two phases, like liquid and gas, are in equilibrium at temperature 7, the
vapor pressure P changes with T according to the Clausius—Clapeyron equation,

dP 0

dT ~ (Va— VpT ©-20)
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Figure 9.7. A reversible cycle employing two vessels to find the vapor pressure of a drop
of radius r. The shaded area marks the fluid; see text.

where V,; and V; are the volume per mol in the gas and fluid phase, respectively,
and Q is the heat necessary to evaporate 1 mol. We remember that 1 mol consists
of

L =6.02 x 10%

molecules. L is Loschmidt’s number, and the gas constant R, the Boltzmann
constant k and L are related through

p= X 9.51)
= .

The Clausius—Clapeyron equation is, with obvious modifications, also valid
with respect to sublimation, which is the phase transition between the solid and
gas phases, and thus applies to the evaporation of interstellar grains and their
mantles. The fundamental formula (9.50) is derived in a thought experiment from
a Carnot cycle:

e  First, one totally vaporizes at constant temperature 7" one mol of a liquid in
a vessel closed by an adjustable weight (of the kind as depicted on the left-
hand of figure 9.7); this requires heat Q. During the phase transition from
fluid to gas, the substance expands from V; to V,; and the vapor pressure P
does the work P (Vg — Vp) by lifting a piston.

e Then the vapor is condensed in another heat bath at slightly lower
temperature 7 — dT and pressure P — d P. In this way, one returns the
latent heat Q" and the work (P — dP)(Vy — Vp). Finally, one brings the
system back to its initial state (P, T').

As the internal energy of the system is the same at the beginning and the
end of the cycle, the total effective work done is, in view of the first law of
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thermodynamics (see (5.49) with dU = 0),
dP-(Ve— V) =0 - 0.
The efficiency of converting heat Q into work is
_dP-(Vg—=Vp) AT
0 T

and, according to the second law of thermodynamics, no heat engine can do better.
Because Vi <« V,, we can approximate (9.50) by

n (9.52)

dn P 0
= — 9.53
dT RT? ( )
which has the solution
P=Pye /T Ty=Q/R. (9.54)

The affinity to the Boltzmann distribution is not only formal but physical
because atoms in the gas are in an energetically higher state than atoms in a
solid. Equation (9.54) is very general and does not say anything about the
details of a specific phase transition. Therefore, Py and Ty have to be determined
experimentally. Laboratory data for water ice from 0°C down to —98 °C are
displayed in figure 9.8. They can be neatly fit over the whole range by equation
(9.54) with properly chosen constants.

One gram of H>O, in whatever form, has N = 3.22 x 1022 molecules. If
it is ice, it takes 79.4 cal to liquify it at 0 °C, then 100 cal to heat it up the water
to 100 °C and another 539.1 cal to vaporize the water. In cooling the vapor by
AT = 100 K from 100 to 0°C, assuming six degrees of freedom per molecule,
one gains 3NkAT = 1.37 x 10° erg. Because

1 cal = 4.184 x 107 erg

the total sublimation energy per HoO molecule at 0°C is, therefore, kT =
8.64 x 10713 erg corresponding to a temperature of 6260 K. This agrees nicely
with the fit parameter 7y = 6170 K in figure 9.8.

The evaporation temperature 7Tey,p in interstellar space of a species X frozen
out on grain mantles follows by setting its partial pressure in the gas phase, nxkT,
equal to the evaporation pressure,

Poe—To/Tevap = nxkTevap. (9.55)

Because of the exponential dependence of the vapor pressure on temperature,
the result is rather insensitive to the gas density. At hydrogen densities of order
~10° cm™3, water ice evaporates at T ~ 120 K as one can read from figure 9.8
assuming an H,O abundance of 10~7. Ammonia and methane go into the gas
phase already at about 90 and 70 K, respectively. A rise in density from 10° to
10'2 cm ™3 increases the evaporation pressure for H,O, NH3 and CH4 by ~30 K.
Typical evaporation temperatures of other astronomically important species are:
hydrogen (3 K), CO, CO; (20 K), silicates (1800 K) and graphites (2500 K).
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Figure 9.8. Vapor pressure of ice. Experimental points (dots) from [Wea77], the full
curve is a fit according to (9.54) with Ty = 6170 K and Py = 4.0 x 1013 dyn em~2 or
3.0 x 10!0 mm of Hg column. The fit is extrapolated to lower temperatures. The lower
horizontal line shows the partial gas pressure, P = nxkT in mm Hg column for a number
density nx = 0.1 ecm™3. Such an H,O pressure prevails in interstellar space when the
total gas density nyy = 10° cm™3 and the water abundance (in the gas phase) is 10=7. The

upper horizontal line is for nx = 105 cm™3.

9.5.2 Vapor pressure of small grains

Condensation and evaporation of small interstellar grains has the peculiarity that
the transition surface between the solid and the gas is not flat but curved. As
molecules leave the grain, the surface area shrinks by an amount dA thereby
creating the energy dW = ¢dA according to (9.43). Evaporation is, therefore,
easier in grains of small radius » and their vapor pressure p; is higher than that
over a flat surface, p. This has fundamental consequences.

To compute p,, one performs an isothermal reversible cycle of four steps.
Here, we write down the work W; that is being done in each step; the formulae
for W; are elementary.

(1) Invessel 1isasmallliquid sphere of radius r at temperature 7 in equilibrium
with its vapor of pressure p, (figure 9.7). The volumes per mol of gas and
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fluid are V, , and V¢, respectively. We evaporate the droplet but in such a
way that while evaporating we inject with a syringe into the sphere against
the internal pressure p = 2¢/r of (9.45) and the outer pressure p, the same
amount of liquid as is being lost to the gas, so all the time r = constant.
When 1 mol has become gaseous,

2¢
W = prVg,r —\pr+ T V.

(2) Isothermal expansion from pressure p; to ps of the 1 mol of gas that has
been vaporized in step (1),

W2 = RT In(pr/ poo)-

(3) The 1 mol of vapor is pressed into vessel 2 where the liquid has a plane
surface and is under its vapor pressure po,

W3 = —RT.
(4) To complete the cycle, we take from vessel 2 with a syringe 1 mol of liquid,
W4 = Vipoo-

As the cycle was isothermal (dT = 0), the sum ) W; must be zero. Let vy
denote the volume of one molecule in the liquid phase. Because RT = pV and
because the pressure in the drop, 2¢ /7, is much bigger than p, — p~o, we obtain

2
L = 2% (9.56)

Poo  kTTr’

This tells us that the vapor pressure p, = poo-e290/KI7 equals py, for big spheres

but increases exponentially when the radius becomes very small. Condensation
of the first seed grains is thus possible only when the partial pressure p exceeds
Poo Or when the saturation parameter s (capital S for the entropy) defined by

s=2 9.57)

T
is greater than one. The vapor is then said to be supersaturated. At pressure p;
given by (9.56), a sphere of diameter 2r is in equilibrium with the vapor, a bigger
drop will grow indefinitely, a smaller one will evaporate, so r is the critical cluster
radius.

9.5.3 Critical saturation

To estimate the critical saturation parameter s¢; > 1 at which clusters are created,
we calculate the work W needed to form in a reversible cycle a drop of radius
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r. The drop consists of n atoms and is formed in a vessel with vapor at pressure
p and temperature 7. The work in each of the four steps is denoted by W;, so
W=> W.

(1) Remove n gas atoms from the vessel,
Wi = —nkT.
(2) Isothermally expand these n atoms from p to peo,
Wy = —nkT In(p/poo).

(3) Press the n atoms into another vessel, also at temperature 7' but containing a
liquid of flat surface under vapor pressure poo,

W3 = nkT.
(4) Form there from the liquid a drop of radius r (and bring it back to the first
vessel),
Wy = 4mir?.
For the sum we get
W = —nkT In(p/poo) +4mir® = 1¢ - 4mr?, (9.58)

The term —nkT In(p/pso) is the potential energy of the drop. It is
proportional to the number of molecules n because the molecules possess short-
range forces and, therefore, only connect to their nearest neighbors. For long-
range forces, the term would be proportional to n2. The other term 47 ¢ r2, which
goes as n”/3, introduces a correction because atoms on the surface are attracted
only from one side.

As the energy of the system stays constant over the cycle, one has, according
to the first law of thermodynamics, to subtract from the system the heat Q = W.
Therefore, during formation of the droplet the entropy of the system falls by (see
(5.51))

S=Q/T =4n¢r?/3T.

S decreases because a liquid represents a state of higher order than a
gas. Although the entropy of a macroscopic system can only increase, on a
microscopic level all processes are reversible and S fluctuates. Formation of a
seed grain comes about by such an entropy fluctuation. As the entropy is after
(5.43) equal to Boltzmann constant k multiplied by the logarithm of the number
Q of states, S = kIn 2, the probability P = 1/ for the formation of a seed is
given by e~5/k. When we insert the saturation parameter s = p/poo of (9.57),
simple algebra yields

1 _s 4n§r2 167'[;“3112
L STk _ — _ 07 %
P=g=e _eXP< 3kT ) - exP( 3k37T31In%s ) ©-39
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For water ({ = 75 erg cm™2, vp = 3.0 x 10723 cm?) at temperature T = 275 K,
the exponent S/k ~ 116/1In*>s. For carbon compounds (¢ ~ 1000 erg cm™2,
vo =9 x 107 cm?) at T = 1000 K, S/k ~ 500/ In’ s.

The probability P is most sensitive to ¢/T and, if ¢{/T is fixed, to s,
changing from practically impossible to highly likely in a narrow interval As.
It is exactly this property which allows us to estimate the critical value s¢ as
follows.

If N, v and o denote the number density, mean velocity and collisional cross
section of the vapor atoms, there are, per second, N 2po atomic collisions each
leading with a probability P to the formation of a seed. So J = N2?vo P is the
rate at which seeds form and the condition

N?vo P ~ 1

yields scr. The outcome of the simple calculation depends entirely on the exponent
in (9.59) which has to be of order one; the factor N?vo has very little influence.
One finds typical values of the critical saturation parameter for water at room
temperature around 10 which implies in view of (9.56) a critical seed radius r¢; of
a few angstroms.

9.5.4 Equations for time-dependent homogeneous nucleation

Let us study the creation of seed grains in a kinetic picture. If the gas has only one
kind of atoms or molecules of mass m, one speaks of homogeneous nucleation, in
contrast to heterogeneous nucleation when different molecular species or ions are
present. A small cluster or droplet of » molecules is an n-mer with concentration
cn. The number density of the gas molecules (they are monomers) is, therefore,
denoted c;. A cluster has a radius r,, and a surface area A,, = 4nr3. When vy is
the volume of one molecule, » and r,, are related through

L
nvg = ?Vn.
Consider a gas of constant temperature 7 and pressure p = c1kT with

saturation parameter s = p/poo > 1 after (9.57). If atoms impinge on a drop
at arate B, A, and evaporate from it at a rate o, A,, the concentration ¢, changes
with time like

Cp = —Cn [ﬁnAn + oy An] + Cn—1Bn—14An—1 + Cnt10n+1An+1. (9.60)

This is a very general equation, all the physics is contained in the coefficients for
evaporation and accretion, o, and 8,. If we assume that atoms are added to the

grain at a rate nr,%(v)cl and leave at a rate nr,%(v)pn/kT, where (v) is the mean

velocity of (9.1) and p, /kT from (9.56), then

oy = 2 SR - (9.61)

2amkT p 2amkT
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In this case, § is constant for all n and the sticking coefficient is one; p, is the
vapor pressure of an n-mer according to (9.56). One defines a particle flux or
current from n-mers to (n + 1)-mers by

Jn = CnﬂAn — Cp+1 AnJr]anJr] . (962)
We can now transform equation (9.60) into the deceptively simple looking form
Cp=Jh1 — Jn.

Equation (9.60) disregards collisions between clusters, only molecules
impinge on a drop but that is a valid assumption as one can easily verify.

9.5.5 Equilibrium distribution and steady-state nucleation

When the system is in phase equilibrium, detailed balance holds. We will flag
equilibrium concentrations by the superscript 0. In equilibrium, J,, = 0 and

0 0
c,BA, = Cn+]an+1A,,+1.

The last relation also enables us to write, for non-equilibrium conditions,

Jn=—cBA, | L S (9.63)
Cn+1 n

0

The equilibrium concentrations c;,

are given by the Boltzmann formula
0 = Ve ACH/KT (9.64)

where AG,, is the work to be expended for creating an n-mer out of monomers
(see (9.58)),
AG, = 4ner? — nkT In(pn/ poo). (9.65)

In view of the discussion in section 5.3.5 on the equilibrium conditions of
the state functions, AGy, is, for a system at constant temperature and pressure, the
difference in free enthalpy. The function AG, is depicted in figure 9.9; it has its
maximum at n, where dAG,/on = 0. All values at n, will, in the following, be
marked by an asterisk. Clusters of size smaller than n, are inside a potential well
and fight an up-hill battle when growing. They have to overcome the barrier of
height AG.. When they have climbed the barrier, their size is n, and for n > n,,
they will grow unrestrictedly. So n, is the critical size. Figure 9.10 plots the
dependence of n, on the saturation parameter s.

In a steady state (subscript s), nothing changes with time and d/9¢ = 0. The
conditions for steady state are less stringent than for equilibrium because J,, need
not vanish, it only has to be a positive constant,

J, = J¥ = constant > 0.
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Figure 9.9. The full curve shows AG,/kT where AG, = 4n{r3 —nkT In p/poo is the
change in free enthalpy when n water molecules condense into a drop of radius ry (see
(9.65)). The curve reaches its maximum at ny. The broken curve depicts the equilibrium
concentration cg of n-mers on an arbitrary linear scale; the minimum is at n = ny. In these

plots, T =300 K, s = p/poc = 4 and the surface tension { = 75 erg em™2,
Under this condition, we get, from (9.63),
A ¢S o d (c
—— =2l ~ (). (9.66)
chBAy, Ch Chy on \c,

To realize a steady state in a thought experiment, one has to invoke a
Maxwellian demon who removes large clusters with n > L > n, by gasifying
them. The demon supplies the boundary condition for the cluster distribution,
=0 forn > L.

n

One does not have to be very particular about L, it just has to be somewhat greater
than n,. As a second boundary condition we impose

ct/e) =1

which means that only a very small fraction of the total mass is in clusters.
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Figure 9.10. The dependence of the critical cluster size n, defined in figure 9.9, on the
saturation parameter s = p/poo for water vapor at 273 K. For clusters of size ny, the
difference in the Gibbs potential between gas and droplet, AG,, has its maximum and
dAG,/on = 0.

Consequently, by performing a sum over (9.66),

L=r S S
JS =1 _L_ (9.67)
nX:; Cl(q)ﬂAn C(l) Cg

we can directly compute the steady-state nucleation rate J*. The latter may also
be appproximated analytically from the relations:

N Js L dn N Js L eAGn/kT N Js L AG, /KT
1~ ? ] m = ﬁ T dn >~ A 0 e dn
nCy c) Ji n BAxci J1

which follow from (9.67). Because AG, has a fairly sharp peak at n.., the surface
area A, = 4nr3 can be taken out from under the integral and replaced by A,. A
Taylor expansion of AG,, around the maximum 7.,

_ 102AG,
AGy = AGs+ 35—

(n —n)?

with

o o ) 0.6

AG, = 2%
*T 3 3 \kTlIns
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and
2AG, g
on2  2mr?
yields, upon replacing the integration limits (1, L) by (—o0, 0o) to obtain the
standard integral (A.25), the steady-state nucleation rate J*. The number of
clusters that grow per unit time and volume from size n to n+1 is then independent
of n and one readily finds

2 1/2 443
JS = (%> ()2 exp s |- (9.69)

The exponent in square brackets equals —AG,/kT and u is defined by

4n§a(2)
="

(9.70)

where ag denotes the radius of a monomer, so vp = 4Jm8 /3. The expression in
(9.69) is quite a satisfactory approximation to the sum in (9.67). The magnitude
of J% is, of course, entirely determined by the exponent. Figure 9.11 illustrates the
immense change in J*, over many powers of ten, with the saturation parameter
s. Figure 9.12 shows the deviation of the equilibrium from the steady-state
concentrations, the latter being calculated from

We learn from figure 9.12 that for small n-mers, equilibrium and steady-state
concentrations are the same. Around the critical cluster size n,, the ratio c$ /c¥
declines with an approximately constant slope b = 9(c}, /cg) /on evaluated at n,,
over a region of width An = —1/b. For large n, the ratio ¢} /cg tends to zero.

9.5.6 Solutions to time-dependent homogeneous nucleation
9.5.6.1 The evolution towards the steady state

The time-dependent system of equations for nucleation presented in (9.60) can
easily be solved when the coefficients for evaporation and accretion, o, and §y,
are as simple as in (9.61). Let us write the time derivative of the concentration of
n-mers as ol
G = cp —Cp)
T

where cgld is the old value of the concentration a small time step 7 ago; we want

to find the new one, c¢,,. Equation (9.60) can immediately be brought into the form

Ancn—1 + Buen + Cpcpr1 + Dy =0 9.71)
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Figure 9.11. Variation of the steady-state nucleation rate J* (s~! em™3) with saturation
parameter s = p/poo for water vapor at T = 273 K; surface tension ¢ = 75 erg em™ 2.,
J$ is computed from (9.69) and displayed on a linear (top) and logarithmic scale (bottom).

017

The pressure poo is derived from (9.54) and equals 1.92 x 1 dyn cm™2. Below s ~~ 5,

nucleation is negligible, above catastrophic and s >~ 5 represents the critical value of the
saturation parameter.

where A,, B,, C,, D, are known coefficients (so for the moment, A, is not the
surface area of an n-mer). Putting

Cn = YnCn—1 +0n (9.72)
and inserting it into (9.71) yields

Ay 5n+] Cy + Dy
Yy = p=—"7"7"7+—.
By + ynt+1Ca By + vn+1Cn
We determine the concentrations ¢, in the size range
g=n=L

with 1 < g < n, (as far as possible) and L > n,. The boundary conditions are
suggested by figure 9.12: At the upper end, we take ¢z, = 0 because cL/cg =0.
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Figure 9.12. The ratio of the cluster abundance in a steady state to the cluster abundance
in equilibrium as a function of cluster size n; here for water vapor at T = 273 K and
saturation parameter s = p/poo = 4. At n = ny, the ratio is about one half.

Therefore, y;, = §. = 0, and this allows to compute ¥, = 6, = 0 for
n=L-—1,...,g+ 1. Atthe lower end, the abundance of clusters is very close to
equilibrium and we put ¢, = cg. By choosing g considerably greater than one, we
avoid using the enthalpy AG, of (9.65) for the smallest clusters where it cannot
be correct. We then find ¢, forn =g+ 1,..., L — 1 from (9.72).

Figure 9.13 presents a numerical experiment for water vapor at constant
temperature 7 = 263 K and saturation parameter s = 4.9. These two values
imply a monomer concentration c? =3.5x10'7 cm™3 and a critical size n, = 71.
At time ¢ = 0, we start with a configuration where only very small clusters exist
and put ¢;, = 0 forn > g. We see that the fluxes J,,, as defined in (9.63), converge
towards their steady state values J*® given in (9.69). The steady state is reached
after a relaxation time 7 that can be shown by an analysis of equation (9.66) to
be of order

Trel ~ re (9.73)
re 4;3( 0(2) . .

In the particular example of figure 9.13, T ~ 2 X 1077 s and J >~
1 s=! ecm™3. The asymptotic values of the concentration ratios ¢, /02 are
qualitatively the same as in the steady-state distribution of figure 9.12 (although

the latter is computed for somewhat different values of 7 and s).
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Figure 9.13. Water vapor at 263 K supersaturated by a factor s = 4.9. Under these
conditions, the critical cluster size ny = 71 and the concentration of the monomers
¢1 = 3.5 x 1017 cm™3. The smallest clusters for which we compute the time evolution
consist of g = 12 molecules, the largest of L = 120. At time r = 0, the smallest grains
are in equilibrium, ¢, /cg = 1forn < g = 12, and bigger clusters are absent (¢, = 0 for
n > g). The bottom plot shows how the concentrations of various cluster sizes, normalized
to the equilibrium value, evolve in time. The top panel depicts the corresponding particle
fluxes J; of (9.62).

9.5.6.2 Time-dependent nucleation using steady-state fluxes

As the relaxation time tye] in (9.73) is short compared to the time it takes to grow
big stable drops, the steady-state flux J® represents a good approximation to all
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fluxes J, after the time 7] when transient effects have died out. The J, may
then be replaced by J* and this greatly simplifies the further analysis in which we
study nucleation in a cooling gas. Such a situation prevails in the outward flowing
wind of mass loss giants where most interstellar grains are formed.

When the partial gas pressure of the condensible component, P = c1kT,
reaches the vapor pressure P, over a flat surface, the saturation parameter s
equals one. At this instant, the gas temperature is denoted by 7, and the time
t is set to zero. As the gas cools further, s increases. At first, the steady-state
nucleation rate J* is negligible because all clusters are below the critical size n.
(see figure 9.9) and the time it takes to form one critical cluster, roughly given
by the inverse of J*, is unrealistically long. Only when the saturation parameter
approaches the critical value s¢r at time f,; do clusters become bigger than the
critical size n, and catastrophic nucleation sets in.

Let N(¢) be the number of monomers in clusters that were formed at time #.;
and and let R(¢) be their radius, so 4 R3/3 = Nvg. For ¢t > t., these clusters
grow at a rate

R = ma (v)ei () (9.74)

where ap and (v) = /8kT /mwm are the radius and mean velocity of a monomer.
The rate at which monomers are depleted through steady-state nucleation is,
therefore,

¢1(t) =—J%(t) - N(t) (9.75)

which leads to a monomer depletion since time zero of
t
c1(t) —c1(0) = —/ JEAHYN()dt. (9.76)
0

If the cooling is due to an adiabatic expansion, K = T/cf ~!is a constant,
where k = C,,/Cy is the ratio of specific heats. One then has to add to the density
decrease ¢ (r) of (9.75) the term y TTY ! /K? where y = 1/(x — 1). The time
dependence of the saturation parameter s follows via P, as given by (9.54),

st) = LD 1o/1(0)-13/7c.

(&

To illustrate the formation of grains, we integrate equations (9.74) and (9.75)
with Runge—Kutta asssuming an adiabatic expansion with a cooling rate

T=T. —wt

with T, = 292 K and w = 100 K s~!. Results are plotted in figure 9.14. Until
the moment of crtitical supersaturation, grains do not form and the decrease in the
gas density and temperature and the rise of the saturation parameter are due only
to the adiabatic expansion at the prescribed rate. Then at #,; = 0.247 s, nucleation
rises in a spike as rapidly as shown in figure 9.11, depriving the gas of its atoms
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Figure 9.14. Nucleation in an adiabatically cooling water vapor. At ¢t = 0, the
gas is at Te = 292 K and just saturated (s(0) = 1) with a monomer concentration

¢1(0) = 6.6 x 1017 cm™3. The gas expands adiabatically cooling by 100 K every second.
We plot as a function of time the saturation parameter s, the number density of the gas
molecules c1, the steady-state nucleation rate JS and the radius R of the largest drops. The
ordinate is for all four variables linear with the zero point indicated. The maximum values
are 7.3 for s, 103 s~ em™3 for J* and 280 pm for R. At the maximum of the steady-state
flux JS, the saturation parameter s is near its critical value of 5.0 and the temperature has
fallen to 268 K. Att =ty = 0.247 s, u = 9.7and A ~ 6 x 100.

at an accelerated pace. From that moment on, clusters grow beyond n, according
to (9.74) whence they are stable. The radius at which their growth levels off (at
t = 0.65 s) represents the typical final grain size (one can also determine a size
distribution). The saturation continues to increase after #.; because of cooling but
eventually falls for lack of gas atoms.

9.5.7 Similarity relations

The number of variables that enters the nucleation calculations is quite large
(vo, m, c1,¢, T, (v), s, po, To) but one can drastically reduce the parameter space
to only two variables: u from (9.70) and A defined below [Yam77]. Therefore,
the models presented here for the condensation of water near room temperature
can be carried over to grain formation in late-type stars (77 ~ 1000 K, ¢; ~
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10° cm™3, ¢ ~ 103 dyn cm~2) as long as u and A are comparable.

As the gas temperature changes only a little during the brief period of
catastrophic nucleation when T ~ T, it may be approximated by a linear
function in time,

T(t) =Ty —at.

When one inserts this 7'(f) into the evaporation pressure poo = poe’0/T of
(9.54), one finds for the time dependence of the saturation parameter

‘1 (t) e’/fsat

s(t) =
c1(0)
where
1 To |dInT ‘
Tsat N Ter dt ’

The cooling rate d In T'/dt is evaluated at T¢;. By defining

y =c1(t)/c1(0)

X =1/Tsat
A =t c1(0) wag (v)
3R
" ah

the nucleation formulae (9.74) and (9.76) can be transformed into the new
equations:

dp
ap _ 9.77
dx Y ( )
A N2 412
Iy A (H ' " lay. 978
Y=351 (n) /pr(x)e"p{ Y+ [ ¢ O

They contain only the two independent parameters p and A. The first, p, is
fixed by the ratio of surface tension over temperature and thus incorporates grain
properties. The second, A, is determined by the conditions in the environment,
such as gas density ¢ and cooling rate T but it also reflects the physics of the
dust via the constant 7 in the expression for the evaporation temperature of the
grain material (see (9.54)). The final grain size is largely influenced by A (see
definition of p).

9.5.7.1 Cautioning remarks

The quantitative results of homogeneous nucleation theory outlined here are fairly
speculative because of the intrinsically exponential behavior of the process of
grain formation and a number of dubious assumptions, oversimplifications and
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unsolved problems, such as (recommended reading [Fed66, Abr74]) the following
ones.

The smallest clusters are not spheres.

The latent heat of the condensing molecules should not be neglected.

The surface tension of the smallest clusters is unknown, the concept being
even ill defined. Replacing ¢ by ¢ = ¢/[1 + §/r], where § is a curvature
correction of atomic length (~1A) and r the grain radius, does not solve the
problem.

e  The thermodynamics of small clusters, in particular, the proper expression
for the free enthalpy, is still controversial. A drop also has macroscopic
motion but it is not clear how its translation and rotation replaces the internal
degrees of freedom. Because of this uncertainty, immense fudge factors (up
to 107 for the concentration of the critical clusters) are cited in the literature.
We mention that because of the macroscopic motion, which was neglected in
our derivation of (9.57), the correct formula for the vapor pressure of a drop
is not (9.57) but In(p,/ pso) = 2¢vo/kTr — 4/n, where n is the number of
molecules in the cluster [Kuh52].

Besides such intrinsic uncertainties in the theory of homegenous nucleation,
astronomical real life is even more complicated. First, nucleation in the wind of
giants is not homogeneous but proceeds in a vast network of chemical reactions
involving many different species for which we do not know the rate coefficients.
Second, stellar photons are present in the wind that create new reaction channels
and the radiation field is not in equilibrium with the gas. So when it comes to the
question of how much one learns by applying homogeneous nucleation theory to
grain formation in the outflow of red giants, an honest answer is sobering.

Another reason for this dissatisfactory state of affairs is the limited
possibility to compare observations with theory. Observations consist of infrared
spectra that do not carry detailed information about the dust. All they tell us is
that silicates do form in M-type stars, as can be inferred from the presence of
the 10 um band, and where we expect carbon dust, it is there and not graphitic
because of the absence of the 2200 A feature. However, there is no information
in the spectra about grain size or the dependence of growth on the physical
parameters of the medium.



Chapter 10

Polarization

Electromagnetic radiation can become polarized by interstellar dust in three ways:

e  Through scattering, which we have already discussed and illustrated. The
achieved degree of polarization can be very high.

e Through extinction. When starlight passes through a dust cloud, the
weakening of the flux depends on the orientation of the electric vector. Many
reddened stars appear to be polarized, up to 10% or so, although the emission
from the stellar photosphere is certainly not.

e  Through emission. The far infrared radiation of some clouds shows a small
degree of polarization.

To explain the latter two phenomena, one has to evoke the presence of non-
spherical grains, for example elongated particles shaped like cigars. They must
also be aligned, otherwise the net polarization would be zero.

10.1 Efficiency of infinite cylinders

As an approximation to elongated particles, we can treat dust grains as infinite
circular cylinders. Although interstellar grains are certainly neither exactly
cylindric nor infinitely long (at best they are elongated), such an idealization
provides quantitative estimates for the real particles. The problem of computing
the electromagnetic field in the interaction of light with an infinite cylinder for any
ratio of cylinder radius over wavelength was first solved by Rayleigh [Ray18] for
normal incidence and by Wait [Wai55] for oblique incidence. It is also possible
to handle coated or multi-layered cylinders. We skip the mathematical derivation
of the cross sections, the numerical code is still fairly simple.

10.1.1 Normal incidence and picket fence alignment

Consider a very long circular cylinder of length L much longer than its radius,
a, or the wavelength . We call the cylinder infinite when on halving its length

319
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L, the cross section C is also halved; C/L is then constant. When light impinges
under normal incidence, the cylinder axis is perpendicular to the direction of wave
propagation. In this case, there are two extinction cross sections depending on the
polarization of the incident light:

° Cﬁ’“: the cylinder axis is parallel to the electric and perpendicular to the
magnetic vector of the incident electromagnetic field.

e CS: the cylinder axis is perpendicular to the electric and parallel to the
magnetic vector of the incident electromagnetic field.

They are not equal and, therefore, unpolarized light becomes slightly linearly
polarized after interaction with the cylinder. What counts is the difference

ext __ ext ext
AC™ = ¢ — S,

When there are many such cylinders with their axes all parallel, one speaks
of picket fence alignment. The efficiency Q is defined as the cross section over

projected area,

Cc

In this section, we mostly talk about extinction efficiencies and sometimes
omit the superscript ‘ext’. In figure 10.1 we present ﬁ’“ and QS for infinite
cylinders with circular cross section. We adopt m = 1.7 + i0.03, which is
about the optical constant of silicate material between 0.3 and 2 pum, i.e. over
the whole visible region and part of the near IR. Carbon, the other major chemical
component of interstellar dust, is often disregarded in the context of polarization
because, without any magnetic inclusions, it is hard to align. However, we will
also consider in this chapter examples of carbon particles. By comparing the top
of figure 10.1 with figure 4.2, we see that the extinction efficiency of a cylinder
mimics, in every aspect that of a sphere, except that we now have two Qs differing
by an amount A Q' = Q' — QT*'. Note that A 0°*' may be negative.

The efficiencies Q‘ﬁ’“ and QY reach their first maximum at size parameter
x =~ 2.5, whereas the difference A Q°*' has a flat peak near x ~ 1. In the bottom
frame of figure 10.1, the display of A Q% is rearranged. It refers to the same
optical constant m = 1.7 4 i0.03 but we now keep the wavelength A fixed and
vary the radius. We choose A = 0.55 um, which is the center of the visual band V,
because there the observed interstellar polarization typically attains its maximum.
The figure informs us that in polarizing visible light, silicate grains of cylindrical
shape are most efficient when their radii are about 0.1 wm and that much thinner
or thicker cylinders are ineffective. Because for a given dielectric permeability,
A Q% is only a function of the size parameter x = 2ma /A, we further learn that
there is a direct proportionality between the cylinder radius and the wavelength
Amax Of maximum polarization.

To derive from figure 10.1, which shows the efficiencies Q) and Q, the
volume coefficients K| and K |, taken with respect to 1 cm? of dust material (see
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Figure 10.1. The top frame shows the extinction efficiencies Q| and Q, and their
difference, AQXt = Q| — Q.. as a function of the size parameter x = 2ma/A for
infinite cylinders of radius a and optical constant m =~ 1.7 + i0.03. The bottom frame
shows the dependence of A QX! on radius a for a wavelength A = 0.55 um and the same
m. The data for A QX! are exactly the same as in the top box, only rearranged.

section 2.1), one has to multiply Q by the geometrical cross section 2a L under
vertical incidence and divide by the cylinder volume a”L. This gives K o a™ .
Therefore, if at some wavelength A Q®*! is equal for thin and thick rods, the thin

ones are more efficient polarizers (with respect to the same total dust mass).
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10.1.2 Oblique incidence

If the cylinder is oriented arbitrarily, its axis can form any angle 6 with the
wavevector k. Normal incidence corresponds to 6 = 90°, whereas at 6 = 0,
k is parallel to the cylinder axis. It is also, in the case of oblique incidence,
customary to call the quantity O = C/2aL the efficiency, although this is not
in accord with the definition for Q in (2.9), where C is divided by the projected
geometrical cross section 2a L sin6. Anyway, with Q = C/2al,

0®)—0 for6 — 0.

Furthermore, when the cylinder has a very large radius, the efficiency reflects
the geometrical contraction, so

Q) x sinb fora > A.

Formulae to compute Q for normal incidence are found, for instance, in
[Boh83], for oblique incidence in [Lin66].

Figure 10.2 shows the efficiences Q) and Q as a function of orientation
angle 6 for size parameters x = 2ma/A in the range where polarization has
its maximum. Around normal incidence down to orientation angles of 40°, the
efficiencies Q) and Q| as well as their difference A Q are rather constant. When
the cylinder is tilted further, Q) and Q) converge and for extremely oblique
incidence they tend to zero. There is a sharp resonance for the curve with the
size parameter x = 0.6 that peaks at an orientation angle of 0.55°. The sinusoidal
dependence of Q on @ for large size parameters is already indicated in the curve
with x = 2.

10.1.3 Rotating cylinders

Grains in interstellar space are knocked about by gas atoms and rotate. Therefore
we also have to evaluate the cross section of a spinning cylinder. The incidence is
generally oblique but we have just learnt how to handle this. During rotation the
incident angle 6 varies, so one has to form an average over a rotation cycle.

Suppose the cylinder circles in the (x, y)-plane of a Cartesian coordinate
system, presented by the page of this book, and its momentary location is
characterized by the angle ¢ (see figure 10.3). Let the cylinder be illuminated
by an unpolarized flux whose wavevector k lies in the (y, z)-plane and makes an
angle 90 — W with the z-axis. At ¥ = 90°, light falls directly from above on the
page and then, for reasons of symmetry, there will be, on average, no polarization.
At an angle W = 0°, the wavevector lies in the (x, y)-plane; then cross sections
are different for electric vectors along the x- and z-axes.

While the cylinder spins, the angle 6 between K, the direction of wave
propagation, and the cylinder axis changes. We can figure out in a quiet moment
that 6 is given by

cosf = cos W cos ¢. (10.2)
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Figure 10.2. The top frame shows the extinction efficiencies for polarized light of
obliquely illuminated infinite cylinders. An orientation angle 6 = 90° corresponds to
normal incidence. There are three pairs of curves for three size parameters; the upper
curve gives Q| when the electric vector E, the wavevector and the cylinder axis are in one
plane; the lower shows Q | when E is perpendicular to the plane defined by the wavevector
and the cylinder axis. The bottom left panel is a magnification for x = 0.6. Where Q) and
Q] (dots) cross over, the polarization reverses. The bottom right panel gives the relevant
quantity for polarization, Q| — Q| , for a size parameter x = 1.2.
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Figure 10.3. An infinite cylinder rotating in the (x, y)-plane. The direction of the
incident light, given by the wavevector k, makes an angle 90 — W with the z-axis which is
perpendicular to the (x, y)-plane.

Now, as before, let Q| (@) be the efficiency of the cylinder for oblique
incidence under the angle 0, i.e. when the electric vector, the cylinder axis and
k lie all in one plane. Let O, be the efficiency when the electric field swings in
the plane containing k and the x-axis; equivalent definitions hold for Q () and
for Qy. Then

Qy = Qjcos’ ¢ + Q1 sin’ ¢

Qx = Qysin’ ¢ + Q1 cos’ ¢
so that

Oy +0,=010)+0.(0)

0y — O0x =1[0)(O) — Q1(0)]cos2¢.

The angle ¢ is just the projection of ¢ onto a plane perpendicular to k,
tan ¢
sin @

Denoting by AQ the time average of Oy — Qy, we get

tangp = (10.3)

2 /2
AQZ(Qy_Qx>=;/O {Q16) — 01(0)} cos29dg.

A Q is proportional to the degree of linear polarization that the rotating cylinder
produces. In the integral, 6 and ¢ are both functions of ¢ as specified in (10.2)
and (10.3).

An example is shown in figure 10.4. This again applies to silicate at optical
wavelengths. We see that the picket fence, which refers to rigid cylinders, agrees
qualitatively with the more sophisticated models that include rotation. Naturally,
A Q™! is greatest for the picket fence, by some 30% compared to rotation with
W = 0 and by more when W is larger. Polarization will become weak when the
rotation axis begins to point towards the observer.
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Figure 10.4. The difference in the extinction efficiency, AQ%X! = (Qﬁ“ — Q‘jz‘t), of
a rotating infinite cylinder with refractive index m = 1.7 4 i0.03 as a function of size
parameter for various inclinations of the rotation axis. The curve labeled picket fence can
also be identified in the top frame of figure 10.1; here the cylinders do not rotate but are
fixed in space and their axes are parallel to the electric vector and perpendicular to the
direction of wave propagation given by the wavenumber k. When the cylinder is spinning,
W denotes the angle between k and the plane of rotation.

10.1.4 Absorption efficiency as a function of wavelength

When cylinders have a diameter 2a =~ 0.1 um, which is a typical size of
interstellar grains, their efficiencies Q) and Q| and the efficiency of a sphere
of the same radius a are, at optical wavelengths, quite similar. Within a factor of
two,

O >~ 01 =~ Q (sphere).

In the mid and far infrared at wavelengths A >> a, the situation is radically
different. This is demonstrated in figure 10.5, where we have calculated the Qs
over a broad wavelength region for cylinders as well as spheres. The particles
consist of our standard dust materials, amorphous carbon and silicate, with
frequency-dependent dielectric permeabilities from figure 7.19. Whereas for both
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Figure 10.5. The absorption efficiencies, Q| and Q| , of infinite cylinders (full lines)
under normal incidence of light. The cylinder radius is a = 107> cm. The left panel is
for silicates, the right, amorphous carbon. The efficiency of a sphere (dotted) of the same
radius is shown for comparison.

substances, Q| and Q(sphere) are comparable at all A, the efficiency Q), where
the electric vector of the light is along the cylinder axis, is in the far infrared much
larger than Q(sphere). This has consequences for the temperature of dust, its
emission and the degree to which the emission is polarized; extinction is usually
irrelevant at these wavelengths.

When the cylinders in a cloud are randomly oriented or randomly rotating in
space, one has to take an average over the solid angle and over the polarization
direction. The mean efficiency is given by

/2
(0v) =1 fo [0u1(®) + Qv1(8)]sin6 dd (10.4)

where 6 equals 90° when the light falls at a right angle on the cylinder. (Q;‘}bs) is
plotted in figure 10.6. It must be plugged into equation (8.8) when one wants to
determine the temperature of the cylinders in a radiation field J,. In figure 10.7,
we have computed, from equation (8.1), the emission ¢,, of cylinders near a B1V
star and compare it with that of spheres. There are tremendous differences in
the dust temperature, a factor of three (!) for amorphous carbon and a factor of
1.5 for silicate. Despite the fact that cylinders are much colder than spheres,
they are much stronger emitters in the far infrared, especially if they consist
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Figure 10.6. The average (Q,) of (10.4) for randomly oriented rotating cylinders and for
spheres (dots); otherwise as figure 10.5.

of amorphous carbon which has a large absorption efficiency because of its
metallicity. Infinite cylinders are, of course, an extreme example but particles
with realistic elongations also show considerable enhancement in their far infrared
emission (one may consult figure 3.3).

10.2 Linear polarization through extinction

10.2.1 Effective optical depth and degree of polarization p(.)

In a cloud with anisotropic grains that are aligned to some degree, the extinction
of a linearly polarized wave depends on the orientation of the electric field
vector. Let tn,x be the optical depth in the direction of maximum attenuation,
perpendicular to it, the optical depth has its minimum, tp,i,. When the unpolarized
light from a background star traverses the cloud, the initial stellar intensity I, is
weakened to the observed intensity

Iobs — l]*(e*'fmax + e*'fmin) — ]*e*'feff
where g defines the effective optical thickness,

Teff = — In[§(e7™ + ¢~ Tmin) | > 0. (10.5)
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Figure 10.7. Emission in erg s ster L Hz! of 1 cm3 of amorphous carbon (right) and
silicate dust (left). The grains are at a distance of 1018 cm from a B1V star (L = 104 Lo,
Tetf = 20000 K) and are either spheres (dots) or randomly rotating cylinders (full curve)
but always of radius a = 107 cm. The total volume of the cylinders equals also 1 cm?,
so they are not infinite, just very long. The dust temperatures are: 7T'(aC,sphere) = 56.3 K,
T (aC,cyl) = 19.3 K, T'(Si,sphere) = 44.4 K, T(Si,cyl) = 30.9 K. See also previous figure.

In the case of weak extinction (Typax < 1),
Teff = %(Tmax + Tmin)-
The (positive) degree of polarization is (see (2.71) and (2.77))
e*fmin _ effmax
= 10.6
p e_Tmin + e~ Tmax ( )

The difference in optical depth, Tmax — Tmin, is usually small (although Ty, and
Tmin themselves need not be so) and the polarization may then be approximated
by

p= %(Tmax — Tmin) for Tmax — Tmin — 0. 10.7)

However, when Tyn,x — Tmin 18 large, the polarization goes to unity,
p=1 for Tmax — Tmin — 0©.

The more foreground extinction there is, the higher the degree of
polarization. The observed percentage of polarization rarely exceeds 10%. The
upper limit is set by the difficulty of observing faint, strongly reddened stars.
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Figure 10.8. Linear polarization of the star HD 161056 [Som94]. Dots represent
measurements, the full curve is the best fit Serkowski curve. Reproduced from [Som94]
with permission of the American Astronomical Society.

10.2.2 The Serkowski curve

A central question is how the polarization, p(}), varies with wavelength as stellar
light is extinguished by aligned grains in foreground clouds. Figure 10.8 presents,
as an example, multi-wavelength observations of the star HD 161056 in the
spectral interval from 0.13 to 3.6 um. The data are nicely fitted by the expression

PR _ exp [—k In? (Lﬂ . (10.8)
Pmax Amax

This functional form of p(A) is called the Serkowski curve after one of
the pioneers in the field. As the logarithm in (10.8) is squared, it does not
matter whether we write A/Amax Or Amax/A in the exponent. The Serkowski
curve approximates polarization measurements of most stars quite well. It has
three parameters: Amax, Pmax and k. The meaning of Apax is obvious—it is the
wavelength where the degree of polarization reaches its maximum ppayx. It is also
easy to see that the parameter k determines the width of the curve. Equation (10.8)
is just a mathematical construct to fit empirical data, nothing more and certainly
not a law. Nature also takes the liberty of behaving otherwise.

In section 10.1, we calculated, from Mie theory, the cross sections of
infinite cylinders. We now apply these results in an attempt to give a theoretical
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explanation to the Serkowski curve. For this purpose, we go back to figure 10.4
which displays the difference AQ*' = Q; — Q. in the extinction efficiency
of rotating cylinders as a function of size parameter x = 2mwa/X, and also for
various inclination angles W of the rotation axis. We infer from equation (10.7)
that A Q®(}) is generally proportional to the polarization p(A) and thus has the
same wavelength dependence. The refractive index of the cylinder material in
figure 10.4 is m = 1.7 + i0.03, representative of silicate at optical and near IR
wavelengths.

When we use exactly the data of figure 10.4 but rearrange them by fixing the
cylinder radius to some typical size, say a = 0.1 um, so that only A appears in the
abscissa, the plots already look quite similar to a Serkowski curve. Figure 10.9
shows two alignment scenarios. On the left, the cylinders form a picket fence, on
the right, they rotate with the rotation axis inclined by an angle W = 45°. In either
configuration, the Serkowski curve gives a remarkably good fit. This quick result
is gratifying and guides us in understanding why interstellar polarization has the
functional form of equation (10.8). It also testifies that such artificial geometrical
bodies, like infinite cylinders, are, in their polarizing capabilities over a wide
wavelength interval, from a tenth to a few micrometres, akin to real interstellar
grains.

Of course, the agreement in figure 10.9 between model and Serkowski curve
is not perfect, locally it is far from it. There are broad and deep wiggles. Their
maxima are spaced by Ax =~ (0.7 but as the difference in the extinction efficiency,
AQ®, depends only on x = 2ma/A, we know that a spread in cylinder radii by
only 50% will effectively smear out the wiggles. Therefore, for a size distribution
of cylinders, p()) will be smooth and close to the Serkowski curve everywhere.
Indeed, to achieve good agreement it takes only a few cylinder radii with proper
size steps. For modeling polarization, the size distribution is not nearly as
important as it is for modeling the extinction curve.

We also conclude from figure 10.9 that rotation, as opposed to the picket
fence, does not change the shape of the wavelength dependence of polarization
greatly. Rotation mainly reduces the height of the curve (degree of polarization),
whereas the parameters Amax and k are not much affected.

When one observes the wavelength dependence of polarization towards a
large and diverse sample of stars, and then fits the measurements for each star by
a Serkowski curve, one gets a continuous range of values for the three parameters
(Pmax, k, Amax). Naturally, we expect strong fluctuations in pmax. Their origin
is trivial as this quantity must depend on the degree of grain alignment and is
at small optical depth proportional to the number of particles, N, in the line of
sight.

The variations in the other two parameters, k and Amax, are more subtle. We
do not expect them to be related to N, and the influence of alignment is uncertain
and probably slight. If interstellar grains were the same everywhere, which is
not a bad assumption for many purposes, we would be at a loss to explain the
observed variations in k and Ap.x. As variations are common, we conclude that
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Figure 10.9. The wavelength dependence of linear polarization produced by aligned
infinite cylinders with optical constant m = 1.7 4+ i0.03 (full curve). Also shown are
Serkowski curves after (10.8) (dotted lines) with parameters Amax = 0.6 um and k = 1.2;
they fit more or less. In both frames, the cylinder radius @ = 0.1 um. The left panel
shows rigid cylinders under normal incidence, the right, rotating cylinders with rotation
axis inclined 45° to the line of sight. The full curve is a rearrangement of the curve in
figure 10.4 for ¥ = 45° and is obtained by putting ¢ = 0.1 pum.

intrinsic differences exist among the polarizing grains in various environments.

For field stars, Amax has a large scatter from approximately 0.35 to 0.9 um
but values cluster at 0.55 um. We will argue in the discussion of figure 10.10
that, for cylinders, the maximum wavelength A,y is proportional to grain size. A
dependence of k on cylinder radius a is not evident. Nevertheless, there exists an
interesting statistical correlation between k and Amax [Whi92],

k >~ 1.66Amax-

A good explanation for this formula is still missing.

10.2.3 Polarization p(1) of infinite cylinders

Figures 10.10 and 10.11 display how, for infinite cylinders, the difference in the
extinction efficiency, A Q®*' = Q|| — Q 1, which is proportional to the polarization
p(X), changes with wavelength. The plots refer to picket fence alignment. If we
allow for rotation and an inclined rotation axes, nothing essentially changes. The
computations are performed for two materials, silicate and amorphous carbon,
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Figure 10.10. AQ®'()) for infinite silicate cylinders in picket fence alignment.
Computations were done for three cylinder radii, a, as indicated. The optical constant
m(X) is from figure 7.19. The dotted line represents a least—square fit by a Serkowski
curve with Apax = 0.6 um and k = 1.2.

and cover a wide wavelength range. The cylinder radii change from 0.025 to
0.2 um, which should comprise the astrophysically relevant sizes.

10.2.3.1 Silicate cylinders

Both silicate and amorphous carbon grains have their peculiarities. Let us first
look at the polarization curve of silicate cylinders with radius @ = 0.1 um. This
is the full curve in figure 10.10. It has three bumps (at about 0.6, 12 and 23 um).
The one around 0.6 pm is very similar to the bump in the left frame of figure 10.9,
only there the optical constant m()) was fixed and the wavelength display linear,
whereas in figure 10.10, m(}) is variable and the wavelength scale logarithmic.
In least—square fits to p(A) by a Serkowski curve, the parameters k and Apax are,
in both cases, almost identical (dots in figures 10.9 and 10.10).

When one smooths the oscillations in the curves of figure 10.10 and
determines the location of the first peak (the one at A < 2 um), one finds that the
relation between Apax and the cylinder radius a is roughly linear. Consequently,
if the polarizing dust particles in interstellar space are silicate cylinders, they must
have diameters of ~0.2 um, or a bit less, to yield the Serkowski curve with the
standard Apax = 0.55 um.

Besides the bump at 0.6 wm, there appear in figure 10.10 two other peaks
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Figure 10.11. As figure 10.10, but now for cylinders of amorphous carbon (aC). For
cylinder radius a = 0.025 um, the optical constant m(x) = 1.85 4 1.23i is fixed and
has the value of aC at 0.55 um; for the other cylinder radii, m(}) is from figure 7.19
and variable. Dots show Serkowski curves. For cylinder radius a = 0.025 um, the fit
parameters are Amax = 0.81 um, k = 1.2; for @ = 0.1 um, they are Apmax = 2.5 um,
k=0.8.

in the mid infrared which are not predicted by the Serkowski curve. Their origin
is of an entirely different nature and due to resonances in the bulk material (see
figure 7.19). If m(A) were constant, these bumps would vanish. The first, sharper
peak is associated with the 9.7 um silicate absorption feature but its position is
substantially offset by about 2 um to the red. The location of the polarization
bump is independent of the cylinder radius; however, its strength increases with
a.

10.2.3.2 Carbon cylinders

Carbon grains are depicted in figure 10.11. The bumps in the mid infrared have
disappeared, nevertheless the polarization at these long wavelengths is several
times stronger than for silicates. The curve p(A) now has only one peak that
occurs, for the same cylinder diameter, at much larger A« compared to silicates.
Extremely thin carbon rods (@ < 200 A) are required to produce a hump at
0.55 pum, where most polarization curves peak.

But even when carbon rods of a certain radius produce the right wavelength
of maximum polarization, Amax, the overall shape of p(}) does not agree with
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observations. For example, in the plot of p(A) for a = 0.025 um, we can fit only
the peak of the Serkowski curve. Likewise grains with a = 0.1 um, which does
not seem to be an unreasonable size, can be excluded not only because Amax is far
off in the near infrared but also because p(1) overshoots on the red side and is
much too broad (k = 0.8). On these grounds, amorphous carbon is not likely to
be the prime polarizing agent.

10.2.3.3 The ratio C\|/C_1 at optical and infrared wavelengths

In the optical region, polarization is well described by the Serkowski curve which
can be quantitatively reproduced by applying Mie theory to infinite cylinders.
Maximum polarization occurs when the cylinder radius is comparable to the
wavelength. The cylinder cross section C is about 25% greater than C, (see
figure 10.1). So the ratio C);/C_L is not far from unity and the cross sections
are not very sensitive to the direction of the electric vector. In the infrared
region, however, where the particles are small compared to wavelength, the
ratio C)/C_ can be large. For instance, silicate cylinders at 10 um (optical
constant m = 1.36 + i0.95) have C|/C. = 2.61. At A = 1.3mm, where
m = 3.41+i0.034, this value goes up to 39.9 and for amorphous carbon cylinders
the ratio approaches 10* (see figure 10.5). These numbers are independent of
cylinder radius as long as a < A.

10.2.4 Polarization p(1) of ellipsoids in the Rayleigh limit

Although infinite cylinders can reproduce the basic features of optical
polarization, it is unsatisfactory that their shape is so artificial. We can improve
the infinite cylinder model by treating ellipsoids as a more realistic alternative.
They allow an investigation of a much greater variety of shapes. Cigars, a subclass
with major axes a > b = c, include cylinders in the limit of infinite axial
ratio a/c. In the infrared, the computation of cross sections is easy because the
interstellar particles are then small compared to wavelength and we may apply the
electrostatic approximation of section 3.3.

It is also straightforward to compute coated ellipsoids, although we will not
do so. They further widen the parameter space: one can then vary the axial ratio
of the ellipsoids, their mantle thickness and the optical constants of core and
mantle. Coated ellipsoids will thus be superior in fitting observations. However,
a fit to observations becomes astronomically relevant not by its mere agreement
with the data but by its ability to predict and to constrain our conception about
dust. One must, therefore, critically ask whether a refinement of the dust model
in the direction of complicating shape and composition deepens or muddles our
understanding of dust.

Figure 10.12 depicts how the optical depth (1) and the polarization p(A)
produced by small silicate cigars change with wavelength. The particles are
spinning with their rotation axis perpendicular to the line of sight (¢ = 0 in
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Figure 10.12. Optical thickness t and degree of polarization p in the infrared as a function
of wavelength for small rotating silicate cigars; no other grains are asumed to be present.
The rotation axis is perpendicular to the line of sight. The dielectric permeability eg; (1) is
taken from figure 7.19. The left box shows moderate elongation with axial ratio a/c = 3,
the right box, weak elongation, a/c = 1.5. The optical depth is one at 9.5 um. The curve
p(A) gives the degree of polarization one would observe in a column with 79 5 ;;;, = 1
under perfect spinning alignment.

the nomenclature of section 10.1). t(A) is the effective optical depth after (10.5)
and p(A) is defined in (10.6). The size of the particles is irrelevant as long as they
are in the Rayleigh limit. In this particular example, 7 is one at 9.5 um (curve
maximum). At low optical depth, which is approximately true outside the peak at
9.5 um, t(}) is proportional to the time-averaged cross section C = %(CL +Cp,
and p(}) to the difference AC = C; — C} (see formulae (3.49) and (3.50)).
The results for silicate pancakes are practically identical. When the spheroids
are made of amorphous carbon (not shown), the curves are less interesting and
display a monotonic decline with wavelength.

A different presentation of the polarization produced by perfectly aligned
spinning spheroids is given in figure 10.13. It allows us to read off p(A) if the
optical depth 7(A) at wavelength A equals 1 or 3. The polarization p(}) for other
optical depths may be estimated from interpolation remembering that p(1) goes
to zero for T(A) — 0 and approa