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FOREWORD

The XII Max Born Symposium has a special character. It was held in honour
of Jan  Lopuszański on the occasion of his 75th birthday.

As a rule the Max Born Symposia organized by the Institute of Theoretical
Physics at the University of Wroc law were devoted to well-defined subjects
of contemporary interest. This time, however, the organizers decided to make
an exception.

 Lopuszański’s influence on and contribution to the development of theo-
retical physics at Wroc law University is highly appreciable. His personality
and scientific achievements gave him authority which he used to the best ad-
vantage of the Institute. In fact we still profit from his knowledge, experience
and judgment.  Lopuszański’s scientific activity extended over about half a
century. He successfully participated in research on the most important and
fascinating issues of theoretical physics. During his scientific career he met
and made friends with many outstanding physicists who shaped theoretical
physics to the present form.

For this reason, as well as the coincidence of the approaching end of
the century, we thought that it would be interesting and instructive to give
the symposium a retrospective character. We decided to trust the speakers’
judgment and intuition for the choice of subjects for their talks. We just asked
them to give the audience the important message based on their knowledge
and experience.

The beginning of the XII Max Born Symposium had a particularly so-
lemn character. It took place in Aula Leopoldina, the beautiful baroque hall
in the main building of our University. In the audience were present the
participants and invited guests. Seven speeches were delivered in honour of
Professor Jan  Lopuszański. Professors from Wroc law, Z. Bubnicki, Z. Latajka
and J. Zió lkowski, spoke on the academic career of Jan  Lopuszański and his
activity in the Wroc law division of the Polish Academy of Sciences. Professor
J. Lukierski, as a director of our Institute, welcomed all the guests and, as a
friend of Jan  Lopuszański, gave a very personal history of Jan’s life, showing
also some photos starting form his childhood up to recent days.

Professor K. Zalewski from Cracow still remembers  Lopuszański’s PhD
defense at the Jagiellonian University where he was present in the audi-
ence as a young student. Professor R. Haag recalled some humorous stories
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of his early meetings with  Lopuszański. He underlined  Lopuszański’s hone-
sty and sincerity in scientific research. It was  Lopuszański who introduced
him to supersymmetry , which resulted in a very influential paper by Haag,
 Lopuszański and Sohnius.

Among the guests of honour there was also Dr. Roland Kliesow, Consul
General of the Federal Republic of Germany. He spoke of  Lopuszański’s con-
tribution to German–Polish understanding. He considered  Lopuszański as a
man of deep knowledge of the German language, history and culture. At the
time , when the political circumstances were unfavorable for German–Polish
relations he co-worked with German scientists and helped to develop personal
contacts and collaboration between German and Polish colleagues.

The opening session ended with a short piano recital given by the young
pianist Micha l Ferber.

The organizing committee takes the opportunity to thank warmly the
sponsors:

University of Wroc law
Stiftung für deutsch–polnische Zusammenarbeit
The British Council
Ministry of National Education
Polish Academy of Sciences

Their financial help made the organization of the Symposium possible. Moreo-
ver, the Stiftug für deutsch–polnische Zusammenarbeit financially supported
the publishing of the proceedings.

The organizing committee

Andrzej Borowiec
Wojciech Ceg la
Bernard Jancewicz
Witold Karwowski



Jan  Lopuszański – the Man
and His Achievements

During the opening session of XII Max Born Symposium I had the honour
and pleasure to present the life of Jan  Lopuszański from his pre-scientific
period in Lvov. Let me therefore first recall these first twenty two years of
his life.

Jan  Lopuszański was born on 21st October 1923, in Lvov, as the only
child of Janina  Lopuszańska, de domo Kuźmicz. His father, W ladys law
 Lopuszański was, until Pi lsudski’s coup d’état in 1926, in governmental ser-
vice, but after these events he left the state post, became the Head of the
Local Landowners Association, and further the Director of the Insurance
Company “Floryanka”. The most well-known in the  Lopuszański family were
Professor Jan  Lopuszański, Jan’s uncle, who was the Head of the Ministry
of Public Works in the 1920s, and also the Rector of the Lvov Institute of
Technology, and Tadeusz  Lopuszański, the Head of the Ministry of Religious
Confessions and Education in the first years of independence. From the early
years of Jan’s life he had impeccable knowledge of the German language; the
primary school education he mastered while being tutored by his German
private teacher, Fräulein Henriette. The family of Jan  Lopuszański belonged
definitely to the upper class of Lvov’s social circles. As a youngster he was
neither interested nor involved in politics. Only from the perspective of many
years, after the Second World War, did he recall complex and not always so-
cially just relations between Polish, Ukrainian and Jewish communities. His
traveling – a part of his duties as an international scientist – began quite
early. For example in 1938 his summer vacation was spent in Italy, on the
beach near Ancona.

In 1939 the Second World War started and Lvov was incorporated into
the Ukrainian Soviet Republic. Jan attended the last classes of Soviet ele-
mentary school, the so-called “desjatiletka”. However, he did not finish it.
Under the accusation of participating in a subversive pupil’s organization he
was arrested and sentenced to 10 years of prison camp in Siberia. He was still
in Lvov prison for the German offensive in June 1941. Only because of great
luck and his very alert attitude, was he able to avoid being shot by escaping
Soviet security forces. He escaped from prison a few moments before the be-
ginning of the extermination of all prisoners. He confessed later that this was
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the most dramatic, and the most fortunate, moment of his life, which left a
trauma for the rest of his life.

During the German occupation of Lvov (1941–44) Jan finished the clan-
destine high school and passed maturity exams together with the well-known
Polish poet Zbigniew Herbert. He also worked for his living in the research
institute for epidemic diseases and provided his blood by feeding lice needed
for medical experiments. This permitted him to avoid the exportation to for-
ced labour in Germany. After the second arrival of the Soviets in Lvov, in
1944, Jan started to attend the Polytechnical Institute. After the death of
his father he decided to move with his mother to Wroc law.

The second part of his life and his whole scientific career was linked to
Wroc law University.

Already at the beginning of his studies in Lvov he realized that his inte-
rests and research activities were linked more to pure science; his choice was
the field of theoretical physics. After his arrival in Wroc law in 1945 he imma-
triculated as a student of physics at Wroc law University. At that time there
were in Wroc law only three lecturers of physics all three from Lvov: Profes-
sors Stanis law Loria and Jan Nikliborc, and Roman Ingarden, the son of a
famous philosopher, who became Loria‘s assistant. Jan  Lopuszański obtained
his master degree in 1950, and in 1952 he became a lecturer. His scientific
career developed quickly; after defending his Ph.D. thesis in Cracow in 1955
Jan obtained the position of Docent and finally, in 1959, was nominated to
the post of Professor in Physics.

The first eight years of the scientific career of Jan  Lopuszański was devo-
ted to the problems of statistical physics. He studied the statistical models of
cosmic rays and cosmic cascades. By applying the theory of stochastic equa-
tions he obtained concrete solutions, providing good hints on how to compare
the theory with experiment in cosmic rays physics.

1958 began a new period in the scientific career of Jan, related to three
one-year research visits abroad: Utrecht University (1958), New York Univer-
sity (1961/62) and the Institute for Advanced Study in Princeton (1964/65).
His new scientific passion was quantum field theory. In Utrecht he studied
soluble field-theoretic models; two years later, in New York he became invol-
ved in the mathematical foundations of quantum field theory. In Princeton,
Jan, together with Helmut Reeh, started the main scientific subject of his life:
the problem of symmetries in classical and quantum physics. In particular,
in 1965 with H. Reeh, Jan obtained important results concerning so-called
spontaneous symmetry breaking in quantum models, which is related to the
famous Goldstone theorem and the existence of degenerate physical vacua.
Further, during his visit to Stony Brook in 1970/71, Jan studied the ma-
thematical properties of generators in axiomatic field theory, and obtained
the classification of all possible generators of internal symmetries. Unfortun-
ately by introducing too restrictive assumptions he discarded the possibility
of a new symmetry – supersymmetry. However, when, in the early 1970s,
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supersymmetry appeared as a new idea, transforming bosonic into fermionic
fields, Jan was very well prepared to consider the classification theorem for
all physically allowed supersymmetry generators. In 1975 his most famous
paper appeared, written with R. Haag and M. Sohnius during his stay at
Karslsruhe University and CERN, entitled “All possible generators of super-
symmetries of the S-matrix” (Nucl. Phys. B 88, 257 (1975)). In this paper
appeared the first classification of four-dimensional supersymmetry algebras
which are permitted by the axioms of local quantum field theory and the
relativistic scattering theory described by the so-called S-matrix. This paper
is at present the most well known single publication in the domain of theo-
retical physics from Wroc law after the Second World War – at present it has
over 300 citations by other authors.

Now the scientific recognition of Jan’s outstanding research results is
complete. In 1976 Jan  Lopuszański became the corresponding member of
the Polish Academy of Sciences. He continued his research, in particular by
considering further the notion of central charges, the mathematical object
in supersymmetry scheme introduced by him earlier. He collaborated with
Polish (M. Wolf) as well as foreign (D. Buchholz) specialists in algebraic me-
thods, and visited several times the Max Planck Institute in Munich and the
universities in Göttingen and Bielefeld. In particular  Lopuszański obtained
the rigorous definition of nonlocal symmetry charges as well as the definition
of generators in the presence of massless excitations.

In the early days of his employment at Wroc law University Jan
 Lopuszański was already involved in administrative duties. He was elected in
1957 the Deputy Dean of the Faculty of Mathematics, Physics and Chemistry
of Wroc law University, and in the period 1962–1968 a Dean of the Faculty.
In the period 1954–1968 Jan  Lopuszański also worked in the branch of the
Polish Academy of Sciences in Wroc law. The most essential period, however,
for theoretical physics at Wroc law University is the period 1970–84 when
Jan  Lopuszański was the Director of the Institute for Theoretical Physics.
On one side he promoted new research domains (supersymmetry, quantum
field theory) which engaged theoretical physics in Wroc law in front-line re-
search in the world. Another important side of Jan’s activities as director of
the institute was very just handling of personal matters, with a unique and
proper blend of tolerance and firmness. One can call the years 1970–1984
the golden period of theoretical physics at Wroc law University, characterized
by a lot of contact with research centers abroad and quick development of
new branches of research. From this period I would like only to mention the
contacts with Stony Brook University and the head of theoretical physics
there, Prof. C.N. Yang, Nobel Prize winner in 1957. In the late 1970s at least
half of the members of the Institute for Theoretical Physics at Wroc law Uni-
versity visited Stony Brook, and obtained important scientific results in the
framework of this scientific collaboration.
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In the period 1984–1994 until retirement, Jan  Lopuszański was an un-
questionable moral authority, not only among his colleagues at the Institute,
but also at the University of Wroc law as well as in the community of phy-
sicists in Poland. In 1986 he became a real member of the Polish Academy
of Sciences, and in 1996 was nominated, as the only physicist from Wroc law,
the real member of the Polish Academy of Arts and Science in Cracow. In
that decade he publishes two books on ”Spinorial Calculus” (PWN Wroc law,
1984) and “An Introduction to Symmetry and Supersymmetry in Quantum
Field Theory” (World Scientific, Singapore, 1991). The last book also con-
tains collected results from  Lopuszański’s research papers during 25 years on
the subject of symmetry and supersymmetry.

The academic year 1993/94 was the last before Jan’s retirement. He was
not happy with his new situation after leaving university without any didactic
and academic duties. Since 1996 he has again been employed at the institute,
with a part-time contract, and every semester presents a monographic lecture
on recent scientific developments. He is also scientifically active and in 1998,
began preparing his new book about the research results obtained in the
collaboration with P. Stichel and J. Cis lo.

Now Jan approaches 75 years. He is quite often present in our institute,
and very much interested in all scientific and human developments. His ability
to give much advice on all important matters was always very essential for
me personally. I hope that we shall be able to enjoy Jan’s presence among
us and his warm and friendly personality for many years in the Institute for
Theoretical Physics.

Jerzy Lukierski
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Janusz JȨDRZEJEWSKI e-mail: jjed@ift.uni.wroc.pl
Institute of Theoretical Physics, University of Wroc law, pl. Maksa Borna
9, PL-50-204 Wroc law, POLAND,,

Cezary JUSZCZAK e-mail: cjusz@ift.uni.wroc.pl
Institute of Theoretical Physics, University of Wroc law, pl. Maksa Borna
9, PL-50-204 Wroc law, POLAND,,

Bart lomiej JURKIEWICZ e-mail: bajur@ift.uni.wroc.pl
Institute of Theoretical Physics, University of Wroc law, pl. Maksa Borna
9, PL-50-204 Wroc law, POLAND,,

Witold KARWOWSKI e-mail: wkar@ift.uni.wroc.pl
Institute of Theoretical Physics, University of Wroc law, pl. Maksa Borna
9, PL-50-204 Wroc law, POLAND,,

Ma lgorzata KLIMEK e-mail: klimek@matinf.pcz.czest.pl
Institute of Mathematics, Technical University of Czstochowa, pl.
Da̧browskiego 73, PL-42-200 Czstochowa, POLAND,,

Michael KNYAZEV e-mail: knyazev@iaph.bas-net.by
Instute of Applied Physics, National Academy of Sciences of Belarus,
Academicheskaya ul. 16, BY-220072 Minsk, BELARUS,,

Sylwia KONDEJ e-mail: kondej@ift.uni.wroc.pl
Institute of Theoretical Physics, University of Wroc law, pl. Maksa Borna
9, PL-50-204 Wroc law, POLAND,,
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O. Haschke and W. Rühl . . . . . . . . . . . . . . . . . . . . . . . . . 118



XIV Table of Contents

Summational Invariants
H. Reeh . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141

Relative Entropy Estimates in Statistical Mechanics
and Field Theory
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ABOUT THE VOLUME

As it was mentioned in the Foreword, we invited contributions from the sci-
entists who have been in close relations with Jan  Lopuszański. This restricted
the scope of the volume to the subjects related to his research interests. Still
these frames allowed for rather broad spectrum of topics. Most generally
they can be characterized by the key words: Quanta, Relativity, Symmetry,
Statistics.

The volume is organized as follows. After a historical article by Helmut
Rechenberg the contributions are collected in four chapters, and in addition
two abstracts are put at the end of the Proceedings.

As explained by Helmut Rechenberg, already in early stage of its devel-
opment the quantum mechanics provided a framework for physical models of
atoms and molecules. The article presents Max Born conceptual and calcu-
lational contributions to the theory of molecules.

In Chapter 1 some fundamental questions about the understanding of
quantum theory are discussed.

Rudolf Haag poses some questions and gives suggestions concerning phys-
ical observations made in an infinite environment, the notions of individual
objects, events and their relations to the space-time.

Roman S. Ingarden expresses an opinion that the understanding of quan-
tum mechanics requires that its very formulation is based on a logic which
abandons the distributive law, and discusses a special version of the quantum
modal logic.

It is well known that in both relativistic and nonrelativistic quantum me-
chanics the localized states spread over all space under the time translation.
Theodor W. Ruijgrok argues that it should not be interpreted as noncausality.
This is so because a nonlocality in the coordinate representation of the eigen-
states of the Newton-Wigner position operator is of the order of the Compton
wavelength of the particles involved. Thus it is not relevant experimentally.

In standard classical mechanics the dynamics is determined by the Hamil-
tonian. Peter Stichel discusses a fundamental question concerning the canon-
ical description of physically equivalent systems: whether the interaction can
be represented by a nonstardard choice of the symplectic form (classical me-
chanics) or equal time commutation relations (quantum mechanics). The au-
thor presents also interesting observations concerning quantum field theory.

The contribution by Armin Uhlmann presents a view of the quantum
information theory that the Einstein, Podolsky and Rosen effect is not a
paradox but a channel or a part of a protocol to transfer so called ”quantum
information” from one system to another. The author uses the von Neumann
quantum theory of measurements, Tomita-Takesaki theory and copositive
operators introduced by Woronowicz, and translates properties of the density
operators into properties of quantum channel maps. Among others, he poses
the question: why do we restrict ourselves to the Hermitian operators? and



gives the answer: we can use normal operators, and their complex eigenvalues
may be treated as point on a screen.

Chapter 2 consists of papers which put emphasis on mathematical aspects
of more specific problems in the quantum theory.

Zbigniew Haba proposes an explicitly relativistically invariant quantiza-
tion scheme which treats simultaneously particle’s wave function and quan-
tum field fluctuation.

Oliver Hashke and Werner Rühl develop an algorithm which permits to
construct new exactly soluble models. There are constructed prepotentials,
defining the ground state wave functions of the Schrödinger operator associ-
ated with the solvable model. These prepotentials are in a one- to-one relation
with the orbits of the Coxeter group, corresponding to a given Lie algebra.

Helmut Reeh discusses representations for the summational invariants. In
a particular case he expresses them as linear combinations of the Schrödinger,
respectively Poincaré groups. The complexity of a more general situation is
illustrated by examples.

Bogus law Zegarliński gives a careful review of application of relative en-
tropy estimates in the statistical mechanics and field theory. All this is done
by strict mathematical methods.

Jean-Pierre Antoine and Camillo Trapani devote their articles to par-
tial *-algebras, i.e. the algebraic structures for which multiplication is not
always defined. Antoine gives a review of general mathematical theory as de-
veloped during its 15 years old history. First article on this subject appeared
in the volume devoted to Jan  Lopuszański on his 60-th birthday. Trapani
concentrates on a special class of the so called Banach partial *-algebras and
discusses their physical relevance.

The materials in Chapter 3 are based on modern concepts of supersym-
metry and quantum deformations.

Igor Bandos and Jerzy Lukierski consider a new class of superparticle
models invariant under extended class of supersymmetries, with tensorial
central charges. In 1975 Haag,  Lopuszański and Sohnius introduced the super-
symmetry algebra with scalar central charges (HLS scheme). About twenty
years later it was observed that it is desirable to extend the HLS scheme by
introducing tensorial central charges. In particular, such an algebra with two-
tensor and five-tensor central charges describes at present very fashionable
symmetry of eleven-dimensional M -theory.

Detlev Buchholz considers implementations of supersymmetry transfor-
mations by Hilbert space operators in the framework of supersymmetric
asymptotically abelian C∗-dynamical systems. He shows that the only states
admitting such an implementation are pure supersymmetric ground states
and mixtures or elementary excitations thereof.

W ladys law Marcinek proposes a generalization of quantum statistics
which includes the one-dimensional models. The essential structure for such a
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generalization is a cross symmetry instead of the braided one. The Fock space
representation and existence of the well defined scalar product are discussed.

Julius Wess studies the question how the relativistic Heisenberg algebra
is deformed if we assume its invariance under the action (or rather coac-
tion using the language of quantum groups) of q-deformed Lorentz group.
After discussing the Hermiticity of deformed relativistic phase space genera-
tors Wess discusses their real spectra. It appears that the time variable and
three-dimensional radius are becoming commuting observables with discrete
eigenvalues which are described by explicitly given functions of the deforma-
tion parameter q.

Chapter 4 contains the papers on particle theory and various aspects of
symmetry and geometry.

Magdalena Gusiew-Czudżak applies the formalism of differential forms to
consider the so called inverse problem i.e. finding a Lagrangian for a given
equation of motion. Her approach can be treated as the higher grade gener-
alization of the Hamilton-Jacobi equation.

G. Jorjadze and W lodzimierz Piechocki present in two-dimensional space-
time a specific metric with nonzero curvature which exhibits already on clas-
sical level a kind of annihilation and creation of particle trajectories. Quan-
tization in this scheme means finding appropriate representations of sl(2,R)
algebra on a set of trajectories.

Wojciech Królikowski investigates consequences of his model of “fermion
texture”. He finds that the model implies existence of two sterile neutrinos,
i.e. those interacting only gravitationally. The mixing mechanism with the
conventional neutrinos is proposed which may explain deficits of solar and
atmospheric neutrinos.

The article of Dieter Maison recalls the development of last 20 years in
the theory of fundamental interactions. The author finds a “half- supersym-
metric” solution of the Einstein-Yang-Mills theory which means that it is
annihilated by one half of the supersymmetric generators. The paper con-
nects the standard model with supersymmetry and supergravity and finds
gravitational confinement of nonabelian monopoles.

In the paper by A. Patrascioiu and Erhard Seiler the reflection positivity
of Osterwalder and Schrader is used to establish a connection between the
existence of a critical point in the classical spin models and the triviality of
a certain cohomology class in the continuum limit. The rigorous result by
Fröhlich and Spencer for N = 2 shows the Kosterlitz-Thouless transition.
The standard wisdom is that for N > 2 the model does not become critical
at any finite β. The authors, however, present arguments according to which
all the O(N) models have the transition to a spin phase.

Kacper Zalewski presents from diverse points of view a thorough analysis
of the multiple production of bosons. He arrives at the conclusion that the
momentum distribution, the particle cumulant and p-th correlation function
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can be expressed in terms of one function of two single particle momenta. He
also explains under which conditions Einstein’s correlation occurs.

Wolfhart Zimmermann discusses problems related to formulating method
for reduction of the number of coupling constants in the quantum theory of
massless fields. He shows that the principle of reduction is independent of
renormalization scheme used. A possibility of eliminating the mass parame-
ters is also discussed.

The Editors
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Max Born and Molecular Theory

H. Rechenberg

Max-Planck-Institut für Physik,
Münich (Germany)

Introduction

While the 20th century is approaching its conclusion, the historian may look
back and assemble the essential scientific fruits of the this period. Nearly fifty
years ago, Werner Heisenberg stated in a lecture that in quantum or wave
mechanics “a new, unified science of matter has arisen, where the separa-
tion between chemistry and physics essentially lost any meaning”, because
(Heisenberg 1953):

“The chemical properties of atoms have at least in principle become ac-
cessible to calculation, and already in the first years after the rise of quantum
mechanics the simplest chemical binding, namely that of the two hydrogen
atoms in the hydrogen molecule was calculated with the help of the new
methods and was found in closest agreement with chemical experience. Thus
the chemical valency-forces were explained on a physical basis, and the ap-
plication of the new knowledge in industrial practices became only a matter
of time.”

Evidently, the new unification of physics and chemistry constitutes one of
the most eminent results of 20th-century science, and to those who accom-
plished the great enterprize belonged, besides Heisenberg himself, Max Born
and Friedrich Hund.

75 years ago, at about the time when Professor  Lopuszański was born,
Born began in Göttingen his course of ‘Lectures on Atomic Mechanics’. These
lectures summarized the theoretical foundations of atomic physics in 1923,
notably the theory of multiply-periodic system, which was believed then to
describe the detailed behavior of atoms and molecules. The author explained
the goal of his course in the introduction of the later published book (Born
1925):

“The title ‘atomic mechanics’ has been shaped according to the notion
of ‘celestial mechanics’, (and it) should express that here the facts of atomic
physics are treated under the particular point of view of applying the me-
chanical principles. This implies that we are dealing with an attempt to treat
atomic theory deductively ... a logical experiment, whose meaning is just to
mark out the limitations up to which today’s valid principles of atomic and
quantum theory are substantiated, and to trace the paths leading beyond
those limitations.”

A. Borowiec et al. (Eds.): Proceedings 1998, LNP 539, pp. 7−20, 2000.
 Springer-Verlag Berlin Heidelberg 2000
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After having summarized the contents of the lectures, Born continued:
“That I succeeded to edit these lectures as a book, I owe in first place to
the devoted labor of my assistant Friedrich Hund. Large portions of the text,
which I have only little worked over, are due to him” (Born 1925, p. VII).

For the Göttingen professor of theoretical physics the lectures on atomic
mechanics in the winter term 1923/24 provided the structural basis of the
later reformulation of the classical dynamics as quantum mechanics, which
he himself helped to establish after in July 1925 the initial revolutionary step
was taken by his other assistant, Werner Heisenberg. For Friedrich Hund,
however, assisting Born in editing his lectures opened the door to a career in
atomic and especially molecular theory; he indeed became the first pioneer
of the wave-mechanical description of molecules.

In Max Born’s scientific work the theory of molecules does not occupy
a very prominent place. The list of major topics includes rather: relativity
theory and kinetic theory of solids before 1920, general quantum theory and
quantum mechanics in the twenties, and solid state theory, fluid mechan-
ics and a little field theory and elementary particle theory afterwards. Still
a sharper look at the bibliography reveals a number of papers devoted to
molecular questions. These papers begin after 1915 with a couple of inves-
tigations on the dispersion of light in molecular gases and fluids. Upon the
1922 paper, entitled ‘On the model of the hydrogen molecule’, which marked
Born’s entry into the decisive period of atomic studies culminating with the
discovery of quantum mechanics, there followed a set of significant molecular
investigations, including papers written in collaboration with Erich Hückel,
Heisenberg and James Franck, and finally the paper with with Robert Op-
penheimer in 1927. On the other hand, besides Hund’s pioneering work since
1926 on the quantum-mechanical theory of molecules, the investigations of
Walter Heitler, Gerhard Herzberg and Eugene Wigner, also performed in
Göttingen, established Born’s institute as a center of molecular theory be-
yond national borders. The professor’s extended review article on ‘Chemical
binding and quantum mechanics’, published in the 1931 Ergebnisse der ex-
akten Naturwissenschaften finished this enterprize.

Born’s main interest in molecular theory was devoted (like in other topics
of his scientific work) to general principles, while his associates worked out
‘details’. His pushing forward the formalism often annoyed collaborators: thus
Hückel did not enjoy “the tedious perturbation calculations” (Suchy 1980),
and Heisenberg complained to Pauli on 7 December 1923: “The paper on
molecules of Born and myself now is completed at last; it contains bracket
symbols up to 8 indices and probably will be read by nobody” (Pauli 1979).
Indeed, in Born’s scientific work often formal, mathematical-technical aspects
seem to suffocate the physical contents. However, his discipline and endurance
in formalism paved the way again and again to important physical ideas and
implications.
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1 Molecules and Chemical Forces
in the Old Quantum Theory (1920-1923)

As we have mentioned, Born approached topics of molecular physics only
after more than a decade of scientific work had established his reputation in
relativity and quantum theory. However, when he moved in 1919 to Frank-
furt to assume his first independent and full professorship, he became quite
interested in problems of of physical chemistry, like the hydratization heat
of ions or the electric affinity of oxygen and sulfur atoms. In those days, he
had to deliver a series of semi-popular lectures in order to collect money for
the experimental investigations of his assistant Otto Stern and his student
Elisabeth Bormann; and he published some of such accounts in the jour-
nal Naturwissenschaften, which addressed quite general questions in science.
Thus he wrote an essay on ‘The bridge between chemistry and physics’ for
the issue of 14 May 1920; there he wrote, after having reported on the re-
sults of previous generations (Marcellin Berthelot, Hendricus Van’t Hoff and
Walther Nernst) in explaining chemical affinity by physical, thermodynamical
concepts (Born 1920):

“And still that task has not been solved by these, the task which must be
present as the ideal in the mind of the physicists, namely, the proof of unity of
all physical and chemical forces, and the reduction of those to the interaction
between elementary constituents, the electrons and atoms or atomic nuclei,
respectively. Today’s physics already possesses pictures that surely approach
reality to a certain degree, and it can with the help of those explain numer-
ous mechanical, electrical, magnetic and optical properties of substances. It
cannot stop in front of the chemical properties, and it must try to reduce
them to atomic forces as well”.

Especially the binding forces of diatomic molecules, Born argued further
in 1920, seemed to come out – at least in the case of the so-called ‘hetero-
polar’ or ionic type – fairly accurately from the well-known model of atomic
constitution, as developed since 1913 by Niels Bohr and Arnold Sommerfeld.

Two years later, after his return to Göttingen as professor of theoretical
physics, Born penetrated more deeply into the recent atomic physics and be-
gan a systematic exploration of its theoretical basis. We should recall at that
point that, as a former PhD student of the mathematician David Hilbert,
Born had already in the previous Göttingen period (i.e., from 1908-1915)
carried out his teacher’s program of ‘axiomatization of physics’, which meant
in particular the strict, methodical and mathematical formulation of the ki-
netic theory in the domain of solid state physics (Born and others called it
‘crystal dynamics’). Now in the twenties, with Hilbert’s interest in physics
still continuing, he undertook a quite similar ‘axiomatization’, or perhaps we
should say ‘mathematical penetration’, of the so far rather intuitively pre-
sented, refined atomic models of Bohr, Sommerfeld, Alfred Landé and others.
In the short note of July 1922 already mentioned, Born selected the example
of the hydrogen molecule in order to indicate the direction of how to approach
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the problem of atomic structure with the help of the classical perturbation
scheme for multiply-periodic many-body systems. Together with his young,
extremely talented personal assistants Wolfgang Pauli and Werner Heisen-
berg, he developed the quantum-theoretical adaptation of this scheme. “I
am now working with Born to improve and refine the Born-Pauli method
(of perturbation theory); with its help, for instance, one can prove that the
quantum theory demands phase relations between the electrons of an atomic
system. This method essentially comes from (Henri) Poincaré (notably, the
latter’s book on celestial mechanics)”, Heisenberg wrote to Sommerfeld on 4
December 1922” (Sommerfed, Letter Archiv.).

In a paper entitled ’On the phase relations in Bohr’s models of atoms
and molecules’, Born and Heisenberg worked out the perturbation-theoretical
method for multiply-periodic systems having degenerate degrees of freedom,
and they derived strict phase relations between the motions of electrons in
atoms or molecules (Born and Heisenberg 1923a). With these subtle meth-
ods the authors then attacked the problem of the helium atom, but they
found that the excited states thus calculated (with the proper quantum con-
ditions employed) did not describe the observed spectra (Born and Heisen-
berg 1923b). Previously, Born and Erich Hückel – since 1921 physikalischer
Hilfsassistent of David Hilbert and until September 1922 also associated with
Born – had studied explicitly the quantum theory of polyatomic molecules in
a detailed paper submitted in November 1922 (Born and Hückel 1923). Es-
pecially, they had worked out the coupling relations between the oscillational
and rotational motions in these molecules on the basis of the Born-Pauli
formalism (i.e., without any degeneracy). The tedious but straightforward
formalism annoyed (as we have mentioned above) Hückel, who soon joined
Peter Debye in Zurich to work on the theory of strong electrolytes. Heisen-
berg, on the other hand, did not give up easily; after having completed his
doctorate with Sommerfeld in July 1923 at the Munich University, he again
came to Born and got involved in the next paper ’On the quantum the-
ory of molecules’, in which both described systematically what they called
’Entwicklungsstufen (steps of development)’ of molecular quantum theory,
namely (Born and Heisenberg 1924):

(i) the simplest rotator (or spinning top for polyatomic molecules);
(ii) the consideration of harmonic nuclear oscillations;
(iii) the interactions between rotations and nuclear oscillations;
(iv) the inclusion of electronic and nuclear angular momentum;
(v) the full treatment of the nuclear and electronic structure of molecules.

To achieve this purpose, the authors wrote down a perturbation scheme,
in which they expanded the energy of the states in powers of the square root
of the ratio mass of the electron over mass of the nuclei, λ =

√
m/M , that

is,
H = H0 + λ2H2 + λ3H3 + λ4H4 ,
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with no first-order term, since for nuclei at rest the term linear in λ drops
out.

In a general review lecture on ’The chemical binding as a dynamical prob-
lem’, presented in September 1924 at the Naturforscherversammlung in Inns-
bruck, Born discussed some of the consequences from the Göttingen work on
molecular theory for the understanding of the problem of chemical binding.
At the end of his lecture, he emphasized that “every new result of the atomic
theory will also throw light on the theory of molecules” (Born 1924), a quite
adequate remark in the light of the many discrepancies of the existing quan-
tum theory in those days. Indeed, since 1923 the good old Bohr-Sommerfeld
theory of atomic structure had fallen into discredit: i. e., after the calculation
of the helium states by Born and Heisenberg had failed, a series of other
defects had emerged, reducing increasingly the range of application of the
whole theory that had started out so successfully with Bohr explaining the
hydrogen spectrum in 1913. The most active theoreticians, including Hendrik
Kramers, Pauli, Heisenberg and Born himself, now suggested several mathe-
matical tricks, such as those involved in the dispersion-theoretical approach,
in order to cure the worst discrepancies. Only after a new property of the elec-
tron, its proper angular momentum or spin, had been discovered and a new,
quantum-mechanical formalism based on non-commuting variables had been
established, a consistent atomic theory resulted whose principles could be
applied successfully to explain the structure and all properties of molecules
(Mehra and Rechenberg 1982a). In these efforts towards the final solution
of the problem, Born’s students and associates played a principal role, and
also the professor himself contributed importantly by own considerations,
including those on molecular physics – here he collaborated with his experi-
mental colleague and friend James Franck, whose presence and deep interest
in molecular questions helped much to create an expertise of the Göttingen
physicists in this field.

2 Göttingen, a Center of the Quantum Mechanics
of Molecules (1925-1930)

In the period between 1925 and 1929 a new theoretical description of
molecules containing also a physical explanation of chemical forces – Born’s
ideal of 1920! – arose, to which the Göttingen school of Max Born played a
quite decisive part.. While Born himself participated mainly in the general
problems of creating the appropriate quantum-mechanical formalism and its
physical interpretation, he left the detailed investigation and the discovery of
crucial effects and concepts mostly to his former students and collaborators,
who now worked at Göttingen and few other places (like Copenhagen and
Rostock).

The miraculous year 1925 opened in January with Pauli’s discovery of the
’fourth quantum number’ of the electron, which was associated in October
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of that year by George Uhlenbeck and Samuel Goudsmit in Leyden – with
the proper angular momentum (or ’spin’) of the subatomic particle. In July
1925 Heisenberg handed his paper, entitled ’On the quantum-theoretical re-
interpretation of kinematic and mechanical relations’, over to Born, who rec-
ognized in the formal relations given there the mathematical calculus of ma-
trices and worked out, in the Heisenberg’s absence with Pascual Jordan, the
so-called ’matrix mechanics’ (September 1925) (Heisenberg 1925; Born and
Jordan 1925; Mehra and Rechenberg 1982b). Then the team Born, Heisen-
berg and Jordan developed the full matrix theory of quantum mechanics in
a great memoir of 60 pages, submitted in November 1925 (Born et al. 1926).
Amongst other items it contained a complete quantum-mechanical reformu-
lation of the classical (celestial) perturbation scheme, where the dynamical
variables and the action function were expressed as Hermitean matrices.

Soon afterwards, in the early months of 1926, Erwin Schrödinger of Zurich
published his version of modern atomic theory, wave mechanics, in which
a corresponding perturbation theory could be written down for operators
expressing dynamical variables. Both the Heisenberg-Born-Jordan and the
Schrödinger theory could be immediately applied to molecular systems – see,
e.g., the paper of Erwin Fues, ’The spectrum of eigenoscillations of diatomic
molecules according to undulatory mechanics’, received on 21 April 1926 by
the Annalen der Physik (Schrödinger 1926; Fues 1926; Mehra and Rechenberg
1987). Still an essential ingredient to the molecular theory was missing, until
Heisenberg came up in July 1926 with his quantum-mechanical treatment of
many-body systems; notably, he proposed to consider two or more coupled
identical systems as one resonating system, and introduced the so-called ’ex-
change integral’ to describe the situation mathematically (Heisenberg 1926a).
He applied this idea immediately to solve the helium problem, which he had
tried unsuccessfully back in 1923 with Born (Heisenberg 1926b). We may
add perhaps at this point that already in 1922 Heisenberg had suggested an
exchange of two ’equivalent’ electrons in the helium ground state, thus an-
ticipating somehow the new resonance phenomenon in quantum mechanics
(Mehra and Rechenberg 1982b).

Having quantum mechanics at hands, no further obstacle stood in the
way of the physicists in developing a new molecular theory. According to
his own taste, Born composed in August 1927, together with the American
guest Robert Oppenheimer, a systematic paper entitled ’On the quantum
mechanics of molecules’ (Born and Oppenheimer 1927). Here the previous
classical perturbation treatment for molecular systems (as given in 1922/23
by Born, Pauli, Hückel and Heisenberg) now was reformulated consistently
in the language of wave mechanics. The authors refined the old approach by
using as a parameter in the perturbation expansion the fourth root of the
ratio electron mass over mass of the nuclei, λ = (m/M)1/4 – instead of the
previous (m/M)1/2 – and found in particular :

1. Nuclear oscillations correspond to terms of second order;
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2. rotations correspond to terms of fourth order;
3. the first- and third-order terms disappear.
Also, to determine the eigenfunctions of the molecule describing its elec-

tronic motions in zeroth order, one needs the energy expression up to fourth
order, and (Born and Oppenheimer 1927, p. 460):

“Higher than fourth-order approximations are not treated in the paper;
they would correspond to couplings between the three principal types of mo-
tion. A calculation of these effects would make sense only if simultaneously all
degeneracies of the electron motion for nuclei at rest are taken into account,
in particular Heisenberg’s resonance degeneracy due to equivalent electrons
(perhaps also of some equivalent nuclei!) and, for the diatomic molecules, the
degeneracy of the proper rotation about the axis connecting the nuclei”.

While Born and Oppenheimer provided the general line of the procedure,
others began to deal with a more detailed theory of molecules. The first of
them was Born’s former assistant Friedrich Hund, who had thought – as an
entry in his scientific diary of November 1923, stating ’molecular spectra?’,
shows – already in fall of 1923 about the problem. In February 1924 he
had studied eagerly diatomic molecules, e.g., H2 and HCl , and in fall of
the same year he had suggested (again in his diary) a systematic program
of investigating diatomic and polyatomic molecules, including H2O, CO2,
NH3 and CH4 (Hund 1924). He then had noticed, in a paper on ’The shape
of polyatomic polar molecules’ which he submitted in December 1924 for
publication, especially (Hund 1925):

“The calculation of the structure of molecules is not possible today on
the basis of quantum- theoretical principles. However, we can reduce the
constitution of polar molecules, i.e., of those in which the single constituents
(ions) are contained relatively unaltered, to the properties of the constituents
themselves. ... The formation of a polar molecule rests on the electric forces
between positive and negative ions; in their calculation one can neglect quan-
tum theory”.

At the time when quantum mechanics was established by Heisenberg and
other Göttingen colleagues, Hund occupied himself with working on a de-
tailed, ’phenomenological’ description of complex atoms. He returned in fall
of 1925 to study molecular problems and submitted since March 1926 con-
tinuously papers on the subject for publication, which would distinguish him
eventually as a great pioneer of the new molecular theory (Hund 1926–27).

In particular, Hund turned to a wave-mechanical treatment of the molecu-
lar constitution while staying, without teaching duties, from October 1926 to
March 1927 on a fellowship of the International Education Board with Bohr
in Copenhagen. Starting from the two-center problem – i.e., the case of di-
atomic molecules – which had been considered earlier (say, in Born’s lectures)
with the help of the classical perturbation theory, he arrived in three papers
submitted to Zeitschrift für Physik between December 1926 and May 1927 at
a quantum-mechanical interpretation of the molecular energy terms, as had
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been obtained recently from experiment by the Americans Robert Mulliken
and Raymond Birge (Mulliken 1926, Birge 1926). In the last of this series of
three publications (entitled ’On the interpretation of molecular spectra’ close
of citation), which dealt with polyatomic molecules, Hund discovered a new
effect that became later known as ’tunnel effect’. This effect connected, in
particular, the states of optically isomeric molecules, in which the electrons
can penetrate quantum-mechanically (but not classically) through a potential
barrier; the transition from one state of the isomeric molecule to the other
occurred in times of the order of many thousand years if the proper values for
potential barriers and excitation energies were used (Hund 1926–27). In the
following investigations, Hund applied the symmetry-group approach, which
had just been pioneered by Heisenberg and Wigner in atomic theory, to molec-
ular problems (Heisenberg 1927; Wigner 1927). Thus he quickly advanced to
Germany’s top expert in this field and was invited as such to present a review
at the Deutsche Physikertag, held in September 1927 at Bad Kissingen (Hund
1927). There he mentioned also a work of Walter Heitler and Fritz London
from Zurich, entitled ’Interaction of neutral atoms and covalent binding on
account of quantum mechanics’ (Heitler and London 1927). These authors
had developed recently a method of molecular theory competing with the
scheme, which Hund and Robert Mulliken had derived together for explain-
ing molecular constitution and the chemical consequences (Mulliken 1927).

The American John Slater, himself an expert on molecular theory, later
called Heitler and London’s approach – which was explicitly based on an
extension of Heisenberg’s exchange-integral method to the two-center prob-
lem of the hydrogen molecule “a great sensation among physicists”, because:
“Here was the first suggestion of a theory that could explain the covalent
bond, that between two neutral atoms which did not form a ionic molecule”
(Slater 1975). After Schrödinger left Zurich in fall of 1927 (to take over
Planck’s chair at the University of Berlin), Heitler came to Göttingen to
replace Hund (who had been called as an extraordinary professor of theoreti-
cal physics to the University of Rostock, see Rechenberg 1996) as assistant to
Born. Heitler continued to work in Born’s institute on the Heitler-London the-
ory, for which Born had immediately shown great interest; especially, he used
the then fashionable group-theoretical method (which he had begun to study
already in Zurich) and treated the formation of molecules from atoms having
single valency-electrons (Sugiura 1927; Heitler 1927, 1928). In Göttingen at
that time also Eugene Wigner and the American guest E.E.Witmer joined
their forces to derive rules for the electronic terms of molecules from group-
theoretical considerations (Wigner and Witmer 1928). Finally another guest
arrived at Born’s institute, Gerhard Herzberg. He had obtained his PhD at
Darmstadt, with an experimental investigation on the properties of nitrogen-
band spectra. Now he joined Heitler in substantiating the Heitler-London
theory of the covalent binding (Heitler and Herzberg 1929).
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Meanwhile Hund and Mulliken had perfected their alternative theory,
which they later named ’the method of molecular orbitals’. The central idea
of the Hund-Mulliken scheme was that an electron in a molecule should, just
like one in a many-electron atom, move in the field of nuclei and the other
electrons, while in the Heitler-London method the electron would not belong
to a single center. In 1928 and 1929 (and also later) a fight arose between the
two camps as to which method described the properties and data of molecules
better: it seemed that concerning the data description, the Hund-Mulliken
scheme had to be preferred, while concerning the explanation of chemical
binding the Heitler-London method was superior. However, in summer 1929
Herzberg completed in Göttingen his fundamental paper ’On the constitution
of diatomic molecules’ (Herzberg 1929). “We have not invented quantum
chemistry”, Hund admitted 40 years later, and continued (Hund 1968):

“Heitler and London began this discipline. Within the framework of
molecular orbitals, it was Gerhard Herzberg who explained chemical binding
in a simple and convincing manner with bonding and antibonding electrons,
where an antibonding electron could counterbalance a bonding electron”.

In 1971 Herzberg would receive, partly for his work in Göttingen, the
Nobel Prize in chemistry.

3 Born and the Theory of Chemical Binding
(1930-1933)

For several further years Göttingen remained a center of molecular research.
Besides Heitler (who got his Habilitation in 1929 and stayed until 1933), the
mathematician (and since spring of 1930 Hilbert’s successor) Hermann Weyl
got involved and considered in two notes the calculation of the molecular
binding energies as a problem of mathematical group theory (Weyl 1930). The
work of Heitler and Weyl in turn stimulated Max Born to write himself a series
of papers dealing with the quantum theory of chemical forces. In the first of
these, submitted on 29 July 1930 to Zeitschrift für Physik, he showed how
to obtain Heitler’s formulae for the chemical binding forces of two unequal
atoms without the help of group theory, i.e., by applying rather John Slater’s
determinant method – by which the American had defeated what he called
the ’Gruppenpest (group pestilence)’ in the theory of atomic spectra (Slater
1929). Born suggested especially a simple vector-diagram method using the
total spin of the (valency-) electrons in the molecules (Born 1930). Heitler
and George Rumer then applied the Born-Slater method to investigate the
complex situation of polyatomic molecules (Heitler and Rumer 1931).

Finally, Born summarized the quantum-mechanical foundation of chem-
istry in his review article for the Ergebnisse der exakten Naturwissenschaften,
entitled ’Chemical binding and quantum mechanics’. In the introduction, he
pointed out the the problems that had been solved since 1920 (Born 1931):
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“The task of reducing chemical valencies to physical forces meets the
difficulty that within chemistry itself the concept of valency loses its origi-
nally clear determination. Initially, it was doubtlessly meant in the way that
the picture of valency-dashes or, mechanically stated, of pair-like saturation
forces was taken seriously and applied in every case. Already the existence of
compounds, in which the same atom assumes variable valuedness, shook this
orthodox conception. Then came, in addition, the discovery of the different
nature of polar and non-polar bindings, the meaning of the coordination num-
ber, and finally the recognition that all these new concepts may, taken in the
strict sense, only be applied to ideal limiting cases, while in the general case
they overlap and cross over. Thus in anorganic chemistry hardly anything has
remained of the original valency idea. However, in organic chemistry it has
been kept, and still constitutes today an important tool of research, though
even there everywhere defects and gaps have shown up. One may say that
the valency schemes represent the bone-skeleton, which the living structure
of facts have covered totally”.

Born discussed all available methods, besides those of Heitler and London
and Hund and Mulliken also the attempt of Slater and himself to avoid the
group theory altogether, an attempt which he admitted had failed in some
sense, because: “It seems that the binary invariants due to Weyl turn out to be
the adequate tool for a computational treatment of valences according to the
Heitler-London scheme” (Born 1932). Still he presented a short account of the
Slater-Born scheme to explain ’the saturation of valencies’ in a contribution,
which he read at the Centenary (1931) Meeting of the British Association
for the Advancement of Science in London (Born 1932, p. 249). While for
diatomic molecules, he argued there, the original principle of Heitler and
London – namely”, that every valency of an atom corresponds to an electron,
the spin of which is not compensated by that of another; and the saturation of
two valencies of two atoms corresponds to the mutual interaction of two such
valency electrons (one for each atom), the spins being antiparallel to each
other – was “entirely serviceable”, already in the case of triatomic molecules
combinatory difficulties arose, as “the number of valency-bond schemes of
the three atoms is not equal to the number of possible spin configurations”
(Born 1932, p. 252).

The author then represented the possibilities for the free valencies v of
these atoms and noticed in a particular case of three atoms A,B,C, having
valencies respectively a = 3, b = 2, c = 1. If arranged according to finally
free valencies, there are four types available:

v = 6: one case, where all atoms are separate and exhibit their 6 free
valencies;

v = 4: three cases, where in case (i) A and B are coupled and C is separate,
in (ii) A and C are coupled and B is separate, and in (iii) A is separate and
B and C are coupled;
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v = 2: three cases, where in two cases all A, B and C are coupled, and in
the third A and B are coupled and C is separate;

v = 0: one case, where all A, B and C are coupled thus that no valency
is free.

Now considering the cases v = 2, in particular, Born found that to three
possible valency-bond schemes only two different spin configurations corre-
sponded, which seemed to represent a quite unsatisfactory situation. How-
ever, due to Weyl’s investigation one should assign to every atom one letter
– say x to A, y to B, z to C – and to every valency occurring between the
atoms a square bracket – say – [x, y] to a valency between A and B, with [x, l]
denoting a free valency of the atom A. Born then found for v = 2 exactly
three bond schemes , namely:

φ1 = [x, l]2[x, y][x, z]; φ2 = [x, l][x, y]2[z, l]; φ = [x, l][x, y][y, l][z, x] ,

and asked the question as to whether on could “assign a real physical sig-
nificance to the symbolic quantities φ1, φ2, φ3.” This was indeed the case,
and “the φ products already described are simply all the independent spin-
invariants, which can be formed from the spin vectors x, y, z of the atoms
and the ’void vector’ l in such a way that they are of the order a (i.e., 3) in
x, ... and finally of the order v (= 2) in l,” and (Born 1932 p. 252).

“Accordingly, every valency-bond scheme corresponds to a ’pure valency
state’, characterized by a definite spin invariant φ, and the theory of combi-
nation of valencies is completely identical with the theory of combination of
invariants of two-dimensional vectors or ’binary forms’. It is very interesting
to find that this formal connection was noticed already more than fifty years
ago by some mathematicians, Cayley, Sylverster and others.”

Now a discrepancy arose between the number of spin configurations and
the number of valency schemes, “because the vector addition of spins does not
include all invariants of φ, but just only the linearly independent ones”. As a
rule, there are identities between the φ′s, like (φ1 +φ2 +φ3 = 0. Further, “it
can be seen that the pure valency states , which are assigned to the valency-
bond schemes, do not in general correspond to states of definite energy,”
Born continued, or “the idea of a ’state of definite energy’ is wider than that
of a ’chemical molecule’ ”, because: “Whereas the former refers to arbitrary
positions of of the atomic nuclei, in a chemical molecule, the nuclei have
definite positions in which there is a stable equilibrium, i.e., minima of the
curve showing the energy as a function of nuclear separation.” On the other
hand, several minima or nuclear types can belong to ’state of definite energy’.
Still the author finished his talk (Born 1932, p. 253 and p. 254):

“Notwithstanding, I should like to express the opinion that this extension
of Heitler and London’s theory is of great value. For it shows why throughout
all changes in modern views on valency the old scheme of valency bonds still
stands out, clearly visible amongst the maze of facts involved.”

The presentations and discussions at the 1931 British Association Meet-
ing provided proper contributions also to the Faraday jubilee – 100 years had



18 H. Rechenberg

passed since the discovery of the electric-voltage induction by a changing mag-
netic field – celebrated on the same occasion. Besides Born, there spoke in
the same session on molecular structure Peter Debye, John-Edward Lennard-
Jones, Ralph Howard Fowler, Victor Henri, Werner Heisenberg and William
Lawrence Bragg. Born certainly succeeded to demonstrate to a very distin-
guished international circle the importance of his Göttingen school also in the
field of molecular theory. Afterwards he contributed only twice to molecular
theory: in a paper with Siegfried Flügge on a specific point in the description
of diatomic molecules, published in 1933 shortly before he had to leave his
Göttingen position, and in a later note – a little addendum to the 1927 paper
of Born and Oppenheimer – which he contributed to the Göttingen Academy
in November 1951, about two years before he returned to Germany again
(after the retirement from the Edinburgh professorship) (Born and Flügge
1933; Born 1951). In spite of the comparatively short period of a little more
than a decade, which Born devoted to molecular problems in a scientific car-
rier extending over nearly sixty years, the contributions discussed here were
quite respectable. They again confirm the quality of this great scholar and
teacher, who combined in an extraordinary manner the spirit of mathemat-
ics and physics, thus continuing the brilliant Göttingen tradition of Gauss,
Riemann and Hilbert.
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Abstract. Questions and suggestions concerning the notions of individual objects,
events and their relation to space-time.

1 Introduction

In recent years I attended several conferences centered around spectacular ex-
perimental progress in atomic physics, quantum optics and their implications
for our understanding of Quantum Theory. One of them, entitled “Quantum
Future” was the Max Born Symposium preceding our present gathering; an-
other, entitled “Mysteries, Puzzles and Paradoxes in Quantum Mechanics”
took place three weeks ago at Lake Garda. Both were excellent conferences.
We heard authoritative reports on the breeding of Schrödinger kittens, EPR-
type experiments, quantum erasers, non- demolition experiments, teleporta-
tion and much more. Among the predominant mysteries were the “extremely
non-local aspects of Quantum Mechanics” and questions about “reality”.
When I told my young neighbor at dinner that I had written a book entitled
“Local Quantum Physics” he asked me: “when did you write that book?”.
Well; it was not long ago and I do not want to apologize for it. There is
obviously a question of language. What do we mean by “Locality” or “Real-
ity”? I think that some of the paradoxes loose their bite if one uses concepts
and a language which differ somewhat from the standard ones. But there re-
main problems, mysteries if you wish, which in my opinion cannot be clearly
resolved within the scope of the presently existing theory.

I have chosen the somewhat peculiar title for my talk in order to stress
a point whose significance is not duly appreciated in many discussions on
mysteries. I shall then address two other controversial issues: indeterminism
and realism and briefly state my position on them. This leads to a rough
conceptual picture which, in my judgment, incorporates in a natural way
essential lessons of Quantum Physics but also raises new questions.
The division problem. Every scientific endeavor begins by dividing complex
situations into individual elements. This is sometimes called “reductionism”
in contrast to “holism” which stresses that everything hangs together. Now
we have painful experiences with the fact that any kind of “ism” is dangerous.
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Of course the holistic criticism of reductionism, whether it concerns medicine
or even physics, is justified. But holism does not provide a scientific method.
We have to divide and, as it turns out, we are highly successful in doing so
up to some point. Let us look at various approaches to the division problem
in physics.

The first is the division into individual objects, beginning from bulk mate-
rial and proceeding with its subdivision into molecules, atoms and ultimately
“elementary particles”. The reduction of physics to the study of interaction
between such objects is the point of view of mechanics. Quantum mechanics
takes over this vocabulary but shows that the notion of individual objects can
have a precise meaning only under very special circumstances. One require-
ment is isolation. An isolated, stable object has some distinctive attributes:
mass, magnitude of spin, an array of charge quantum numbers and an internal
structure. Thus every carbon atom in the ground state has the same internal
structure, described by an internal wave function (after separating off the
part that refers to the object as a whole). It is one of the triumphs of Quan-
tum Mechanics to achieve a classification of stable objects and to describe
their distinctive attributes. But isolation can never be perfectly realized. It
is an asymptotic notion. Furthermore it does not even suffice to allow us to
speak of an individual object. There may be entanglement1 with other far
separated objects. The Pauli principle tells us that all electrons in the world
are entangled. What do we mean if we speak of an individual electron or of
an individual “subsystem” in the world?

Another approach to the division problem is provided by the notion of
space-time. In all successful theories till now space-time is considered as a 4-
dimensional continuum which provides the arena in which physics can play.
By definition it is infinitely divisible. But an empty arena is not very inter-
esting. We need the players. If we disqualify objects what remains?
Indeterminism and Reality. Before addressing this question let us look at
another aspect of Quantum Theory: indeterminacy. The theory does not
provide us with the ability to predict future phenomena from the knowledge
of the past with certainty. Instead it gives us probability assignments for the
occurrence of one phenomenon among a number of alternative possibilities.
The majority of physicists accepts indeterminism as an intrinsic feature of
the laws of nature but there is a very outspoken minority trying to restore
determinism by looking for hidden variables or regarding the wave function
as an attribute of an individual object. In my opinion such attempts have
1 “Entanglement” is the translation of the term “Verschränkung” introduced by

Schrödinger 1935. It means that there are pure states of a compound system which
yield stronger correlations in the joint probability distribution of measuring re-
sults on the subsystems than those which can arise from correlations between
individual states of the subsystems. A quantitative criterion distinguishing en-
tanglement from any interpretation in terms of hidden variables has been given
by Bell 1964. It also excludes an interpretation in terms of any assignment of
individual states to the subsystems (Clauser and Horne 1974).
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up to now not met with much success. In particular I do not understand
the enthusiasm with which some colleagues propagate “Bohmian Theory”.
It seems hard to envisage how such an essentially mechanistic picture could
cope with basic phenomena in quantum optics (e.g., Rabi oscillations between
atomic levels induced by laser radiation) or produce a natural alternative to
relativistic quantum field theory.

So I believe in the intrinsic indeterminacy of the laws of nature. But this
means that we have to distinguish between possibilities which are encoded
in the notion of state (if you wish the state of the universe) and facts which
involve a decision between different alternatives. What can we say about
such decisions? In orthodox quantum language the facts are cautiously called
“results of observation”. This emphasis on “observation” has raised another
controversy: the meaning of reality. An observation needs an observer and
this is usually a human being. Does Quantum Theory mean that the es-
tablishment of a fact is ultimately tied to the realm of the mind? This is a
position shared in various degrees of conviction and clarity by many. Most
decisively and clearly it has been advocated by Wigner. In his “Remarks on
the Mind-Body Problem” (1963) he writes: “If one formulates the laws of
Quantum Mechanics in terms of probabilities of impressions these are ipso
facto the primary concepts with which one deals.... The principal argument
is that thought processes and consciousness are the primary concepts, that
our knowledge of the external world is the content of our consciousness”. In
spite of my great admiration for Eugene Wigner to whose thinking I owe so
much it seems to me that the empirical material of Quantum Physics does
not relate at all to the mind-body problem and that it is not helpful to invoke
consciousness for its interpretation. If the decision as to whether a detector
has clicked or a dot on a photographic plate has been produced depended on
the consciousness of some spectator it would be far too unreliable to serve the
purposes of physics. The scope of physics is limited to the study of relations
between phenomena which are reproducible at different places, different times
and recognized by different people. It is the independence of the physically
relevant phenomena from the state of mind of any individual human observer
which is meant if we speak of an “exterior (physical) world” called nature.

There is an early controversy (1927) about the “decision” involved in
the realization of a particular result in a measurement. Dirac called it “a
decision by nature”. Heisenberg wanted to reserve the decision making to the
observer. Bohr, in later years used Dirac’s formulation but warned that this
should not be understood as implying any personification of nature. If we
consider measuring results as facts, not relying on conscious perception, and
in addition believe in intrinsic indeterminism then we can only attribute a
limited amount of decision making to the observer. He may limit the range
of possibilities by the choice of his measuring device but he certainly has no
power to decide on the realization of a particular outcome. Thus we come
back essentially to Dirac’s formulation, though, heeding the warning by Bohr
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we might better say: it is a decision in nature instead of by nature. In order
to rule out clearly the mental interpretation I propose to generalize the term
“result of observation” to the term “event”, a concept not tied to any passage
into consciousness or to the performance of an experiment. It is important,
however, that the notion of event is independent of and sharply distinguished
from the notion of state. The latter refers to possibilities the former to the
establishment of a fact. What is an event? Of course if we think of the example
of a click in a detector this is a very coarse event. In standard language it is
produced by the interaction of an “atomic object” with a macroscopic device.
Again there is the problem of subdivision. Can we define elementary events?
Under what circumstances can we regard the ionization of an atom by a
photon as a closed event? Or the death of a Schrödinger kitten? The formalism
of present day Quantum Theory suggests that there is no sharp boundary.
While the definition of individual objects is limited by entanglement the
definition of individual events is limited by coherence. Both have their root
in the assumed unrestricted validity of the superposition principle. On the
experimental side entanglement is demonstrated in EPR-type experiments,
coherence in interference experiments. Nevertheless I believe that a theory
based on the notion of real events can be developed in a way which is not at
variance with established experimental results. I shall give a few arguments
for this and for my motivation in proposing the ensuing picture.

Motivation. Bohr’s epistemological arguments, leading to the need for a cut
between the “system” in which we are interested and the “observer” with
his equipment is an excellent description of what is done and what can be
learned in an experiment. But experiments have always been regarded as a
means to penetrate the “mysteries of nature”, not as a purpose in itself. This
is mirrored by the gap between empirical evidence and a coherent theory.
There is a discontinuous step, involving, in Einsteins words, “free inventions
of the mind”, introducing concepts and mathematical structures which have
no direct counterpart on the empirical side and thus transcend what we can
possibly know. A theory aims at providing an ontological model which should
be in harmony with known experimental facts but is not synonymous with
them. As a model it has a limited range of applicability. I do not believe
in the possibility of a “theory of everything” achieving a mental isomorphy
with the world of appearances. In Quantum Theory we have on the one side
a very sophisticated mathematical formalism allowing “in principle” an enor-
mous variety of observables whereas in practice we are restricted by the need
to use objects subjected to the laws of nature and to control their place-
ment in space-time. We should not overrate the range of applicability of the
formalism. The perspective changes already when we pass from Quantum
Mechanics to Quantum Field Theory. The characterization of observables
and states is completely different. In Quantum Mechanics the observables
are built from positions and momenta of particles. In Quantum Field Theory
the basic observables relate to space-time regions. Though Quantum Field
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Theory is the more encompassing theory from which Quantum Mechanics
should result in a non relativistic approximation, it is clear that in it the
relation between observables and space-time is over idealized. By appealing
to the Bohr-Heisenberg cut (which in Quantum Field Theory is only needed
if we think of detectors as the prototypes of observables and useful within
the limits in which their placement in space-time can be controlled) we avoid
the formulation of a self-consistent theory of nature. This is adequate for the
recognition of attributes of particles and of reaction cross sections within the
theory (at least in principle). But the shifting of the cut to small space-time
regions of, say, one Fermi in diameter becomes completely unrealistic. If in
high energy physics one talks about distances of 10−16 cm this cannot be
interpreted in terms of sharply localized observables (in the sense of the cut)
but rather as the intrinsic extension of an event. Restrictions in the realiz-
ability of hypothetical observables lead to limitations of coherence. This is
exemplified by the study of “effective decoherence” due to “practical impos-
sibility” of observation. One way of expressing restrictions of observability
in the existing formalism is provided by the notion of “superselection rules”.
We know strict ones, relating to charge quantum numbers. They result from
the requirement of global gauge invariance of the theory. Since they concern
global properties they are not relevant in our context without the possibility
of a clear-cut subdivision of the charges in the universe. But we also know
that local gauge invariance plays an important role in Quantum Field Theory.
It means that the transport of (generalized) phases from one point to another
is a highly nontrivial matter.- “Effective” (approximate) superselection rules
also result from large numbers. They become sharp in the thermodynamic
limit. Examples are temperature, “long range order” but also the center of
mass position of a heavy body. This leads to the remark that the possibility
of observation depends on the state. If, by a “self consistent theory” we mean
an ontological model of the physical universe then the prevailing state (of
the universe) should restrict (though not determine) the possibilities for the
occurrence of subsequent events. In other words: superselection rules do not
need the existence of a center in an algebra which is defined without refer-
ence to the state. In the standard formalism the idea of “consistent histories”
forwarded by Griffiths, by Gell-Mann and Hartle and by Omnés, is a step
towards the recognition of this problem. It is, however, not the answer.

Considering all this I feel that it is rather safe to predict that the future
development of the theory will lead to strong limitations of the superposition
principle, irrespective of the problems of Quantum Gravity and relevant much
before the Planck scale. They may allow to give a clear meaning to the notion
of an “elementary event” and thereby provide the physical counterpart to the
divisibility of space-time.

On the other side of the coin we have experiments demonstrating an
amazing degree of coherence. In particular, coherence is not destroyed in the
interaction of an “atomic object” with a system encountering negligible back
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reaction (typically any system that can be idealized as an “external field”). A
striking example is provided by atomic interference experiments where a laser
beam produces Rabi oscillations between internal states of the atom and may
be used as a beam splitter for the atomic beam. Here the laser beam, being
a coherent state of many photons, acts like an external field. In this context
it should be remarked that photons play a very special role, not only due to
their vanishing rest mass but because they are the only particles which carry
no charge quantum number of any kind, a feature essential for the existence of
the coherent states with undefined photon number. Coherence is apparently
not lost in the down conversion of a photon to two photons of lower frequency
by a non linear crystal. Thus this process may not be regarded as an event.
The crystal plays the role of an external field. There are other experiments
whose significance in posing limits to the notion of individual events I have not
yet understood. A prime example is the intensity interferometry of Hanbury
Brown and Twiss. In any case there is a fascinating area where both theory
and experiment must contribute to clarification.

2 Proposal of a Picture and Terminology

We distinguish sharply between facts and possibilities as it is demanded if we
believe in intrinsic indeterminism. An “event” is regarded as the realization
of an individual fact (and thus an “element of reality”) whereas a “state”
subsumes the probability assignment for the realization of a pattern of future
events. It is not an element of reality. This implies, however, that the arrow
of time must have fundamental significance. A fact is created; it did not
exist prior to some time and it is irrevocable. Thus the picture describes an
evolving universe with a growing pattern of events representing the respective
past as opposed to an open future. The pattern of realized events determines
the probability assignment for subsequent growth of the pattern (the state).

In addition to the events we must consider causal links between them.
A link is a messenger connecting a source event with a target event. In the
simplest case (low density situation) links correspond to the aforementioned
objects (stable particles). It must, however, be borne in mind that the evo-
lutionary picture demands that a link becomes established (an “element of
reality”, if one wishes) only when the target event is concluded. In general
the source event does not even determine the nature of the potential links
originating from it. Potential links belong to the realm of possibilities, not
facts. This illustrates the sense in which we can speak of individual objects.
For example we can speak of the individual electron which was ejected from
a metal surface by a radiation pulse and subsequently caused a click in a
detector. But it makes no sense to talk about an individual electron without
reference to specific events.

Events and (established) links are the needed players in the arena of space-
time. Specifically, an event has the attribute of localization in space-time, the
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sharpness of which depends on the nature of the event. It will be very diffuse
in low energy events and rather sharp in the case of high energy-momentum
transfer. No independent localization property can be assigned to causal links.
This corresponds to the orthodox statement that “a particle does not have
a position at any given time unless it is measured”. In our words: a causal
link does not have space-time attributes (apart from those due to the events
it connects). It is the event, the interaction process, to which the attribute
of localization can be assigned.

The impossibility of assigning space-time attributes to “atomic objects”
is one of the earliest, most striking lessons of Quantum Physics. It is usually
called the “wave aspect” of matter. Consider for instance the radioactive
decay of a nucleus. The emitted α–particle is described prior to its detection
by a spherical wave whose origin marks roughly the position and time of
the source event (here the decay process) and which subsequently sweeps
over wide regions of space. It will ultimately cause an event which selects
again a reasonably sharp localization among many alternative possibilities.
In standard language this is called the “particle aspect”. In the terminology
corresponding to our picture the “wave-particle duality” is replaced by an
object-event duality (object = potential causal link). The dual aspects refer
to different things and the relation to space-time is carried only by one of them
(the events). In the case of a macroscopic object the assignment of a trajectory
in space-time results from the involvement of the object in many minor events
which do not change its internal structure. In this view the “spontaneous
localization” postulated by Ghirardi, Rimini and Weber is replaced by the
realization of events and the occurrence of many unnoticed events corresponds
to the discussion of decoherence due to background by E. Joos and H.D. Zeh.

The picture emphasizes the importance of distinguishing between individ-
ual cases and statistical statements, between causal relations linking individ-
ual events and statistical correlations. Thus, the “non locality” in EPR-type
experiments does not concern causal effects travelling faster than light but
statistical correlations in the joint probabilities for the occurrence of several
far separated events. Note that the probability for a specific single event de-
pends only on the events in its causal past and is not altered by anything
which may be done in space-like distances. The perseverance of the corre-
lations between events over large distances is in itself no paradox. What
appears paradoxical and differs from the case of classical correlations is only
that the correlations are of such a nature that they cannot be attributed
to correlations between assumed “states of subsystems” but only as corre-
lations between the events themselves. This corresponds in our picture to
the statement that unaccomplished (potential) links belong to the realm of
possibilities, not facts. They have neither a well defined individuality nor any
independent localization properties.

Assessment. The picture provides some model for a divisibility of the uni-
verse into individual elements which are considered as elements of reality. It
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injects probably the maximal amount of realism which can be tolerated by
existing experimental evidence and at the same time the minimum needed in
a reductionist approach.

Since all “observation results” are coarse events, about whose real exis-
tence and finality one need not quibble (at least not from a practical point
of view) there can arise no contradiction between our picture and experi-
mental findings as long as one focuses only on such coarse events and their
correlations. But this does not provide a basis for a self consistent theory.
The central problem which a theory of events has to face is the question of
subdivision of coarse events into finer ones. As Bohr has pointed out it is the
indivisibility of a “quantum process”. Can we single out individual quantum
processes and call them events; where are the limits of divisibility? What is
an irreducible, an elementary event? As mentioned, one prerequisite for this is
a limitation of coherence. I have given some reasons for the expectation that
such limitations will be recognized in the future development. This would
allow a self consistent theory. More precisely: an ontological model along the
lines of the sketched picture. As any model it must have a limited range of
validity and such limits are provided by holistic features which are neglected
in a reductionist approach.

Some remarks concerning space-time should be added. Since we consider a
single universe which is realized by the (growing) pattern of events and causal
links it is this pattern itself which constitutes the realized aspect of space-
time, the events corresponding to points, the links to connecting lines. In the
definition of a geometry of such a pattern the rest masses of existing particles
play an essential role. Since the laws of nature allow many different patterns
there is also the aspect of potentiality i.e., the set of all possible patterns. It
is not likely that they can be embedded in a 4-dimensional continuum but
the set of possibilities itself may be regarded as replacing the aforementioned
arena.- Events are not points in a pregiven continuum and our knowledge
about their localizability in classical space-time is pitifully small. In high
energy physics where we may expect a sharpness of events of the order of
10−16 cm the experimental accuracy in determining the vertex of a reaction
is of the order of 10−4 cm. Also the establishment of a space-time reference
system has limitations which are far more serious than the existence of the
Planck length. There are no ideal rigid bodies, a photon does not define a
straight line etc. All this must be taken into consideration if one aims at a
self consistent theory in which we cannot retire behind the protection by the
Bohr-Heisenberg cut. This list of ignorances could be continued. But it may
be taken as a positive message. There is much to do and not all is restricted
to fashionable areas of speculation.

References to previous published work by myself on the topics addressed
here as well as to related ideas by others may be found in chapter 7 of the
second edition of my book “Local Quantum Physics”, Springer Verlag 1996,
and in the later articles “An evolutionary picture for quantum physics” Com-
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mun. Math Phys. 180, 733 (1996) and “Objects, Events and Localization”,
Proc. XI Max-Born Symposium 1997.
References to other work alluded to in the text can be found in the book by R.
Omnés: “The interpretation of Quantum Mechanics”, Princeton University
Press 1994 and the book by L. Mandel and E. Wolf: “Optical Coherence and
Quantum Optics”, Cambridge University Press 1995.
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Abstract. In 1990, Bas C. van Fraassen defined the modal interpretation of quan-
tum mechanics as the consideration of it as “a pure theory of the possible, with
testable, empirical implications for what actually happens”. This is a narrow, tra-
ditional understanding of modality, only in the sense of the concept of possibility
(usually denoted in logic by the C. I. Lewis’s symbol 3) and the concept of necessity
2 defined by means of 3. In modern logic, however, modality is understood in a
much wider sense as any intensional functor (i.e. non-extensional or determined not
only by the truth value of a sentence). In the recent (independent of van Fraassen)
publications of the author (1997), an attempt was made to apply this wider un-
derstanding of modality to interpretation of classical and quantum physics. In the
present lecture, these problems are discussed on the background of a brief review
of the logical approch to quantum mechanics in the recent 7 decades. In this dis-
cussion, the new concepts of sub-modality and super-modality of many orders are
used.

1 Introduction. Many–Valued Logic
and Nondistributive Logic

If we look at the XX-th century now, at fin de siécle, we see that in physics
quantum mechanics and relativity theory were the most important achieve-
ments. Both theories appeared as a final result of long pressures of unexpected
experiments, after many unsuccessful attempts to explain them theoretically
on the base of the then accepted principles of physics. Both required a new
paradigm of physical and not only physical concepts. And both were very
successful theories, up to now they stand up to all the consecutive trials
of falsification by more and more precise measurements. But at the same
time they both presented painful challenges to human comprehension, even
to classical logic and the most deeply rooted principles of common sense and
physical intuition.

At first, relativity theory caused protests in some places, rarely among
physicists, but more frequently among philosophers and intellectuals. Niels
Bohr, one of main founders of quantum mechanics, said that if somebody
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can think about quantum mechanics without being a little dizzy, he certainly
does not understand it. Actually, even Niels Bohr resigned to understand it
fully in the usual sense of Western logic and philosophy. When he accepted
his principle of complementarity, he appealed to Chinese philosophy for help.
When he invented quantum jumps in his first model of the hydrogen atom, he
actually “jumped” over his physical and logical conscience against the Latin
proverb Natura non facit saltus (Nature does not make jumps) and the clas-
sical principle of differential continuity. When later on Max Born and Werner
Heisenberg used algebras of infinite matrices with complex coefficients, they
understood clearly the mathematical side of their theory, but not their phys-
ical interpretation. The principle of uncertainty formulated by Heisenberg a
few years later, and the statistical interpretation of quantum mechanics given
by Born at the same time, were a conscious resignation from the full descrip-
tion and understanding of physical processes, in a similar sense as the famous
hypotheses non fingo of Newton who understood the universal gravity only
through the picture of a falling apple, but not through a physical mechanism.
Also Einstein understood special and general relativity on the level of his fa-
mous Gedanken experiments. There is an anecdote that he understood the
relativistic concept of simultaneness when he looked at the reflections of the
hands of the town-hall clock in the driver’s mirror of a streetcar at the Kram-
gasse in Bern (Davies 1998, p. 909). Only Hermann Minkowski gave later on
some generalized, but clear geometrical pictures to understand special rela-
tivity intuitively. But all the difficulties of understanding relativity, special
and general, are nothing when we compare them with those connected with
quantum mechanics. Therefore, since longer time relativity is treated as a
part of classical physics, in contradistinction to quantum physics considered
as a non-classical field of considerable philosophical difficulties. Even com-
petent mathematical physicists and philosophers of physics, as Paul Busch,
Pekka Lahti and Peter Mittelstaedt, said in 1991 at the beginning of their
monograph on quantum theory of measurement (Busch et al. 1991, p. 1): “An
understanding of quantum mechanics in the sense of a generally accepted in-
terpretation has not yet been attained. The ultimate reason of this difficulty
must be seen in the irreducibly probabilistic structure of quantum mechanics
which is rooted in the nonclassical character of its language.”

Max Jammer, in his excellent book The Philosophy of Quantum Mecha-
nics said (Jammer 1977, p. 341):

The decomposition of a physical theory T [...] into a mathematical
formalism F , a set of epistemic relations R, and a physical picture M
implied that an interpretation of T should concentrate on one or more
of these components. All the interpratetions of quantum mechanics
described so far were based on these assumptions. Certain develop-
ments in mathematics and philosophy, however, have led to the idea
that the alternatives discussed so far were not exhaustive and that
a fourth component, so to say, of the most general nature — which
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for this very reason had been altogether ignored — could also be an
object of inquiry in the search for an interpretation: the formal struc-
ture of the deductive reasoning applied in formulating T . If a certain
theory T leads to an impasse, it was claimed, it is not necessarily its
mathematical formalism as such nor the meaning of its extralogical
concepts that may have to be modified; it may equally well be logic
underlying the formulation of T which has to be revised. A search for
an interpretation of quantum mechanics along these lines is usually
called a quantum logical approach.

It is well-known that there were so far two such attempts. The first one
consisted in formulating a so-called non-Chrysippean logic (sometimes also
called, historically less correctly, non-Aristotelian logic), namely, a many-
valued logic. The second is an application of a nondistributive logic based on
the algebraic concept of a lattice.

In the beginning of the XX-th century there appeared several independent
attempts to formulate a three-valued (later many-valued) logic, namely by
Hugh MacColl (1832–1909) in London 1906, Charles Sanders Peirce (1839–
1914) in New York 1909, Nikolai Aleksandrovich Vasil’ev (1880–1940) in
Kazan 1910, Jan  Lukasiewicz (1878–1956) in Warsaw 1918, and Emil Leon
Post (1897–1954), born in Poland, in New York 1920. Only the latter two lo-
gicians formulated their theories mathematically, while the three former ones
expressed their ideas by the names: “logic of three dimensions”, “trichotomic
mathematics” and “imaginary non-Aristotelian logic”, without any interpre-
tation. Only  Lukasiewicz interpreted the third logical value as ‘possibility’ (for
example, of a future event) and connected it with indeterminism in physics.
(In 1969 his pupil Jerzy S lupecki interpreted the third value as ‘change’, so
his values are: non-exitence 0, change 1/2, existence 1.)  Lukasiewicz also “en-
visaged the possibility of generalizing his system in an infinitely-many-valued
logic” (Jammer 1977, p. 344), in a way similar to probability calculus. An ap-
plication of the three-valued logic to quantum mechanics was first proposed
by Zygmunt Zawirski (1882–1948) in Poznań 1931, then independently by
Hans Reichenbach (1891–1953) in Berlin 1932 and Fritz Zwicky in Pasadena
1933. The first one used  Lukasiewicz’s three-valued logic with the third value
as ‘uncertainty’, while all of them interpreted probability by infinitely-many-
valued logic with a continuous scale of truth values. This point of view was
criticized by Henry Margenau (1934) saying that the truth of a physical law
has only two values and should be distinguished from the truth of an experi-
ment which is “in a state of flux”. I think that this is the question of type or
order of proposition, i.e., whether we speak in the concrete (objective) lan-
guage about elements of reality or in the meta-language about sentences or
sets of real elements. Physicists are interested mainly in the the former lan-
guage, philosophers in the latter, but both languages are equally admissible
in science. The interpretation of Zawirski–Reichenbach–Zwicky was meant
as the physical one, i.e., formulated in the objective, but many-valued lan-
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guage, while the meta-language can be two-valued. We shall come back to
this problem later on from a more general point of view.

The mentioned many-valued interpretations of quantum mechanics re-
mained, as Jammer said, “virtually unknown in the world of physics” (Za-
wirski wrote in Polish and French, Reichenbach in German, Zwicky in En-
glish), they were only noticed by few philosophers interested in modern
physics. Jammer remarked that such new basic ideas require, as a rule, a
very long time to become rape for wider comprehension and application,
as was the case with the non-Euclidean Riemannian geometry applied to
physics by Einstein almost one century after the first appearance of this idea
in mathematics. But, as Jammer said, loc. cit. p. 346

In fact, the first serious breakthrough of nonclassical logic in quan-
tum mechanics was made in 1936. Not the law of bivalence, but rather
the distributive law of classical logic was the major target of this as-
sault.

This was done in the famous paper by Garrett Birkhoff and John von Neu-
mann “The logic of quantum mechanics” published in 1936. This idea has
now an extensive literature and is well-known among mathematical physi-
cists. Instead of the phase space Γ of a classical mechanical system, Birkhoff
and von Neumann used a complex separable Hilbert space H of a quantum
system. They replaced the subsets of Γ by closed linear subspaces of H as
representing quantum events or quantum propositions occurring in experi-
ments. Then the truth value of a quantum proposition a is the eigenvalue, 1
or 0, of the projection operator on a. Quantum logic is an orthocomplemented
modular lattice of closed subspaces of H or of projection operators on these
subspaces. As is well-known, a general lattice is defined as a partially ordered
set with order relation ≤, in H represented by inclusion ⊆. The concept of
lattice was introduced by Ernst Schröder in 1890 and was called a dual group
by Richard Dedekind 1897, since a lattice has dual operations: join ∪ and
meet ∩ represented in H by the linear sum and the intersection of the sub-
spaces, respectively. In quantum logic join is interpreted as alternative, and
meet as conjunction. Orthocomplementation is defined in H as the passage
from a closed subspace a to the subspace orthogonal to it, and logically means
negation. The relation of inclusion of subspaces is interpreted in logic as the
relation of implication. Abstractly, in a lattice with the zero element O and
the unit element I (in H, the zero vector and the whole H, respectively), the
orthocomplement ¬a of a is defined as a dual automorphism of a, i.e., such
that

¬(a ∩ b) = ¬a ∪ ¬b, ¬(a ∪ b) = ¬a ∩ ¬b (1)

fulfilling additionally the two conditions:

¬¬a = a, (2)

and
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a ∩ ¬a = O, a ∪ ¬a = I. (3)

In general, complementarity is a wider property than orthocompelmentarity
since it is defined only by condition (3), and is not necessarily unique, not
an automorphism. Of course, each orthocomplement is a complement, but
not necessarily conversely. But in a distributive lattice, as a Boolean lattice,
the complement is unique and is also the orthocomplement. In Hilbert space
H the orthocomplement as a subspace, being a complement in the lattice
sense, is not a complement in the set-theoretical (i.e., Boolean) sense. Phys-
ically, this fact, a linear, not set-theoretical, addition of events, is connected
with the phenomenon of interference, or the principle of superposition, of the
so-called material waves or probability amplitudes. This experimental fact
actually destroys the classical concept of a particle as a physical object. In
consequence, also the philosophical concept of an object as an individual e-
lement loses its sense in quantum physics. So in quantum domain there is no
more “reification” in the strict sense, no more “objectivity”. We have only a
weaker concept of “reality” as a ‘propensity’ or a possibility of a particle, or a
potential, virtual, not actual thing. Does it mean that this reality is “subjec-
tive”? Yes and no. In the wider sense ‘yes’ since the interference is connected
with the preparation measuring devices which are prepared by the observer,
but ‘no’ in the narrower sense, since the phenomenon of interference is inde-
pendent of the will of the observer when the devices are fixed. Somebody can
say that res, an object, a particle appears again in such phenomena as pho-
toeffect, scintillation etc. No, because electrons, and other quantum particles
as photons, mesons etc., are only quanta of quantized fields and have no indi-
viduality, they do not behave according to the classical, Boltzmann statistics.
Therefore, speaking about individual interpretation of quantum mechanics,
as is frequently done, is misleading, better to speak about realistic interpre-
tation. We have only real phenomena, events, physical intersubjective and
repeatable facts, but not “hard substances” or “individual things” in the
classical sense, not the indestructible atoms of Demokritos. This point of
view is in agreement with the irreducible character of quantum probability
and the refutation of hidden variables by many “no–go–theorems” of Gleason
1957, Bell 1966, Kochen and Specker 1967 etc.

The idea that the world is composed of facts, not of things, was for-
mulated in philosophy before quantum mechanics. Namely, in 1918 Ludwig
Wittgenstein wrote his famous theses: “1 The world is all that is the case.
1.1 The world is the totality of facts, not of things.” (Wittgenstein 1961, p.
7), see also (Wolniewicz 1968), (Suszko 1968). Actually, in quantum physics
we have something more than only facts: not substances, but propensities
(pure and mixed states: probability amplitudes or probabilities), in addition
to observables as properties (facts). Therefore, from the Aristotelian con-
cepts potentialities and actualities (properties) remained, but the substances
vanished.
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In a quantum lattice modularity is, on the other hand, a weaker form
of the distributivity in classical, Boolean logic. Namely, it is defined by the
condition

if a ⊆ b, then a ∪ (b ∩ c) = (a ∪ b) ∩ c. (4)

As already mentioned, classical Boolean lattice is a complemented dis-
tributive lattice, but because of the mentioned theorem it can be also defined
as an orthocomplemented distributive lattice. Quantum logic, being the or-
thocomplemented modular lattice geometry of closed subspaces of Hilbert
space H (or of orthogonal projections on the subspaces), embeds an infi-
nite number of complete orthonormal frames in H. These frames, as sets of
orthonormal vectors, can be interpreted as Boolean lattices which are the
classical logics of possible events (readings) occurring during the measure-
ments of fixed physical observables. So the quantum experiments, discovered
mainly in the XX-th century, disclosed the rotational degrees of freedom of
the classical logic (unitary rotations between eigenframes of noncommuting
observables) in a new world of H by means of the group of unitary transfor-
mations.

For simplicity and for lack of time we avoid here definitions of the im-
portant concepts of further progress of quantum logic, such as compatibility
and orthomodularity, see.,e.g., (Ludwig 1983 Appendix I, p. 343–352). We
also avoid the discussion of such basic discoveries in the statistical structure
of quantum mechanics as Gleason’s theorem 1957, the quantum concept of
entropy or information, see (Ingarden and Kossakowski 1968), (Ohya and
Petz 1993) and (Ingarden et al. 1997), the concepts of quantum dynamical
semigroup and quantum open system (Kossakowski 1972), (Davies 1976),
the important concept of effect (Günther Ludwig 1970, see (Kraus 1983)),
and the related generalization of the concept of observable from that of a
self–adjoint operator or projection operator-valued measure (PV measure or
spectral measure) to that of positive operator-valued measure (POV mea-
sure or semispectral measure) 1970, see (Grabowski 1990) and (Busch et al.
1997), aa well as the introduction, by means of the latter, of the concepts
of indirect unsharp (fuzzy) measurement (Holevo 1982) and also of unsharp
objectification (Busch et al. 1991), p. 127. We avoid also the concepts of
continuously observed systems, posterior states, quantum filtering and non-
demolition measurements (Staszewski 1993), (Belavkin 1994), the EPR effect
(Busch et al. 1997), Bell’s inequalities, entanglement and teleportation, see
(Horodecki 1996). We assume that all these concepts are now more or less
well-known among most of mathematical physicists and we shall use some of
them later on. For the present state of quantum logic we can refer, for exam-
ple, to the review papers and books by C. Piron (Piron 1972), (Piron 1976),
J. M. Jauch (Jauch 1968), V. S. Varadarajan (Varadarajan 1985), E. Bel-
trametti and G. Cassinelli (Beltrametti and Cassinelli 1981), P. Mittelstaedt
(Mittelstaedt 1978).
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Here we briefly mention only one mathematical and one physical question.
Mathematically, there were objections that the Birkhoff–von Neumann logic
is not a logic in the proper sense since implication is merely a relation (of
order) there, and not an operation. This objection was rejected by the Toru-
nian logician Jerzy Kotas, (Kotas 1967), (Kotas 1971), who showned that
there are 6 operations in quantum logic correspoding to the classical connec-
tives, especially to implication, of which 5 are identical and all of the latter
are equivalent to the implication relation of Birkhoff–von Neumann. Kotas
also presented two equivalent implication–negation axiom systems which are
equivalent to the modular logic of Birkhoff–von Neumann.

The physical question is perhaps the most important problem and the
hope of many quantum logicians, namely, the representation problem, i.e.,
whether the modular lattice with possibly some additional conditions can
always be represented in a Hilbert space. Many believed that they proved this.
For example, B. C. van Fraassen wrote optimistically in 1991 (van Frassen
1991, p. 199), as follows: “The postulates of quantum logic narrowed down
the class of models step by step, and eventually the representation theorems
showed that the state space was constrained to be a Hilbert space.” But
in the same year other experts, Busch, Lahti and Mittelstaedt, in the book
mentioned above wrote pessimistically about the same problem (Busch et al.
1991, p. 4):

Each of the so-called axiomatic approaches has deepened our un-
derstanding of the mathematical and conceptual structures of quan-
tum mechanics. However, none of them led to a thorough justification
of the ordinary Hilbert space quantum mechanics. In particular, the
quantum logical lattice approach is not sufficient for a reconstruction
of this theory.

In this point they quoted the book by G. Kalmbach Measures and Hilbert
Lattices of 1986 (Kalmbach 1986) meaning perhaps that the Hilbert space
property of the lattice should be directly assumed. The problem should be
finally cleared up by mathematicians and logicians. As a physicist, I think
that here we have a similar situation as with the classical mechanics. The
principles of classical mechanics are not contained in the Boolean logic, we
cannot expect another situation in the quantum case. So some additional
physical postulates are unavoidable. Also Hilbert space theory is based on
abstract axioms, not on a concrete representation as a model. For physicists
it seems that any complete mathematical or physical theory should be ax-
iomatic, otherwise we do not know what is basic and what can be derived
from simpler assumptions. But sometimes the pedantic axiomatization, es-
pecially in physics, can be also considered a nuisance or the question only of
mathematical elegance which is not always urgent and convenient, or neces-
sary. We are not shoemakers, as Kant said. But there is also an old English
saying of Thomas Dekker (ca.1572–1632): “Brave shoemakers, all gentlemen
of the gentle craft.”
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However, from the general logical and linguistic point of view, axiomati-
zation, although very useful, is neither necessary nor sufficient for a complete
theory. Linguistically, a syntax requires a semantics. Logically, an axiom sys-
tem needs a model to check the consistency and independence of the axioms
by means of constructing an interpretation. This interpetation can be two-
valued for a many-valued theory, or conversely. (E.g., H. Rasiowa proved the
independence of the axioms of the Tarski-Bernays 2-valued axiom system by
means of a 4-valued logics (Rasiowa 1955), for a general discussion of these
problems see (Zinowiew 1963, Chap. 3).)

There are yet two brief comments which we should like to add here. First,
that there is actually no sharp contradiction between the idea of many-valued
logic and nondistributive logic. Namely, Jammer said that in the modular
logic there are only two logical values (bivalence) since the projection operator
on a closed subspace a of H has only two eigenvalues, 0 and 1. But, as we
mentioned, there is a possibility of infinitely many unitary rotations of this
subspace around zero vector O in the Hilbert space H giving other pairs of
eigenvalues, 0 and 1. Of course, according to the gauge invariance with respect
to a constant (initial or absolute) phase of the state representation, the rotated
subspaces can be also taken as a representation of the given proposition. But
if the representation (i.e., the initial phase) is once fixed as some subspace a,
interpreted as an eigenstate found in a measurement of some observable, the
relative phases between a and its rotated subspaces have already a physical
meaning (e.g., as a Berry phase). Then, all the rotated subspaces, except
all the ones compatible with a, i.e., all the subspaces “skew” with a, are
not true or false, but “undetermined” propositions when a is fixed as true
in the given measurement. They can be true or false only when another
specially adjusted measurement, incompatible with the previous one, is done
(when the corresponding observables do not commute). Saying otherwise, we
have in H as if infinitely many incompatible bivalent logics, forming together
one infinitely-many-valued logic corresponding to the Birkhoff–von Neumann
modular logic. On the other hand, also the phenomenon of a ‘quantum jump’
can be considered as corresponding to the logical value ‘change’ suggested
by S lupecki in his interpretation of the third  Lukasiewicz’s logical value.
But since there are, in general, infinitely many different possible quantum
jumps of a quantum system, also here there are, actually, infinitely many
logical values. Thus, in principle, both of the mentioned logical approaches
to quantum mechanics are not contradictory and both are physically correct.
But the lattice method is much more detailed and specific and introduces a
new algebraic algorithm which can be further developed as Kotas and others
have shown. The problem, however, arises if this method is sufficient for full
understanding of quantum mechanics. We shall discuss this question later on.

The second comment is that the condition of many-valuedness is not yet
sufficient for characterizing the quantum character of logic. For example,
the classical (non-quantum) probability can be defined in an infinitely-many-
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valued, but non-quantum logic, see (Zawirski 1935), while the essentially dif-
ferent, although analogous, quantum probability can be formalized in another
non-equivalent to the former, infinitely-many-valued, but quantum logic. The
logical differences between these cases are just those between distributivity
and modularity (or orthomodularity).

2 Classical (Non–Quantum) Modality

Modality is just this new idea which we should like to add to the concept
of quantum logic in the interpretation of quantum mechanics. The theory
of modality can be compared with many parts of grammar of a natural lan-
guage. It is as if morphology, or better pragmatics of logic, as we shall explain
later on. In other words, we should like to bring the concept of logic nearer to
that of natural language. Modality “conjugates” logical concepts, so to say,
makes them more elastic and more sophisticated, as if more cultural. Thus
we propose to go as if from the elementary school of the so-called extensional
logic to the higher school of the so-called modal or intensional logic. Among
logicians this approach is not new. In fact, it started already in Antiquity, in
the logical works of Aristotle, but developed rather slowly till the XX-th cen-
tury when its progress became very intensive and rapid, especially in the last
5–6 decades, also in Poland. (Polish logicians Jan  Lukasiewicz, Alfred Tarski,
Mordchaj Wajsberg, Jerzy S lupecki, Roman Suszko, Jerzy  Loś, Stanis law
Jaśkowski, Jerzy Kotas, Jerzy Perzanowski and others, and to some extent
also mathematicians Helena Rasiowa and Roman Sikorski, see (Rasiowa and
Sikorski 1970), contributed directly or indirectly to modal logic.)

To begin with, we define in a rather informal and brief way the classical
(non-quantum or distributive) modal logic. Modality (from the Latin word
modus meaning a ‘measure, quantity, rhytm, limit, restricton, end, method,
way’) in logic means a ‘logical valuation’ of something, an expression of the
relation or the attitude of the speaker to something he is speaking about, an
opinion or an estimation or assessment of something from some point of view
by somebody or by an observer or an observing device. This is a generalization
of the assessment of truth or falsity of a sentence. For example, this point
of view may be that of truth and probability, especially: of possibility or
necessity. But not only, it may be also the point of view of obligation, of
knowledge and believing, of potentiality and causality, of time and space, of
existence, etc. Since G. H. von Wright (1951) and A. N. Prior (1967) one
distinguishes more or less formalized branches of modal logic:

– alethic logic — about truth and probability,
– special alethic logic, or modal logic in the narrower sense — only about

possibility and necessity (historically, it was the first form of modal logic),
– deontic logic — about obligation, permission, prohibition, in future

maybe also: sin, crime, kindness, good and bad, the questions usually
considered by ethics or axiology,
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– causal logic — about potentiality and causality,
– epistemic logic — about knowledge, falsification, measurability,
– spatio-temporal logic — about space and time,
– existential logic – about existence, ontology, modi existentiae as in Middle

Age philosophy.

In natural languages, a kind of modal logics is formed by grammatical cate-
gories of personal pronouns, of family relation terms, of kindness expressions,
modal verbs in English called modals (can, could, may, might, will, would,
shall, should, must, ought, need), modal adverbs as certainly, surely, perhaps,
maybe, possibly, probably etc., modes and temporal conjugation of verbs, per-
sonal conjugation of verbs in Polish, etc. Estimation of space and time as
a condition of truth can be generalized to any ‘indexing’ or ‘referring to
a person or an observer’, ‘point of reference’, ‘occasionality’, ‘relativity’, or
‘context of use’.

The first theory of modality in the narrower sense was the syntactical one
developed by Clarence Irving Lewis (1883–1964) who proposed in 1918 and
later five axiom systems, more and more general, for the concepts (functors)
of possibility 3 and necessity 2: S1, S2, S3, S4, S5, (Lewis and Lanford 1932,
1959), (Fays 1965), (Perzanowski 1989). These axiomatic studies were deep-
ened by important algebraic investigations (with applications to topology)
by Alfred Tarski (Tarski 1938) and J.C.C. McKinsey (McKinsey 1941). The
second theory of modality was the semantical theory of Saul Kripke who de-
fined in 1959 the so-called Kripke structure K = (G,K,Q,R), where K is
the set of possible worlds called universe, G ∈ K is the real world, Q ⊆ K
is the set of anomalous worlds, and R ⊆ K2 is a binary relation in K which
enables to decide which of the axiom systems of Lewis is valid, cf. (Fays
1965), (Marciszewski 1987 p. 328–330). The most recent and general is the
pragmatic theory of modality developed by Richard Montague (1930–1971)
in 1968 (Montague 1974) and by his coworkwers Dana Scott, Daniel Kaplan,
M. J. Cresswell and pupil Daniel Gallin (Gallin 1975), see also the books
in Polish: (Tokarz 1993), (Marciszewski 1987). The point of departure for
Montague was the classification of semiotics (linguistics or informatics in the
general sense) by Charles W. Morris (1938). Montague has written about this
in (Montague 1974, p. 95), as follows:

The study of language (or semiosis or semiotic) was partitioned
in Morris [book 1938] into three branches — syntax, semantics, and
pragmatics — that may be characterized roughly as follows. Syntax is
concerned solely with relations between linguistic expressions; seman-
tics with relations between expressions and the objects to which they
refer; and pragmatics with relations among expressions, the objects
to which they refer, and the users of contexts of use of the expressions.

Syntax had already been extensively developed at the time at
which Morris wrote, largely by Tarski, Gödel, and members of the
Hilbert group. [..] Most contemporary work in syntax falls into one
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of the subfields — proof theory or the as yet rather tentative field of
mathematical linguistics.

The foudations of semantics had also been completely laid (in
Tarski 1933) by the time of Morris remarks; but its most extensive
development has occurred since then under the name ‘model theory’.
[...]

Pragmatics, however, was still futuristic at the time of Morris
monograph. It was suggested in Bar–Hillel (1954) that pragmatics
concern itself with what C.S. Peirce had in the last century called
indexical expressions, that is, words and sentences of which the ref-
erence cannot be determined without knowledge of the context of
use; examples are ‘I’ and ‘here’, as well as sentences involving tenses.
Other terms for these expresssions are ‘egocentric particulars’ (Rus-
sell), ‘token-reflexive expressions’ (Reichenbach), ‘indicator words’
(Goodman), ‘non-eternal sentences’ (Quine).

Since Gottlob Frege (1848–1925) one distinguishes in logic for any lin-
guistic expression (name, predicate or sentence) ζ its extension or denotation
or reference Ext[ζ], and its intension or connotation or sense. Please notice
the essential difference of meaning between the word “intension” connected
with “intense” meaning ‘high quality, high degree’, and the word “intention”
connected with “intent” meaning ‘purpose, goal’. Following Rudolf Carnap
(1891–1970), one defines the intension of ζ, Int[ζ], by the equation

Int[ζ](i) = Ext[ζ, i], (5)

where i ∈ I is an index or context of use, and I is the set of indices. Expres-
sions for which the dependence on i is essential, i.e., the set I has more than
one element, are called indexicals or modal expressions. For a name (term)
its extension is an element of a set or a class denoted (or referred to) by
this name (e.g. dog, number), while according to Frege extension of a sen-
tence is its truth value, 0 or 1. (This is the usual simplification of the 2-valued
extensional propositional calculus, drastically insufficient in the case of impli-
cation. In 1967 Roman Suszko, inspired by the philosophy of L. Wittgenstein
(Wittgenstein 1961) interpreted by B. Wolniewicz (Wolniewicz 1968) as an
ontology of situations, proposed a “non-Fregean logic” in which denotation of
a sentence is a ‘situation’, in German ‘Sachlage’ (Suszko 1968).) If one con-
siders logical functors, i.e., sentence-valued functions of sentences, one distin-
guishes between extensional functors depending only on the truth values of
their arguments, 0 and 1, i.e., only on their extensions, and intensional func-
tors or modal functors depending also on their intensions (contents, sense).
Extensional functors are, for example, the usual logical constants or connec-
tives of classical bivalued propositional calculus, as ¬ ‘non’ (negation), ∪ ‘or’
(join, alternative), ∩ ‘and’ (meet, conjunction). Examples of modal functors
are: 3 (denoted also by M or P ) ‘it is possible that’, 2 (or L or N) ‘it



Modal Interpretation of Quantum Mechanics 43

is necessary that’, ‘I believe that’, ‘I know that’ etc. Functors 3 and 2 are
mutually connected by the relations

2p ≡ ¬3¬p, 3p ≡ ¬2¬p. (6)

Extensional functors can be treated by the usual classical Boolean logic as
extensional logic, but modal functors are not contained at all in Boolean
logic and require many-valued nonclassical logic, such as intensional logic
or modal logic. This cannot be easily seen by the usual axiomatic way of
developing propositional calculus, only by means of the so-called matricial
method (of logical-value matrices generalizing the truth-value matrices) of
defining propositional functors and checking logical theorems about them.
E.g., in the case of the possibility and necessity functors defined by S4 or
S5 axiom systems, cf. also (Fays 1965), (Rasiowa and Sikorski 1970 Chap.
XI), an infinitely-many-valued logic is needed. We see that, by introduction
of many logical values, the concept of essentially extensional functors can be
generalized, and the modal functors can be considered as extensional in this
generalized weaker sense (they may be called, for example, semiextensional).
For example,  Lukasiewicz has defined many 3- and 4-valued modalities. With
higher number of logical values the problem becomes much more complicated,
but many theoretical insights are obtained by S lupecki,  Loś and others.

If a modality concerns not a sentence, but an object, a person or an action,
i.e., if it belongs to objective language, not to metalanguage, then one calls it,
according the Middle Age Latin terminology, modalitas de re. For example,
“This function is a possible solution.” or “He is a probable candidate.” or
“Sherlock Holmes could live in London.”. If a modality is about a sentence,
it belongs to the metalanguage, as “It is possible that this function is a
solution.” or “It is probable that he is a candidate.” or “It is possible that
Sherlock Holmes lived in London.”, then one traditionally calls it modalitas
de dicto.

3 Quantum Modality

What we said about modality up to now was a part of non-quantum, although
many-valued logic. General quantum modal logic is not yet elaborated in de-
tail, except the concepts of special modalities, possibility and necessity. The
latter problem has been solved by the mentioned Dutch-American philoso-
pher and physicist, Bas V. van Fraassen (now Princeton University, Prince-
ton, N. J.). The first idea has been presented by him in 1981 (van Frassen
1981) and then developed in 1990 (van Frassen 1991) and in his book 1991
(van Frassen 1991a), cf. also the brief presentation of his special modal inter-
pretation in the quoted book by Busch–Lahti–Mittelstaedt 1991 (Busch et
al. 1991 p. 118–122). The latter authors described van Fraassen’s idea in the
following words:
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A further interpretation of quantum mechanics which goes be-
yond the minimal interpetation but which avoids the objectification
problem is a modal interpretation of quantum mechanics developed
by van Fraassen (1981, 1990). This interpretation considers quantum
mechanics as “a pure theory of possible, with testable, empirical im-
plications for what actually happens”.

Here by the “objectification problem” one means the question of wheather
each quantum measurement should lead to a definite sharp result, see (Busch
et al. 1991) p. 33. As we know a measurement of a generalized observable
(POV measure) leads, in general, to an unsharp result (for example, a si-
multaneous measurement of momentum and position of a particle in the
Heisenberg state with the minimal uncertainty of position and momentum).
Thus the objectification problem is denied or avoided. What regards the term
“minimal interpretation”, it is defined as follows (Busch et al. 1991, p. 11):

The number ET (X) = tr[TE(X)] is the probability that a mea-
surement of the observable [as PV or POV measure] E performed
on the system S in the state T leads to a result in the set X [e.g.,
X ∈ B(R) in the real Borel measure space (R,B(R))].

To show the fundamental additional assumption of van Fraassen (for simplic-
ity we avoid his further assumptions) we quote its brief presentation from the
same book (Busch et al. 1991, p. 119):

Consider a physical system S, and let E and T be any of its ob-
servables and states. The modal interpretation distinguishes between
two types of propositions: the value–attributing propositions — an
observable E has value X, to be denoted (E,X) — and the state–
attributung propositions — a measurement of E leads to a result in
X, to be denoted [E,X]. In accordance with the minimal interpre-
tation a state T makes the state–attributing proposition [E,X] true
if ET (X) = 1. The heart of the interpretation is to characterize the
truth of a value–attributing proposition, that is, to answer the ques-
tion which value–attribitions (E,X) are true in a given state T . The
truth of (E,X) will not be identified with the truth of [E,X]. To
explain this, the following definition is needed: a state T ′ is possible
relative to T [van Fraassen denotes this relation by TRT ′] if and only
if tr[T ′P ] = 1 whenever tr[TP ] = 1 for any projection operator P . A
vector state P [ϕ] is thus possible relative to T exactly when ϕ is in
the range of T . In particular, if P [ϕ] occurs in a decomposition of T ,
then P [ϕ] is possible relative to T . [...] The modal interetation then
starts with the following postulate.

(P) Given that system S is in a state T , there is a certain pure
state P [ϕ] which is possible relative to T , and such that for all ob-
servables E pertaining to S:
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a) a state–attribution [E,X] is true if and only if T makes it true;
b) a value–attribution (E,X) is true if and only if P [ϕ] makes [E,X]
true.

Above we had only the definition of relative prossibility R in van Fraassen’s
interpretation. Now we give his general definitions of functors of necessity 2

and possibility 3 by means of relation R. These functors have been called by
van Fraassen modal operators and formulated in his book in definition D12,
p. 314, as follows (we remind that propositions or events, or image spaces
— ranges — of mixed state operators, are represented as closed subspaces of
H; when the state operator T has image space x and the state operator T ′

image space y, TRT ′ or xRy corresponds to y ⊆ x):

If q is any proposition, then

2q = {w : for all w′, if wRw′ then w′ ∈ q}, (7)

3q = {w : for some w′, wRw′ and w′ ∈ q}. (8)

For lack of time we resign from further development and discussion of van
Fraassen’s special modal interpretation. We think that it is an important con-
tribution to understanding of quantum mechanics. It rose some interest in
literature (papers by Lahti, Cassinelli and others), but not yet proportional
to its importance. The reason is, perhaps, that the considered modality is
only special and that the general concept of modality is not yet sufficiently
well-known among physicists, and in part also among philosophers. What we
would like to propose is to generalize this interpretation and to show its con-
nections with classical physics which actually unconsciously used the modal
concepts since Antiquity. The reason is clear: modality is an integral part of
human language and without it we cannot understand the world and ourselves
in the world. But the Western philosophy and culture, in contradistinction
to the Far Eastern one, as Indian, Chinese and Japanese, is concentrated
more on sharpness, categorical statements, absoluteness, and does not have
sufficient feeling for modalities: fuzziness, shades and relativity.

4 Modal Interpretation of Classical
and Quantum Physics

The problem of modality in physics, classical and quantum, has been briefly
discussed by the present author in the Introduction to his recent book with
Kossakowski and Ohya 1997 (Ingarden et al. 1997), and in his lecture at the
6-th Polish Congress of Philosophy in Toruń 1995 (Ingarden 1997a). These
interests of the author have been prompted by his contacts with the Japanese
language and with the Far-Eastern Philosophy during his multiple stays in
Japan as visiting professor. Indeed, the Japanese language is perhaps one
of the richest in modal expressions and grammatical modal forms. It is a
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language of many styles of speaking and writing and of many shades of
meaning and steps of kindness. In Buddhist and Jainist philosophy there
is a distinction between two philosophical views of reality: the substance view
(in Sanskrit dravyarthika naya) represented, for example, by the Hinduistic
Vedanta and in Europe by the Aristotelian philosophy, and the modal view
(paryayarthika naya) represented by the Buddhistic philosophy of the “mid-
dle path” (madhyama pratipad), the so-called Madhyamika system developed
especially by the Indian Buddhist philosopher Nagarjuna (II–III century),
see (Murti 1987). This point of view is connected with the Buddhist un-
derstanding of the emptiness, vacuum, the Nirvana, about which one of the
Buddhist modern Japanese philosophers, Nagao, said “Emptiness is not, how-
ever, simply nothingness. It is also immediately and necessarily the being of
dependent co-arising”, (Nagao 1989, p. 4). The “dependent co-arising” (in
Sanskrit pratitya-samutpada) is understood as the so-called Samsara or the
phenomenal world of experience. It can neither be said about this world that
it exists nor that it does not exist, it exists only potentially, virtually, as
probability or propensity. All these old philosophical ideas seem to be very
near to the ideas of modern quantum physics. The problem is only to express
them mathematically.

Just with the idea of the “mathematical expression” the question is con-
nected of whether a modal concept, for example, of something unsharp as a
quantum non-classical “unsharp object”, can be described by a model in a
bivalued Boolean logic? Of course, yes, an example is a representation in a
Hilbert space of “probability amplitudes”. This was discovered by Born and
Heisenberg in the 20-ths. But in place of the two logical values of classical
logic there appear to be infinitely many new values of real positive and nor-
malized probabilities or of complex probability amplitudes. When we speak
about complex or, possibly, quaternion “amplitudes” of probability, I pro-
pose to call this approach submodality, since we speek about as if non-real
“roots” x of probability p, in the sense that p = x̄x, where x̄ is the complex
or quaternion number conjugated to x. But when we speak about truth of
quantum mechanics or quantum field theory, i.e., in the metalanguage (as in
the mentioned Margenau criticism), not about reality, but about sentences
about reality, in the logic of the 2nd or higher order, then we can use the
term supermodality. This new modality can be the zero-modality, i.e., the
limit categorical language of the bivalued Boolean logic, or it may be again a
proper many-valued modality. This procedure can be, in principle, repeated.
As is well-known, distinguishing among many logical types (orders) of sen-
tences is necessary for avoiding antynomies, see, e.g., (Mostowski 1948, Chap.
VIII). I think that the vectors of a complete orthonormal base of a complex
separable Hilbert space H of quantum mechanics (these vectors correspond
to the atoms of a quantum lattice) can be considered directly as generalized
logical values of this submodal quantum logic. They are complex, but they
are contained in the unit Hilbert ball, since pure state vectors are normalized
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to 1. Only for linear operations we can sometimes go outside of the unit ball,
but in the end we have to come back to it. Among the linear operators of a
Hilbert space H only the effects and POV measures constructed by them as
generalized observables, and as special cases probability (density) operators
as mixed and pure states, together with van Fraassen special modal oper-
ators, have a physical meaning and can be called general modal operators.
Reminding that effects E as operators are defined by the conditions

O ≤ E ≤ I, (9)

we see here the quantum correspodence and a generalization of the classical
probability condition 0 ≤ p ≤ 1 with a continuous infinity of values in the
real interval [0, 1]. But the quantum probability and modality is much more
general and powerful than the classical probability and modality. In both
cases probability is the most important and general of all the modalities.
The mentioned quantum modalities are only of one vector argument, but in
principle also many-argument operators can be considered. It is a far going
generalization, but I think that modern physics compels us to go there. Of
course, this problem requires further studies from the logical point of view in
the sense of the semi-extensional logic.

But not only quantum physics requires modality. Actually, since Antiq-
uity many modal concepts have been used freely in physics. Namely, causality
is a kind of necessity, potentiality and probability are kinds or generalizations
of possibility. Also energy as containing potential energy is a modal concept,
of the possibility kind, since it is not work but possibility of work, see also
(Ingarden 1997a) for further examples and discussion. But perhaps the most
important for physics is the concept of relativity, for example, the relativity
with respect to a space-time frame, and, in general, the role of the observer
in relativity theory and quantum mechanics, as examples and generalizations
of the ideas of index and indexical in the sense of Peirce–Bar-Hillel–Carnap–
Montague. The essential point is that all physical measurements have a ref-
erence frame, a measuring device and a surrounding as a “context of use”.
In principle, they are always done in an open system interacting more or less
strongly with the measured system, even if it is energetically or information-
ally (in entropy, e.g., thermally) isolated, see (Ingarden et al. 1997). Also in
classical physics we have the problem of unsharp results of measurement, but
only in quantum physics it is acute and cannot be reduced to the question
of lack of knowledge, an error or approximation, see (Busch and Lahti 1990).
The concept of fuzzy set has been introduced to mathematics by a purely
classical motivation, namely, the fact of existence of unsharp concepts in nat-
ural languages, independently by K. Menger in 1951 (Menger 1951) and L.
A. Zadeh in 1965 (Zadeh 1965). Only up to 1984 there appeared above 2400
papers about fuzzy set theory, see (Kaufmann 1972), (Drewniak 1984). This
theory was started as if anew by S. Bugajski in application to probability
and quantum physics, see, e.g., (Bugajski 1996). It may be remarked that



48 R.S. Ingarden

the quantum theory of pressure broadening of spectral lines of Aleksander
Jab loński in the 30’s and 40’s, (Jab loński 1937) (Jab loński 1945), used ac-
tually the idea of statistics of spectral lines, i.e., of statistical hamiltonians
as the 2nd order statistical theory, statistics of statistics, supermodality, al-
though this principal point of view was not especially elaborated by him. It
seems that now some elaborations of this problem already exist in the litera-
ture, but, perhaps, some further studies of this question would be desirable.

We remark, however, that by far not always quantum physics leads to
fuzziness. For example, Niels Bohr corrected his previous false idea that the
energy and momentum conservation laws are not sharply fulfilled in quan-
tum mechanics, only approximately, statistically. Actually, they are conserved
sharply (in an isolated system), with necessity, i.e., as a special modality.
(Also entropy-information is sharply conserved in an isolated system.) It is
very likely that, in the process of massive pair formation in vacuum near
black holes, these conservation laws are reasons of the repulsion force of the
expanding universe, to equilibrate the gravitation attractive force. Maybe
this quantum effect can explain not only the Hawking radiation, but also the
pressure caused by this radiation and the value of the cosmic constant Λ of
Einstein which has been recently reintroduced in relativistic cosmology?

I finish with the hope that, about the end of this century, the modal
point of view may be usuful in relaxing the yet existing difficulties in the
interpretation and understanding of quantum mechanics.
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PWN, Warszawa



Modal Interpretation of Quantum Mechanics 51

Zadeh, L.A., (1965): Fuzzy sets, Information and Control 8 338–353
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Abstract. In nonrelativistic quantum mechanics causality is violated in an obvious
way. The hope that this acausality would disappear in relativistic theories, in which
the speed of propagation is finite, has turned out to be an idle hope. A localised
state spreads over all space under a time translation or a boost.

In this paper it is suggested that this strange behaviour is actually a semantic
problem. The eigenstates of the Newton-Wigner position operator will be considered
as single particle states, which are localised with an accuracy equal to their Compton
wavelength. Correspondingly the nonlocality of a two-particle potential will not
extend beyond the Compton wavelength of the particles and can therefore still be
called local.

These ideas will be elaborated in the framework of a previously formulated
relativistic quantum theory. With this theory it will be shown that the sharp edge
of a hard sphere interaction between two particles can still be determined with any
accuracy by measuring the cross section in a high energy experiment.

1 Introduction

In nonrelativistic quantum mechanics the wave function of a particle, which
initially is confined to a finite region of space, will spread immediately over all
space. This is understood by the fact that, when written as a superposition of
plane waves, the wave function is seen to contain components with arbitrarily
large momentum.

For a long time it was generally believed that this acausal behaviour
would disappear once the theory would have been put in a proper relativistic
invariant form. Since no signal travels faster than light this behaviour would
be prohibited. This belief, however, turned out not to be justified.

In 1949 Newton and Wigner (Newton and Wigner 1949) constructed lo-
calised single particle states, which deserved this name, because they satisfy a
number of plausible conditions: they transform properly under rotations and
under space translations and they are eigenstates of an hermitian operator,
which in the limit where the speed of light becomes infinite, reduces to the
correct nonrelativistic position operator.

These localised states, however, turned out to have some very peculiar
properties. When being observed from a moving coordinate system or when
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subjected to a time translation, they were no longer localised, and the prob-
ability to observe the particle anywhere in space, was not zero. Later it was
shown by Hegerfeldt (Hegerfeldt 1974, 1998) that a much weaker form of
localisation of massive relativistic particles with positive energy, always gives
rise to acausal behaviour. In spite of the fact that Ruijsenaars (Ruijsenaars
1981) demonstrated that the probability to detect a superluminal electron is
less than 10−1000, the discussion about the violation of causality goes on.

The present paper is a contribution to this discussion. It will be shown
that all previous considerations, which applied to single particles, keep their
validity also for systems of interacting particles. This will be done, not by
extending the general proofs, but by first constructing a relativistic invariant
particle theory, and then applying this to the calculation of some nonlocal
and acausal effects. The conclusion will be the same as that of Ruijsenaars:
the effects are too small to be observed.

This will be discussed in Section 3. First, however, a brief description
will be given of the theory mentioned above. A full exposé has recently been
published in (Ruijgrok 1998).

2 Relativistic Quantum Mechanics

2.1 Classical Theory

Since in 1949 Dirac (Dirac 1949) showed that the incorporation of relativ-
ity into classical Hamiltonian mechanics presents a formidable problem, the
development of relativistic dynamical theories, both classical and quantum
mechanical, was strongly influenced by his considerations. Kerner’s collection
of reprints (Kerner (ed.) 1972) gives a good idea of the progress that was made
on this subject up to 1970. Later developments are discussed in (Llosa (Ed.)
1982), especially by Hill (Hill 1982, p. 104).

A way of presenting the difficulties, which arise when trying to make
the transition from nonrelativistic– to relativistic classical mechanics, is the
following.

Consider the problem of how to derive Newton’s equations for two or more
interacting particles, from the requirement that these equations be invariant
under space and time translations, as well as under rotations and boosts of
the coordinate system. This problem can be phrased as: “How to construct
all possible realisations of the Galilei group?”

The solution is given by Cis lo  Lopuszański and Stichel (Cis lo et al. 1998).
As a special case it was shown by Sudarshan and Mukunda (Sudarshan and
Mukunda 1974) that it is possible to introduce the interaction between parti-
cles in such a way that only the generator for infinitesimal time translations
is affected.

This means that the Hamiltonian gets an extra term, which is the
translational– and rotational invariant potential energy, while all other gener-
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ators remain the same. In particular the generator for translations is unaltered
and is equal to the sum of the three-momenta of the individual particles.

Dirac (Dirac 1949), in his article “Forms of Relativistic Dynamics”, con-
sidered the same problem for the Poincaré group. For the “point” form he
concludes that again the generators for rotations and boosts are unchanged
and that the zero component of the four-momentum should get an extra
term, after switching on the interaction. Now, however, also the total three-
momentum acquires an additional term. “These [extra terms] cause the real
difficulty in the problem of constructing a theory of a relativistic dynamical
system...”, and half a century after Dirac wrote these words, there is still
no practical theory, which could be used for the calculation of high energy
collisions or bound states of classical relativistic particles.

The delicacy of the problem becomes clear from the existence of a no-go
theorem(Currie 1963),(Currie et al. 1963),(Leutwyler 1965). This theorem
states that there can be no interaction at all when too stringent additional
assumptions are made, e.g., about the canonical character of the Lorentz
transformations and of the position coordinates.

The remarks made so far seem to suggest that it may be impossible to
construct an elegant relativistic theory with a direct particle interaction,
i.e., without using an intervening field with an infinite number of degrees of
freedom. This, however, is not the case, as was shown for instance in the
papers by Currie (Curie 1966) and by Van Dam and Wigner (Van Dam and
Wigner 1965), (Van Dam and Wigner 1966). The latter construct a Poincaré-
invariant theory, in which the conserved total four momentum is split into
a kinetic part and a part in transit, which vanishes long before and long
after the collision.Therefore, during the collision, not only the kinetic energy
P 0 = p0

1 + p0
2 is not conserved, but also the three-momentum −→P = −→p 1 + −→p 2

will vary in time. After the collision has been completed the four-vector Pµ

has again the same value as before.
This time dependence of all four components of the sum of the particle

momenta is not particular for the theories mentioned above,but is valid in a
much wider framework, as was already discussed by Møller (Møller 1952).

This may be an acceptable situation for a classical theory, but for the
quantised version it is not. If the quantum theory is to have a form like the
Lippmann-Schwinger equation, a sum or integral over intermediate states is
going to appear, which, usually, is restricted by the kinetic three-momentum−→P having the same value for the intermediate states as for the initial and final
state. Since it was shown by Van Dam and Wigner (Van Dam and Wigner
1965), (Van Dam and Wigner 1966) that for a relativistic theory this cannot
be realised, another three-vector must be found, which is conserved.

The obvious candidate is the conserved three-vector of the total momen-
tum, which includes the momentum in transit during the collision. This,
however, is an extremely complicated expression, containing the particle mo-
menta along both world lines.
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For that reason we will now define a much simpler three-vector, viz. the
velocity of the total system as given by the kinetic momenta only:

−→v =
−→p 1 + −→p 2 + · · · + −→pN

p0
1 + p0

2 + · · · + p0
N

=
−→P
P 0 (1)

with the free particle relation

p0
i = +

√
|−→pi|2 +m2

i i = 1, . . . , N (2)

between the momentum components and the restmass mi. It will now be
assumed that this vector is time independent, although −→P(t) and P 0(t) do
vary during the collision. In a classical two-particle system it is almost obvi-
ous, at least it was to Møller (Møller 1952), that this total particle velocity
is constant. It must be stressed, however, that this is not a mathematical
identity, but rather a physical hypothesis.

2.2 The Equation

After these preliminaries the new quasipotential theory for relativistic scat-
tering amplitudes is now defined by the following generalisation of the
Lippmann-Schwinger equation (Lippmann and Schwinger 1950)

Mαβ(s) = Vαβ −
∫
γ

VαγLγ(−→v , s)Mγβ(s) for −→v α = −→v β ≡ −→v .

(3)
The integration element for the intermediate state γ = (p1, · · · , pn) is∫

γ

· · · =
∫
dp1 . . . dpnΠ

n
j=1δ(p

2
j −m2

j )θ(p
0
j ) · · · (4)

and the velocities −→v α and −→v β are defined by (1).
The Lorentz invariant propagator on the upper rim of the unitarity cut is
taken as

Lγ(−→v , s0 + i0) =

∞∫
0

ds′

s′ − s0 − i0
δ4(Pγ − s′

s0
P0) , (5)

in which the four-momenta Pγ and P0 are equal to

Pγ =
√

sγ
1 − |−→v γ |2 (1,−→v γ) and P0 =

√
s0

1 − |−→v |2 (1,−→v ) , (6)

so that sγ = P 2
γ and s0 = P 2

0 .
The unitarity of the S-matrix is guaranteed by the hermiticity of Vαβ and by
the equation
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lim
s →s0+i0

Im Lγ(−→v , s) = πδ4(Pγ − P0) . (7)

The form (5) of the propagator furthermore ensures the equality of the
total velocities in the initial and intermediate state −→v = −→v γ . This can be
seen explicitly by performing the integration in (5), which leads to

Lγ(−→v , s) = L0
γ(s)L3(−→v γ ,−→v ) (8)

with

L0
γ(s) =

1

s
3/2
γ (√sγ − √

s )
and L3(−→v γ ,−→v ) = (1−|−→v |2)2δ3(−→v γ −−→v ) .

(9)
Both factors in (8) are Lorentz invariant.
The total cross section for the scattering of two particles in the state β is

calculated in the standard way

σtot(β) =
(2π)4

2
√
λ(s,m2

1,m
2
2 )

∫
α

|Mαβ(s+ i0)|2δ4(Pα − Pβ) (10)

with

s = sβ = P 2
β and λ(x, y, z) = x2 + y2 + z2 − 2xy − 2yz − 2zx . (11)

In the same way the decay rate of an unstable particle–by definition in its
own rest system–is given by

1
τ

=
(2π)4

2mu

∫
α

|Mαβ(+)|2δ4(Pα − Pβ) ,

where mu is its mass and Pβ its four-momentum.
For later purpose it is useful to define the Hilbert space spanned by the

products of single particle states. Instead, however, of labelling these states
by the three-momentum and the mass of the individual particles, we will
use the three-velocity and the mass. Suppressing the masses, a many particle
state will therefore be written as |α〉 = |−→v 1, · · · ,−→v nα

〉. For later convenience
we choose the relativistic normalisation as

〈α′|α〉 =
{∏nα

i=1 L
3(−→v ′

i,
−→v i) if nα′ = nα

0 if nα′ 6= nα .
(12)

Using the transformation formula

γ4(v)d−→v =
d−→p
m2p0 with γ(v) =

1√
1 − |−→v |2 (13)
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it can be shown that for single particle states the connection with the standard
normalisation in momentum space, is given by

〈−→p ′|−→p 〉 =
16π3p02

m4 〈−→v ′|−→v 〉 .

It is convenient to change the integration of (4), into an integration over the
velocities. Disregarding the internal degrees of freedom and fixing the number
of particles, we get

∫
α

· · · = µ2
α

∗∫
α

· · · with (14)

µα =
∏
iεα

mi√
2

and

∗∫
α

· · · =
∫
γ4(v1)d−→v 1 · · · γ4(vnα)d−→v nα · · · .

A simple consequence is that the unit operator can be written as

∗∫
γ

|γ〉〈γ| = 1 , (15)

where a summation over the number of particles and over the internal degrees
of freedom is also implied.

2.3 The Potential

We now want to show how to construct the potential Vαβ , occurring in the
main equation (3). Since it must be Lorentz invariant, it should be a function
of the scalars that can be formed with the four-momenta of the particles,
which make up the states α and β. As most important example we first con-
sider the elastic scattering of two spinless particles with masses m1 and m2.
The initial and final states are therefore labelled by β = (−→p 1,m1; −→p 2,m2)
and α = (−→p ′

1,m1; −→p ′
2,m2). For the time being we shall not use the velocity

basis, defined in (14).
Suppose, e.g., that in the nonrelativistic limit we want the interaction to
reduce to an attractive Yukawa potential, as derived from the one-boson ex-
change diagram (Fig. 1).

In the nonrelativistic theory and in the coordinate representation, this
attractive Yukawa potential is given by

V NR(r) = −α~c
e−µr

r
, (16)

where r = |−→r | is the distance between the particles and α is a positive
and dimensionless coupling constant. In what follows we will take units such
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that ~ = 1 and c = 1. In order to calculate the potential in the momentum
representation, the momenta, which are canonically conjugate to the centre
of mass coordinates and the relative coordinates must first be defined

−→Pβ = −→p 1 + −→p 2 ,
−→p β =

m2
−→p 1 −m1

−→p 2

m1 +m2
, (17)

−→Pα = −→p ′
1 + −→p ′

2 ,
−→p α =

m2
−→p ′

1 −m1
−→p ′

2

m1 +m2
, (18)

with the inversion

−→p 1 =
m1

m1 +m2

−→Pβ + −→p β ,
−→p 2 =

m2

m1 +m2

−→Pβ − −→p β ,

−→p ′
1 =

m1

m1 +m2

−→Pα + −→p α ,
−→p ′

2 =
m2

m1 +m2

−→Pα − −→p α . (19)

In the nonrelativistic case the total momentum is conserved, −→Pα = −→Pβ , so
that also

−→p ′
1 − −→p 1 = −→p 2 − −→p ′

2 = −→p α − −→p β ≡ −→q . (20)

The nonrelativistic potential in momentum space can be written as a function
of −→q :

V NRαβ =
1

(2π)3

∫
e−i−→q ·−→r V NR(r) d−→r = − α

2π2(|−→q |2 + µ2)
, (21)

so that the full potential must approach

Vαβ ≈ − 2αm1m2

π2(|−→q |2 + µ2)
(22)

in the nonrelativistic limit. An extra factor 4m1m2 had to be included, be-
cause of the different normalisation of the states. The standard way to satisfy
condition (22) is, first to introduce the Mandelstam variables

s = (p1 + p2)2 = (p′
1 + p′

2)2 , t = (p′
1 − p1)2 = (p′

2 − p2)2 , (23)
u = (p′

1 − p2)2 = (p′
2 − p1)2 , s+ t+ u = 2(m2

1 +m2
2) ,

and then to observe that in the nonrelativistic limit

t
NR=⇒ −|−→q |2 +

[ |−→p ′
1|2 − |−→p 1|2

2m1

]2
+ · · · . (24)

The NR-limit is defined by |−→p 1|2
2m1

� m1, or |−→v 1| � 1.
Combination of (22) with (24) strongly suggests to take for the relativistic
attractive Yukawa potential the following expression

Vαβ =
2αm1m2

π2(t− µ2)
. (25)
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� �

� �

µα β

p1,m1

p2,m2

p′
1,m1

p′
2,m2

Fig. 1. One-boson exchange diagram for Yukawa interaction.
The mass of the exchanged particle is µ.

This is indeed the same as the Born approximation in a simple field theory,
given by the one-boson exchange diagram (Fig. 1).
In the derivation as given above, the conservation of energy and momentum
p1 + p2 = p′

1 + p′
2 played a crucial rôle. In our theory this is replaced by

velocity conservation, expressed by

−→p 1 + −→p 2

p0
1 + p0

2
=

−→p ′
1 + −→p ′

2

p′01 + p′02
(26)

or, what amounts to the same, by

p1 + p2√
s

=
p′
1 + p′

2√
s′ with s = (p1 + p2)2 and s′ = (p′

1 + p′
2)2 . (27)

The four-vectors of the relative momenta are again defined as in (17),

pβ =
m2p1 −m1p2

m1 +m2
and pα =

m2p
′
1 −m1p

′
2

m1 +m2
. (28)

The four-vectors q1 and q2 for the energy-momentum transfer, and defined
as before by

q1 = p′
1 − p1 and q2 = p2 − p′

2 ,

are now different from each other, except if s′ = s, when (27) again expresses
energy- and momentum conservation. Therefore, it is not clear which of the
two possible forms for t in (23) should be used in a Lorentz invariant expres-
sion for the potential Vαβ . However, the Mandelstam variables can also be
written in the form

s̄ = (p′
1 + p′

2) · (p1 + p2) ,
t̄ = (p′

1 − p1) · (p2 − p′
2) = q1 · q2 , (29)

u = (p′
1 − p2) · (p1 − p′

2) .



60 Th.W. Ruijgrok

They have been given different names, because now they are also defined
when q1 6= q2. They satisfy the more general relations

s̄ =
√
s′s and s̄+ t+ u = 2(m2

1 +m2
2) − (

√
s′ − √

s )2 . (30)

Notice that for s′ = s, i.e., on the mass shell, t̄ = t, because then energy
and momentum are again conserved (27).
The definition of the relativistic Yukawa potential is now taken as an exten-
sion of (25):

Vαβ =
2αm1m2

π2(t̄− µ2)
. (31)

It is equal to (25) for the standard theory in which s′ = s, while it is a
definition if the states α and β have different s-values, which is allowed in
the present theory.

All ingredients of the basic equation (3) are now well defined and scatter-
ing amplitudes can in principle be calculated, as well as the masses of bound
states.

The discrete spectrum of invariant masses Mn is defined by the poles
sn = M2

n of the Green function.
If the wave functions ψnγ of the eigenstates |n,−→v 〉 are defined by

〈γ|n,−→v 〉 = ψnγL
3(−→v γ ,−→v ) , (32)

the eigenstates can be expanded in free-particle states

|n,−→v 〉 =

∗∫
γ

ψnγL
3(−→v γ ,−→v )|γ〉 . (33)

The eigenvalue equations for the wave functions become

(√
P 2
β −Mn

)
ψnβ +

∗∫
γ

µβµγ
(sβsγ)3/4

VβγL
3(−→v γ ,−→v )ψnγ = 0 for −→v β = −→v (34)

in which µβ is given by (14). The hermiticity of Vαβ guarantees the
orthogonality of the eigenfunctions. If we require the states |n,−→v 〉 to be
normalised in the same way as the single free–particle states (see(12)), then
we should have

〈n′,
−→
v′ |n,−→v 〉 = δn′,nL3(

−→
v′ ,−→v ) . (35)

This implies for the wave functions the following normalisation

∗∫
γ

ψn′∗
γ ψnγL

3(−→v γ ,−→v ) = δn′,n . (36)
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The equation (34) is the basic manifestly Lorentz invariant equation, from
which the mass spectrum can be calculated.

The theory outlined in this section, has been successfully applied to a
number of relativistic systems (de Groot and Ruijgrok 1975), (de Groot and
Ruijgrok 1986), (Hersbach and Ruijgrok 1991)–(Hersbach 1994), (van Meij-
gaard and Ruijgrok 1985), (Ruijgrok 1976)–(Ruijgrok 1996).

2.4 Poincaré Invariance

Because of the equations (13) and (14) the integration elements in the basic
equations (3) and (34) are invariant under homogeneous Lorentz transforma-
tions. As a consequence the scattering amplitude Mαβ will transform in the
same way as the potential Vαβ . For spinless particles the potential should
therefore be a Lorentz scalar, constructed from the momentum four-vectors
of the particles in the states α and β. In general the invariance under rota-
tions and Lorentz boosts can be guaranteed by requiring that the potential
satisfy

[Ĵµν , V ] = 0 , (37)

where V is defined by its matrix elements

〈α|V |β〉 = VαβL
3(−→v α,−→v β) (38)

and Ĵµν are the generators of infinitesimal transformations, of which it is
known how they operate on the free-particle states |α〉, and for which

[Ĵµν , Ĵλσ] = i(gµλĴσν − gµσĴλν + gνλĴµσ − gνσĴµλ) . (39)

For particles with spin the potential may contain factors of the form
D = uλ′pµγ

µuλ, where uλ is a Dirac spinor satisfying the free-particle Dirac
equation. This latter property is essential for proving (37) also for this case.
In most other theories this creates difficulties, because in intermediate states
particles go off mass-shell, while in the present case the particles are always
on shell.

It should be emphasised that the operators Ĵµν are not modified if there
is interaction between the particles.

When the Poincaré group is considered, the generators P̂µ for infinitesimal
translations in time and space cannot be the same as for noninteracting
particles, because the total kinetic energy and the total kinetic momentum
are not conserved in the interaction. The latter was replaced by conservation
of total velocity, described by the factor L3(−→v γ ,−→v ) in (3) and (34).

The correct form of P̂µ can be shown to be the following (in terms of its
matrix elements between free-particle states)

〈α|P̂µ|β〉 = (sαsβ)1/4[〈α|β〉 +
µαµβ
sαsβ

〈α|V |β〉]uµ(−→v )

with −→v α = −→v β = −→v , (40)
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where µα was given in (14) and uµ(−→v ) are the components of the four-
vector

u(−→v ) = γ(v)(1,−→v ) . (41)

The proof, the details of which are given in (Ruijgrok 1998), goes along
the following lines:

1. Define the stationary scattering states

|β〉+ = |β〉 −
∗∫
γ

µγµβ(
sγ
sβ

)3/4Mγβ(+)L0
γ(sβ + i0)L3(−→v γ ,−→v )|γ〉 (42)

with −→v β = −→v .
2. Prove that, together with the bound states (33), they form a complete

orthonormal set. This is guaranteed by the unitarity of the S-matrix,
which follows from the hermiticity of Vαβ .

3. Prove that these stationary scattering states and bound states are eigen-
states of P̂µ defined by (40), i.e.,

P̂µ|β〉+ =
√
sβuµ|β〉+ and P̂µ|n,−→v 〉 = Mnuµ|n,−→v 〉 . (43)

Here it is essential that Mαβ is the solution of (3) and ψnγ satisfy (34).
4. From the completeness and from (43) it follows immediately that

[P̂µ, P̂ν ] = 0 . (44)

The remaining condition for the full Poincaré invariance is

[P̂µ, Ĵνλ] = i(gµνP̂λ − gµλP̂ν) . (45)

This can be proved by writing P̂µ, defined by (40), as the sum of the four-
momentum of the free particles and the four-momentum residing in the po-
tential

P̂µ = P̃µ + CV P̃µ (46)

in which C is an operator which commutes with Ĵνλ. Using the fact that
(45) is satisfied if P̂µ is replaced by P̃µ, substitution of (46) into (45) leads
to the condition (37), which is the condition for the potential to be Lorentz
invariant. This ends the proof of the Poincaré invariance of the theory.

It is of the so called point-form as defined by Dirac (Dirac 1949), because
only P̂µ is changed by the interaction, while the Ĵµν are left untouched.
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3 Locality and Causality

3.1 The Position Operator

In order to compare the results of an experiment with a theoretical prediction,
it will in most cases be sufficient to calculate a differential cross section,
a mean life-time or the spectrum of bound states. These quantities can in
principle be calculated by the type of theory, described in this paper.

If it comes, however, to measuring the position of a particle, it will be
necessary to give a definition of the concept of a particle being confined to
a finite region in space. This definition must be given in terms of already
existing notions. The eigenstates |−→r 〉 of the position operator −→

Q of Newton
and Wigner (Newton and Wigner 1949) provide such a definition, as will now
be shown.

In the velocity reprensentation the states |−→r 〉 are defined by

〈−→v |−→r 〉 =
m

(2π)3/2
√
p0 e−i−→p ·−→r , (47)

where p = (p0,−→p ) = mγ(v)(1,−→v ). Using (13)-(15), one easily proves the
orthonormality

〈−→r ′|−→r 〉 =
∫

〈−→r ′|−→v 〉〈−→v |−→r 〉γ4(v) d−→v = δ(−→r ′ − −→r ) (48)

and the completeness ∫
|−→r 〉 d−→r 〈−→r | = 1. (49)

Taking for the position operator in the momentum representation

−→
Q = i

(
∂

∂−→p −
−→p

2p02

)
, (50)

one finds on substitution of (47)

〈−→v |−→Q |−→r 〉 = i

(
∂

∂−→p −
−→p

2p02

)
〈−→v |−→r 〉 = −→r 〈−→v |−→r 〉 , (51)

so that |−→r 〉 is indeed an eigenvector
−→
Q |−→r 〉 = −→r |−→r 〉 . (52)

If |−→r ,−→a 〉 is the state obtained by applying a translation −→a to a state
|−→r 〉, then

〈−→r ′|−→r ,−→a 〉 = 〈−→r ′|e−i−̂→P ·−→a |−→r 〉

=
∫

〈−→r ′|e−i−̂→P ·−→a |−→v 〉〈−→v |−→r 〉γ4(v) d−→v
= δ(−→r ′ − −→r − −→a ) = 〈−→r ′|−→r + −→a 〉 , (53)
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hence
|−→r ,−→a 〉 = |−→r + −→a 〉 . (54)

For Newton and Wigner (Newton and Wigner 1949) this was one of the
required properties of −→

Q .
They define “the wave function in coordinate space” by the Fourier trans-

form (their equation (2)). The wave function of the state |−→v 〉 therefore is

〈−→x |−→v 〉 =
1

(2π)3/2
ei

−→p ·−→x (55)

and the localised state |−→r 〉 has as wave function

ψNW−→r (−→x ) =
∫

〈−→x |−→v 〉〈−→v |−→r 〉γ4(v) d−→v

=
1

m(2π)3/2

∫
d−→p√
p0
ei

−→p ·(−→x −−→r ) . (56)

This integral can be evaluated and for −→r = 0 is found to be equal to ((Newton
and Wigner 1949) (9a))

ψNW−→r =0
(−→x ) =

Γ (3/4)m3/2

(2π2)5/4
K5/4(mx)
(mx)5/4

. (57)

The behaviour for x → 0 and for mx >> 1 is given by

ψNW−→r =0
(−→x ) ∼ (mx)−5/2 and by ψNW−→r =0

(−→x ) ∼ e−mx

(mx)7/4
. (58)

Although this NW-wave function has an extension of the size of the Comp-
ton wavelength, the states |−→r 〉 will be referred to as localised states. The
states |−→x 〉, defined by (55), are not orthogonal, and therefore the Newton-
Wigner wave functions ψNW (−→x ) = 〈−→x |ψ〉 cannot be interpreted as proba-
bility amplitudes. Moreover |−→x 〉 does not transform correctly, i.e., like (54),
under a spatial translation.

It therefore seems better to define the coordinate representation of a state
|ψ〉 by using the localised states |−→r 〉:

ψ(−→r ) = 〈−→r |ψ〉 . (59)

If |ψ〉 is normalised to unity, this allows ψ(−→r ) to be seen as a probability
amplitude:

1 = 〈ψ|ψ〉 =
∫

〈ψ|−→r 〉 d−→r 〈−→r |ψ〉 =
∫

|ψ(−→r )|2 d−→r . (60)

This total probability is the same for any Poincaré transformed observer,
because the group representation is unitary. The wave function ψ(−→r ) (59)
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may, however, change in an unexpected way. Under a space translation noth-
ing strange happens:

ψ
−→a (−→r ) ≡ 〈−→r |e−i−̂→P ·−→a |ψ〉 = 〈−→r + −→a |ψ〉 = ψ(−→r + −→a ) . (61)

The time shifted wave function of a localised state, however, behaves in an
abnormal way. It is given by

〈−→r ′|−→r , t〉 ≡ 〈−→r ′|eiP̂ 0t|−→r 〉 =
1

(2π)3

∫
ei[p

0t−−→p ·(−→r −−→r ′
)] d−→p . (62)

This integral is found (Prudnikov et al. 1986) to be equal to

〈−→r ′|−→r , t〉 =
−im4t

2π2z2 K2(z) for |−→r ′ − −→r | > t > 0 (63)

and

〈−→r ′|−→r , t〉 =
m4t

4πz2 [J2(z) + iY2(z)] for t > |−→r ′ − −→r | > 0 (64)

with z = m
√

||−→r ′ − −→r |2 − t2| and K2, J2 and Y2 being the usual Bessel
functions.

Because in (63) the wave function does not vanish if |−→r ′ − −→r | > t, this is
acausal behaviour. It is, however, negligibly small, already at a distance of a
few Compton wavelengths into the acausal region. Taking |−→r ′ − −→r | = t+ f

m
and writing T = mt, it is found that for large times the wave function is
proportional to

〈−→r ′|−→r , t〉 ∼ e−√
2fT

T 5/4 . (65)

Since T is the number of Compton wavelengths travelled by light in the time
t, it is clear that the width of this acausal front will shrink to zero with
increasing time. Even within microscopic times it will become less than the
Compton wavelength, and is therefore not measurable.

Another strange phenomenon–already mentioned by Newton and Wigner
(Newton and Wigner 1949)–is the loss of locality when the coordinate system
is boosted to a moving frame. The magnitude of this effect could be calculated
in the same way as for a time translation, but this has not yet been done.

The conclusion, so far, is that when measuring the position of a particle, no
observable acausal effects exist, in spite of the fact that the operator −→

Q “has
no simple covariant meaning under relativistic transformations” (Newton and
Wigner 1949).
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3.2 Nonlocal Interactions

In this section the question will be considered as to whether the use of the
localised states |−→r 〉, as basis for the coordinate representation, will lead to
nonlocal interactions.

Recall the way in which the potential Vαβ , as it occurs in the equations (3)
and (34), is constructed from the nonrelativistic potential V NR(r). (Restric-
tion to two particles with an interaction, which only depends on the distance
between the particles.)

First calculate the Fourier transform of V NR(r) as function of the square
of the momentum transfer |−→q |2 and then replace −|−→q |2 by the extended
Mandelstam variable t, eq(29). Or, alternatively, calculate the Feynman di-
agrams one wishes to take into account, eg. only the one-boson exchange
diagram of Fig. 1, and replace the dependence on the Mandelstam variable
t by t. In this way one arrives at the potential Vαβ , which in operator form
can be written as in (38).

In the coordinate representation, defined by the states |−→r 〉, the potential
becomes, using eqs. (14) and (15):

〈−→r1 ′,−→r ′
2|V |−→r 1,−→r 2〉 =∫
〈−→r1 ′,−→r ′

2|α〉〈α|V |β〉〈β|−→r 1,−→r 2〉γ4(v′
1)d−→v ′

1 · · · γ4(v2)d−→v 2 (66)

with
|α〉 = |−→v ′

1,
−→v ′

2〉 and |β〉 = |−→v 1,−→v 2〉 (67)

and 〈α|V |β〉 given by (38). Upon substituting the two-particle version of (47)
into (66), and using (13), the potential becomes

〈−→r1 ′,−→r ′
2|V |−→r 1,−→r 2〉

∼
∫
d−→p ′

1d
−→p ′

2d
−→p 1d

−→p 2√
p′0
1 p

′0
2 p

0
1p

0
2

ei(
−→p ′

1·−→r ′
1+

−→p ′
2·−→r ′

2−−→p 1·−→r 1−−→p 2·−→r 2)

× Vαβ(t)L3(−→v α,−→v β) . (68)

This integral can be reduced considerably by taking the static limit, in which
m2 → ∞. In this case it can be shown (Ruijgrok 1998) that

〈−→r1 ′,−→r ′
2|V |−→r 1,−→r 2〉 ∼ δ(−→r ′

2 − −→r 2)
K1(m1D)
m1D

V NR(z) (69)

in which
−→
D = −→r ′

1 − −→r 1 and −→z =
1
2

(−→r ′
1 + −→r 1) − −→r 2 . (70)

These variables are illustrated in Fig. 2.
V NR(z) is the nonrelativistic potential. Since K1(m1D) is a modified Bessel

function, which decreases exponentially with increasing D, and with a range
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Fig. 2. Showing the nonlocality D ≈ m−1
1 of the interaction.

m−1, the nonlocality of the potential is equal to the nonlocality of the light
particle, which is given by its Compton wavelength.

In order to investigate the observable effects of this nonlocality, a simpel
model for the scattering of two spinless particles will be considered, for which
(3) can be solved exactly.

For that purpose the potential and the scattering amplitude are first ex-
panded in partial waves:

V (s′, s, t) =
4m1m2

τ(s′, s)

∑
l

(2l + 1)Vl(s′, s)Pl

(
t− t0
τ

)
(71)

and

M(s′, s, t) =
4m1m2

τ(s′, s)

∑
l

(2l + 1)Ml(s′, s)Pl

(
t− t0
τ

)
. (72)

The argument of the Legendre functions is the cosine of the scattering angle
θ∗ in the centre of mass system. The quantities t0 and τ are defined by

t0(s′, s) = −λ(s,m2
1,m

2
2)

2s
− 1

2
(
√
s′ − √

s )2 (73)

and

τ(s′, s) =
1
2

√
λ(s′,m2

1,m
2
2)λ(s,m2

1,m
2
2)

s′s
= 2k′k , (74)

where k′ and k are the c.m.s. momenta.
It is often more convenient to use the K-matrix, which for each partial

wave is defined by
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Kl(s′, s) = −
√
c(s)
c(s′)

Ml(s′, s)
c(s) − iMl(s, s)

with c(s) =

√
λ(s)

4π2m1m2
. (75)

With
Wl(s′, s) ≡ − Vl(s′, s)√

c(s′)c(s)
(76)

the equation for this K-matrix finally becomes

Kl(s′′, s) = Wl(s′′, s) +
1

2π

∞∫
s+

Wl(s′′, s′)Kl(s′, s)√
s′(

√
s′ − √

s)P
ds′ (77)

with s+ = (m1 +m2)2. The on-shell solution of this equation gives the phase
shifts according to

tan δl(s) = Kl(s, s) . (78)

The on-shell scattering amplitude becomes

Ml(s, s) =

√
λ(s)

8π2m1m2
ηl(s) (79)

with the phase function ηl(s) defined by

ηl(s) = −2 sin δl eiδl . (80)

In terms of these phase functions the total cross section is

σtot(s) =
4πs
λ(s)

∑
l

(2l + 1)|ηl(s)|2 . (81)

In the framework as defined so far, it is now possible to formulate ques-
tions about the observability of nonlocal effects. For that purpose consider the
scattering of two particles with a hard sphere interaction. In nonrelativistic
quantum mechanics this interaction is formulated as a boundary condition:
the wave function shall be zero when the distance between the particles has a
certain value a. This method cannot be used in a relativistic theory, because
the range of the hard sphere interaction cannot be defined with infinite pre-
cision, due to the nonlocal character of the states |−→r 〉, which were used for
the definition of the position operator −→

Q .
It is, however, possible to construct a geometrical picture of the scattering

process at high energies, by writing the on-shell scattering amplitude as a
function H(k, b) of the impact parameter b and the c.m.s. momentum k =
1
2

√
λ(s)
s . It is defined (see, e.g., (Cottingham and Peierls 1965)) as the Fourier-

Bessel transform of the scattering amplitude

H(k, b) =
2π2√
λ(s)

2k∫
0

M(s, s,−x2)J0(bx)x dx (82)
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with
x2 =

λ(s)
2s

(1 − cos θ∗) = [2k sin
θ∗

2
]2 = −t . (83)

This is similar to the formula obtained for Ml(s, s) by inverting (72) and
using (79):

ηl(s) =
π2
√
λ(s)

2s

1∫
−1

M(s, s,−x2)Pl(cos θ∗) d cos θ∗ . (84)

The r.h.s.can be expressed in terms of H(k, b), by first showing that the
function

T (k, x) ≡
√
λ(s)

2π2

∞∫
0

H(k, b)J0(bx) b db (85)

is equal to

T (k, x) =
{
M(s, s,−x2) if 0 ≤ x ≤ 2k ,

0 if x > 2k . (86)

For the proof, (82) is substituted into (85) and use is made of the completeness
of Bessel functions

∞∫
0

J0(bx)J0(by) b db =
1
x
δ(x− y) . (87)

With the definition (85) and with

1∫
0

Pl(1 − 2y2)J0(yz) y dy =
J2l+1(z)

z
, (88)

(84) then takes the form

ηl(k) = 2k

∞∫
0

H(k, b)J2l+1(2kb) db . (89)

Using the partial wave expansion (72) and the identity (88), (82) can be
written as

H(k, b) =
1
kb

∑
l

(2l + 1)ηl(k)J2l+1(2kb) . (90)

Notice that H(k, b = 0) = η0(k).
The differential and total cross section can be written in terms of H(k, b)

and it is easy to show that

dσ

dt
=

4π5

λ(s)
|M(s, s, t)|2 = π

∣∣∣∣∣∣
∞∫
0

H(k, b)J0(bx) b db

∣∣∣∣∣∣
2

(91)
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and

σtot(k) = 2π

∞∫
0

|H(k, b)|2 b db . (92)

These expressions show that H(k, b) can be interpreted as the on-shell
scattering amplitude for a beam of particles passing through a ring of radius
b and width db. The largest ring which still contributes to the scattering of
a hard sphere, determines the size of this sphere. In order, however, to get
a sharp definition of the edge, the momentum must be large and hence also
the angular momentum. This leads to the classical limit

Lim : k → ∞ l → ∞ ρ =
l

k
fixed. (93)

In this limit the relation (89) between ηl(k) and H(k, b) becomes very simple.
Replacing J2l+1(2kb) by the l.h.s. of (88), with y → x

2k and z → 2kb, and
using

lim
l→∞

Pl(1 − ρ2x2

2l2
) = J0(ρx) (94)

it turns out that

Lim ηl(k) = H(k = ∞, ρ) ≡ H(ρ) . (95)

If now for scattering by a hard sphere with radius a it turns out that

H(ρ) 6= 0 for ρ < a and H(ρ) = 0 for ρ > a , (96)

then it will have been shown that the nonlocality of the potential, as exhibited
in Fig. 2, has no observable effect.

In the remaining part of this paper it will be shown that (96) is indeed
correct.

3.3 The Model

The potential to be used is the δ-shell potential, which in the nonrelativistic
theory takes the form

V NR(r) = aV0δ(r − a) . (97)

The exact solution of the scattering- and the bound state problem has been
extensively discussed by Gottfried (Gottfried 1966), Antoine et al. (Antoine
et al. 1987) and Albeverio et al. (Albeverio et al. 1988).

Applying the recipe, described in the beginning of the previous section,
for the construction of the relativistic potential, from its nonrelativistic limit,
one obtains

V (s′, s, t) =
2g
π2

sin a
√

−t
a
√

−t (98)

in which g is the dimensionless coupling constant
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g = a3V0m1m2 . (99)

From the partial wave expansion (71) the functions Vl(s′, s) can be calculated.
Via (76) one then finds

Wl(s′, s) = −g [λ(s′)λ(s)]1/4√
s′s

jl(k′a)jl(ka) . (100)

Like in the nonrelativistic case this is a separable potential, which is the
reason why (77) can be solved exactly. The result is found to be

Kl(s′, s) = Kl
[λ(s′)λ(s)]1/4√

s′s
jl(k′a)jl(ka) (101)

with
Kl = − g

1 + gIl
(102)

and

Il =
1

2π

∞∫
s+

√
λ(s′) j2l (k′a)

s′3/2(
√
s′ − √

s )P
ds′ . (103)

The relation between s′ and k′ is
√
s′ =

√
m2

1 + k′2 +
√
m2

2 + k′2 . (104)

For V0 → ∞, i.e., for g → ∞, the shell becomes impenetrable, and is therefore
equivalent to a hard sphere. In this case (78) for the phase shift becomes

tan δl(k) = − π√
m2

1 + k2 +
√
m2

2 + k2

J2
l+1/2(ka)

aIl
. (105)

A further simplification consists in taking the second particle to be infinitely
heavy. Equation (105) then reads

tan δl(k) = −
J2
l+1/2(ka)

Fl(ka)
(106)

with

Fl(ka) =
1
π

∞∫
0

J2
l+1/2(k′a) k′ dk′√

m2
1 + k′2[

√
m2

1 + k′2 −
√
m2

1 + k2]P
. (107)

For the calculation of H(ρ), defined in (95), the phase function ηl(k), (80),
must be determined. Using (106) it is found to be equal to

ηl(k) = 2[i+
Fl(ka)

J2
l+1/2(ka)

]−1 . (108)
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In order to prove that H(ρ) = 0 for ρ > a, Eq. (96), it must therefore be
shown that

J2
l+1/2(ka)

Fl(ka)
→ 0 if l → ∞, k → ∞, ρ =

l

k
fixed and ρ > a . (109)

In this limit (107) becomes

Fl(y) ' 1
π

∞∫
0

J2
l+1/2(x)

(x− y)P
dx . (110)

Using the asymptotic behaviour of Jl+1/2(cl) for c > 1 and for c < 1
(Abramowitz and Stegun (Eds.) 1965), it can be shown that this integral
consists of three parts. The first part, stemming from x < l, goes to zero
with l → ∞. The integrand of the second part, for x > l, has a rapidly oscil-
lating term, which can be omitted, and a finite term, which can be integrated.
The final result is

J2
l+1/2(l aρ )

Fl(l aρ )
' e−2l(α0−tanhα0)

4 arctan(coth α0
2 )

for ρ > a (111)

and with ρ = a coshα0.
Since this ratio approaches zero for l → ∞, it concludes the proof that

H(ρ) = 0 for ρ > a (96).

4 Conclusions

In relativistic quantum mechanics practically the only acceptable operator
for the position of a particle is the one proposed by Newton and Wigner
(Newton and Wigner 1949). The eigenvectors of this operator,which are called
localised states, however, have a wave function which makes the particle look
as large as its Compton wavelength. Newton and Wigner pointed out that
this has strange consequences, such as the loss of localisation after a boost
or a time translation. Others have shown that as a result strict causality is
violated (Hegerfeldt 1974, 1998), although measurable effects could not be
found (Ruijsenaars 1981).

This is corroborated by the calculations in the present paper, of the prob-
ability to find an initially localised particle at a later time at a point which
lies only a few Compton wavelengths beyond the causality limit. This prob-
ability turns out to decrease exponentially with the square root of the time
(Eq. (65)).

In order to treat relativistic interacting particles, a Poincaré invariant the-
ory was used, which is explained in the first two sections. With this theory it
was then shown that the interaction potential in the coordinate representa-
tion, as defined by the eigenstates of the Newton-Wigner operator, becomes
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nonlocal. This nonlocality, however, does not spread over distances much
larger than the Compton wavelengths of the particles involved (see Fig. 2).

Another problem of relativistic quantum mechanics is the question of how
to formulate the interaction, that nonrelativistically is described by boundary
conditions in coordinate space. In Section 3.2 it was shown how, in the present
formalism, this problem is solved for scattering by a hard sphere. By using
the impact-parameter representation, the classical formula (96) for the sharp
definition of the edge, was reproduced. This proved that, by taking the limit
g → ∞, (98) can be used to describe a hard sphere. According to (106), the
zeroes of Fl(ka), (107), then give the resonance energies for relativistic hard
sphere scattering.

In a similar fashion a box with hard walls can be defined for relativistic
particles, and the energies of the bound states can be found in the usual
way as the singularities on the positive imaginary axis of the phase functions
ηl(ka). At present, however, this will not be investigated any further.

References

Abramowitz, M. and Stegun, I.A., (Eds.), (1965): Handbook of Mathematical Func-
tions, Dover Publ., New York, Eq. (9.3.2) and Eq. (9.3.3)

Albeverio, S., Gesztesy, F., Hoegh-Krohn, R. and Holden, H., (1988): Solvable Mod-
els in Quantum Mechanics, Springer

Antoine, J.-P., Gesztesy, F. and Shabani, J., (1987): J. Phys. A20, 3687
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Abstract. We revisit Wigner’s question about the admissible commutation rela-
tions for coordinate and velocity operators given their equations of motion (EOM).
In more general terms we want to consider the question of how to quantize dy-
namically equivalent Hamiltonian structures. A unique answer can presumably be
given in those cases, where we have a dynamical symmetry. In this case arbitrary
deformations of the symmetry algebra should be dynamically equivalent. We illus-
trate this for the linear as well as the singular 1d-oscillator. In the case of nonlinear
EOM quantum corrections have to be taken into account. We present some exam-
ples thereof. New phenomena arise in case of more then one degree of freedom,
where sometimes the interaction can be described either by the Hamiltonian or by
nonstandard commutation relations. This may induce a noncommutative geometry
(for example the 2d-oscillator in a constant magnetic field). Also some related re-
sults from nonrelativistic quantum field theory applied to solid state physics are
briefly discussed within this framework.

1 Introduction

It is well known, that the Lagrangean leading to a given description of a
classical mechanical system is not unique. To be more specific, we have to
ask for the set of all Lagrange functions, whose Euler-Lagrange equations
have the same solutions in configuration space. Those Lagrangeans are called
s-equivalent. The task of finding them has been solved completely for sys-
tems with one degree of freedom in terms of one arbitrary positive function
(Currie and Saletan 1966; Cis lo et al. 1998), while an extensive discussion for
two degrees of freedom has been given by Douglas (Douglas 1941). As classi-
cal dynamics is described completely by trajectories in configurations space,
s-equivalent Lagrangeans are dynamically equivalent. Dynamical equivalence
my also be expressed in terms of a set of equivalent Hamiltonian structures
{(ω,H)} where ω denotes a symplectic structure (fundamental Poisson brack-
ets) and H a Hamilton function. In turning to quantum mechanics, a funda-
mental question arises:
? Supported by the Humboldt Foundation

A. Borowiec et al. (Eds.): Proceedings 1998, LNP 539, pp. 75−92, 2000.
 Springer-Verlag Berlin Heidelberg 2000
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How to quantize dynamically equivalent Hamiltonian structures?
One may ask also the subquestion: What are, given the equations of motion
(EOM) for coordinate and velocity operators, the admissible commutation
relations between them? This question was first asked by Wigner (Wigner
1950) for the 1d-harmonic oscillator in the framework of the standard Hamil-
tonian. He got a whole set of solutions, which are characterized by one real
parameter (Wigner 1950). His solutions are equivalent to the parabose alge-
bra, as has been shown by Palev (Palev 1982).

Proceeding from s-equivalent Lagrangeans, Wigner’s question was first
considered by Okubo (Okubo 1980) for some unconventional examples. A
general treatment of this question for quantum mechanical systems living
on a finite dimensional Hilbert space as well as for the 1d-oscillator (infinite
dimensional Hilbert space) has been given very recently by Man’ko, Marmo,
Sudarshan and Zaccaria (Man’ko et al. 1996). For reasons of completeness
we will take up the discussion of the 1d-oscillator again in the present paper.
In particular we will discuss parabosons and different cases of q-deformations
within a unique framework of nonlinear deformations of the oscillator algebra.
In addition we examine representations for some simple nonlinear deforma-
tions and discuss the essential difference between the classical and quantum
mechanical formalism for general deformations.

The harmonic oscillator is an exceptional case insofar, as the EOM are
linear. They are identical in both classical mechanics and quantum mechan-
ics. Therefore, in passing from classical Poisson brackets to commutators by
means of Dirac’s recipe we have no difficulties. But the situation becomes
worse if nonlinear observables besides the Hamiltonian are involved. Then
we are confronted with the inconsistency of Dirac’s rule (Lledo and Gracia
Sucre 1996; Gotay 1998). In those cases quantum corrections appear either in
the EOM or in some observables. This will be demonstrated for the singular
oscillator, for some power potentials and for spherically symmetric potentials.

In this context we will neither discuss modern treatments of the quanti-
zation or dequantization problem (cp. (Lledo and Gracia Sucre 1996; Gotay
1998), (Carinena et al. 1998), (Werner 1995)) nor their difficulties (Rieffel
1997). It is the aim of our paper, to consider our fundamental question by
means of some simple but important physical examples, but not to discuss it
in terms of a general mathematical framework.

Another very interesting question is the prescription of the interaction
not in terms of a Hamiltonian but in terms of nonstandard commutation
relations. We will demonstrate this for the example of a charged particle
moving in a constant magnetic field in a plane. The resulting nonstandard
commutation relations describe a noncommutative geometry. It is an exciting
topic to extend this question to quantum field theory. We give a brief account
of some related results in solid state physics.

The paper is organized as follows: In Sec. 2 we treat systems with one
degree of freedom, divided into Hamiltonian mechanics with the most general
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symplectic form, quantum mechanics of the nonlinear deformed linear and
singular oscillator and the case of a general potential. Sec. 3 is devoted to
the movement of a charged particle in a constant magnetic field in a plane.
In Sec. 4 spherically symmetric potentials are revisited. Sec. 5 contains some
remarks on examples from nonrelativistic quantum field theory. In Sec. 6 we
close with some final remarks including open questions.

2 Systems with One Degree of Freedom

In this section we study dynamical equivalence for the motion of either one
particle in an external field or for the relative motion of two particles in
1d-space within the framework of classical or quantum mechanics.

2.1 1d – Classical Mechanics

For reasons of simplicity we consider Newton’s EOM for a conservative force
only

ẍ = −V ′(x) . (1)

The corresponding description in the standard formulation of the canonical
formalism is given by the Hamilton function

H(u, x) =
u2

2
+ V (x) , (2)

leading by means of the symplectic structure ω0 for the independent variables
(y1, y2) = (x, u) with

(ω0)ij = εij (3)

to the canonical EOM

ẋ = {x,H}ω0 = u (4)
u̇ = {u,H}ω0 = −V ′(x) (5)

and therefore to Newton’s EOM (1) in x-space where we define the Poisson
bracket {·, ·}ω for an arbitrary symplectic structure ω as usual1

{A,B}ω :=
∂A

∂yi
ωij

∂B

∂yj
. (6)

Now we ask for the most general Hamiltonian structure (ω, H̃) with

∂ω

∂t
= 0 , (7)

which preserves the EOM (4), (5), i.e.,

1 We use the summation convention for repeated indices.
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ẋ = {x, H̃}ω = u , (8)
u̇ = {u, H̃}ω = −V ′(x) . (9)

Such a structure (ω, H̃) we call dynamically equivalent to (ω0, H). According
to Leubner and Marte (Leubner and Marte 1984) ω is a conserved quantity,
which due to (7) has to be a function of H only. Therefore ω may be expressed
in terms of an arbitrary nonvanishing function σ(z) (which we choose to be
positive), such that

ω =

 0 1/σ(H)

−1/σ(H) 0

 . (10)

It is easily seen, that for a given σ the Hamiltonian structure (ω, H̃) with

H̃ :=

H∫
dzσ(z) (11)

satisfies the EOM (8), (9).
Remark: The foregoing results my be derived also within the Lagrangean
framework (Currie and Saletan 1966; Cis lo et al. 1998).

2.2 Quantum Mechanics of the Deformed 1d-Oscillator

The EOM in configuration space for the linear oscillator has the form

ẍ+ x = 0 , (12)

which may be written as a system of two first order equations

ẋ = u, u̇ = −x . (13)

If we introduce raising and lowering operators as usual

a† :=
1√
2

(x− iu) , a :=
1√
2

(x+ iu) (14)

the EOM (13) takes the form

ȧ = −ia , ȧ† = ia† . (15)

Due to (15) the operator N
N := a†a , (16)

as well as the commutator [a, a†] are conserved quantities.
We conclude, as in classical mechanics (cp. section 2.1), that the commutator
may be expressed by a positive function σ which has to be a function of N
only

[a, a†] =
1

σ(N)
. (17)
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For the standard description of the linear oscillator we take σ = 1. The gener-
alization (17) defines an arbitrary deformation of the usual oscillator algebra.
Now we ask for a new number operator K, related to the new Hamiltonian
H̃ through H̃ = K + 1/2, which preserves the EOM (15)

[K, a] = −a , (18)[
K, a†] = a† . (19)

Taken as a function of N our new number operator K satisfies the functional
equation

K

(
N +

1
σ(N)

)
= 1 +K(N) . (20)

The solution of (20) is supposed to be unique up to a constant.
We prove (20) by starting with

Na† − a†
(
N +

1
σ(N)

)
= 0 , (21)

which follows from (16), (17). Therefore, for each holomorphic function f we
obtain the relation

f(N)a† − a†f
(
N +

1
σ(N)

)
= 0 . (22)

By identifying f(N) with K(N) and using (19) we obtain immediately (20).
There exists an useful alternative formulation of (20): Suppose the commu-
tator [a, a†] is given instead of by (17) in terms of a positive function ϕ(K)

[a, a†] = ϕ(K) (23)

and we have an implicit definition of K by means of a positive function F

N = F (K) . (24)

Then, by applying F to (20) we obtain the relation

ϕ(K) = F (K + 1) − F (K) (25)

between the functions F and ϕ (cp. (Man’ko et al. 1997), (Katriel and Quesne
1996)).
There is a corollary to relation (25). Let us define the q-commutator (quom-
mutator) [a, a†]q by2

[a, a†]q := aa† − qa†a , q ∈ R1 . (26)

Then the commutator (23) with ϕ given by (25) and the quommutator

[a, a†]q = ψ(K) (27)

2 We don’t consider complex valued q’s in this paper.
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are equivalent if
ψ(K) = F (K + 1) − qF (K) . (28)

We observe, that our quantum mechanical relation (25) looks different
from the corresponding relation in classical mechanics, which, due to (11)
has the form

ϕ(z) = F ′(z) (29)

with z ∈ R1
+. But as opposed to (29) our K in (25) is not a continuous

variable but an operator taking discrete values n ∈ N on a 1d-lattice space.
In order to compare (25) with (29) we have to introduce a differential calculus
on this lattice space (cp. (Dimakis and Müller-Hoissen 1997)). The simplest
way to do this is to introduce an operator valued differential dg(K) for an
arbitrary holomorphic function g(z). We define

dg(K) := [a, g(K)] . (30)

Remarks on the definition (30):

1) It respects the Leibniz rule d(gh) = (dg)h+ gdh.

2) By means of Dirac’s rule the dequantization looks as follows

dg(K) → i~{a, g(K)}ω = g′(K)~a .

If we specify g(z) = z we get due to (18)

dK = a . (31)

With that and using (18) again we finally obtain for (30)

dg(K) = (g(K + 1) − g(K))dK . (32)

This is a differential calculus in noncommutative geometry (cp. (Dimakis and
Müller-Hoissen 1997)), because dK and K don’t commute. On the contrary
we find

[dK,K] = dK .

Let us define the left partial derivative of g(K) by (Dimakis and Müller-
Hoissen 1997)

dg(K) = (∂+g)dK , (33)

then we recognize ϕ(K) in (25) as just this derivative of F (K).

Remark: Instead of (30) we could have defined another operator valued
differential

d̃g(K) := [g(K), a†]
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leading finally to the identification of ϕ(K) as the right partial derivative of
F (K) (with respect to the differential d̃).
We conclude, that agreement between the quantum mechanical and classical
expressions (25) and (29) respectively may be obtained, if we use appropriate
differential calculi in both cases.

The foregoing description of deformed oscillators yields a general and
unique framework covering all the results known already. We want to illus-
trate this with some typical examples.

(1) The algebra of the Arik-Coon q-oscillator (Arik and Coon 1976)

[a, a†]q = 1 (34)

is equivalent to (cp. (Katriel and Quesne 1996))

[a, a†] = qK . (35)

This follows immediately from ψ = 1 and (28) leading to

F (K) =
qK − 1
q − 1

. (36)

If we take the inverse of (36) we get

K(N) =
1
lnq

ln(1 + (q − 1)N) , (37)

which is obviously the solution of (20) with

1
σ(N)

= 1 + (q − 1)N

obtained from (34).

(2) The algebra of the Biedenharn-Macfarlane q-oscillator (Biedenharn 1989;
Macfarlane 1989)

[a, a†]q = q−K (38)

is equivalent to
[a, a†] = F (K + 1) − F (K) (39)

with

F (K) =
qK − q−K

q − q−1 . (40)

By inverting (40) we obtain with q = eλ

K(N) =
1
λ

ln(N sinhλ+ (N2 sin2 hλ+ 1)1/2) . (41)



82 P.C. Stichel

The corresponding σ(N) is given by

1/σ(N) = N(coshλ− 1) + (N2 sin2 hλ+ 1)1/2 .

Examples (1) and (2) show the equivalence between commutators and
quommutators.

Systematic constructions of such an equivalence is given in (Katriel and
Quesne 1996) by means of a recursive procedure in Fock-space.

(3) The parabose oscillator of order p is defined by3 (cp. (Chaturvedi and
Srinivasan 1991))

K =
1
2
{a†, a} − p/2 , p ∈ N , (42)

where the vacuum has to satisfy the relations

a|0〉 = 0 and aa†|0〉 = p|0〉 . (43)

In order to find the function ϕ we rewrite (42) as

K = F (K) +
1
2
ϕ(K) − p/2 . (44)

If we eliminate F (K) in (25) by means of (44) we obtain an equation for ϕ

1
2

(ϕ(K) + ϕ(K + 1)) = 1 ,

which has the solution

ϕ(K) = 1 + α(−1)K , α ∈ R1 . (45)

Finally by using (43) we obtain

α = p− 1 . (46)

This result has already been obtained in (Chaturvedi and Srinivasan 1991)
by means of a more complicated procedure.

The representation of the deformed oscillator algebra (18), (19), (23),
in particular the spectrum of the Hamiltonian, depends on the deformation
given by the function ϕ (cp. (Quesne and Vansteenkiste 1996; Guichardet
1998)). In order to illustrate this statement, let us consider a very simple
example of a family of deformations
3 the symbol {·, ·} denotes the anticommutator
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ϕq(K) = q + 2(q − 1)K , q ∈ R1 , (47)

which interpolates between oscillator algebra (q = 1), SU(2) (q = 0) and
SU(1, 1) (q = 2). But if for q /∈ 1 we shift the scale of K

K = K ′ − q

2(q − 1)
(48)

and rescale a simultaneously

a = |q − 1|1/2a′ (49)

we arrive for q > 1 (q < 1) at the SU(1, 1) (SU(2)) algebra respectively

[K ′, a′] = −a′ , [K ′, a′†] = a′† , [a′, a′†] = ±2K ′ , (50)

where the upper (lower) sign has to be taken for q > 1(q < 1).
We conclude that the limit q → 1 in (47) is globally discontinuous.
But this is not the whole story. The deformed oscillator algebra has the
Casimir operator (Roček 1991)

C = N − F (K) . (51)

But in (24) we have identified F (K) with N on our state space. Therefore,
we can realize only those irreducible representations of our deformed algebra,
which exhibit the value zero for C corresponding to the value zero for the
Casimir operator C ′

C ′ = N ′ ∓K ′(K ′ − 1) (52)

of the algebra (50). The latter may be seen as follows: Define for q 6= 1

Fq(K) = K + (q − 1)K2 +
1

4(q − 1)
− q − 1

4
(53)

leading due to (25) to ϕq(K) in (47). With the shift K → K ′ we obtain

Fq(K) = (q − 1)K ′(K ′ − 1) (54)

and therefore
C = |1 − q|C ′ . (55)

The value zero for C ′ corresponds for SU(2) to a singlet state – the Hilbert
space H consists of one state only!

Remark: For more general deformations, H might consist of a finite number
of states (Roček 1991).

For the SU(1, 1) case, a vanishing Casimir C ′ is degenerate: H is the direct
sum of a singlet state |0〉 and an infinite dimensional representation with |1〉
as the cyclic vector.
Here we denoted by |h〉 the eigenstates of K ′
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K ′|h〉 = h|h〉 .

In both cases Fq(K) is a nonnegative operator on H as required.

Only for reasons of completeness we note, that the eigenstates of K in con-
figuration or momentum space differ from the undeformed case (cp. (Sicong
Jing 1998), (Finkelstein and Marcus 1995)). In particular, deformations of the
oscillator algebra change Heisenberg’s uncertainty relation. In certain cases a
minimal length uncertainty shows up (cp. (Kempf 1997; 1994)). An example
for that is given by the Arik-Coon oscillator.

2.3 The Singular Oscillator

It is our aim to demonstrate in this subsection, that s-equivalence may be
destroyed in the quantum case if we require the validity of a deformed sym-
metry algebra. As an example we consider the 1d-singular oscillator, defined
by the potential (cp. (Samsonov 1998))

V (x) =
x2

2
+

b

x2 , b > 0 (56)

on the half-line x ≥ 0.

Classical mechanics

The standard canonical description shows a dynamical SU(1, 1)-symmetry.
We describe this symmetry in terms of the standard Hamiltonian

H =
u2

2
+ V (x) (57)

and

K± :=
1
2

(
1
2

(x∓ iu)2 − b

x2

)
(58)

as follows

{K±,K0}ω0 = ± iK± , (59)
{K−,K+}ω0 = − 2iK0 , (60)

with K0 := H/2.
The EOM may be written either in the form (from (59))

d

dt
K± = ± 2iK± (61)

or in the standard form
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ẋ = u ,

u̇ = −(x− 2b
x3 ) . (62)

It can easily be seen, that (61) and (62) are s-equivalent, because they are
connected by a nonsingular linear transformation.
According to the results presented in Sec. 2.1, the singular oscillator may be
described in terms of a general Hamiltonian structure (ω, H̃), which preserves
the EOM in both forms. Accordingly we obtain a deformed SU(1, 1)

{K±,K}ω = ± iK± , (63)

{K−,K+}ω = − iH

σ(H)
(64)

instead of (59), (60). We defined K := H̃/2. Because K is a function of H
due to (11), the r.h.s. of (64) may be expressed also in terms of K

{K−,K+}ω = −iψ(K) . (65)

Quantum mechanics

In passing over from classical to quantum mechanics we want to keep the
deformed SU(1, 1) algebra. Therefore, we don’t apply Dirac’s quantization
recipe to the EOM of (62) but rather to (63). Our deformed SU(1, 1) then
takes the form

[K,K±] = ±K± , (66)
[K−,K+] = ψ(K) . (67)

But (66) is inconsistent with the quantization of the EOM (62) written in
terms of Poisson brackets. By means of Dirac’s rule we would obtain

i[H̃, x] = u , i[H̃, u] = −x+
2b
x3 . (68)

But let us now calculate the commutator [K,K±] by using (68) with (58). In
this way we obtain

[K,K±] = ±K± +
ib

2

[
1
x2 ,

1
x

[u, x]
1
x

]
(69)

instead of (66). If the commutator [u, x] would have been a function of x only,
both expressions would have coincided. But such an exclusive x-dependence
of [u, x] is for a generic deformation in disagreement with (67).
Because of [u, x] = 0(~) the additional term in (69) clearly is a quantum
correction. It results from the well known fact, that the simultaneous appli-
cation of Dirac’s rule to different Poisson brackets is in general inconsistent
(cp. (Lledo and Gracia Sucre 1996; Gotay 1998)).

Problem: What are the quantum corrections to (68) if we start with (66)?
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2.4 Arbitrary Potentials V (x)

Not much can be said for an arbitrary potential V (x) which differs from the
harmonic one.
Suppose we have the quantum analogon to the classical Hamiltonian structure
(ω, H̃) such , that corresponding to (8), (9) our EOM look as follows

i

~

[
H̃, x

]
= u , (70)

i

~

[
H̃, u

]
= −V ′(x) . (71)

By means of Jacobi’s identity we conclude, that the commutator [u, x] is
conserved

[H̃, [u, x]] = 0 .

But we are not able to express [u, x] in terms of H as in the case of the
classical Poisson bracket. With the exception of the oscillator or a constant
force H is not a conserved quantity if [u, x] differs from a c-number. Therefore
we must describe [u, x] in terms of H̃ from the very beginning

[u, x] =
~

i
ϕ(H̃) . (72)

Remark: In simple cases for ϕ and V (x) we may construct a conserved
extension Ĥ of H. For example consider the deformation

ϕ(H̃) = 1 + αH̃, α ∈ R1 , (73)

where α has the dimension of inverse energy, together with a power potential

V (x) = λxn , n = 3, 4 .

Then we obtain by straightforward calculation

Ĥ3 = H3 − αλ

2
~

2x (74)

and

Ĥ4 = H4 − αλ~
2x2 , (75)

where we defined Hn := u2

2 + λxn.
In the limit α → 0 or ~ → 0 respectively, we obtain the standard result. The
additional terms in (74), (75) are again quantum corrections.
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3 Systems with Two Degrees of Freedom

We are not going to generalize the consideration of Sec. 2 to two dimensions,
but concentrate on those phenomena, which are typical for the 2d-case. In
particular we will consider a charged particle (charge e) moving in a constant
magnetic field perpendicular to the plane of motion with (or without) an
additional harmonic potential.
In the presence of a harmonic potential the EOM in configuration space looks
as follows

ẍi = −ω2xi + κεij ẋj (76)

with κ := e
cB.

The EOM (76) are linear equations. Therefore no problems arise with the
quantization procedure and we may consider the quantum mechanical for-
mulae from the beginning. First we consider the standard description, which
is given by the Hamiltonian

H1 =
p2
i

2
+
ω̃2

2
x2
i − κ

2
J (77)

with angular momentum
J := εijxipj (78)

and shifted frequency
ω̃2 := ω2 + (κ/2)2 . (79)

By means of the canonical commutation relations

[pi, xj ] =
1
i
δij , (80)

[xi, xj ] = 0 , (81)
[pi, pj ] = 0 , (82)

the EOM in phase space lead as usual to (76).
As a first alternative we study the case of noncommuting space variables

[xi, xj ] = i
κ

ω2 εij (83)

leaving the other commutators (80) and (82) unchanged.
Such a noncommutative space has been studied recently by Lukierski, Za-
krzewski and the present author (Lukierski et al. 1997) in connection with
Galilean symmetry in (2 + 1)-dimensions including a second central charge
of the extended algebra. By means of the commutation relations (80), (82)
and (83) the Hamiltonian

H2 =
p2
i

2
+
ω2

2
x2
i (84)

leads to the EOM in phase space
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ẋi = pi + κεijxj (85)
ṗi = −ω2xi (86)

and, by combining these, we arrive at the EOM (76) again.
It is an essential point of the latter approach, that the interaction with the
external B-field has been shifted from the Hamiltonian to the commutator
(83) inducing a noncommutative geometric structure.

As a second alternative we write the Hamiltonian again in the form (84)

H3 =
u2
i

2
+
ω2

2
x2
i , (87)

where the ui are the velocities now related to the canonical momenta pi as
usual

ui = pi − κAi (88)

and the vector potential Ai describes a B-field of unit strength

Ai = −1
2
εijxj . (89)

With (87) and (88) H3 is identical with H1, but we consider the commutation
relations of the velocities as the primary objects now. We obtain for them

[ui, uj ] = iεijκ , (90)

i.e., we have a noncommutative structure of velocity space now.
This approach may be generalized. As (90) is independent of the potential
term in (87), we may consider the potential free case. With new variables

b :=
1√
2

(u1 + iu2) , b† :=
1√
2

(u1 − iu2) , (91)

the commutator (90) together with the Hamiltonian leads, as is well known,
to the oscillator algebra (we put κ = 1)[

b, b†
]

= 1 , (92)

[H, b] = −b , [
H, b†

]
= b† . (93)

Now we may again consider an arbitrary, nonlinear deformation[
b, b†

]
= ϕ(K) , (94)

[K, b] = −b , [
K, b†

]
= b† . (95)

For a discussion of this algebra we refer to Sec. 2.2 of this paper. The partic-
ular case of a SUq(2) deformation has been considered by Hojman recently
(Hojman 1991).
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4 The s-Equivalence for Spherically Symmetric
Potentials Revisited

For a particle moving in an arbitrary spherically symmetric potential V (r)
a whole set of dynamically equivalent Hamiltonian structures exists (Hen-
neaux and Shepley 1982), (Cis lo et al 1995). This set is characterized by the
symplectic structure

{xi, uj}ω = δij − GLiLj
1 +GL2 , (96)

where Li denotes the i-th component of the angular momentum and G(L) is
a homogeneous function of degree (−3).

For the particular case

G(L) =
γ

L3 , γ ∈ R1 (97)

with
L :=

√
L2

the new Hamiltonian H̃ may be expressed explicitly in terms of canonical
variables (x,p) as follows (Henneaux and Shepley 1982)

H̃ =
p2

2
+

1
2r2

(
γ2 − 2γJ

)
+ V (r) , (98)

where J is the canonical angular momentum and J :=
√

J2.

If quantized, the spectrum of the Hamilton operator (98) differs from the
standard one due to the additional second term. But in quantum mechanics,
the EOM derived from (98) is not s-equivalent to the standard form

u̇i = −xi
r
V ′(r) . (99)

Let us show this by an explicit calculation:
We obtain by means of (98)

ui := ẋi = pi − iγ

~r2
[J, xi] (100)

and therefore
u̇i = −xi

r
V ′(r) + γA1,i + γ2A2,i (101)

with the quantum corrections Ai defined by

A1,i : = − i

~

[
J

r2
, pi

]
− 1

2~2

[
J,
[xi
r2
, p2
]]
, (102)
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A2,i : =
1
r4

(
xi − 1

~2 [J, [J, xi]]
)
. (103)

If we dequantize these Aj,i by means of Dirac’s rule we obtain zero as required.
It is easy to show that A2,i e.g., is nonvanishing. By taking matrix elements
of A2,i between angular momentum eigenstates, we obtain

〈`+ 1|A2,i|`〉 = 〈`+ 1|xi
r4

|`〉B(`) (104)

with

B(`) := 1 −
(√

(`+ 1)(`+ 2) −
√
`(`+ 1)

)2
. (105)

For finite ` we have a nonvanishing B(`) but it vanishes for large ` (classical
limit) as 0(`−1) in agreement with dequantization.

5 Interactions as Modified Commutators
in Quantum Field Theory

In Sec. 3 we observed that for a simple example the interaction can be ex-
pressed either in terms of a Hamiltonian or in terms of modified commutators.
The application of this idea to quantum field theory is a highly exciting mat-
ter. At present we are far away from a systematic treatment of such an idea.
In this section it is our aim to give a brief account of some existing examples
pointing in this direction. As a matter of convenience we will limit ourselves
to nonrelativistic Fermi systems as they appear in solid state physics.
A well known example of an integrable model is the 1d-Luttinger model
(Luttinger 1963). It has been shown by Komori and Wadati (Komori and
Wadati 1996) that this model can be expressed equivalently by two Fermi
fields ψj (j = 1, 2) satisfying free field EOM but anyon-like commutation
relations for j 6= k

ψj(x)ψ†
k(y) + exp(i(−1)jλ)ψ†

k(y)ψj(x) = 0 ,
(106)

ψj(x)ψk(y) + exp(i(−1)j+1λ)ψk(y)ψj(x) = 0 ,

where λ is proportional to the coupling strength between the two fields.
A quite similar situation arises in two space dimensions if a charged matter
field couples minimally to an abelian gauge field described by a Chern-Simons
term. This coupling can be removed by a gauge transformation such, that
the new matter field will be described by a free Hamiltonian but anyonic
commutation relations (Jackiw and Pi 1990; Lerda 1992). This theory is of
importance in relation to the fractional quantum Hall effect.
In a recent paper P.W. Anderson et al. (Anderson and Khveshchenko 1995)
described 2d-Fermions by first bosonizing them and then modifying the



Dynamical Equivalence, . . . 91

bosonic commutation relations. They didn’t succeed in finding the corre-
sponding Fermion representation. But this can be achieved for electrons with
an on-site repulsive interaction of infinite strength in the Hubbard model
(Hubbard 1963). In this case at most one electron can occupy a lattice site
i. Usually this will be achieved by means of the Gutzwiller projector

C†
i,σ → C ′†

iσ := (1 −Ni,−σ)C†
σ,i , (107)

where now the C ′
i,σ obey complicated commutation relations. But it is easier

to introduce field operators satisfying a new on-site algebra

di,σdi,σ′ = 0 ,

di,σd
†
i,σ′ = δσσ′(1 −Ni,−σ) . (108)

It may easily be seen, that by operating on state vectors the algebra of the
C ′
i,σ or di,σ respectively are the same. But (108) has the advantage to hold

as an operator relation.

The algebra (108) or modifications of it may be generalized to the continuum
without any difficulty.

It is an open question how to formulate on-site interaction of finite
strength in terms of a new Fermionic algebra. For Bosons a first step in
this direction has been done quite recently by Flores (Flores 1997).

6 Conclusions

We have seen from the examples given for one- and two-space dimensions,
that our question “how to quantize dynamically equivalent Hamiltonian
structures” has presumably a unique answer in those cases where we have
a underlying dynamical symmetry. It remains to be shown that this is also
true for the 2d-Coulomb problem as well as for 3d-examples (hydrogen atom,
harmonic oscillator). A general framework is also missing.
The example of a noncommutative 2d-space inducing the interaction of an
oscillator with a constant magnetic fields also calls for generalizations.
Finally, in field theory, we have to answer the question in which cases the
interaction can be described by nonstandard commutation relations instead
of an interaction term in the Hamiltonian.
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Quantum Dynamics in the Proper Time
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Abstract. We discuss a relativistic quantization scheme which treats particle’s
wave function and quantum field fluctuations at the same footing. We introduce a
stochastic wave function whose dynamics is determined by a non-linear Schrödinger-
type evolution equation in an additional time parameter.

Keywords: proper time, stochastic quantization, quantum fields

1 Introduction

Quantum mechanics consists of two sets of rules. The first rule describes an
intrinsic time evolution of state vectors. The second one concerns the re-
lation to an observation. These rules should have a classical limit when a
quantum system approximates a classical one. There has been a substantial
progress in recent years (Zurek 1991) in understanding the classical limit of
non-relativistic quantum systems. In particular, the role of an infinite en-
vironment has been emphasized. In non-relativistic quantum mechanics the
relation to an observation is fixed by the principle of an instantaneous wave
function reduction. It leads to non-local phenomena which are hard to rec-
oncile with relativity. It seems that we must reconsider the basic principles
of quantum mechanics in relativistic theories.

The conventional way out is to abandon the relativistic quantum mechan-
ics of interacting particles in favor of the relativistic quantum field theory
(QFT). We need QFT in order to describe the processes of particle creation
and annihilation. However, these processes make the notion of a particle diffi-
cult to sustain. Only free particles in an infinite past and in an infinite future
have a meaning. On the other hand there should be a well-defined classical
limit of QFT. From the conventional QFT we can obtain the limit ~ → 0.
However, such a limit leads to the classical field theory rather than to the
classical mechanics. We suggest here an explicitly relativistic invariant quan-
tization scheme which treats simultaneously the wave function ψτ and the
quantum fields A. In the classical limit |ψτ (x)|2 ' |ψ(xτ )|2, where xτ is the
evolution (described by the proper time τ) of the classical particle interacting
with the classical field A (the classical limit of the quantum field A). We can
obtain the conventional quantum field theory by an averaging over the proper
time.

A. Borowiec et al. (Eds.): Proceedings 1998, LNP 539, pp. 109−117, 2000.
 Springer-Verlag Berlin Heidelberg 2000
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2 Relativistic Wave Equation

We consider a relativistic particle in an electromagnetic field A moving on
a general pseudoriemannian manifold M (see earlier papers on such wave
equations (Stueckelberg 1941), (Horwitz and Piron 1973)). We introduce a
universal time τ which is independent of the choice of coordinates and (in
the quantum theory) it is independent of the space-time point x ∈ M (in
particular τ is independent of the coordinate x0)

i~∂τψ =
1

2M
gµν

(
−i~∂µ +

1
c
Aµ + ~gαβΓµαβ

)(
−i~∂ν +

1
c
Aν

)
ψ , (1)

where gµν is the Riemannian metric (we choose the signature (1,1,1,-1)), c is
the velocity of light and Γ is the Christoffel symbol.

Equation (1) can be justified by the conventional quantization rules of the
classical mechanics. Let us recall that if the relativistic Lagrangian is chosen
in the form invariant under the reparametrization x(γ) → x(f(γ))

L =
∫
dγ

√(
dq

dγ

)2

+
∫
Adq ,

then the canonical Hamiltonian

H =
1

2M

(
pµ +

1
c
Aµ

)(
pµ +

1
c
Aµ
)
, (2)

is identically equal to zero. The constraint H = 0 (Hansson et al. 1976)
generates correct equations of motion if the time parameter is interpreted as
the proper time. If from the beginning we choose γ as the proper time then
H 6= 0. Then, we look for a canonical change of coordinates (determined by
the generating functionW ) such that in the new coordinatesH → H+∂τW =
0. The generating function W is defined by the solution of the Hamilton-
Jacobi equation

∂τWτ +
1

2M
gµν (∂µWτ +Aµ)(∂νWτ +Aν) = 0 . (3)

Equation (1) can be considered as a quantization of (3) (we associate to W
the wave function ψ = exp(iW/~)). In the standard quantization scheme of
constrained systems (Hansson et al. 1976) one argues that the quantum the-
ory should be invariant under the choice of the parameter γ (reparametriza-
tion invariance). This invariance leads to the Klein-Gordon equation Hψ = 0.
However, in our interpretation the proper time has a physical meaning. Hence,
we make this preferred choice of γ in the Lagrangian. In such a case the
canonical Hamiltonian (2) is different from zero and it generates the time
evolution (1). Conversely, the classical dynamics (3) results as a limit ~ → 0
of the quantum dynamics (1) if τ is identified with the classical proper time.
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In fact, consider (1) with the initial condition φ = exp(iW/~)Φ. Then, φτ is
a solution of (1) if and only if Φτ is the solution of the equation (the Lorentz
gauge for Aµ is assumed)

i~∂τΦ = − ~
2

2M
2gΦ− i~

M
gµν(∂µWτ +Aµ)∂νΦτ − i~

2M
2gΦτ , (4)

where 2g is the wave operator on the pseudoriemannian manifold M

2g = gµν∂µ∂ν +
1
2
gνρΓµνρ∂µ .

In the formal limit ~ → 0 of (4) we obtain Φτ (x) ≈ Φ(ξ(τ)) where ξ is the
solution of the equation (0 ≤ s ≤ τ)

dξµ

ds
= − 1

M
gµν(ξ(s))

(
∂νW (τ − s, ξ(s)) +Aν(ξ(s))

)
. (5)

Differentiating (5) once more and using the Hamilton-Jacobi equation (3) we
obtain the equation

d2ξµ

ds2
+ Γµνρ

dξν

ds

dξρ

ds
=

1
M
Fµν(ξ(s))

dξν
ds

, (6)

where
Fµν = ∂µAν − ∂νAµ .

Equation (6) shows that the correct classical limit (as a geodesic equation)
of a motion of the quantum particle on a general pseudoriemannian manifold
results if and only if τ is the proper time. The interpretation of τ as the
classical proper time remains true not only in the leading order in ~ but also
in all subsequent terms because the leading order determines the subsequent
interpretation of τ .

The relativistic measurement problem was one of our motivations for a
search of a new quantization method. The measurement can be considered as
an interaction of a quantum particle with a macroscopic environment. Such
an interaction can be described by a random wave function. The resulting
quantum state is defined by a density matrix

ρ(x, y) = E[ψ(x)ψ(y)] .

If we require that the trace and positivity of ρ are preserved by the time
evolution then we obtain the Lindblad equation (Lindblad 1976) (Lindblad
equation for the relativistic quantum mechanics has been discussed earlier in
(Blanchard and Jadczyk 1996))

∂τρ = − i

~
[H, ρ] − 1

2

∑
k

R+
k Rkρ− 1

2

∑
k

ρR+
k Rk +

∑
k

RkρR
+
k , (7)

where R describes a (phenomenological) dissipation.
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We can represent the dissipative dynamics (7) by the Ito stochastic wave
equation (i.e., a random perturbation of (1))

dψ = − i

~
Hψdτ + i

∑
k

RkψdBk − 1
2

∑
k

R+
k Rkψdτ , (8)

where Bk are independent complex Brownian motions

E[BkBr] = 0 ,

E[Bl(s, x)Bk(τ, y)] = δkl min(τ, s)δ(x− y) .

If the operators R are Hermitian then (8) can be expressed in a more compact
form

dψ = − i

~
Hψdτ + i

∑
k

Rkψ ◦ dB̃k , (9)

where the circle denotes the Stratonovitch differential (Ikeda and Watanabe
1981) and B̃k are independent real Brownian motions.

At the end of this section let us note that (1) has the correct non-
relativistic limit. The non-relativistic energy ε is related to the relativistic
energy p0, mass M and the momentum p by the formula

ε = c
(
p2 +M2c2

)1/2 −Mc2 =
p2

2M
+ o

(
1
c

)
.

Let (we write now x0 = ct)

ψτ = exp
(−iMc2(τ − 2t)

2~

)
ψ̃τ .

Then, in the limit c → ∞ we obtain (we write A = (A, V ), i.e., A0 = V )

i~∂τ ψ̃τ = −i~∂tψ̃τ +
1

2M

((
−i~∇ +

1
c
A
)2

ψ̃τ + V (x, t)

)
ψ̃τ . (10)

If the potentials A and V are t-independent then we can express (10) as
the Schrödinger equation with a new time t̂ = t + τ . In such a case τ is
just a global shift of time in the non-relativistic quantum mechanics. If the
potentials are time-dependent then we obtain Howland’s description of the
time evolution in time-dependent potentials. In such a case t is treated as a
coordinate on an equal footing with x.
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3 Quantum Fields

A relativistic wave equation does not describe the processes of particle cre-
ation and annihilation. A way to include such processes goes through a non-
linear generalization of (1) and its quantization. We could approach the prob-
lem in a way similar to the standard quantization of the scalar field with the
potential φ4 when we first add a non-linear term to the Klein-Gordon equa-
tion and subsequently treat the fields as operators in the Fock space. Then,
the evolution equation reads

∂τφ = i~(2 −M2)φ− ig~φ3 . (11)

We are looking for a solution of this equation with an initial condition at −∞
lim

τ→−∞φτ (x) = φin(x) ,

where (2 −M2)φin=0 is the wave equation for the quantum scalar free field
of mass M (in the Fock space). We rewrite (11) as an integral equation

φτ (x) = φin(x) − ig~

τ∫
−∞

exp
(

− i~(2 −M2)(τ − s)
)
φ3
sds . (12)

We solve (12) perturbatively. We assume that φ3 is defined by the Wick
normal product. Then, in the vacuum state |0〉 the Wick theorem allows us
to calculate 〈0|T (φτ (x)φτ ′(x′))|0〉 where the T-ordering is understood in x0
rather than in τ . In order to relate the τ -dependent quantum field theory
to the conventional one we average the vacuum expectation values of the
time-ordered products of φτ fields over τ . We have checked in the lowest
order of perturbation theory that such averaging results in the standard time-
ordered vacuum expectation values (if (2−M2)−1 is interpreted as the causal
propagator).

We suggest here another method of quantization which resembles an in-
teraction with the environment of (9). We introduce stochastic fluctuations
corresponding to the Heisenberg uncertainty principle. We represent these
fluctuations by the real independent Gaussian fields Ba with the covariance

E[Ba(τ, x)Bc(s, y)] = δac min(τ, s)δ(x− y) . (13)

We consider an interaction among relativistic fields φa described by a general
Lagrangian L(φa). Its action integral is denoted L(φa). Then, a stochastic
counterpart of (11) reads

dφa(τ, x) = i~
δL

δφa(τ, x)
dτ +

√
2 ~dBa(τ, x) . (14)

The solution of (14) depends on the proper time parameter τ . We suggest
that correlations which are observed in experiments result from an average
over the rapid oscillations in the proper time, i.e.,
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〈φ(x1)....φ(xk)〉 = lim
T→∞

(T − τ0)−1

T∫
τ0

dτE[φ(τ, x1).....φ(τ, xk)] . (15)

We can prove that (15) leads to the conventional time-ordered vacuum ex-
pectation values if (14) is solved with zero as the initial condition.

Let us discuss the quantization method first for the free field. If L corre-
sponds to a free scalar field of mass M then (14) takes the form

dφ(τ, x) =
i

~
(2 −M2)φ(τ, x)dτ +

√
2 ~dB(τ, x) . (16)

The solution of (16) is a sum of two pieces: the first part is the wave function
(1) and the second one is a noise. We describe the quantum field by means
of the random part. Its covariance is

E[((φτ , f) − E[(φτ , f)])((φτ ′ , f ′) − E[(φτ ′ , f ′)])]

=
~

2

2i

(
f,A−1

(
exp(−iA|τ − τ ′|) − exp(−i(τ + τ ′ − 2τ0)A)

)
f ′
)
. (17)

where A = ~(2 −M2). Now, the average (15) can be calculated

lim
T→∞

(T − τ0)−1

T∫
τ0

dτE[((φτ , f) − E[(φτ , f)])((φτ , f ′) − E[(φτ , f ′)])]

=
~

2

2i
(f,A−1f ′) − ~

2

4
lim
T→∞

(T − τ0)−1

× (A−1f,
(

exp(−2i(T − τ0)A) − 1
)
A−1f ′) . (18)

The definition of the limit T → ∞ is equivalent to a definition of A−1. We
define the inverse by (ε > 0)

(2 −M2)−1(x, y)

= lim
ε→0

(2π)−d
∫
dp exp(−ip(x− y))(−p2 −M2 − iε)−1

= 4F (x− y) ,

(19)

where 4F denotes Feynman’s causal function which is equal to the time-
ordered vacuum expectation value of the real scalar free field

〈0|T (φ(x)φ(y))|0〉 = i~4F (x− y) . (20)

It is important to note that if (x − y)2 6= 0 then the limit T → ∞ in (15)
holds true not only in a distributional sense but also pointwise. In general,
for n-point correlation functions we can show that
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〈((φτ , f1) − E[(φτ , f1)])((φτ , f2) − E[(φτ , f2)]) . . .

((φτ , f2n) − E[(φτ , f2n)])〉 = ~
2n
∑
pairs

∏
(j,k)

1
2i

(fj ,A−1fk) , (21)

where the sum is over the product of all pairs (j, k) in agreement with the
Gaussian integral combinatorics.

We can directly generalize (16) to an arbitrary pseudoriemannian mani-
fold M. In order to take the average over the proper time we need to define
(2g−M2)−1 (one usually adds the scalar curvature term 1

6R to 2g but this is
not necessary at this early stage). The kernel of this operator can be defined
on a globally hyperbolic manifold (DeWitt 1975). In such a case there exists
a complete set of solutions of the wave equation

(2g −M2)uj = 0 . (22)

Then, we can define the two-point function of quantum fields

4(+)
g (x, y) =

∑
j

uj(x)uj(y) . (23)

On a globally hyperbolic manifold there exists a choice of the x0-coordinate
(Kay 1980) such that

(2g −M2)−1(x, y) ≡ 4F (x, y)

= θ(x0 − y0)4(+)
g (x, y) + θ(y0 − x0)4(+)

g (y, x) , (24)

is independent of the choice of coordinates. In such a way we can define quan-
tum fields by the time-ordered expectation values starting from the stochastic
equation (14).

Let us note that the averaged value (15) is formally expressed by the
Feynman integral∫

dφ exp
( i

~
Lfree(φ)

)
φ(x1) . . . φ(x2n) = 〈φ(x1) . . . φ(x2n)〉free ,

here

Lfree(φ) = −1
2

∫
φ(2 −M2)φ .

We can prove such a result for a general Lagrangian L. We average over
the proper time τ (as in (15)). Then, we express this average in terms of a
measure ν. We can show in each order of the perturbation expansion that
the corresponding (formal) measure is given by the Feynman formula

dν(φ) = dφ exp
(
i

~
L(φ)

)
,



116 Z. Haba

where

L(φ) =
∫
dxL(φ(x)) = −

∫
dx
(1

2
φ(2 −M2)φ+ gV (φ(x))

)
, (25)

where V is an interaction potential.
We can add a dissipation to (14) in a way similar to that in (9) but now we

admit a general non-linear function R(φ). We obtain a non-linear dissipative
wave equation

dφ = −i~(2 −M2)φdτ + ig~V ′(φ) + iR(φ) ◦ dB̃ +
√

2 ~dB . (26)

In such a case the corresponding Feynman measure reads

dν(φ) = dφ exp
(
i

~
Lγ(φ)

)
,

where

Lγ(φ) =
∫
dxL(φ(x)) =

∫
dx
(

− 1
2
φ2φ− gV (φ(x)) +

γ2

2
F(φ)

)
, (27)

where F is complex with a positive imaginary part.
The quantization method discussed here may be especially useful for a

quantization of the Einstein gravity when we would like to treat the back-
ground metric together with the gravitons. The conventional Feynman in-
tegral is a formal tool which needs a proper definition. Methods developed
so far fail when applied to Einstein gravity which has the action unbounded
from below. An application of the stochastic quantization of Parisi and Wu
(Parisi and Yong-Shi Wu 1981) (but with a complex action and real time) to
the Einstein gravity has been suggested first by Rumpf (Rumpf 1986). We
interpret the fictitious time of Parisi and Wu as the proper time with a phys-
ical meaning. Such an interpretation should have experimental consequences
for a time evolution of the graviton wave function.
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Abstract. We develop a constructive method to derive exactly solvable quantum
mechanical models of rational (Calogero) and trigonometric (Sutherland) type. This
method starts from a linear algebra problem: finding eigenvectors of triangular finite
matrices. These eigenvectors are transcribed into eigenfunctions of a selfadjoint
Schrödinger operator. We prove the feasibility of our method by constructing an
”AG3 model” of trigonometric type (the rational case was known before from Wolfes
1975). Applying a Coxeter group analysis we prove its equivalence with the B3

model. In order to better understand features of our construction we exhibit the F4

rational model with our method.

1 Introduction

The completely integrable models are traditionally characterized by their
relation with simple Lie algebras An, Bn, Cn, Dn, G2, F4, E6, E7, E8. This
relation is the starting point of the Hamiltonian reduction method exploited
by Olshanetsky and Perelomov (Olshanetsky and Perelomov 1977, 1983).
These models possess as limiting cases the trigonometric (Sutherland) and
rational (Calogero) models that are exactly soluble, i.e., their eigenvalues and
eigenvectors can be derived by elementary methods.

This exact solvability has been shown to follow from the fact that the
Schrödinger operators can, after a ”gauge transformation”, be rewritten as a
quadratic form of Lie algebra operators. These Lie algebra operators are rep-
resented as differential operators acting on polynomial spaces. This program
was formulated in (Turbiner 1994, 1995) and successfully applied first to the
An series in (Rühl and Turbiner 1995). Then it was carried over to the other
sequences Bn, Cn, Dn and G2 and even to corresponding supersymmetric
models (Rosenbaum et al. 1997, Brink et al. 1998).

Our aim was to turn the arguments around and to develop an algorithm
which may allow us to construct new exactly soluble models. First investi-
gations were presented in (Haschke and Rühl 1999). The program contains
two major and separate issues, to render a second order differential operator
curvature free and to find a first order differential operator satisfying an inte-
grability constraint. In this paper we present our algorithm in the following

A. Borowiec et al. (Eds.): Proceedings 1998, LNP 539, pp. 118−140, 2000.
 Springer-Verlag Berlin Heidelberg 2000
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version. We start from a standard flat Laplacian and introduce Coxeter (or
Weyl) group invariants as new coordinates. If the Coxeter group contains
a symmetric group as subgroup, these invariants are built from elementary
symmetric polynomials. The second order differential operators obtained this
way are curvature free by construction, and act on polynomial spaces of these
Coxeter invariants that form a flag. This flag is defined by means of a char-
acteristic vector (p-vector).

Then we solve the integrability constraints by constructing ”prepoten-
tials” with a fixed algorithm. These prepotentials define the gauge transfor-
mation alluded to above which renders the differential operator the form of
a standard Schrödinger operator of N particles in 1-dimensional space with
a potential. Each prepotential contributes an additive term to this poten-
tial with a free (real) coupling constant. Finally the prepotentials define the
ground state wave function of the Schrödinger operator which originates from
the trivial polynomial in the flag and thus contains no further information.
Except a possible oscillator prepotential in the translation invariant cases,
the prepotentials are in one-to-one relation with the orbits of the Coxeter
group.

We show that all known exactly soluble models can be obtained this way
(at present we have to make an exemption with respect to E6, E7, E8, but
this will soon be overcome). Applying the method of constructing the Coxeter
invariants of A2 (Rosenbaum et al. 1997) to A3, we obtain an ”AG3 model”.
Its Coxeter diagram is that of the affine Coxeter group B̂3, which possesses
the same invariants as the Coxeter group B3. This leads to an explicit proof
of the equivalence of the AG3 model with the B3 model. Thus a translation
invariant four–particle model after separation of the c.m. motion is shown
to be equivalent with a translation non–invariant three-particle model. In
this paper we also discuss F4 from the view point of our algorithm. The
Schrödinger operator obtained (only the rational case) deviates slightly from
the one given in (Olshanetsky and Perelomov 1977, 1983) (probably due to
a simple printing error in (Olshanetsky and Perelomov 1977, 1983)).

Thus our method shifts the centre of interest from the simple Lie alge-
bras and their homogeneous spaces to the corresponding Weyl groups and by
generalization to the Coxeter groups. On the other hand, the differential op-
erators acting on polynomial spaces of Coxeter invariants define Lie algebras
of their own, but at present these algebras are only of marginal interest.

2 The Constructive Program

We are interested here in the bound state spectrum of Schrödinger operators.
The whole analysis is therefore performed in real spaces. Consider a flag of
polynomial spaces VN (p), N ∈ ZZ≥, p ∈ INn

VN (p) = span {zr11 z
r2
2 ...z

rn
n |r1p1 + r2p2 + ...+ rnpn ≤ N} , (2.1)

(pi ∈ IN) .
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We consider differential operators of first order

D
(1)
[α;a] = z[α] ∂

∂za
, (2.2)

(α a multi-exponent)
and of second order

D
(2)
[α;a,b] = z[α] ∂2

∂za∂zb
, (2.3)

that leave each space VN (p) invariant. If

p = (1, 1, ..., 1) , (2.4)

then the operators (2.2) generate the full linear (inhomogeneous) group of
IRn and the operators of second order (2.3) can be obtained as products from
the first order operators, i.e., in (2.2)

α = e(c), e
(c)
b = δcb or α = 0 , (2.5)

and in (2.3)
α = e(c) + e(d) or α = e(c) or α = 0 . (2.6)

Now we consider a candidate for a future Schrödinger operator

D = −
∑
α,a,b

g[α;a,b]D
(2)
[α;a,b]

+
∑
β,c

h[β;c]D
(1)
[β;c] . (2.7)

The eigenvectors and values of D in VN can be calculated easily by finite
linear algebra methods. Let

UN = VN/VN−1 , (2.8)

and the diagonal part of D on UN be defined as DN

DNUN = DUN ∩ UN . (2.9)

If the eigenvalues of DN are all different, the number of eigenvectors equals
dimUN . But if some eigenvalues coincide (this is true in the generic case!) the
number of eigenvectors is smaller. Then the Hilbert space on which the final
selfadjoint Schrödinger operator is acting is not an L2 -space. The missing
eigenfunctions can be described. For more details see (Haschke and Rühl
1999).

If we want completely integrable models we must make sure that a com-
plete set of involutive differential operators exists. For this task Lie algebraic
methods may be very helpful.

Given a differential operator (2.7) one can characterize the vector p in
(2.1) by inequalities



Is It Possible to Construct Exactly Solvable Models? 121

g[α;a,b] 6= 0 ⇒ pα − pa − pb ≤ 0 , (2.10)
h[β;c] 6= 0 ⇒ pβ − pc ≤ 0 . (2.11)

There should be enough equality signs in (2.10),(2.11) for a chosen p so that
DN 6= 0. It turns out that there exists a minimal p-vector pmin so that the
VN (pmin) spaces are maximal: For each N,p there is N ′ so that

VN (p) ⊂ VN ′(pmin) . (2.12)

It is convenient to work only with this minimal p-vector.
The first step in transforming D into a Schrödinger operator is to write

it symmetrically

D = −
∑
a,b

∂

∂za
g−1
ab (z)

∂

∂zb
+
∑
a

ra(z)
∂

∂za
, (2.13)

where
g−1
ab =

∑
α

g[α;a,b]z
[α] . (2.14)

We write g−1
ab because this is the inverse of a Riemann tensor. The Riemann

tensor gab is assumed to be curvature free. The task to make it so will not
arise in this work. But we mention that we developed a minimal algorithm
to solve this issue.

Following the notations of (Haschke and Rühl 1999) we ”gauge” the poly-
nomial eigenfunctions ϕ of D by

ψ(z) = e−χ(z)ϕ(z) , (2.15)

so that

e−χDe+χ = − 1√
g

∑
a,b

∂

∂za
(
√
g g−1

ab )
∂

∂zb
+W (z) , (2.16)

(g = (det g−1)−1).
This is possible if and only if∑

b

g−1
ab (z)

∂

∂zb
[2χ− ln

√
g ] = ra(z) , (2.17)

which implies integrability constraints on the functions {ra(z)}. If they are
fulfilled we obtain a ”prepotential”

ρ = lnP , (2.18)

so that
ρ = 2χ− ln

√
g . (2.19)

In most cases studied, we found solutions for ρ as follows. Let
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det g−1(z) =
r∏
i=1

Pi(z) , (2.20)

where {Pi(z)} are different real polynomials. Then

ρ(z) =
r∑
i=1

γi lnPi(z) (2.21)

with free parameters γi solves the requirement that {ra(z)} (2.17) belong to
differential operators leaving each VN invariant. In particular

r(i)a (z) =
1

Pi(z)

∑
b

g−1
ab (z)

∂Pi
∂zb

(2.22)

are polynomials. Inserting (2.20), (2.21) in (2.19) we obtain finally

χ =
1
2

r∑
i=1

(
γi − 1

2

)
lnPi . (2.23)

We will later see that in the case of the models of Calogero type a term

γ0 lnP0 (2.24)

can be added to ρ, where
P0(z) = ez1 (2.25)

is not contained in det g−1 as a factor. This prepotential gives rise to the
oscillator potential.

Finally we mention that e−χ is the ground state wave function of the
Schrödinger operator, as follows from (2.15).

The expression (Haschke and Rühl 1999), (6.17) for the potential W (z)
contains a term linear in χ

−
∑
a,b

∂

∂za

(
g−1
ab

∂χ

∂zb

)
= −1

2

r∑
i=1

(
γi − 1

2

)∑
a

∂

∂za
r(i)a . (2.26)

Each divergence ∑
a

∂

∂za
r(i)a (z) = C(i) (2.27)

ought to be a constant. From now on we shall dismiss all constant terms in
W (z).

We can then write the potential as

W (z) =
∑
i,j

γijRij(z) , (2.28)
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Rij =
∑
a,b

g−1
ab

∂ lnPi
∂za

∂ lnPj
∂zb

, (2.29)

γij =
1
4

(
γiγj − 1

4

)
(i, j 6= 0) . (2.30)

In the cases of this article

Rij = const if i 6= j . (2.31)

If we then set
γi = −νi +

1
2

(i 6= 0) , (2.32)

we obtain

W (z) =
r∑
i=1

γiiRii(z) (2.33)

with
γii =

1
4
νi(νi − 1) . (2.34)

As stated in the Introduction the variables {zi} appearing in this section
are identified with Coxeter invariants formed from root space coordinates
{xn} or {yn}. These invariants are either polynomial or trigonometric. Finally
we return from the invariant coordinates {zi} to the root space coordinates
{xn} in the Schrödinger operator (2.16). Each contribution

Rii =
Qii
Pi

(2.35)

admits a partial fraction decomposition due to the factorization of the prepo-
tentials Pi (Section 5). The label i = 1 is always reserved to a ”Vandermonde
prepotential”, i.e.,

P1 ∼
∏
i<j

(xi − xj)2 or
∏
i<j

(sin(xi − xj))2 , (2.36)

or alike.

3 Translation Invariant Models

3.1 Relative Coordinates

The Laplacian for an Euclidean space IRN

∆ =
N∑
i=1

∂2

∂x2
i

(3.1)

is translation invariant. We introduce relative coordinates by
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yi = xi − 1
N
X , (3.2)

X =
N∑
i=1

xi . (3.3)

They separate the Laplacian such that

∆ = N
∂2

∂X2 +
N∑
i=1

∂2

∂y2
i

− 1
N

(
N∑
i=1

∂

∂yi

)2

. (3.4)

We use all {yi}Ni=1 as coordinates on the plane

N∑
i=1

yi = 0 , (3.5)

in order to maintain permutation symmetry.

3.2 Elementary Symmetric Polynomials

Elementary symmetric polynomials of N variables {qi}Ni=1 are defined by a
generating function

N∑
n=0

pn(q)tn =
N∏
i=1

(1 + qit) . (3.6)

They are invariant under the symmetric group SN . For each g ∈ SN we have
a sector (simplex) Eg ⊂ IRN

Eg = {qi1 < qi2 < . . . < qiN ; in = g(n)} , (3.7)

so that

IRN =
⋃
g∈SN

Ēg . (3.8)

Inside Eg we can use the {pn}Nn=1 as coordinates since

Mni =
∂pn
∂qi

, (3.9)

det M = (−1)[
N
2 ]V (q1, q2, ...qN ) , (3.10)

where V is the Vandermonde determinant.
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3.3 The AN−1 Series

The root system of AN−1 and the corresponding Weyl group possess elemen-
tary symmetric polynomials as invariants. We express the Laplacian in each
sector Eg (3.7) intersected with the plane (3.5) in terms of these polynomials

τn(y1, ..., yN ) = pn(q)|qi=yi all i . (3.11)

The dynamics will be bounded to such sectors by corresponding potential
walls automatically.

Then (see (Rühl and Turbiner 1995)) it results

N∑
i=1

∂2

∂y2
i

− 1
N

(
N∑
i=1

∂

∂yi

)2

=
N∑

n,m=2

g−1
nm

∂2

∂τn∂τm
+

N∑
n=2

hn
∂

∂τn
(3.12)

with

g−1
nm(τ) =

1
N

(m− 1)(N − n+ 1)τnτm − Tn−1,m−1(τ) , (3.13)

and
Tnm(τ) =

∑
l≥1

(2l + n−m)τn+lτm−l . (3.14)

Here it is understood that

τ0 = 1 ,
τ1 = 0 ,
τn = 0 for n < 0, n > N . (3.15)

In this case det g−1 is indecomposable as a polynomial, so we set

P0 = eωτ2 , (3.16)
P1 = det g−1 = CNV (y1, ..., yN )2 . (3.17)

The resulting vectors {ra}N2 are

r(0) = (−2τ2,−3τ3, ...,−NτN ) , (3.18)

r(1) : explicit formulas known only forN ≤ 4 , (3.19)

and the potential is

1
2
W (x) =

1
2
ω2

N∑
i=1

x2
i + g

∑
1≤i<j≤N

(xi − xj)−2 . (3.20)
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The corresponding Sutherland models are obtained as follows. We use as
coordinates a system {σn}Nn=2 defined by (these differ from those in (Rühl
and Turbiner 1995))

σ0 =
N∏
i=1

cos yi , (3.21)

and
σn = σ0 · pn(q)|qi=tan yi . (3.22)

The identity

1 = exp

i N∑
j=1

yj


=

N∏
j=1

(cos yj + i sin yj)

=
N∑
n=0

inσn(y) , (3.23)

allows us to eliminate σ0 and σ1 in terms of the remaining {σn}Nn=2 so that
polynomials go into polynomials.

The Laplacian is expressed correspondingly as

N∑
i=1

∂2

∂y2
1

− 1
N

(
N∑
i=1

∂

∂yi

)2

=

=
N∑

n,m=2

g−1
nm

∂2

∂σn∂σm
+

N∑
n=2

hn
∂

∂σn
, (3.24)

g−1
nm(σ) = −Tn+1,m+1(σ) − Tn+1,m−1(σ)

−Tn−1,m+1(σ) − Tn−1,m−1(σ)

+
1
N

[(m+ 1)σm+1 + (m− 1)σm−1]

×[(N − n− 1)σn+1 + (N − n+ 1)σn−1] , (3.25)

with Tnm as in (3.14).
Once again det g−1 is indecomposable, so we set

P1 = det g−1 = C ′
N Ṽ (y1, ..., yN )2 , (3.26)

where
Ṽ (y1, ..., yN ) =

∏
i<j

sin(yi − yj) , (3.27)
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has the symmetry of the Vandermonde determinant (translations and per-
mutations). The vector r(1) is known only up to N = 4. Finally we obtain as
potential

1
2
W (x) = g

∑
1≤i<j≤N

sin(xi − xj)−2 . (3.28)

In each case AN−1 the minimal p-vector is (1, 1, ..., 1) ∈ INN−1.

3.4 The G2 and AG3 Models

The models G2 and AG3 belong also to the domain of translation invariant
models (Rosenbaum et al. 1997). For G2 we start from A2 and extend its
Weyl group by a ZZ2 group

yi → −yi .
As invariant variables we use (Rosenbaum et al. 1997)

λ2 = τ2 , (3.29)

λ3 = τ2
3 . (3.30)

In these variables

3∑
i=1

∂2

∂y2
i

− 1
3

(
3∑
i=1

∂

∂yi

)2

=

=
3∑

a,b=2

g−1
ab

∂2

∂λa∂λb
+

3∑
a=2

ha
∂

∂λa
. (3.31)

We find

g−1(λ) =

−2λ2, −6λ3

−6λ3, + 8
3λ

2
2λ3

 , (3.32)

so that
det g−1 = −4

3
λ3(4λ3

2 + 27λ3) . (3.33)

Thus as ansatz for the prepotentials we use

P0 = eωλ2 , (3.34)
P1 = 4λ3

2 + 27λ3 , (3.35)
P2 = λ3 . (3.36)

The r-vectors (justifying this ansatz) are

r(0) = (−2λ2,−6λ3) , (3.37)
r(1) = (−6, 0) , (3.38)

r(2) = (−6,+
8
3
λ2

2) . (3.39)
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The minimal p-vector is
p = (1, 2) . (3.40)

The potential is

1
2
W (x) =

1
2
ω2

3∑
i=1

x2
i (3.41)

+g1
∑

1≤i<j≤3

(xi − xj)−2 + g2
∑

i<j,k/∈(i,j)

(xi + xj − 2xk)−2 ,

with

g1 = ν1(ν1 − 1) ,
g2 = 3ν2(ν2 − 1) . (3.42)

If
ν2 = 0 or ν2 = 1 , (3.43)

we return to the A2 model.
In the Sutherland case we use as variables

µ2 = σ2 , (3.44)
µ3 = σ2

3 . (3.45)

leading to the inverse Riemann tensor

g−1 =

−2µ2 − 2µ2
2 + 2

3µ3, −µ3(6 + 16
3 µ2)

−µ3(6 + 16
3 µ2), 8

3µ
2
2µ3 − 8µ2

3

 . (3.46)

Now det g−1 is decomposable with

det g−1 = −4
3
µ3P1(µ) , (3.47)

and
P1(µ) = 4µ2

3 + µ3(8µ2
2 + 36µ2 + 27) + 4µ3

2(1 + µ2) , (3.48)

P2(µ) = µ3 . (3.49)

The r-vectors are

r(1) = (−6 − 8µ2,−16µ3) , (3.50)

r(2) = (−6 − 16
3
µ2,

8
3
µ2

2 − 16µ3) . (3.51)

The resulting potential is
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1
2
W (x) = g1

∑
1≤i<j≤3

sin(xi − xj)−2

+
1
9
g2

∑
i<j,k/∈(i,j)

sin
1
3

(xi + xj − 2xk)−2 . (3.52)

In the case of the A2 models the spaces VN decompose into even and odd
subspaces in τ3 (or σ3) which are left invariant separately under action of the
Laplacian. In the case of the odd spaces we can factor τ3(σ3) and leave an
even space as well. In each case we obtain a polynomial space in the variables
λ2, λ3 = τ2

3 (µ2, µ3 = σ2
3). Thus starting from such polynomial space and

multiplying with τν23 (σν23 ) we obtain the A2 model if ν2 = 0 or ν2 = 1 but a
new potential in all other cases.

It is plausible that a similar procedure works for A3 but not for
AN−1, N ≥ 5. In the latter models we have two or more odd variables
τ3, τ5, ...(σ3, σ5, ...) and there is no factorization of the odd invariant sub-
spaces. Let us sketch the A3 model whose extension leads to the AG3 model
(Haschke and Rühl 1998).

In this case the variables are chosen as in (3.29), (3.30), (3.44), (3.45)

λ2 = τ2, λ3 = τ2
3 , λ4 = τ4 . (3.53)

The inverse Riemann tensor is

g−1 =

−2λ2, −6λ3, −4λ4
−6λ3, 4λ3(λ2

2 − 4λ4), λ2λ3
−4λ4, +λ2λ3, −2λ2λ4 + 3

4λ3

 . (3.54)

The determinant is decomposable as

det g−1 = λ3P1(λ) , (3.55)

and the ansatz for the prepotentials is

P0(λ) = eωλ2 , (3.56)
P1(λ) = 27λ2

3 − 256λ3
4 + 128λ2

2λ
2
4 (3.57)

−16λ4
2λ4 + 4λ3

2λ3 − 144λ2λ3λ4 ,

P2(λ) = λ3 . (3.58)

The r-vectors come out as

r(0) = (−2λ2,−6λ3,−4λ4) , (3.59)
r(1) = (−12, 0,−2λ2) , (3.60)
r(2) = (−6, 4(λ2

2 − 4λ4)λ2) . (3.61)

The potential for this Calogero type model is



130 O. Haschke and W. Rühl

1
2
W (x) =

1
2
ω2

4∑
i=1

x2
i (3.62)

+g1
∑

1≤i<j≤4

(xi − xj)−2 + g2
∑

3 terms

(xi + xj − xk − xl)−2 ,

with
g1 = ν1(ν1 − 1), g2 = 2ν2(ν2 − 1) . (3.63)

It was discovered first by Wolfes, (Wolfes 1974).
The Sutherland model is obtained in the same fashion. With

µ2 = σ2, µ3 = σ2
3 , µ4 = σ4 , (3.64)

the inverse Riemann tensor is

g−1
22 = −2µ2 − 2µ2

2 − 8µ4 + 2µ3 + 8µ2µ4 + 8µ2
4 , (3.65)

g−1
23 = −6µ3 − 4µ2µ3 , (3.66)
g−1
24 = −4µ4 − 6µ2µ4 + µ3 + 4µ2

4 , (3.67)
g−1
33 = 4µ3[−4µ4 + µ2

2 − 4µ2µ4 + 4µ2
4 − 2µ3] , (3.68)

g−1
34 = µ2µ3 − 6µ3µ4 , (3.69)

g−1
44 = −2µ2µ4 +

3
4
µ3 . (3.70)

Its determinant decomposes

det g−1 = −µ3P1(µ) , (3.71)
P1(µ) = 256µ6

4 + 32 further terms , (3.72)
(Eq. (A.2) from (Haschke and Rühl 1998))

P2(µ) = µ3 (3.73)
and the r-vectors are

r(1) = (−16µ2 − 12,−24µ3,−12µ4 − 2µ2) , (3.74)
r(2) = (−4µ2 − 8, 16µ2

4 − 16µ4µ2 + 4µ2
2 − 8µ3 − 16µ4,−6µ4 + µ2) . (3.75)

The factorization of σ3 which is necessary in this case is

σ3 = −
∏

1≤i<j≤3

sin(yi + yj) , (3.76)

implying
Q22

P2
= 4

∑
1≤i<j≤3

(sin(yi + yj))−2 . (3.77)

This gives the potential
1
2
W (x) = g1

∑
1≤i<j≤4

(sin(xi − xj))−2

+
1
4
g2
∑

3 cases

(sin
1
2

(xi + xj − xk − xl))−2 . (3.78)

The discussion of this AG3 model is resumed in Section 5.
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4 Translation Non-Invariant Models

4.1 The BCN and DN Models

As we shall see there is only one series with two (Calogero) and three (Suther-
land) independent coupling constants. For any such model we use as Cartesian
coordinates {xi}Ni=1 and require permutation symmetry SN and reflection
symmetry (ZZ2)N xi → −xi for each i separately. Then the natural coordi-
nates invariant under these group actions are (Brink et al. 1998)

λn(x) = pn(q)|qi=x2
i , all i

. (4.1)

There is a bilinear relation with the {pn(x)}Nn=1

λn(x) =
2n∑
k=0

(−1)n−kp2n−k(x)pk(x) . (4.2)

The inverse Riemann tensor for the full Laplacian (3.1) is then

g−1
nm(λ) = 4Mnm(λ) , (4.3)

where we introduce the shorthand

Mnm(λ) =
∑
l≥0

(2l + n−m+ 1)λn+lλm−1−l . (4.4)

Its determinant factorizes

det g−1 = (−1)[
N
2 ]4NλNP1(λ) , (4.5)

where

P1(λ) = NNλN−1
N + ... (4.6)

= DNV (x2
1, x

2
2, ...x

2
N )2

and
P2(λ) = λN . (4.7)

Both functions P1, P2 factorize in a trivial way. In the general case there is
no explicit expression for r(1) but

r(2)a = 4(N − a+ 1)λa−1 . (4.8)

If follows

R22 = 4
λN−1

λN
= 4

4∑
i=1

x−2
i . (4.9)

The resulting potential is, including an oscillator potential
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1
2
W (x) =

1
2
ω2

N∑
i=1

x2
i + g1

∑
1≤i<j≤N

[(xi − xj)−2 + (xi + xj)−2]

+g2
N∑
i=1

x−2
i , (4.10)

g1 = ν1(ν1 − 1) , (4.11)

g2 =
1
2
ν2(ν2 − 1) . (4.12)

In the Sutherland case we use coordinates

µ0 =
N∏
i=1

cos2 xi , (4.13)

µn(x) = µ0(x)pn(q)|qi=tan2 xi, all i (4.14)
n ∈ {1, 2, ...N} .

From the identity

1 =
N∏
i=1

(cos2 xi + sin2 xi)

=
N∑
n=0

µn(x) (4.15)

we learn how to eliminate µ0 in facour of {µn}Nn1
so that a polynomial of

{µn}Nn=0 remains a polynomial.
In this case the inverse Riemannian is

g−1
nm = 4

{
Mn+1,m+1(µ) +Mn,m(µ)

−Mn,m+1(µ) −Mn+1,m(µ)
}

(4.16)

and the determinant decomposes as

det g−1 = 4N (−1)[
N
2 ]µ0µNP1(µ) . (4.17)

Now the factorization of P1(µ) is

P1(µ) = D′
N

∏
1≤i<j≤N

(cos2 xi sin2 xj − sin2 xi cos2 xj)2 (4.18)

and we choose

P2(µ) = µN , (4.19)
P3(µ) = µ0 . (4.20)
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Again we have no general explicit expression for r(1) but

r(2)a = 4[(N − a+ 1)µa−1 − (N − a)µa] , (4.21)
r(3)a = 4[(a+ 1)µa+1 − aµa] , (4.22)

so that

R22 =
µN−1

µN
= 4

N∑
i=1

cot2 xi , (4.23)

R33 =
µ1

µ0
= 4

N∑
i=1

tan2 xi . (4.24)

Thus we end up with a potential

1
2
W (x) = g1

∑
1≤i<j≤N

[(sin(xi − xj))−2 + (sin(xi + xj))−2]

+g2
N∑
i=1

(sinxi)−2

+g3
N∑
i=1

(cosxi)−2 , (4.25)

where g1,2 are as in (4.11),(4.12) and

g3 =
1
2
ν3(ν3 − 1) . (4.26)

An alternative form of the potential is obtained from

g2

sin2 x
+

g3
cos2 x

=
g2 − g3

sin2 x
+

4g3
sin2 2x

. (4.27)

If we set g2 = g3 or g3 = 0 we obtain different samples of the BCN or DN

series. We mention finally that the minimal p-vector is in all cases

p = (1, 1, ...1) ∈ INN . (4.28)

4.2 The F4 Model

The F4 model belongs also to the translation noninvariant class. The Weyl
group of F4 possesses four basic polynomial invariants

I1(x), I3(x), I4(x), I6(x) , (4.29)

(In of degree 2n) which can be expressed as polynomials in the {λn}4
n=1 as

follows
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I1 = λ1 , (4.30)

I3 = λ3 − 1
6
λ1λ2 , (4.31)

I4 = λ4 − 1
4
λ1λ3 +

1
12
λ2

2 , (4.32)

I6 = λ4λ2 − 1
36
λ3

2 +
1
24
λ2

2λ
2
1 − 1

64
λ2λ

4
1 . (4.33)

In these coordinates the inverse Riemannian can be given as

g−1
1m = 4mIm , (4.34)

g−1
33 =

20
3
I4I1 − 2

3
I3I

2
1 , (4.35)

g−1
34 = 8I6 − 3I2

3 − 13
3
I4I

2
1 − 3

4
I3I

3
1 , (4.36)

g−1
36 = 16I2

4 + I6I
2
1 + 14I4I3I1 +

5
2
I2
3I

2
1 − 1

4
I4I

4
1 − 5

32
I3I

5
1 , (4.37)

g−1
44 = −4I4I3 − 2I6I1 +

3
4
I4I

3
1 +

3
4
I2
3I1 +

3
16
I3I

4
1 , (4.38)

g−1
46 = 8I2

4I1 + 2I4I3I2
1 − 1

8
I4I

5
1 , (4.39)

g−1
66 = 30I6I4I1 +

21
2
I6I3I

2
1 − 3

32
I6I

5
1 + 12I2

4I3 + 6I4I2
3I1

−3
8
I4I3I

4
1 +

3
4
I3
3I

2
1 +

3
1024

I3I
8
1 − 3

32
I2
3I

5
1 . (4.40)

The determinant decomposes into two factors

det g−1 =
1

3072
P1(I)P2(I) , (4.41)

where P1(I) is connected with the Vandermonde determinant squared as
usual

P1(I) = −4096I3
4 + 432I4

3 + 3072I2
6 − 2304I6I4I2

1

−576I6I3I3
1 + 864I4I2

3I
2
1 + 216I4I3I5

1

+432I2
4I

4
1 + 27I2

3I
6
1 − 2304I6I2

3 + 216I3
3I

3
1 , (4.42)

or in factorized form

P1(I) = −16
∏

1≤i<j≤4

(x2
i − x2

j )
2 , (4.43)

and P2(I)

P2(I) = 36864I2
6 − 18432I6I4I2

1 − 4608I6I3I3
1 + 32I6I6

1

−49152I3
4 − 36864I2

4I3I1 + 1536I2
4I

4
1

+768I4I3I5
1 − 12I4I8

1 − 9216I4I2
3I

2
1

−768I3
3I

3
1 + 96I2

3I
6
1 − 3I3I9

1 , (4.44)
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which factorizes as

P2(I) = −12λ4(64λ4 − 16λ2
2 + 8λ2λ

2
1 − λ4

1)2

= −12x2
1x

2
2x

2
3x

2
4

∏
ν2,ν3ν4∈{1,0}

(x1 −
4∑
i=2

(−1)νixi)2 . (4.45)

The r-vectors are

r(1) = (48,−2I2
1 , 0, 36I4I1 + 12I3I2

1 − 3
16
I5
1 ) , (4.46)

r(2) = (48,−4I2
1 ,−12I3, 24I4I1 + 6I2

1I3 − 3
8
I5
1 ) . (4.47)

The potential resulting is

1
2
W (x) =

1
2
ω2

∑
1≤i≤4

x2
i + g1

∑
1≤i<j≤4

[(xi − xj)−2 + (xi + xj)−2]

+g2
{ ∑
ν2,ν3,ν4

∈{+1,0}

4

(
x1 −

4∑
i=2

νixi

)−2

+
4∑
i=1

x−2
i

}
, (4.48)

where g1,2 are as in (4.11),(4.12). The minimal p-vector is

p = (1, 2, 3, 5) . (4.49)

5 Coxeter Groups, Orbits and Prepotentials

The prepotentials used in the empirical constructions of sections 3 and 4 ne-
cessitate a mathematical interpretation. Let W be a Coxeter group generated
by the reflections

{sα} , (5.1)

where α are roots running over a set

Φ = {α}M1 . (5.2)

The roots span an Euclidean space V . In this space the reflections {sα} act
by

x ∈ V : sαx = x− 2
(α, x)
(α, α)

α . (5.3)

If the Coxeter group W is ”crystallographic”, it is a Weyl group (for more
details see (Humphreys 1990)).

We denote a set of basic polynomial invariants of W by
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{z1(x), . . . , zn(x)}, n = dimV . (5.4)

Invariance means

zi(w−1x) = zi(x)
= wzi(x) , (5.5)

for all w ∈ W . The Jacobian for the transition {xj} → {zi}

J = det
{
∂zi
∂xj

}
(5.6)

can be factorized as follows ((Humphreys 1990), Proposition 3.13).
Each reflection sα leaves a hyperplane Hα in V pointwise fixed, let Hα

be given by a linear function lα

lα(x) = 0 . (5.7)

Then due to the proposition

J = C
∏
α∈Φ+

lα(x) (5.8)

with Φ+ the set of positive roots. The proof of this proposition is rather
elementary.

For any inverse Riemann tensor {g−1} of Sections 3 and 4 we obtain this
way

det g−1
ab = C2

∏
α∈Φ+

lα(x)2 . (5.9)

If Φ decomposes into orbits under W

Φ =
⋃
i

Φi , (5.10)

then
Pi =

∏
α∈Φ+

i

lα(x)2 (5.11)

is an invariant polynomial under action of W and therefore a polynomial in
the basic invariants

Pi = Pi(z1, . . . , zn) . (5.12)

These polynomials are the prepotentials constructed in Sections 3 and 4. The
factorization of these prepotentials as quoted at the end of Section 2 (eqs.
(2.35),(2.36)) and used throughout in Sections 3 and 4 is based on (5.11).

We emphasize that our empirical results of Sections 3 and 4 indicate the
validity of further mathematical propositions which could not be traced in
the literature:
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1. an analogous factorization theorem for the trigonometric invariants;
2. the polynomial properties (”integrability”) of the functions r(i)(z) (2.22).

Now we return to the AG3 model of Section 3. We identify the roots
involved in a model using (5.7),(5.9)

lα(x) = (α∨, x)

(α∨ =
2α

(α, α)
, the”dual”ofα) (5.13)

and the Sutherland version whose potential is

1
2
W (x) =

∑
orbitsi

gi
∑
α∈Φ+

i

[sin lα(x)]−2 . (5.14)

Thus the simple roots of A3

α1 = e1 − e2 ,

α2 = e2 − e3 , (5.15)
α3 = e3 − e4 ,

are completed by a fourth root in AG3

α4 = e3 + e4 − e1 − e2 . (5.16)

The corresponding Coxeter-diagram is shown in Fig. 1. It belongs to the affine
Coxeter group B̂3 ((Humphreys 1990), Figure 1 in Section 2.4).

The coordinates of the B̂3 root space with respect to the standard basis
{fi}3

i=1 are denoted {ξi}3
i=1, those of AG3 with respect to the standard basis

{ei}4
i=1 by {xi}4

i=1 as before. The simple roots of B3 are

β1 = f1 − f2, β1 = f2 − f3, β3 = f3 , (5.17)

and B̂3 is obtained by adjoining

β4 = −f1 − f2 . (5.18)

It follows that

s4

 ξ1
ξ2
ξ3

 =

−ξ2
−ξ1
ξ3

 (5.19)

leaves the Coxeter invariants of B3

λ1(ξ) =
∑

1≤i≤3

ξ2i , (5.20)

λ2(ξ) =
∑

1≤i<j≤3

ξ2i ξ
2
j , (5.21)

λ3(ξ) = ξ21ξ
2
2ξ

2
3 , (5.22)
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4

1

3

2

Fig. 1. Coxeter diagram of B̂3

invariant, too. This suggests the equivalence of the AG3 and the B3 models.
An explicit identification of the simple roots

f1 =
1
2

(e1 − e2 − e3 + e4) , (5.23)

f2 =
1
2

(−e1 + e2 − e3 + e4) , (5.24)

f3 =
1
2

(−e1 − e2 + e3 + e4) , (5.25)

gives (i, j ∈ {1, 2, 3})

xi − xj = ξi − ξj , (5.26)

x4 − xj =
∑
i( 6=j)

ξi . (5.27)

It follows

g1
∑

1≤i<j≤4

[sin(xi − xj)]−2 +
1
4
g2
∑

3 cases

[sin
1
2

(xi + xj − xk − xl)]−2

= g1
∑

1≤i<j≤3

{[sin(ξi − ξj)]−2 + [sin(ξi + ξj)]−2} +
1
4
g2

3∑
i=1

[sin ξi]−2 .

(5.28)
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Moreover the rational invariants (3.64) can be identified with the invariants
(5.20)–(5.22)

µ2(x) = −1
2
λ1(ξ) , (5.29)

µ3(x) = +
1
4
λ3(ξ) , (5.30)

µ4(x) = −1
4
λ2(ξ) +

1
16
λ1(ξ)2 . (5.31)

This establishes the equivalence between the two models.
Our method involves a reduction of the affine Coxeter group B̂3 to the

Coxeter group B3 having the same invariants. It may therefore be of interest
that the construction performed in (Rosenbaum et al. 1997) is analogous (see
Fig. 2).

    reduction

A G G2 2 2

   adding  a  
  reflection

Fig. 2. Extending the Coxeter diagram of A2 to Ĝ2 and reduction to G2
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Summational Invariants
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Bunsenstraße 9, D 37073 Göttingen

For Jan  Lopuszański, scientist and friend,
on his 75th birthday

1 Introduction

In 1872 Ludwig Boltzmann derived the Maxwell distribution for the momenta
of particles in a gas starting from the Boltzmann equation. The distribution
function F (p),p ∈ R3, is stationary if and only if

F (p1)F (p2) = F (p3)F (p4) . (1′)

Here p1,p2 are the momenta of two particles before a collision, p3,p4 the
momenta of these after the collision, for which of course

p1 + p2 = p3 + p4, and ω1(p1) + ω2(p2) = ω3(p3) + ω4(p4) , (2)

with ωi(p) = p2/2Mj (or
√
p2 + M2

j ). Putting

f = logF ,

we have instead of (1’)

f(p1) + f(p2) = f(p3) + f(p4) . (1)

Functions f fulfilling (1) for scattering processes are called ”summational
invariants” or ”additive collision invariants”. The task of Boltzmann then
was: Find all solutions of eq. (1) holding for all pi, realizable in scattering
processes.

Related - but different - is to look for all solutions of (1) on the manifold
given by (2).

If the restriction by the energy conservation is released, one has

f(p1) + f(p2) = f(p3) + f(p4) ,

for
p1 + p2 = p3 + p4 .
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In the rest system of particle 2, p2 = 0, and putting

g(p) = f(p) − f(o) , p3 = p , p4 = q ,

one gets
g(p + q) = g(p) + g(q) , ∀p,q ∈ R3 , (3)

which is Cauchy’s functional equation on R3.
Under rather mild smoothness conditions (e.g., g being continuous, or only

Lebesgue measurable, or having a measurable majorant) it is well known that
all solutions are of the form

g(p) = ap ,
with 3 constants a.

There are, however, other solutions of (3). They were given by Georg
Hamel in the same short paper (Hamel 1905) in which he introduced what
since then is called a Hamel basis. He considers R as vector space over the
field Q of the rationals: Every x, x′ ∈ R may he expressed uniquely as

x = αa+ βb+ γc+ . . . , ; α, β, γ, . . . ∈ Q , a, b, c, . . . ∈ B ,

x′ = α′a+ β′b+ γ′c+ . . . ,

where the sum is only over a finite number of elements of the basis B (The
elements of B are linearly independent over Q). Hamel defines g(x) by

g(x) = αg(a) + βg(b) + γg(c) + . . . ,

where g(a), g(b), . . . are to be given (also allowed to be 0 or ∞). Then

g(x+ x′) = (α+ α′)g(a) + . . . = g(x) + g(x′) .
Unless the quotients g(a)/a, g(b)/b, g(c)/c, . . . are all equal, we have g(x) 6=
const. x and g(x) can not be continuous (in fact it is very discontinuous!)

After this digression we return to (1). There are investigations of (1) on
the whole of the manifold of solutions of (2) or on a suitable submanifold (see
(Amigo and Reeh 1983) for references) showing that

f(p) = a + bp + cω(p) ,

under some smoothness assumptions (without the latter we might e.g., add
an arbitrary Hamel type function g(ω(p))!)

There is, however, the following problem: If there is besides of energy mo-
mentum conservation another still unknown conservation law further restrict-
ing the manifold on which (1) is given, the result again might be different.
Therefore, from the point of view of a physicist an (unpublished) result of E.
Wichmann for the relativistic case ( Lopuszański 1991) is rather welcome:

Given (1) for one non-trivial scattering process and for all Poincaré trans-
forms of this process, then f = a + bp + cω(p) (under suitable smoothness
assumptions).

For proving this assertion, it is convenient to realize that there are refer-
ence systems for which p1, . . . ,p4 are in a plane (In the center of mass system
in which p1 = −p2, p3 = −p4, p1, and p3 define a plane.)
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2 Generalizations

In classical mechanics, an observable is a function on phase space, possibly
with an explicit dependence on time, F (x,p, t). It is “conserved” if

d

dt
F (x,p, t) = 0 ,

on trajectories in phase space. The natural generalization of the notion of
collision invariants therefore is:

Look for all asymptotically conserved observables (scattering invariants)
which are additive on asymptotic particle configurations in all scattering
process, i.e., look at

F (xin
1 ,p

in
1 ,x

in
2 ,p

in
2 , . . . , t)

=
∑
i

fi(xin
i ,p

in
i , t) =

∑
i

fi(xout
i ,pout

i , t) = F (xout
1 ,pout

1 , . . . , t) ,

with
d

dt
fi(x(t),p(t), t) = 0 ,

on asymptotic orbits.
From the last equation it follows that fi may be written as

fi(x,p, t) = gi(s,p) ,

with
s = Mix − pt, and s =

√
p2 + M2

i x − pt ,

for Galilei and Lorentz invariance respectively. We therefore study the equa-
tion ∑

i=1,...,4

fi(pi, si) = 0 , (4)

(with a temporary change of sign of f3, f4), where pi, si ∈ R3 are the data
of two particles before (i =1, 2) and after (i = 3, 4) a non trivial scattering
process (i.e., the momenta change during collision!) or all the Galilei (or
Poincaré) transformed of that process. In view of particle physics we allow
that the particles change their identity and mass during collision. Our aim is
to determine the general solution of (4).

As far as the smoothness of the fi is concerned, it can be shown (by con-
volution with Galilei or Poincaré transformations1 (Amigo and Reeh 1983)
that it suffices to study C∞ functions for getting the result for functions
being locally integrable. Hence we assume that the fi are C∞ in p and s
and polynomially bounded in s for all finite p. Assume Mi > 0. We consider
1 For M = 0, C∞ follows only for p 6= 0.
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pointlike particles without intrinsic angular momentum. Because of conserva-
tion of angular momentum, we assume that the two particle scattering occurs
in a plane. The result is

Theorem: Assume (4) and the assumptions just listed. Then fi(p, s) =
a0ωi(p) + ap + b(s × p)/Mi + cs + d(ps)/Mi + es2/Mi + ki with M1 +M2 =
M3 + M4 and with 12 constant numbers a0,a, . . . , e (which may vanish !)
independent of i, and a number ki (k1 +k2 = k3 +k4) in the Galilei invariant
case. Whereas fi = a0ωi(p) + ap + b(s × p)/(p2 + Mi)1/2 + cs + ki in the
Lorentz invariant case with 10 + 1 constants a0, . . . , c and ki.

With other words: The fi are linear combinations of the 12 generators of
the Schrödinger group (Niederer 1972, 1974) or the Poincaré group respec-
tively.

The content of the theorem is a classical version of Coleman and Man-
dula’s theorem of particle physics. t have studied the classical version partly
because it might be easier to find counterexamples.

To prove the theorem, it is useful to show first (using the assumption
of non trivial scattering) that the dependence of fi on s is only polynomial
(Here the assumption on polynomial boundedness is used. I do not actually
know whether this is needed for the technique of proof only). Having that,
one reduces the general case to Wichmann’s result by applying small Galilei
or Poincaré transformations on fi (A small time translation, for instance,
amounts to a differentiation of fi with respect to the explicit t in s. This
reduces the degree in s and produces a factor p!). For Mi > 0 a proof is pub-
lished (Mackrodt and Reeh 1997) A proof for massles particles (interpreted
as limiting case) essentially is completed. Instead of going into details of the
proof, I discuss two types of examples in the following.

3 Examples

The two transformations of the Schrödinger group besides of the Galilei group
are

D : (t,x) → (e2δt, eδx) , “dilations”,−∞ < δ < ∞ ,

A : (t,x) → (t′ = t/(1+αt) , x′ = x/(1+αt)) , “expansions” , −∞ < α < ∞ .

According to the theorem, they may show up as summational invariants.
They do show up, however, only in special cases, e.g., for systems with the
action integral

W =
∫  ∑

i=1,...,n

Mi

2
(ẋi)2 −

∑
i 6=j

γij
(xi − xj)2

 dt .
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Invariance under D is obvious. Invariance under A follows after separation of
a total time derivative under the integral,

dt′ = (1 + αt)−2dt ,(
dx

dt

)
2dt′ =

(
ẋ2 − α · d

dt

[
x2/(1 + αt)

])
dt .

Constants of motion according to Noether’s theorem for a two particle system
are

A = s2
1/2M1 + s2

2/2M2 + t2γ/ | x1 − x2 |2 ,

D = s1p1/M1 + s2p2/M2 − 2tγ/ | x1 − x2 |2 .

In D, the last non additive term vanishes for large t, i.e., on asymptotic
trajectories. This is different for the non additive term in A. For t → −∞ we
have

t2 · γ/ | x1 − x2 |2→ γ/ | v1 − v2 |2 , (5)

where vi denote the incoming asymptotic velocities of the particles. Energy
conservation in the center of mass system implies that (5) is a separate colli-
sion invariant which, however, is not additive. We therefore may drop it and
for the two particle system we are left indeed with what according to the
theorem may show up as summational invariant.

For an n-particle system we have correspondingly the constants of motion

A =
∑
i

s2
i /2Mi + t2

∑
i 6=j

γij/ | xi − xj |2 ,

D =
∑
i

sipi/Mi − 2t
∑
i 6=j

γij/ | xi − xj |2 ,

which for t → −∞ approach

Ain =
∑

(sin
i )2/2Mi +

∑
γij/ | vin

i − vin
j |2 , Din = sin

i pin
1 /Mi .

In contrast to n = 2, the second, velocity dependent, term in Ain in general
is not equal to the corresponding term in Aout. Hence here in general A is
not asymptotically additive. For n = 3 and γ12 = γ23 = γ31 = 1 this may be
seen either by numerical integration (Maison, private commun.) or as follows:
Consider

F in :
1

| v1 − v2 |2 +
1

| v2 − v3 |2 +
1

| v3 − v1 |2 .

Look at a situation in which particle 3 is far apart and does not change its
velocity during collision. Go into a reference system in which v3 = v′

3 = 0,
denoting the variables of the outgoing particles now with a prime. In this
inertial system
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F in = 1
|v1−v2|2 + 1

|v2|2 + 1
|v1|2

= 1
2E−P2 + 1

|v1|2 + 1
|v2|2 = 1

2E−P2 + 2E cos2 φ
( 1
2P2−E)2 ,

with 2E = v2
1 + v2

2, P = v1 + v2, v1v2 = v1v2 cosφ = 1/2P2 − E.
Now P = P′, E = E′, but in general φ 6= φ′ and F in 6= F out. (Look, e.g., at

2v

v

v

v

1’

2’

1

where φ = π, φ′ = π/2.) The example shows that the situation is more com-
plicated than the theorem and a superficial application of cluster properties
might suggest.

It has been shown (Amigo and Reeh 1983) for two-particle systems with
central symmetric interaction that conservation of the asymptotic D is re-
lated to the vanishing of the time delay during scattering and occurs only
in case of potentials ∼ 1/r2. Examples for non central potential interaction
are also known for which D is not accompanied by A (Baumann, K., pri-
vate commun.). For the following example D and A are also conserved and
asymptotically additive.

Let us now turn to an example where two-particle scattering is not re-
stricted to a plane: Consider a particle (position x1) with electric charge e
and another (at x2) with magnetic charge g, for simplicity both with mass

1: The non relativistic equations of motion are (putting c = 1)

ẍ1 = eg · (ẋ1 − ẋ2) × (x1 − x2)/ | x1 − x2 |3 ,

ẍ2 = −eg · (ẋ2 − ẋ1) × (x2 − x1)/ | x2 − x1 |3 .

(There is no canonical formulation without singularities corresponding to the
“Dirac string” (Houard 1977)). The equations of motion are covariant under
rotations and there is a cor- responding conservation law

J = x1 × ẋ1 + x2 × ẋ2 + eg · (x2 − x1)/ | x2 − x1 | ,

d

dt
J = 0 ,
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by inspection. (The third term, of course, may be interpreted as the angular
momentum of the electromagnetic field,

∫
d3x[x × (E × B)]). Hence J is not

asymptotically additive!
For an n-particle system of equal masses at xi, carrying electric and mag-

netic charges ej , gj we have correspondingly

ẍi =
∑
k( 6=i)

(eigk − ekgi)(ẋi − ẋk) × (xi − xk)/ | xi − xk |3

+
∑
i( 6=k)

(gigk + eiek)(xi − xk)/|xi − xk|3 ,

J =
∑
i

xi × ẋi +
∑
i 6=k

giek
xi − xk

| xi − xk | ,
d

dt
J = 0 . (6)

J is a non asymptotically additive conservation law for the n-particle
systems2

This example demonstrates that the assumption of a scattering plane for
two point particles is essential for the theorem but can not, in general, be jus-
tified. The two particles seem to have sufficient clustering so that a scattering
theory exists (Goldhaber 1965) because for large separation the interaction
between a charge and a monopole vanishes faster than for Coulomb interac-
tion due to the cross product.

The two types of examples at least show that there still is something to be
done. I should like also to mention that for classical particles with intrinsic
angular momentum like billiard balls there seem to be only partial results
(Huber 1990). An investigation of collision invariants for systems of pointlike
particles by a different method was given by M. Requardt (Requardt 1987).
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Abstract. We review numerous applications of relative entropy estimates
in Statistical Mechanics and Field Theory.

The Particle Structure Implies Relative Entropy Bounds

It is well known that one can represent the physical Hilbert space H of the
free scalar massive field theory as IL2(µG) defined with a mean zero Gaussian
measure of covariance G = (−∆ + m2)− 1

2 . This Hilbert space has a natural
Fock space structure

H =
∞⊕
n=0

Hn

that is it can be represented as a direct sum of orthogonal n-particle sub-
spaces Hn which are preserved by the semigroup Pt ≡ e−tH , t ≥ 0, where
H denotes the physical Hamiltonian of the free field. At the end of sixties
it has been discovered that this Particle Structure implies the following very
special property of the semigroup Pt

||Ptf ||ILq
≤ ||f ||IL2 (IH)

with q ≡ q(t) = 1 + e2t/c for some positive constant c. That means the
semigroup is not only contractive in the physical Hilbert space, (which follows
from the fact that physical Hamiltonian has non-negative spectrum), but
maps this space into a strictly smaller subspaces consisting of more smooth
vectors. Since then this property is called the Hypercontractivity. For the
references to the related publications including those of J. Glimm, E. Nelson,
B. Simon, R. Hoegh-Krohn and others, see e.g., (Simon 1974) and (Glimm
and Jaffe 1987).
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In (Federbush 1969), P. Federbush studied perturbation of free Hamilto-
nian by λ : ϕ4 : interaction. He has shown that the Hypercontractivity prop-
erty implies the following infinitesimal condition, called Logarithmic Sobolev
inequality,

µG
(
f2 log f2) ≤ 2c µG (fHf) , (ILIS)

where f belongs to the quadratic form domain of the Hamiltonian and is
normalised by µGf2 = 1. For later purposes we note that the quadratic form
on the right hand side of (ILIS) can be regarded as a Dirichlet form, that is
it can be represented as an expectation of a square of (infinite dimensional)
gradient, (Araki 1960), (Herbst 1976), (Albeverio and Hoegh-Krohn 1977).
Later L. Gross showed, (Gross 1976), that actually this Relative Entropy
bound is equivalent to the Hypercontractivity property.
We remark that, because of our normalisation condition, f2 in the above in-
equality can be regarded as a probability density with respect to the measure
µG and so the quantity on the left hand side of (ILIS) can be interpreted as
the relative entropy of the corresponding measures. Thus we see that in the
Free Field Theory the Particle Structure implies the Relative Entropy bound.

1 The Relative Entropy Bounds for Gibbs Measures

One of the main properties of (ILIS) is the fact that whenever it holds for any
two measures, it is also true for their product. Thus such entropy bounds are
naturally suitable for description of large or even infinite physical systems. At
the time when (ILIS) was introduced the only known examples of measures
satisfying it were given by the Gaussian or some product measures. This
situation persisted till the mid of eighties when Bakry and Emery introduced
a very efficient criterion for the case when the underlying configuration space
was given as Ω = IMΓ with IM being a Riemannian manifold with strictly
positive Ricci curvature and Γ a countable set, (Bakry and Emery 1984).
It has been applied in (Carlen and Stroock 1986) to show that (ILIS) hold
for infinite volume measures describing some continuous spin systems on a
lattice at very high temperatures. A new idea which allowed to extend this
result came at the end of eighties from the Statistical Mechanics (where
some other relative entropy bounds proved to be a useful tool in the study of
infinite systems). Studying a uniqueness problem for disordered spin systems,
the author realised that one can use the Gibbs structure related to the spin
systems to prove (ILIS). It allowed him to show this relative entropy estimate
not only for continuous spins when the single spin space do not satisfy Ricc >
0, (as for example in planar rotators), (Zegarliński 1990), but also for discrete
spin systems, (Zegarliński 1990), (Zegarliński 1992). To describe the related
idea and some results, we need to recall the basic notion of the Gibbsian
description. We begin from introducing the finite volume Gibbs measures
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µωΛ(f) ≡ δω

(
µΛ0 (e−UΛf)
µΛ0 (e−UΛ)

)
,

where δω is the Dirac measure fixing the external configuration ω ∈ Ω of
the system outside a finite subset Λ of the lattice ZZd, (denoted later on by
Λ ⊂⊂ ZZd ); µΛ0 denotes a free product measure in Λ and the interaction
energy is given by

UΛ ≡
∑

X∩Λ6=∅
ΦX(σX) .

The potential Φ ≡ {ΦX : X ⊂⊂ ZZd, |X| < ∞}, for simplicity of the expo-
sition, is assumed to be of finite range, that is ΦX ≡ 0 if diam(X) > R for
some fixed R > 0.
The infinite system is described by a Gibbs measure µ which by definition is
a solution of the celebrated Dobrushin - Lanford - Ruelle equation

µ (µ·
Λ(f)) = µ(f) . (IDILIR)

Using this equation one can represent the relative entropy as follows

µ
(
f2 log f2/µf2) = µ

(
µ·
Λ(f2 log f2/µf2)

)
= µ

(
µ·
Λ(f2) log

f2

µ·
Λ(f2)

)
+ µ

(
µ·
Λ(f2) log

(
µ·
Λ(f2)/µ(µ·

Λ(f2)
)
)
)
.

In this way we split the estimate into two parts. The first one involves the local
relative entropy estimate with the measure µ·

Λ and as a finite dimensional
problem is usually easy. On the other hand the second term has a similar
structure but involves a new density µ·

Λ(f2) which is in some way smoother.
Choosing another finite set, (given as a translation of Λ), we can apply the
same idea to that second term. It is an interesting fact that under some mixing
condition such procedure can be iterated and leads to convergent expansion
which results with the desired relative entropy estimate.

2 Equivalence of Equilibrium
and Non-Equilibrium Descriptions

An interesting outcome of the research on relative entropy estimates is con-
tained in the following result.
Theorem: The following conditions are equivalent
(I) Strong Mixing : ∃M > 0∀Λ ⊂⊂ ZZd, ω ∈ Ω

|µωΛ ((f − µωΛ(f))(g − µωΛ(g)))| ≤ C(f, g)e−M ·dist(Λf ,Λg)

for any local observable f and g localised in a bounded set Λf and Λg,
respectively.

(II) Spectral Gap : ∃m > 0∀Λ ⊂⊂ ZZd, ω ∈ Ω
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mµωΛ (f − µωΛ(f))2 ≤ µωΛ(
∑
i

|∇if |2)

for any f in the domain of the Dirichlet form.

(III) Logarithmic Sobolev Inequality : ∃c > 0∀Λ ⊂⊂ ZZd, ω ∈ Ω

µωΛ
(
f2 log f2/µωΛ(f2)

) ≤ 2c µωΛ(
∑
i

|∇if |2)

for any f in the domain of the Dirichlet form.

(IV) Asymptotic Sobolev Inequality :
∃C > 0∀Λ ⊂⊂ ZZd, ω ∈ Ω, ∀p ∈ [2, 2 + 1

|Λ| ]

||f ||2ILp(µω
Λ) ≤ ||f ||2IL2(µω

Λ) + (p− 2)CµωΛ(
∑
i

|∇if |2)

for any f in the domain of the Dirichlet form.

The equivalence of the (I)-(III) has been proven in (Stroock and Ze-
garliński 1992). The last point has been added only recently in (Zegarliński
1998).

The first condition is a statement from statistical mechanics which says
that in the given systems one has a fast uniform decrease of correlations. It
means, (Dobrushin and Shlosman 1985, 1987), that in such system one has
no phase transitions in the strongest possible sense of analytic dependence of
expectations on the potential.

The second has an interpretation within the spectral theory of the selfad-
joint Markov generator described by the Dirichlet form on the right hand side
of the inequality. It means that one has a gap at the bottom of the spectrum
of this generator. Thus it carries an information about the ergodicity of the
corresponding semigroup in the IL2 sense.

The third statement is our relative entropy estimate. It is well known
that (ILIS) implies the spectral gap. On the other hand one can show exam-
ples when the spectral gap inequality is true, but (ILIS) does not hold. The
important point here is that the spectral gap is uniform with respect to the
volume Λ and external conditions ω.

Finally the last property involves a classical Sobolev inequality which is
one of the cornerstones of the twentieth century analysis. It tells us that given
the IL2 information about the gradient of a function we can estimate its 2+δ
moment with strictly positive delta δ. This improvement of square by a small
root is much stronger than the logarithmic one in (ILIS), but is relaxed in the
thermodynamic limit. The equivalence of (III) and (IV) follows from the very
special behaviour of the coefficient at the Dirichlet form.

The condition (I) is a condition of the equilibrium statistical mechanics.
If we would think of (II) - (IV) as some features of dissipative dynamics
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with generator described by the corresponding Dirichlet form, we could say
that the above Theorem establishes an equivalence between equilibrium and
non-equilibrium description of a physical system.

3 Strong Decay to Equilibrium

One of interesting consequences of the hypercontractivity of the dissipative
dynamics is the fact that the corresponding systems decays exponentially fast
to the unique equilibrium.
Theorem: ((Stroock and Zegarliński 1995))
If a Gibbs measure µ satisfies

µ

(
f2 log

f2

µf2

)
≤ 2c µ(fHf)

then
||e−tHf − µf ||∞ ≤ e−mtCV |||f |||

with a positive constant CV dependent only on a finite set V in which an
observable f is localised, and with an arbitrary m ∈ (0, gap2H) , provided
some suitable seminorm |||f ||| of f is finite.

It is interesting to remark that the region where (ILIS) remains true, in many
systems, extends to the critical point. (It includes for example the Ising fer-
romagnet with nearest neighbours interactions.)
Results about the decay to equilibrium, besides their theoretical and esthet-
ical value, play an important role in numerical analysis. One should recall
that the only practical way of making actual computations of equilibrium ex-
pectations of large system is via running a stochastic process on a computer.
To illustrate the computational difficulty, consider the Ising model on ten by
ten square of the integer lattice ZZ2. This certainly can not be regarded as a
large system if we compared it with a small macroscopic piece of ferromagnet
which is known to contain 1023 elements. Yet the corresponding configura-
tion space contains 2100 ≥ 1030 different configurations of the ±1 spins. That
is we would have to compute more than 1030 terms exp{−UΛ(σ)} to get a
value of expectation with a Gibbs measure. Computing 109 terms per second,
(which is a very good speed !), one would need 1021 seconds. That is about
1014 years. Compare that with the age of the Universe which when estimated
using the Big Bang theory is equal approximately 1010 years !
For related development see also (Martinelli and Olivieri 1994), (Lu and Yau
1993), (Zegarliński 1990)–(Zegarliński 1998) and references there in.

4 Strong Decay to Equilibrium in Disordered Systems

It is well known that the systems with random interactions can exhibit an
interesting behaviour. A simplest example of such a system is given by the
Edwards - Anderson model described by the following interaction energy
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U =
∑

|i−j|=1

Jijσiσj ,

where the couplings Jij are random i.i.d. variable. If the couplings can take
on arbitrary large values, the corresponding system exhibits a non-analytic
behaviour even at the high temperature region. In view of the previous discus-
sion it is natural to expect that one should have also different non-equilibrium
behaviour. The first numerical evidence that at the high temperatures one
should have a stretched exponential decay has been published in the mid of
eighties by Ogielski, (Ogielski 1985). For a mathematical results one needed
to wait for a long time. By adapting the strategy based on the hypercon-
tractivity the following result has been proven for Glauber dynamics of two
dimensional models.
Theorem ((Guionnet and Zegarliński 1996, 1997))
Almost surely

||etLJ f − µJf ||∞ ≤ e−tαC(J)|||f |||
with some α ∈ (0, 1) and a random variable C(J), where J denotes the
random configuration of the couplings.
See also (Cesi et al. 1997) for further development on that subject.

5 The Relative Entropy Estimates
in Quantum Systems

In the description of quantum spin systems we describe observables as ele-
ments of a C∗ algebra A = ∪Λ⊂⊂ZZdAΛ, where AΛ is isomorphic to IMΛ the
algebra of all complex n×n matrices. The free state is given by a normalised
trace Tr, satisfying the usual properties

Tr1 = 1, T r(a∗a) > 0 for a 6= 0 and Tr(ab) = Tr(ba) .

With the trace Tr we can associate a family of partial traces TrX , X ⊂⊂ ZZd

possessing all basic properties of conditional expectations. A Gibbs state ω
on the algebra A is given by

ω|AΛ
(f) = Tr(ρΛf) ,

where ρΛ is a density matrix. In this setting a dissipative dynamics is de-
scribed as a Markov semigroup, that is a semigroup satisfying the following
properties

Pt1 = 1, Ptf
∗f ≥ 0,

and possibly also the following Feller Property

Pt(A) ⊂ A ,

Frequently we want to distinguish a’priori a family of invariant states that is
the states satisfying



Relative Entropy Estimates in Statistical Mechanics and Field Theory 155

ω(Ptf) = ω(f) .

One convenient way of doing that is by assuming the following detailed bal-
ance condition with respect a scalar product associated to the state ω

< Ptf, g >Hω =< f, Ptg >Hω .

A construction of a dissipative dynamics preserving positivity in the algebra
and simultaneously satisfying this symmetry condition constitutes one of the
toughest problems of mathematical physics; for some progress in that direc-
tion see (Majewski et al. 1998) and references therein.
We recall that, unlike as in the classical case, in the non-commutative theory
one can consider many scalar products associated to a given state ω = Tr(ρ ·).
Some examples are given by

< f, g >ω,s≡ Tr(ρs/2fρ(1−s)/2)∗(ρs/2fρ(1−s)/2) .

In particular if we set s = 0 one gets the usual scalar product used in the
GNS construction. An integral over s ∈ [0, 1] gives a scalar product relevant
to the linear response theory.
Additionally one can associate to ω an interpolating family of ILp(ω, s) spaces
defined by the following norms

||f ||pILp(ω,s) ≡ Tr|ρs/pfρ(1−s)/p|p .

Note that for 1 ≤ p ≤ q ≤ ∞ we have

ILp ⊃ ILq ⊃ A .

We note that a symmetric in IL2(ω, s) Feller - Markov semigroup can be
extended to a contractive semigroup in all ILp(ω, s)

||Ptf ||ILp(ω,s) ≡ ||f ||ILp(ω,s)

in a full analogy to the classical theory.

6 Hypercontractivity in Noncommutative ILp Spaces

Given a family of noncommutative ILp(ω, s) spaces, in a natural way we can
define a Hypercontractive semigroup by the following condition

||Ptf ||ILp(ω,s) ≤ ||f ||IL2(ω,s) ,

where p = 1 + e
2
c t, with some c ∈ (0,∞). Later on s = 1

2 .
Theorem: ((Olkiewicz and Zegarliński 1999))
Hypercontractivity in ILq(ω, 1

2 ) spaces implies the following Quantum Rela-
tive Entropy bound
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QEp(f) ≡ Tr|ρ1/2pfρ1/2p|p
(

log |ρ1/2pfρ1/2p| − 1/p log ρ
)

−||f ||p
ILp(ω, 12 ) log ||f ||ILp(ω, 12 )

≤ c(p) Ep(f) ,

where c(p) = cp
2(p−1) and

Ep(f) =< Ip,q(f),Lpf >IL2(ω, 12 )

with isometry Ip,q : ILp → ILq.
Moreover if

E2(I2,pf) ≤ q2

4(q − 1)
Eq(f)

then
QE2(f) ≤ c E2(f)

implies hypercontractivity
The statement simply says that basically the quantum relative entropy esti-
mate is equivalent to hypercontractivity in this more general noncommuta-
tive setting. Note that the theorem introduces a new kind of quantum relative
entropy not considered before in the literature. In the particular case when
the observable f is nonnegative and commutes with the density matrix ρ, the
renormalization of the logarithm gives us the classical formula for the relative
entropy.

7 Spectral Theory of Hypercontractive Semigroups

Suppose Pt = e−tL is a symmetric Markov semigroup in IL2(µ). If its genera-
tor would have a discrete spectrum, (as it happens for example in case of the
Laplace - Beltrami operator on a compact Riemannian manifold), we would
have the following representation

Ptf =
∑
n

e−tλn(Ψn, f)Ψn

with Ψn being a normalised eigenfunction corresponding to an eigenvalue λn.
Using this representation an equivalent condition of the hypercontractivity
property

∃T ∈ (0,∞)∀t > T , ||Ptf ||4IL4
≤ ||f ||4IL2

can be written as follows∑
n1,..,n4

e−t(λn1+..+λn4 )µ(Ψn1 ..Ψn4)
∏

l=1,..,4

(Ψnl
, f) ≤

∑
n1,n2

(Ψn1 , f)2(Ψn2 , f)2
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for all t > T . This means that for hypercontractivity to be true we need very
special properties of the spectrum and overlapping property of the eigen-
fuctions, (that is the random variables Ψn have to be in some sense weakly
dependent and behave similarly to the random variables with Gaussian dis-
tribution). As we have mentioned at the beginning of this lecture, in case of
free scalar massive field one can derive hypercontractivity from the particle
structure of the theory. More precisely one uses the following properties.
(I) Existence of Invariant Subspaces ∀n ∈ ZZ+∃Hn ⊂ IL2(µ)

PtHn ⊂ Hn, Hn⊥Hn′ , and ∪n Hn = IL2(µ) .

(II) Particle Structure of the Spectrum

∃ε ∈ (0,∞)∀n ∈ IN inf σ(H|Hn) ≥ nε .

(III) Gaussian Bounds

∃C ∈ (0,∞)∀n ∈ IN ∀f ∈ Hn ||f ||IL4(µ) ≤ Cn||f ||IL2(µ) .

We mention that recently the following further examples of such structure
has been exhibited, (Bodineau and Zegarliński 1998).
Example A: The Glauber dynamics in D = 1 Ising model

– Hn = Span{σX , |X| = n}
– σ(H|Hn) ⊂ [η−n, η+n], with some constants 0 < η− < η+ < ∞, (Minlos
and Trishch 1994)

– Gaussian Bounds

∃C ∈ (0,∞)∀n ∈ IN ∀f ∈ Span{σX , |X| = n} ||f ||IL4(µ) ≤ Cn||f ||IL2(µ) ,

where µ is the infinite volume Gibbs measure of the model.
This method is a bit simpler than the one used in (Zegarliński 1990), but
also offers more precise estimates on the Logarithmic Sobolev coefficient c.
Example B: The Free Dynamics for Quantum Spin Systems

Let ω ≡ ⊗iωΛi
, where Λi ∩ Λj = ∅ for i 6= j,ωΛ is a state on IMΛ. Then the

Logarithmic Sobolev inequality holds with generator

Hf =
∑
i

(f − ωΛi
f) .
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8 A Problem

The problem of the particle structure of a physical theory is one of the im-
portant problems which still remain weakly understood. Some partial results,
(see references in (Glimm and Jaffe 1987)), show that in the two dimensional
models of scalar fields with polynomial interactions one has the particle struc-
ture up to a level N provided the coupling constant λ = λ(N) > 0 is suf-
ficiently small. Similar structure has been proven to exist for generators of
Glauber dynamics in classical spin systems on the lattice in an interesting
paper (Minlos 1996).
Taking into account the progress made in the last decade in understanding
the relative entropy estimates and our discussion presented in this lecture,
it would be very interesting to prove that under some reasonable general
conditions present in the physical models, one has the following implication

Relative Entropy Bound =⇒ Particle Structure
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Majewski, A.W., Olkiewicz, R., Zegarliński, B., (1998): Construction and Ergodicity
of Dissipative Dynamics for Quantum Spin Systems on a Lattice, J. Phys. A31,
2045–2056

Martinelli, F., Olivieri, E., (1994): Approach to Equilibrium of Glauber Dynamics in
the One Phase Region: I. The Attractive case/ II. The General Case. Commun.
Math. Phys. 161, 447–486 / 487–514

Minlos, R.A., (1996): Invariant subspaces of the stochastic Ising high temperature
dynamics, Markov Process and Rel. Fields 2, no. 2, 263–284

Minlos, R.A., Trishch, A.G., (1994): The complete spectral decomposition of a gen-
erator of Glauber dynamics for the one-dimensional Ising model, Uspekhi Mat.
Nauk 49, no. 6(300), 210–211

Ogielski, A.T., (1985): Dynamics of three dimensional Ising spin glasses in thermal
equilibrium, Phys. Rev. B32, No 11 7384
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Abstract. We review the main points in the development of partial *-algebras
during the last 15 years, at three different levels. (i) The algebraic structure stem-
ming from the partial multiplication; (ii) The topological partial *-algebras; (iii)
The partial *-algebras of closable operators in Hilbert spaces or partial O*-algebras,
including the representation theory of the abstract partial *-algebras.

1 Prologue

Fifteen years ago, on the occasion of Prof.  Lopuszanski’s 60th birthday,
Witold Karwowski suggested to look at the algebraic structure, if any, that
would arise if one tried to multiply unbounded operators in a Hilbert space.
Indeed there was a rich structure behind, and not only at the algebraic level
(Antoine and Karwowski 1983, Antoine and Karwowski 1985; 1986). Since
then, several researchers have joined this circle of ideas, and a full-fledged
theory has emerged. This lecture presents a quick overview of this rather un-
foreseen development, following essentially (Antoine et al. 1996) and (Antoine
et al. 1998b), where the original references may be found.

2 The Algebraic Structure

A partial *-algebra is a complex vector space A, endowed with an involution
x 7→ x∗ (that is, a bijection such that x∗∗ = x) and a partial multiplication
defined by a set Γ ⊂ A × A (a binary relation) such that:

(i) (x, y) ∈ Γ implies (y∗, x∗) ∈ Γ ;
(ii) (x, y1), (x, y2) ∈ Γ implies (x, λy1 + µy2) ∈ Γ, ∀λ, µ ∈ C;
(iii) for any (x, y) ∈ Γ , there is defined a product xy ∈ A, which is distribu-

tive w.r. to the addition and satisfies the relation (xy)∗ = y∗x∗.

Notice that the partial multiplication is not required to be associative (and
often it is not). We shall assume the partial *-algebra A contains a unit e,
i.e., e∗ = e, (e, x) ∈ Γ, ∀x ∈ A, and ex = xe = x, ∀x ∈ A. (If A has no unit,
it may always be embedded into a larger partial *-algebra with unit, in the
standard fashion (Antoine and Mathot 1987).)

A. Borowiec et al. (Eds.): Proceedings 1998, LNP 539, pp. 161−179, 2000.
 Springer-Verlag Berlin Heidelberg 2000
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Given the defining set Γ , spaces of multipliers are defined in the obvious
way:

(x, y) ∈ Γ ⇐⇒ x ∈ L(y) or x is a left multiplier of y
⇐⇒ y ∈ R(x) or y is a right multiplier of x .

For any subset N ⊂ A, we write

LN =
⋂
x∈N

L(x), RN =
⋂
x∈N

R(x) ,

and, of course, the involution exchanges the two:

(LN)∗ = RN∗, (RN)∗ = LN∗ .
Clearly all these multiplier spaces are vector subspaces of A, containing e.

The partial *-algebra is abelian if L(x) = R(x), ∀x ∈ A, and then xy =
yx, ∀x ∈ L(y). In that case, we write simply for the multiplier spaces L(x) =
R(x) ≡ M(x), LN = RN ≡ MN (N ⊂ A).

Now the crucial fact is that the couple of maps (L,R) defines a Galois
connection (Antoine and Gustafson 1981) on the complete lattice of all vector
subspaces of A (ordered by inclusion), which means that (i) both L and R
reverse order; and (ii) both LR and RL are closures, that is:

N ⊂ LRN and LRL = L , N ⊂ RLN and RLR = R .

Let us denote by FL, resp. FR, the set of all LR-closed, resp. RL-closed,
subspaces of A:

FL = {N ⊂ A : N = LRN} , FR = {N ⊂ A : N = RLN} .
both ordered by inclusion. Then, from standard results of universal algebra,
one can deduce that the set FR, ordered by inclusion, is a complete lattice
with lattice operations

M ∧ N = M ∩ N , M ∨ N = RL(M + N) .

The largest element is A, the smallest RA. A corresponding result holds for
FL, exchanging L and R. Both L : FR → FL and R : FL → FR are lattice
anti-isomorphisms: L(M ∧ N) = LM ∨LN, etc., and the involution N ↔ N∗
is a lattice isomorphism between FL and FR.

As examples of partial *-algebras, some of which we will encounter below,
we may cite partial *-algebras of polynomials, of functions or infinite matrices,
topological quasi *-algebras, CQ*-algebras, and partial *-algebras of closable
operators in a Hilbert space (partial O*-algebras).

The last case is the most important in practice. It will also be needed to set
up a representation theory, because a representation of a partial *-algebra A is
a homomorphism of A into some partial O*-algebra. Here a *-homomorphism
of a partial *-algebra A into another one B is a linear map ρ : A → B such
that (i) ρ(x*) = ρ(x)* for each x ∈ A, and (ii) whenever x ∈ L(y) in A, then
ρ(x) ∈ L(ρ(y)) in B and ρ(x)ρ(y) = ρ(xy). The map ρ is a *-isomorphism if
it is a bijection and ρ−1 : B → A is also a *-homomorphism.
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3 Topological Partial *-Algebras

3.1 Basic Definitions

Let A be a partial *-algebra with unit and assume it carries a locally convex,
Hausdorff, topology τ , which makes it into a locally convex topological vector
space A[τ ] (that is, the vector space operations are τ -continuous).

The partial *-algebraic structure of A is completely characterized by its
spaces of left, resp. right, multipliers. Thus, quite naturally, we describe the
topological structure of A[τ ] by providing all spaces of multipliers with ap-
propriate topologies. Our goal is to make the algebraic and the topological
structure coincide as much as possible.

We start with the following observation. Let M ∈ FR. To every x ∈ LM,
we associate a linear map TLx from M into A:

TLx (a) = xa, a ∈ M, x ∈ LM .

This allows to define the topology ρM on M as the weakest locally convex
topology on M such that all maps TLx , x ∈ LM, are continuous from M into
A[τ ]. This is of course a projective topology. In the same way, the topology
λN on N ∈ FL is the weakest locally convex topology on N such that all
maps TRy : a 7→ ay, y ∈ RN, are continuous from N into A[τ ].

It follows immediately from the definition that, whenever M1,M2 ∈ FR

are such that M1 ⊂ M2, then the topology ρM1 is finer than the topology
(ρM2

�M1) induced by M2 on M1. In other words, the embedding M1 → M2
is a continuous injection.

Take now A itself. It carries three topologies, τ, ρA and λA, and it is easy
to see that both ρA and λA are finer than τ . As a consequence, since τ was
assumed to be Hausdorff, all topologies ρM , M ∈ FR, and λN , N ∈ FL, are
Hausdorff.

Now, for reasons of coherence, it would be preferable that all three topolo-
gies on A, τ, ρA and λA be equivalent. Here is a handy criterion.

Lemma 3.1 – Let A[τ ] be a partial *-algebra with locally convex topology τ .
Then the projective topology ρA on A is equivalent to τ iff, for each x ∈ LA,
the map TLx : a 7→ xa is continuous from A[τ ] into itself. Similarly, the
projective topology λA on A is equivalent to τ iff, for each y ∈ RA, the map
TRy : a 7→ ay is continuous from A[τ ] into itself.

Moreover, if the involution x 7→ x∗ is τ -continuous, then it is continuous
from M[ρM ] into M∗[λ

M ∗ ] ∈ FL, for every M ∈ FR.
According to our goal, we will naturally require that all three topologies

ρA, λA and τ on a topological partial *-algebra coincide and that the in-
volution be continuous. Let us now look at multiplier spaces M ∈ FR. If
M1 ⊂ M2, we have seen that the embedding is continuous. In order to make
the structure tighter, we should also require that M1 be dense in M2[ρM2 ].
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This is true in many examples, typically the function spaces. Of course it
is enough to require that RA be dense in each M[ρM ] ∈ FR. Indeed, if
RA ⊂ M1 ⊂ M2, and RA is dense in M2 for τM2 , so is a fortiori M1. But
this condition is still too strong (and hardly verifiable in practice, because
FR is too large). To go beyond, we introduce the notion of generating fam-
ily, that is, a subset IR of FR such that (i) RA ∈ IR and A ∈ IR, and
(ii) x ∈ L(y) iff ∃M ∈ IR s.t. y ∈ M, x ∈ LM. A generating family for
FL is defined in a similar way. Clearly, if IR is a generating family for FR,
IL = LIR = {LM : M ∈ IR} is generating for FL. The usefulness of this
notion is twofold: (i) if IR is generating for FR, so is the sublattice J R of
FR generated from IR by finite lattice operations ∨ and ∧; (ii) if IR is gen-
erating, the complete lattice generated by IR is FR itself. In other words, a
generating family determines completely the partial multiplication.

We make immediate use of this last property for weakening the density
condition.

Proposition 3.2 – Let A[τ ] be a partial *-algebra with topology τ . Assume
there exists a generating family IR for FR such that RA is dense in M[ρM ]
for every M ∈ IR. Then, for any pair M1,M2 ∈ FR such that M1 ⊂ M2, M1
is dense in M2[ρM2 ].

Summarizing, we may now state our definition of topological partial *-
algebra.

Definition 3.3 – Let A[τ ] be a partial *-algebra, which is a TVS for the
locally convex topology τ . Then A[τ ] is called a topological partial *-algebra
if the following two conditions are satisfied:

(i) the involution a 7→ a* is τ -continuous;
(ii) the maps a 7→ xa and a 7→ ay are τ -continuous for all x ∈ LA and

y ∈ RA.
The topological partial *-algebra A[τ ] is said to be tight, if, in addition,

(iii) there is a generating family J R for FR such that RA is dense in
M[ρM ], ∀M ∈ J R.

This definition seems natural, in the sense that it forces the topological struc-
ture determined by τ to be consistent with the multiplier structure of A. As
an illustration, we consider two abstract examples.

(i) Topological Quasi *-Algebras. Let (A,Ao) be a topological quasi-
algebra, that is, Ao is a topological *-algebra such that the multiplication is
separately, but not jointly, continuous for the topology of Ao and the latter
is not complete, and A is the completion of Ao. Thus A is only a partial
*-algebra: the product xy is defined only if either x or y belongs to Ao.
Clearly, (A,Ao) is a (trivial) partial *-algebra with LM = RM = Ao and Ao
is dense in A. Thus every topological quasi *-algebra is a tight topological
partial *-algebra.



Partial *-Algebras: A Retrospective 165

����*

HHHHj

HHHHj

����*

6

?

∗

A[

Ao A

A]

Fig. 1. Structure of a CQ*-algebra.

(ii) CQ*-Algebras. A CQ*-algebra is a Banach partial *-algebra with a
very simple multiplication structure: the lattice of multipliers consists of four
spaces only, as shown on Figure 1. In this diagram, A[ is a C*-algebra, A is a
right Banach module over A[, with isometric involution ∗, A] = (A[)∗ (hence
it is also a C*-algebra), Ao = A[ ∩ A] and each arrow denotes a continuous
embedding with dense range. In addition, the C*-norm ‖ · ‖[ on A[ is related
to the norm ‖ · ‖ of A by the relation ‖B‖[ = supA∈A ‖AB‖, B ∈ A[. Thus
A is the completion of the C*-algebra A[ with respect to the weaker norm
‖ · ‖. The product AB of two elements of A,B ∈ A is defined only if either
A ∈ A] or B ∈ A[. Hence A[ = RA, A] = LA and Ao = RA ∩ LA. Examples
of such structures are given, for instance, by spaces of bounded operators in
a (Gel’fand) triplet of Hilbert spaces Hλ ⊂ H ⊂ Hλ̄, where Hλ̄ is the
antidual of Hλ with respect to the inner product of H.

These CQ*-algebras appear as the natural extension of C*-algebras to
the partial algebraic setting, and they may be viewed as a first step toward
a more general study of partial C*-algebras, yet to be carried out. They are
treated in detail in the lecture of C. Trapani.

3.2 Examples of Topological Partial *-Algebras

(i) Lp Spaces on a Finite Interval. Consider the chain I =
{Lp([0, 1], dx), 1 6 p 6 ∞}, with Lp ⊂ Lq, p > q. For 1 < p < ∞, every
space Lp is a reflexive Banach space with dual Lp̄ (1/p + 1/p̄ = 1). Notice
that duality in the sense of Banach spaces coincides with duality for the inner
product of L2 thanks to Hölder’s inequality.

Now, being a chain, I is of course a lattice, albeit not a complete one. The
lattice completion of I, denoted F , may be characterized explicity. Define the
two spaces :

Lp− =
⋂

16 q<p

Lq , Lp+ =
⋃

p<q6 ∞
Lq .
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Then for 1 < p 6 ∞, Lp−, with the projective topology, is a non-normable
reflexive Fréchet space, with dual Lp̄+. And for 1 6 p < ∞, Lp+, with the
inductive topology, is a nonmetrizable complete DF-space, with dual Lp̄−.
Finally the following inclusions are strict:

Lp+ ⊂ Lp ⊂ Lp− ⊂ Lq+ (1 < q < p < ∞), (3.1)

all embeddings in (3.1) are continuous and have dense range. Then the com-
plete lattice F generated by I is also a chain, obtained by replacing each
Lp (1 < p < ∞) by the corresponding triplet as in (3.1) and adding the two
spaces L∞− and L1+:

L∞ ⊂ L∞− ⊂ . . . ⊂ Lp+ ⊂ Lp ⊂ Lp− ⊂ . . . ⊂ L1+ ⊂ L1 .

Now we turn to the partial *-algebra structure. The commutative partial
multiplication on the space L1([0, 1], dx) is defined as follows:

f ∈ M(g) ⇔ ∃ q ∈ [1,∞] such that f ∈ Lq, g ∈ Lq̄, 1/q + 1/q̄ = 1, (3.2)

i.e., I is a generating family. Then it is easy to see that

MLp = Lp̄, MLp− = Lp̄+, MLp+ = Lp̄− .

As for the multiplier topologies, ρLp is the Lp norm topology, ρLp− is the
Fréchet projective topology on Lp− and ρLp+ is the DF topology on Lp+. For
both I and F , the smallest space is L∞ = ML1, and it is dense in all the other
ones. The involution f 7→ f̄ is of course L1-continuous. The multiplication
is continuous from L∞ × L1 into L1. In fact it is not only separately, but
even jointly continuous, and similarly from Lp×Lp̄ and from Lp− ×Lp̄+ into
L1, thanks to Hölder’s inequality and the fact that all topologies are either
Fréchet or DF.

In conclusion, the topological structure and the multiplier structure of
I coincide, and we have an abelian tight topological partial *-algebra. In
addition, the chain I is a partial inner product space (PIP-space) (Antoine
and Grossmann 1976, Antoine 1980), and the latter structure coincides with
the other two.

(ii) The Spaces Lp(R, dx). We turn now to the spaces Lp(R, dx) on the
whole line. The difference with the previous case is that these no longer form
a chain, no two of them being comparable. We have only

Lp ∩ Lq ⊂ Ls, ∀ s such that p < s < q .

Hence we have to take the lattice generated by I = {Lp(R, dx), 1 6 p 6 ∞},
that we call J . The extreme spaces of the lattice are, respectively:

V #
J =

⋂
16 q6 ∞

Lq , and VJ =
⋃

16 q6 ∞
Lq =

∑
16 q6 ∞

Lq .
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Here too, the lattice structure allows to give to VJ a structure of topological
partial *-algebra. The lattice operations on J are those familiar in interpo-
lation theory (Bergh and Löfström 1976):

– Lp ∧Lq = Lp ∩Lq is a Banach space, with the projective norm ‖f‖p∧q =
‖f‖p + ‖f‖q.

– Lp ∨Lq = Lp +Lq is a Banach space, with the inductive norm ‖f‖p∨q =
inf (‖g‖p + ‖h‖q) , f = g + h, g ∈ Lp, h ∈ Lq.

– For 1 < p, q < ∞, both spaces Lp ∧ Lq and Lp ∨ Lq are reflexive and
(Lp ∧ Lq)′ = Lp̄ ∨ Lq̄.

At this stage, it is convenient to introduce a unified notation:

L(p,q) =
{
Lp ∧ Lq, if p > q ,
Lp ∨ Lq, if p 6 q .

Thus, for 1 < p, q < ∞, each space L(p,q) is a reflexive Banach space, with
dual L(p̄,q̄). The modifications when p, q equal 1 or ∞ are obvious. In this
notation, the set J of all spaces L(p,q) is partially ordered with the following
rule:

L(p,q) ⊂ L(p′,q′) ⇐⇒ (p, q) 6 (p′, q′) ⇐⇒ p > p′ and q 6 q′. (3.3)

Then it is easy to show that the family J , generated by I = {Lp}, is an
involutive lattice with respect to the partial order (3.3), with operations:

(p, q) ∧ (p′, q′) = (p ∨ p′, q ∧ q′) ,
(p, q) ∨ (p′, q′) = (p ∧ p′, q ∨ q′) ,

(p, q) = (p̄, q̄) ,

where, as usual, p ∧ p′ = min{p, p′}, p ∨ p′ = max{p, p′}. Notice that the
lattice J is already obtained at the first generation: for example, L(r,s) ∧
L(a,b) = L(r∨a,s∧b). Furthermore, in the lattice J , inclusion means continuous
embedding with dense range. Thus, with the same partial multiplication (3.2),
we obtain another tight topological partial *-algebra.

Two remarks are in order. First, here too, the lattice completion F of J
and the multiplier spaces may be characterized explicitly. Second, another
structure of topological partial *-algebra may be given to the family J of
spaces, simply replacing multiplication by convolution, with similar results.

We note finally that the only difference between the two cases {Lp([0, 1])}
and {Lp(R)} lies in the type of order obtained: a chain I (total order) or a
partially ordered lattice J .
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(iii) Amalgam Spaces. The lesson of the previous example is that an in-
volutive lattice of (preferably reflexive) Banach spaces turns quite naturally
into a (tight) topological partial *-algebra if it possesses a partial multiplica-
tion that satisfies a (generalized) Hölder inequality. A whole class of examples
is given by the so-called amalgam spaces first introduced by N. Wiener (see
(Fournier and Stewart 1985) for a review). The simplest ones are the spaces
(Lp, `q), consisting of functions on R which are locally in Lp and have `q be-
havior at infinity, in the sense that the Lp norms over the intervals (n, n+ 1)
form an `q sequence. For 1 < p, q < ∞, the corresponding norm

‖f‖p,q =

{ ∞∑
n=−∞

[∫ n+1

n

|f(x)|pdx
]q/p}1/q

,

turns the space (Lp, `q) into a reflexive Banach space. The same is true for the
obvious extensions to p and/or q equal to 1 or ∞. Notice that (Lp, `p) = Lp.
Once again, the set of all spaces (Lp, `q) may be partially ordered by inclusion,
and it turns out to be a complete lattice. Thus one gets another topological
partial *-algebra.

(iv) Topological Partial *-Algebras of Operators. A first example is
the partial *-algebra of operators on a scale or a lattice of Hilbert spaces, with
the usual operator multiplication (Antoine 1980). Familiar cases of such scales
are the Hilbert scale built on the powers of a positive self-adjoint operator
H > 1: Hn = D(Hn), with the graph norm ‖f‖n = ‖Hnf‖, for n ∈ N, and
H−n = H×

n , or the scale of Sobolev spaces W 2
s (R), s ∈ R, where f ∈ W 2

s (R)
if its Fourier transform f̂ satisfies the condition (1 + |.|2)s/2 f̂ ∈ L2(R).

A second example are partial *-algebras of closable operators in a Hilbert
space. From now on, we will mostly concentrate on this class. We refer to
(Antoine et al. 1996) for further details and the original references.

4 Partial *-Algebras of Closable Operators

Let H be a complex Hilbert space and D a dense subspace of H. We denote
by L†(D,H) the set of all (closable) linear operators X such that D(X) =
D, D(X*) ⊇ D. The set L†(D,H) is a partial *-algebra with respect to
the following operations: the usual sum X1 + X2, the scalar multiplication
λX, the involution X 7→ X† = X*�D and the (weak) partial multiplication
X1 �X2 = X1

†*X2, defined whenever X2 is a weak right multiplier of X1
(equivalently, X1 is a weak left multiplier of X2), that is, iff X2D ⊂ D(X1

†*)
and X1*D ⊂ D(X2*) (we write X2 ∈ Rw(X1) or X1 ∈ Lw(X2)). When we
regard L†(D,H) as a partial *-algebra with those operations, we denote it by
L†

w(D,H).
A partial O*-algebra on D is a *-subalgebra M of L†

w(D,H), that is, M
is a subspace of L†

w(D,H), containing the identity and such that X† ∈ M
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whenever X ∈ M and X1 �X2 ∈ M for any X1, X2 ∈ M such that X2 ∈
Rw(X1). Thus L†

w(D,H) itself is the largest partial O*-algebra on the domain
D.

On the space L†(D,H) we will consider the strong* topology τs∗ , which is
generated by the family of seminorms : pξ*(X) = ‖Xξ‖ + ‖X†ξ‖, ξ ∈ D. The
space L†(D,H) is complete for τs∗ . For N ⊂ L†(D,H), we denote by [N]s

∗

the τs∗ -closure of N.
We also need the weak topology τw on L†(D,H), which is generated by

the family of seminorms pf,g(X) = |〈f |Xg〉|, f, g ∈ D, and the quasi-uniform
topology, τ∗, defined by the set of seminorms pN (X) = supf∈N (‖Xf‖ +
‖X†f‖), where N is a bounded subset of D, equipped with the projective
topology determined by L†(D,H).

If we restrict ourselves to those operators in L†(D,H) that, together
with their adjoint, leave the domain D invariant, we obtain a *-algebra,
namely L†(D) = {A ∈ L†(D,H);AD ⊂ D and A*D ⊂ D}. Then an
O*-algebra is defined as a *-subalgebra of L†(D); thus L†(D) is the maxi-
mal O*-algebra contained in L†(D,H) and it is τs∗ -dense in L†(D,H), i.e.,
L†(D,H) = [L†(D)]s

∗
. Clearly an O*-algebra is a particular case of a par-

tial O*-algebra (see (Schmüdgen 1990) for a comprehensive study of partial
O*-algebras).

Given a partial O*-algebra M, we define internal multipliers as R(X) =
Rw(X) ∩M and L(X) = Lw(X) ∩M. Then the universal right multipliers of
M are the elements of the set:

RM = Rw(M) ∩ M = {Y ∈ M; X �Y is well-defined, ∀X ∈ M} .

A †-invariant subset N of L†(D,H) is called fully closed if D = D̂(N) ≡⋂
X∈N

D(X). If N is not fully closed, its full closure is the smallest fully closed
set that contains it, that is, N̂ = {ι̂(X) ≡ X�D̂(N); X ∈ N}. Let M be a
partial O*-algebra. If it is not fully closed, it may be embedded into its full
closure M̂ = ι̂(M), which is a fully closed partial O*-algebra on the domain
D̂(M), isomorphic to M. Thus one may always restrict the analysis to fully
closed partial O*-algebras without loss of generality. On the other hand, a
partial O*-algebra M is called self-adjoint if D = D*(M) ≡ ⋂

X∈M
D(X*),

and this is a strong restriction.
Given a †-invariant subset N of L†(D,H), we define, as usual, its weak

unbounded commutant:

N′
σ = {Y ∈ L†(D,H); (Xξ|Y η) = (Y †ξ|X†η)

for each ξ, η ∈ D and X ∈ N} (4.1)

and its weak bounded commutant:
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N ′
w = {C ∈ B(H); (CXξ|η) = (Cξ|X†η)

for each ξ, η ∈ D and X ∈ N}. (4.2)

The restriction to D of N ′
w is the bounded part of N′

σ. Both N′
σ and N ′

w are
weakly closed, †-invariant subspaces, but not necessarily algebras.

As for bicommutant, we consider the weak unbounded one, namely N′′
wσ =

(N ′
w)′
σ. Its bounded part is the (restriction to D of) (N ′

w)′, where B′ denotes
the usual bounded commutant of a subset B ⊂ B(H). We note the relation
(N ′′

wσ)′′
wσ = N ′′

wσ and remark that N ′′
wσ is fully closed whenever N is, because

of the obvious inclusions D ⊂ D̂(N ′′
wσ) ⊂ D̂(N). The crucial fact is that, for

any †-invariant subset N of L†(D,H), N ′
w is a von Neumann algebra if, and

only if, N ′′
wσ =

[
(N ′

w)′ �D]s∗
.

A partial O*-algebra M on D is said to be a partial GW*-algebra if it is
fully closed and satisfies the two conditions M ′

wD = D and M′′
wσ = M (no-

tice the analogy with the usual condition M′′ = M defining a von Neumann
algebra). In that case, M ′

w is a von Neumann algebra, the (closure of the)
bounded part of M is also a von Neumann algebra, namely Mo ≡ (M ′

w)′,

and M =
[
(M ′

w)′ �D]s∗
. The good properties of partial GW*-algebras stem

precisely from the fact that they contain a τs∗ -dense subset of bounded op-
erators.

The easiest way of constructing a partial GW*-algebra is to take a bi-
commutant. Indeed, if N is a fully closed †-invariant subset of L†(D,H), then
N′′

wσ is a partial GW*-algebra on D iff N ′
wD = D. On the other hand, if M is

a partial O*-algebra on D (not necessarily fully closed), such that M ′
wD = D

and M ′′
wσ = M, then M̂ is a partial GW*-algebra on D̂(M).

As a last point, we may ask the question whether a partial O*-algebra
is a (tight) topological partial *-algebra. The answer, of course, depends on
which topology τ one chooses, and many different ones are available, the
strong* τs∗ , the quasi-uniform τ∗, the weak τw, etc. We will not enter into
the technical details, for lack of space, but only indicate a few general results.
First, if L†

w(D,H) is self-adjoint, then it is a topological partial *-algebra for
these three topologies, and it is complete for τs∗ and τ∗. More generally, any
self-adjoint partial O*-algebra M is a topological partial *-algebra for the
weak topology τw, and the same is true for τ∗ if RM contains only bounded
operators. In all cases, tightness is open.

5 Representation Theory

5.1 Generalities

A *-representation of a partial *-algebra A is a *-homomorphism of A into
L†

w(D,H), for some pair D ⊂ H, that is, a linear map π : A → L†
w(D,H)
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such that : (i) π(x*) = π(x)† for every x ∈ A; (ii) x ∈ L(y) in A implies
π(x) ∈ Lw(π(y)) and π(x) �π(y) = π(xy).

Let π be a *-representation of a partial *-algebra A. It is called fully
closed if π(A) is fully closed. In any case, a *-representation π can always be
extended to a fully closed *-representation π̂(A), namely π̂(x) = π̂(x), x ∈
A, on the domain D(π̂) = D̂(π(A)). We also need a notion of cyclic vectors
adapted to the representation context. A vector ξ is called strongly p̂-cyclic
for π if the set {aξ : a ∈ RA, π(a)ξ ∈ D(π̂)} is a core for every π(x), x ∈ A.
(Notice that this is one possible definition among several, see (Antoine et al.
1996) for alternative ones).

Next we define the weak commutants of a *-representation of a partial
*-algebra. Besides the usual weak bounded commutant π(A)′

w of π(A), as
defined in (4.2), we introduce a new one, called quasi-weak, which takes ex-
plicitly into account the possible lack of associativity :

Cqw(π) = {C ∈ π(A)′
w; (Cπ(x1*)ξ|π(x2)η) = (Cξ|π(x1x2)η) ,

for all x1, x2 ∈ A such that x1 ∈ L(x2) and all ξ, η ∈ D(π)} . (5.1)

Cqw(π) is a weakly closed *-invariant subspace of B(H) and, moreover,
Cqw(π̂) = Cqw(π).

Accordingly, a *-representation π of A in L†
w(D,H) is said to be irreducible

iff its bounded quasi-weak commutant Cqw(π) is trivial, Cqw(π) = {λI, λ ∈
C}. This definition leads to the expected correspondence between pure states
and irreducible GNS representations (see below). The same result does not
hold, in general, if we replace the quasi-weak commutant Cqw(π) by the weak
bounded commutant π(A)′

w, and a fortiori by the weak unbounded one π(A)′
σ.

5.2 The GNS Construction

As always, the crucial question is how to build concrete representations.
For *-algebras, the Gel’fand-Naimark-Segal (GNS) construction is usually
the answer (Bratteli and Robinson 1979). In order to extend it to partial
*-algebras, we must first have an appropriate notion of state. In the case of
a *-algebra A, a state is a normalized positive linear form on A. If A is only
a partial *-algebra, the positivity condition alone already requires the use of
sesquilinear forms. Then, for a *-algebra A, the GNS construction works only
if the starting sesquilinear form φ on A × A is invariant, in the sense that
φ(x*y, z) = φ(y, xz), for all x, y, z ∈ A. Clearly this definition is inapplicable
for a partial *-algebra, since the products x*y and xz need not exist. An
obvious solution is to impose this relation for y, z ∈ RA only, and this gives
us a good hint.

Let A be a partial *-algebra. A sesquilinear form ϕ on A × A is called
positive if ϕ(x, x) ≥ 0,∀x ∈ A. When A has a unit e, a positive sesquilinear
form ϕ on A × A is called a state if ϕ(e, e) = 1. For each positive sesquilinear
form ϕ on A × A, we have:
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ϕ(x, y) = ϕ(y, x)), ∀x, y ∈ A , (5.2)
|ϕ(x, y)|2 ≤ ϕ(x, x)ϕ(y, y), ∀x, y ∈ A , (5.3)

and hence

Nϕ ≡ {x ∈ A;ϕ(x, x) = 0} = {x ∈ A;ϕ(x, y) = 0 for all y ∈ A }, (5.4)

and so Nϕ is a subspace of A. For each x ∈ A we denote by λϕ(x) the coset
of A/Nϕ which contains x, and define an inner product (.|.) on λϕ(A) by

(λϕ(x)|λϕ(y)) = ϕ(x, y), x, y ∈ A. (5.5)

We denote by Hϕ be the Hilbert space obtained by the completion of the pre-
Hilbert space λϕ(A). We are now ready to introduce our notion of invariance.

Definition 5.1 – A positive sesquilinear form ϕ on A × A is said to be
B-invariant if there exists a subspace B of RA such that :

(1) λϕ(B) is dense in Hϕ;
(2) ϕ(xb1, b2) = ϕ(b1, x*b2),∀x ∈ A,∀ b1, b2 ∈ B;
(3) ϕ(x1*b1, x2b2) = ϕ(b1, (x1x2)b2),∀x1 ∈ L(x2),∀ b1, b2 ∈ B;
(4) if A has a unit e, then e ∈ B.

Condition (3) takes explicitly into account the possible lack of associativity
of A. Note also that conditions (1)-(4) are not imposed to the whole set RA,
but only to the subspace B (with dense image λϕ(B)) in Hϕ. The reason is
that RA may be too large or difficult to characterize completely, whereas it
is often easy to find a suitable subspace B of RA.

Given ϕ, we denote by Fϕ the family of subspaces B satisfying the con-
ditions (1)-(4). Then, for any B ∈ Fϕ, there exists a maximal subspace in
Fϕ containing B; we denote it by [B].

The next theorem establishes the GNS construction, including the depen-
dence on the choice of the subspace B ∈ Fϕ.

Theorem 5.2 – Let ϕ be a B-invariant positive sesquilinear form on A×A.
Then:

(1) Define

πB

ϕ (x)λϕ(b) = λϕ(xb), x ∈ A, b ∈ B. (5.6)

Then πB
ϕ is a *-representation of A into L†

w(λϕ(B),Hϕ). If A has a unit
e, the vector Ωϕ = λϕ(e) is strongly p̂-cyclic for πB

ϕ .

(2) π̂B
ϕ ⊂ π̂

[B]
ϕ for each B ∈ Fϕ and π̂B

ϕ 6= π̂
[B]
ϕ in general.

(3) Let B1,B2 ∈ Fϕ. Then [B1] 6= [B2] if and only if π̂[B1]
ϕ 6= π̂

[B2]
ϕ .
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We call the triple (πB
ϕ , λϕ,Hϕ) the GNS construction for ϕ, based on B.

We assume now that A has a unit e, and consider a B-invariant state ϕ
on A × A. As usual, we say that the state ϕ is pure if it cannot be written as
a convex combination of two B-invariant states ϕ1, ϕ2:

ϕ 6= λϕ1 + (1 − λ)ϕ2, 0 < λ < 1. (5.7)

The interest of this concept is that the equivalence between the purity of a
state ϕ and the irreducibility of its GNS representation πB

ϕ extends to partial
*-algebras, essentially with the same proof:

Proposition 5.3 – Let A be a partial *-algebra with unit and ϕ a B-
invariant state on A × A. Then the GNS representation πB

ϕ is irreducible,
in the sense that Cqw(πB

ϕ ) = CI, if and only if ϕ is pure.

Notice that, if we define the irreducibility of πB
ϕ by the condition πB

ϕ (A)′
w =

CI, then the proof breaks down, because the positive sesquilinear forms ϕ1, ϕ2
on A×A into which ϕ would decompose need not be B-invariant (Condition
(3) of Definition 5.1 may fail).

In the usual case of *-algebras, weights (i.e., unbounded functionals) are
the most general objects that allow a GNS construction. It turns out that
the notion of weight can be extended to partial *-algebras, in several ways
(Antoine et al. 1995, Antoine et al. 1996).

Weights on a *-algebra A are usually defined as functions from the positive
cone of A, i.e., A+ = {x ∈ A | x = y∗y for some y ∈ A}, into [0,∞],
which preserve addition and multiplication by non-negative real numbers
(Bratteli and Robinson 1979, Stratila and Zsidó 1979). Notice that weights
are allowed to be infinite on some elements. In a partial *-algebra, however, we
cannot consider positive elements, since x∗x need not be defined for arbitrary
x! Their role will be played by the diagonal elements of A × A , that is,
{(x, y) ∈ A × A | x = y}, and a weight will be nothing else than a non-
negative function of them, which can then be extended to a suitable larger
subset of A×A under some extra conditions. In addition, one has to introduce
a notion of invariance with respect to a subspace B of RA. This being done,
it is possible to formulate a variant of the GNS theorem.

Another extension yet is obtained by replacing a weight on the partial
*-algebra A by a quasi-weight, meaning a weight (in the usual sense) which
is defined and finite only on the positive cone generated by some left-ideal of
A. In fact this concept of quasi-weight has been developed so far mostly for
O*-algebras using the notion of standard generalized vector. In that case it is
possible to build (by an appropriate Tomita-Takesaki construction (Bratteli
and Robinson 1979)) quasi-weights satisfying a KMS-condition. If the O*-
algebra represents the observable algebra of some physical system, then the
KMS quasi-weights are good candidates for representing equilibrium states of
the system. These results may in turn be generalized to partial O*-algebras,
and in particular to partial GW*-algebras, with a suitable extension of stan-
dard generalized vectors (Antoine et al. 1997). On the other hand, the notion
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of invariant positive sesquilinear form developed above may also be extended
further, leading to what seems the natural definition of sesquilinear weight on
a partial *-algebra, appropriately called a biweight. In a nutshell, a biweight
is a positive sesquilinear form which is defined only on a dense domain, and
for such objects, the GNS construction goes through (Antoine et al. 1998a).

6 *-Automorphisms and Derivations
of Partial O*-Algebras

6.1 *-Automorphisms

In the algebraic formulation of quantum theories, the observables of a physi-
cal system are represented by hermitian elements of a certain *-algebra A and
states by positive linear functionals on A. Then a symmetry of the system is
realized by a *-automorphism σ of A, and a one parameter symmetry group by
a *-automorphism group σt (t ∈ R) of A. Given a state, the GNS construction
yields a representation π of A in a Hilbert space Hπ and a *-automorphism
σπ (resp.*-automorphism group σπt ) of π(A). Then the question is whether σπ

is spatial, that is, whether there exists a unitary operator U in Hπ such that
σπ(A) = U*AU , for every A ∈ A. Even more interesting is the case where
U itself can be taken in A, i.e., the automorphism is inner. For a one param-
eter group σt, spatiality means that the automorphism group σπt is unitarily
implemented, i.e., σπt (A) = e−iHtAeiHt, where H is a self-adjoint operator.
In particular, if the automorphism is inner, this means that H ∈ A′′ (or H
is affiliated to A′′), in other words that the operator H is an observable. For
instance, if σt represents the time evolution of the system, then ‘σπt is inner’
means that the Hamiltonian exists as an observable in the (GNS) representa-
tion at hand (Borchers 1966, dell’Antonio 1966, Kadison and Ringrose 1967).
Similar questions are commonly asked about other automorphisms, such as
Bogoliubov transformations for the CCR (Bratteli and Robinson 1979).

At the infinitesimal level, the generator of a given *-automorphism group
σπt of symmetries is a derivation, that is, a map δπ from A into some class
of operators on Hπ, which satisfies a Leibniz rule: δπ(AB) = Aδπ(B) +
δπ(A)B, A,B ∈ A. If σπt is spatial, with generator H, then the corresponding
derivation δπ satisfies the relation δπ(A) = i[H,A], ∈ A, on appropriate
domains, and naturally the derivation δπ is then also said to be spatial.

Now, if one decides to describe the set of observables of a given physical
system by some partial *-algebra, one must extend to that context the notions
of *-automorphism and of derivation, and of spatiality as well.

Let M be a partial O*-algebra on D, obtained, for instance, from the
partial *-algebra of observables by a GNS construction. According to the
general definition, a *-automorphism of M is a linear bijection σ : M → M
such that (i) σ(X†) = σ(X)†,∀X ∈ M; (ii) σ(Y ) ∈ Rw(σ(X)) iff Y ∈ Rw(X)
and then σ(X �Y ) = σ(X) � σ(Y ) and (iii) the same relations hold for σ−1.
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It follows that σ(M) = M and σ(RM) = RM. The *-automorphism σ is
spatial if there exists a unitary operator U ∈ H such that Uo ≡ U�D ∈ Rw(M)
and σ(X) = Uo*(X �Uo),∀X ∈ M. It is inner if in addition Uo ∈ M, i.e.,
Uo ∈ RM. Notice that, if M is self-adjoint and σ is spatial, then Uo ∈ L†(D)
and σ(X) = Uo*XUo,∀X ∈ M.

As expected, one gets stronger results if one assumes that M is a
partial GW*-algebra, because then many known results about the spa-
tiality of *-automorphisms of von Neumann algebras will be lifted from
the bounded part of M to M itself (Antoine et al. 1994). Thus we con-
sider a partial GW*-algebra M on the domain D. Then its bounded part
Mb = {X ∈ M;X ∈ B(H)} is the restriction to D of a von Neumann alge-
bra Mb = {X;X ∈ Mb}, with commutant Mb

′
= M′

w. The key observation
is that every *-automorphism σ of M induces a *-automorphism σb of the
von Neumann algebra Mb, by the simple relation σb(A) = σ(A), A ∈ Mb.
Accordingly, one says that a *-automorphism σ of M is weakly spatial (resp.
weakly inner) if the corresponding *-automorphism σb of the von Neumann
algebra Mb is spatial (resp. inner).

Now it is clear that a weakly spatial *-automorphism will be spatial as
soon as there is enough continuity for lifting it from Mb to M. This is indeed
the case, and of course the relevant topology is the strong* one.

Theorem 6.1 — Let M be a partial GW*-algebra on D and σ a *-automor-
phism of M. If σ is weakly spatial (resp. weakly inner) and τs∗-continuous,
then σ is spatial (resp. inner).

If M is self-adjoint, the two conditions are in fact equivalent:

Corollary 6.2 — Let M be a self-adjoint partial GW*-algebra on D and σ
a *-automorphism of M. Then σ is spatial if and only if it is weakly spatial
and τs∗-continuous.

At this point, one may systematically list all the known results about spatial
*-automorphisms of von Neumann algebras, as given in standard treatises
such as (Stratila and Zsidó 1979 or (Dixmier 1957, 1969), and try to lift
them to partial GW*-algebras. The following one is very simple.

Corollary 6.3 — Let M be a partial GW*-algebra with a cyclic and sepa-
rating vector. Then every τs∗-continuous *-automorphism of M is spatial.

6.2 Automorphism Groups and *-Derivations

From the point of view of physical applications, a crucial role is played by
automorphism groups: they describe either the time evolution of the system
or physical symmetries. This is the reason why it is worth considering them
in the context of partial O*-algebras.

Let M be a partial O*-algebra. A one-parameter *-automorphism group
of M is a map R 3 t 7→ αt ∈ Aut∗(M) such that (i) α0(X) = X, ∀X ∈ M;
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and (ii) αs+t(X) = αs(αt(X)), ∀X ∈ M. If τ is any topology on L†
w(D,H),

then the automorphism group αt is called τ -continuous if R 3 t 7→ αt(X) is
continuous from R into L†

w(D,H)[τ ], ∀X ∈ M.
If t 7→ αt(X) is τ -continuous, we define its infinitesimal generator as

δα(X) = τ − lim
t→0

t−1(αt(X) −X) .

on the domain Dτ (δα) which consists of all X ∈ M for which the limit
τ − limt→0 t

−1(αt(X) −X) exists in L†
w(D,H). If the involution X 7→ X† is

τ -continuous, then X ∈ Dτ (δα) implies X† ∈ Dτ (δα) and δα(X†) = δα(X)†.
In analogy with the C*-situation, one would expect that Dτ (δα) is a

partial O*-algebra and that δα is a *-derivation of it, but for this we need a
suitable form of the Leibniz rule. Motivated by the properties of infinitesimal
generators, we define a weak *-derivation of M as a linear map δ : M →
L†

w(D,H) satisfying the following conditions:

(i) δ(X)† = δ(X†), ∀X ∈ M ,

(ii) (δ(X �Y )ξ| η) = (Y ξ| δ(X†) η) + (δ(Y )ξ|X†η) ,
∀X,Y ∈ M such that X ∈ Lw(Y ) and ∀ ξ, η ∈ D .

The weak *-derivation δ of M is called spatial, resp. inner, if there exists an
element Ho = H†

o ∈ Rw(M), resp. H ∈ RM, such that

(i) Ho is the restriction to D of an operator H ∈ L(MD,H) that satisfies the
relation (HX†ξ|Y η) = (X†ξ|HY η), for all X ∈ Rw(M) and ξ, η ∈ D.

(ii) δ(X) = δHo
(X) ≡ i(H �X −X �H), X ∈ M.

Clearly, the properties of these derivations will depend both on the continuity
properties of the automorphism group, and on the type of partial O*-algebra
considered. As expected, partial GW*-algebras will again behave better. In-
deed we have:

Proposition 6.4 — Let M be a partial GW*-algebra. Let t 7→ αt be a
strong*-continuous one parameter *-automorphism group of M and δα the
corresponding infinitesimal generator. Then D(δα) is a partial O*-algebra
and δα is a weak *-derivation of D(δα) satisfying δα (D(δα)) ⊂ M.

We consider first derivations which are generators of the automorphism
group αHt generated by a self-adjoint operator H in H, that is,

αHt (X) = eitHXe−itH , X ∈  L, .

Proposition 6.5 – Let M be a partial GW*-algebra and H a self-adjoint
operator in H. Assume that the corresponding unitary group {eitH , t ∈ R}
satisfies the following conditions:

(i) eitHD = D, ∀ t ∈ R;
(ii) eitHMe−itH = M, ∀ t ∈ R;
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(iii) t 7→ eitHξ is tM -continuous, ∀ ξ ∈ D.
Then

(1) ∀X ∈ M, αHt (X) is a strong*-continuous one parameter
*-automorphism group of M.

(2) Dw(δα) is a partial O*-algebra and δα is a weak *-derivation of
Dw(δα).

(3) If either Dw(δα)D ⊂ D(H), or D ⊂ D(H), then δα is spatial, that is,
δα(X) = δHo(X) ≡ i(H �X −X �H), X ∈ M, where Ho ≡ H�D.

Let now δ be an arbitrary weak *-derivation of M such that δ(M) ⊂ M.
Then δb ≡ δ�Mb is a *-derivation of Mb into M, which provides a simple tool
for the study of δ.

Theorem 6.6 – Let M be a partial GW*-algebra and δ a weak *-derivation
of M such that δ(M) ⊂ M and δ(Mb) ⊂ Mb. If δ is weakly continuous, then
there exists H = H† ∈ Mb ∩RM such that

δ(X)ξ = i(H �X −X �H)ξ, ∀X ∈ M,∀ ξ ∈ D .

The converse is also true if M is self-adjoint.

7 Epilogue

The conclusion of this rapid survey is that the theory of partial *-algebras
has reached after fifteen years a reasonable stage of maturity. Many nontriv-
ial examples have been studied, both abelian and nonabelian, although no
classification has been made so far. The representation theory is well under
control. In particular, many standard results extend to partial *-algebras,
such as the GNS construction or various structure properties. Two offshoots,
in particular, have undergone a rapid development, namely CQ*-algebras and
partial O*-algebras. The latter, and among them partial GW*-algebras, are
a far reaching generalization of *-algebras of operators, both bounded and
unbounded. Their structure is quite complex, yet a substantial body of infor-
mation is available. Besides the representation theory associated to various
notions of generalized vectors and weights, progress has been achieved also
in the study of *-automorphisms and *-derivations, in particular the spatial
theory.

These last results point toward the most promising direction of research,
namely the study of dynamical systems based on partial O*-algebras. In view
of the results obtained so far, it is reasonable to expect progress for the case
of partial GW*-algebras, since then the powerful theory of von Neumann
algebras is available. In particular, the modular theory of Tomita–Takesaki
extends, with suitable modifications, to partial GW*-algebras.

What about physical applications? So far spin systems with long range
correlations are essentially the only systems where partial *-algebras have had
a impact. However, the mathematical tool is there and may be developed for
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its own sake. Future research will decide which physical systems, if any, are
complex enough to require the use of this approach.

References

Antoine, J-P., Grossmann, A., (1976): Partial inner product spaces. I. General prop-
erties. II. Operators, J. Funct. Anal. 23, 369–378, 379–391

Antoine, J-P., (1980): Partial inner product spaces. III. Compatibility relations
revisited. IV. Topological considerations, J. Math. Phys. 21, 268–279, 2067–
2079

Antoine, J-P., Gustafson, K., (1981): Partial inner product spaces and semi–inner
product spaces, Adv. in Math. 41, 281–300

Antoine, J-P., Karwowski, W., (1983): Partial *–algebras of closed operators, in
Quantum Theory of Particles and Fields, pp. 13–30; B. Jancewicz and J. Lukier-
ski (eds.), World Scientific, Singapore

Antoine, J-P., Karwowski, W., (1985): Partial *–algebras of closed linear operators
in Hilbert space, Publ. RIMS, Kyoto Univ. 21, 205–236; Add./Err. ibid. 22,
(1986) 507–511

Antoine, J-P., Mathot, F., (1987): Partial *-algebras of closed operators and their
commutants. I. General structure, Ann. Inst. H. Poincaré 46, 299–324
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Banach Partial *-Algebras
and Quantum Models

C. Trapani

Dipartimento di Scienze Fisiche ed Astronomiche
Università di Palermo
I-90123 Palermo (Italy)

1 Introduction

C∗-algebras are, as known, the basic mathematical ingredient of the Haag-
Kastler (Haag and Kastler 1964) algebraic approach to quantum systems,
with infinitely many degrees of freedom. The usual procedure starts, in fact,
with associating to each bounded region V of the configuration space of the
system the C∗-algebra AV of local observables in V . The uniform completion
A of the algebra generated by the AV ’s is then considered as the C∗-algebra
of observables of the system.

Several physical models, however, do not fit into the Haag-Kastler setup.
In many quantum statistical systems, in fact, the thermodynamical limit

of some local observables, for instance the local Heisenberg dynamics, does
not exist in the uniform topology and thus it is not an element of the ob-
servables algebra as defined before. This is the case, for instance, of the BCS
model (Thirring and Wehrl 1967), and, in general, of any mean field model.

Also, in the Wightman formulation of quantum field theory, point-like
fields are not, in general, elements of any C∗-algebra: the field A(x) at a
point x ∈ R

4 is, in fact, an (unbounded) sesquilinear form on the domain
D where all smeared fields A(f), f ∈ S(R4) are defined. If A(x) is, for
each fixed x ∈ R

4, a continuous map from D into its dual D′ (Epifanio and
Trapani 1987), then it is the limit of a sequence of observables localized in
a shrinking sequence of space-time regions and, therefore, it belongs to a
certain completion of the C∗-algebra A0 of local observables (Ascoli et al.
1970), (Fredenhagen and Hertel 1981).

In spite of these physical models, the elegant Haag-Kastler construction
can be entirely preserved if the assumption that the observable algebra A0 is
a C∗-algebra is conveniently weakened.

Two possibilities are then at hand. The first one occurs if there exists on
A0 a weaker norm such that the completion of A0 with respect to this norm
contains all ’objects’ of physical interest. If this possibility fails, it could still
happen that these ’objects’ can be recovered by taking the completion of A0
with respect to the locally convex (non-normable) topology generated by a
suitable family of seminorms.

A. Borowiec et al. (Eds.): Proceedings 1998, LNP 539, pp. 180−191, 2000.
 Springer-Verlag Berlin Heidelberg 2000
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Now, the completion of a locally convex algebra, where the multiplication
is not jointly continuous, is the most typical instance of a structure with
a partially defined multiplication: the multiplication in the completion is
defined for pairs of elements one of which lies in the original algebra.

For this reason, in both of the cases discussed above one has to deal
with (topological) partial *-algebras, introduced originally by Antoine and
Karwowski (Antoine and Karwowski 1985) and studied by several authors
(Mathot, Inoue, Ekhaguere, Bagarello and the author, see (Antoine et al.
1996, Antoine et al. to appear) for complete references). In view of applica-
tions, more than a general partial *-algebra it is sometimes useful to consider
some relevant subclass of them such as quasi *-algebras (introduced by Lass-
ner (Lassner 1981), (Lassner 1984)) or CQ*-algebras, that will be discussed
below.

The class of CQ∗-algebras and their possible applications in the study of
some quantum model are the main subject of this paper. The study of CQ∗-
algebras has been carried out in a series of papers by F. Bagarello and the
author (Bagarello and Trapani 1994, Bagarello and Trapani 1996b, Bagarello
and Trapani 1996c)

CQ∗-algebras are Banach partial *-algebras with a particularly simple
multiplication structure: the lattice of multipliers consists of only four spaces.
But they enjoy a lot of interesting topological properties that make of them a
possible extension of the notion of C∗-algebra in the partial algebraic frame-
work.

2 CQ*-Algebras

To begin with, let us give the basic aspects of the theory and discuss some
examples.

Definition 2.1 Let A be a right Banach module over the C*-algebra A[,
with isometric involution ∗ and such that A[ ⊂ A. Set A] = (A[)∗. We say
that {A, ∗,A[, [} is a CQ*-algebra if

(i) A[ is dense in A with respect to its norm ‖ ‖
(ii) Ao := A[ ∩ A] is dense in A[ with respect to its norm ‖ ‖[

(iii) ‖B‖[ = supA∈A ‖AB‖, B ∈ A[

Since ∗ is isometric, the space A] is itself, as it is easily seen a C*-algebra
with respect to the involution X] := (X∗)[ and norm ‖ X ‖]:=‖ X∗ ‖[.
A CQ*-algebra is called proper if A] = A[.

As is clear the algebraic structure of a CQ*-algebra is just that of a partial
*-algebra: indeed the multiplication of two elements A,B ∈ A is defined if
either A ∈ A] or B ∈ A[. So that the lattice of multipliers contains only A,
A[ = RA, A] = LA and A0 = RA ∩ LA.
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From the topological point of view A is a Banach partial*-algebra with
the additional assumption that A[ (and therefore also A]) is a C*-algebra
dense in it.

Examples of CQ*-algebras can be easily built up taking into account the
following proposition proved in (Bagarello and Trapani 1994, Bagarello et al.
unpublished):

Proposition 2.2 Let A[ be a C∗-algebra, with norm ‖ ‖ [ and involution [;
let ‖ ‖ be another norm on A, weaker than ‖ ‖[ and such that

(i) ‖ AB ‖≤‖ A ‖‖ B ‖[ ∀A,B ∈ A[

(ii) there exists a ‖ ‖[-dense subalgebra A0 of A[ where an involution ∗ is
defined with the property

‖ A∗ ‖=‖ A ‖ , ∀A ∈ A0 ,

then if A denotes the ‖ ‖-completion of A[, (A, ∗,A[, [) is a CQ∗-algebra.

If A[ = A0 and [ = ∗, then the CQ*-algebra we obtain is proper (Bagarello
and Trapani 1994).

Thus, for instance, if I is a compact interval on the real line, the usual
space Lp(I, dx) (dx the usual Lebesgue measure on I) can be viewed as a
proper CQ*-algebra over the C*-algebra C(I) of all continuous function on
I (Bagarello and Trapani 1996c).

Interesting examples of non-abelian CQ*-algebras can be obtained in sev-
eral ways. One of them can be built up, as shown in (Bagarello at al. 1998),
starting from an achieved left (or right) Hilbert algebra (this is, as known,
the basic ingredient for the Tomita-Takesaki theory). Nevertheless, the most
typical examples of non-commutative CQ*-algebras are provided by spaces
of linear operators acting on a scale of Hilbert spaces. This will be explained
in details in the next subsection.

2.1 CQ*-Algebras of Operators on Scales of Hilbert Spaces

Let H be a Hilbert space with scalar product (., .) and S a positive selfadjoint
unbounded operator, with dense domain D(S). The subspace D(S) becomes
a Hilbert space, denoted by H+1, with the scalar product

(f, g)+1 = (f, g) + (Sf, Sg), . (1)

Let H−1 denote the conjugate dual of H+1. Then H−1 itself is a Hilbert
space.

With this construction, we get, in canonical way a scale of Hilbert spaces

H+1
i→ H j→ H−1 , (2)
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where i is the identity map i of H+1 into H and j is the canonical embedding
of H into H−1 (both these maps are continuous and with dense range).

With obvious identifications, we can read (2) as a chain of topological inclu-
sions

H+1 ⊂ H ⊂ H−1 .

Let B(H+1,H−1) be the Banach space of bounded operators from H+1
into H−1 with its natural norm ‖ · ‖+1,−1.

In B(H+1,H−1) define an involution A 7→ A∗ by:

(A∗f, g) = (Ag, f) ∀f, g ∈ H+1 .

Then A∗ ∈ B(H+1,H−1) and ‖ A∗ ‖+1,−1=‖ A ‖+1,−1 ∀A ∈ B(H+1,H−1).

Let B(H+1) be the C∗-algebra of all bounded operators on H+1. Its nat-
ural involution is denoted here as [ and its C*-norm as ‖ · ‖[.
Furthermore, let B(H−1) be the C∗-algebra of all bounded operators on H−1
with involution ] and C*-norm ‖ · ‖].
Then B(H+1) and B(H−1) are (isomorphic to) subspaces of B(H+1,H−1),
and A ∈ B(H+1) if, and only if, A∗ ∈ B(H−1).

There is a distinguished *-algebra of B(H+1,H−1) is

B+(H+1) = {A ∈ B(H+1,H−1) : A,A∗ ∈ B(H+1) } .

Clearly, if A ∈ B(H+1,H−1) and B ∈ B(H+1), then AB is well-defined
and AB ∈ B(H+1,H−1). Analogously, if C ∈ B(H−1), CA is well-defined and
CA ∈ B(H+1,H−1).

Therefore, B(H+1,H−1) is a right Banach module over the C*-algebra
B(H+1).
Then, (B(H+1,H−1), ∗,B(H+1), [) is a CQ*-algebra, whenever the density
conditions (i),(ii) of Definition 2.1 are satisfied. This is, however, not true in
general (in contrast with the claim in (Bagarello and Trapani 1994)): addi-
tional assumptions on the operator S generating the scale of Hilbert spaces
are needed. Nevertheless, Proposition 2.2 always allows the construction of
a CQ*-algebra of operators acting in the given scale of Hilbert spaces, that
can be, however, smaller than (B(H+1,H−1), ∗,B(H+1), [) (Trapani 1998).
We denote this CQ*-algebra with (Bc(H+1,H−1), ∗,Bc(H+1), [) and refer to
it as the CQ*-algebra of operators acting in the scale of Hilbert spaces.

2.2 Mathematical Properties of CQ*-Algebras

In this subsection we will shortly overview the structure properties of CQ*-
algebras. This study has been carried out in (Bagarello and Trapani 1996b)
and shows that, under certain respects, CQ*-algebras are a good generaliza-
tion of the notion of C*-algebras to the unbounded case.
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The GNS-Construction. At this point, in analogy with the C*-case, the
question arises as to whether a given CQ*-algebra (A, ∗,A[, [) can be repre-
sented by means of bounded operators acting on a scale of Hilbert spaces. In
other words: is a GNS-like construction possible also in this case?
The answer is positive, provided that we start from a suitably chosen state.

Let (A, ∗,A[, [) be a CQ*-algebra. A linear functional and ω on A is called
admissible (for GNS) if

(i) ω(X∗X) ≥ 0, ∀X ∈ A[

(ii) ω(I) = 1
(iii) |ω(X∗AY )|2 ≤ ‖A‖ω(X[X)ω(Y [Y ), ∀A ∈ A, ∀X,Y ∈ A[

(iv) If {Xn} ⊂ A[ is a sequence such that limn→∞ ω(X∗
nXn) = 0 and

ω((Xn −Xm)[(Xn −Xm)) → 0, then limn→∞ ω(X[
nXn) = 0 results

If ω is admissible, then it is also [-positive, i.e., ω(X[X) ≥ 0, ∀X ∈ A[;
thus the usual GNS representation of A[ exists. The condition (iii) is then
the key for the definition of the representation on the whole A. The details
are too technical to be reported here. We only mention the fact that a GNS-
construction was also given in (Bagarello and Trapani 1994) under stronger
assumptions.

*-Semisemplicity. In contrast with the case of C*-algebras, *-
semisemplicity is not automatic for CQ*-algebras. For C*-algebras this no-
tion can be given in several equivalent ways: in few words it means that the
intersection of the kernels of all states is the null subspace.

Definition 2.3 Let (A, ∗,A[, [) be a CQ*-algebra. We call S(A) the set of
sesquilinear forms on A × A with the following properties:

(i) Ω(A,A) ≥ 0, ∀A ∈ A;
(ii) Ω(AB,C) = Ω(B,A∗C), ∀A ∈ A, ∀B,C ∈ A[;

(iii) |Ω(A,B)| ≤ ‖A‖ ‖B‖, ∀A,B ∈ A.

The family S(A) of sesquilinear forms on (A, ∗,A[, [) plays here the same role
as the family of states on C*-algebras; for this reason it is used to generalize
the notion of *-semisemplicity.

Let (A, ∗,A[, [) be a CQ*-algebra. The set

R(∗) = {X ∈ A : Ω(X,X) = 0 ∀Ω ∈ S(A)} (3)

is called the *-radical of A.

Definition 2.4 We call *-semisimple any CQ*-algebra (A, ∗,A[, [) such that
R(∗) = {0}.
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Examples of abelian and non-abelian *-semisimple CQ*-algebras do really
exist. For instance, as shown in (Bagarello and Trapani 1996c), the CQ*-
algebra (Lp(I), C(I)) is *-semisimple if, and only if, p ≥ 2. *-Semisimple
CQ*-algebras exhibit a number of interesting properties, that we summarize
here.

– Possibility of refining the multiplication in A.
We can define for certain pairs X,Y of elements of A a weak product
X ◦ Y (this extends the natural multiplication in the Banach module).
We get in this way a richer partial *-algebra, in the sense that the new
lattice of multipliers contains much more than four elements.

– One can introduce auxiliary norms such as

‖X‖2
α ≡ sup

Ω∈S(A)
Ω(X,X) , (4)

or
‖X‖β ≡ sup {|Ω(XB,B)|; Ω ∈ S(A), B ∈ A[, ‖B‖[ ≤ 1} (5)

and shows, for instance a C*-like property:
if X∗ ◦X is defined for a certain X ∈ A then

‖ X ‖2
α= ‖X∗ ◦X‖β ≤ ‖X∗ ◦X‖α . (6)

It is worth remarking that if these two norms on A coincide with the
original norm of A then A is a C*-algebra.

– Some results of the functional calculus for C*-algebras extends to *-
semisimple CQ*-algebras.

3 CQ*-Algebras and Spin Lattice Systems

In this Section, following (Bagarello and Trapani 1996a), we will show how
the mathematical structures discussed above can be used in the study of
spin systems. Let V be a finite region of a d-dimensional lattice and |V | the
number of points in V . The local C∗-algebra AV is generated by the Pauli
operators σp = (σ1

p, σ
2
p, σ

3
p) and by the unit 2 × 2 matrix Ip at every point

p ∈ V . The σp’s are copies of the Pauli matrices

σ1 =
(

0 1
1 0

)
, σ2 =

(
0 −i
i 0

)
, σ3 =

(
1 0
0 −1

)
.

AV is isomorphic to the C∗-algebra of all 2|V | × 2|V |-matrices on the 2|V |-
dimensional complex Hilbert space HV =

⊗
p∈V C

2
p , where C2

p is the 2-

dimensional complex Hilbert space at p. If V ⊂ V
′

and AV ∈ AV , then
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AV → AV ′ = AV ⊗ (
⊗

p∈V ′ \V Ip) defines the natural embedding of AV into
AV ′ .

Let n = (n1, n2, n3) be a unit vector in R
3, and put

(σ · n) = n1σ
1 + n2σ

2 + n3σ
3.

Then, the spectrum Sp(σ · n) of σ · n is the set {1,−1}. Let |n〉 be a unit
eigenvector associated with 1. Let {n} = {n1, n2, · · ·} be an infinite sequence
of unit vectors in R

3 and |{n}〉 = ⊗
p |np〉 the corresponding unit vector in the

infinite tensor product H∞ = ⊗
p C

2
p . We put

A0 =
⋃
V

AV

and
D0

{n} = A0|{n}〉
and we denote the closure of D0

{n} in H∞ by H{n}. Then, to any sequence
{n} of three-vectors it corresponds a state |{n}〉 of the system. Each of these
states defines a faithful representation π{n}(A0) in the Hilbert space H{n} in
the following way. First, one starts with constructing a special basis for H{n}
by flipping a finite number of spins in the ground state |{n}〉.

Let (n, n1, n2) be an orthonormal basis of R
3. We put

n± =
1
2

(n1 ± in2)

and
|m,n〉 = (σ · n−)m|n〉 (m = 0, 1).

Then we have

(σ · n)|m,n〉 = (−1)m|m,n〉 (m = 0, 1) .

Thus the set {|{m}, {n}〉 = ⊗
p |mp, np〉; mp = 0, 1,

∑
p

mp < ∞} forms

an orthonormal basis in H{n}, (Thirring and Wehrl 1967). In this space we
define the unbounded self-adjoint operator M by

M |{m}, {n}〉 =

(∑
p

mp

)
|{m}, {n}〉 .

M counts the number of the flipped spins in |{m}, {n}〉 with respect to the
ground state |{n}〉. Of course M depends on {n}, but we will not explicitly
indicate this fact whenever no confusion arises.

The representation π{n} is then defined on the basis vectors {|{m}, {n}〉}
by
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π{n}(σip) | {m}, {n}〉 = σip | mp, np〉 ⊗ (
∏

p
′ 6=p

⊗ | mp′ , np′ 〉) (i = 1, 2, 3) .

and extended in obvious way to the whole space H{n}.
Even if π{n} is a bounded representation of A0 into H{n}, it is more con-

venient, in view of the construction of a topology where thermodynamical
limits can be handled, to consider more appropriate domains for the repre-
sentation π{n}. Since the operator M is a number operator, the operator eM

is a densely defined self-adjoint operator. Let D denote its domain. Then D
can be made into a Hilbert space, denoted as HM , in canonical way. The
norm in HM is given by

‖ f ‖M=‖ eMf ‖ , f ∈ HM .

Taking the conjugate dual HM of HM , with respect to the scalar product of
H{n}, we get the triplet of Hilbert spaces

HM ⊂ H{n} ⊂ HM .

Now we can consider the CQ∗-algebra (Bc(HM ,HM ), ∗,Bc(HM ), [) of
bounded operators acting in the triplet.

The norm of Bc(HM ,HM ) can be written in terms of the norm in B(H{n})
by

‖ X ‖M,M=‖ e−MXe−M ‖ , X ∈ Bc(HM ,HM ) .

Similarly the norm in Bc(HM ) becomes

‖ X ‖M=‖ eMXe−M ‖ , X ∈ Bc(HM ) .

Also in this case it is not difficult to prove that π{n}(A) maps HM into itself,
for each A ∈ A0. Then if we look at π{n}(A) as a bounded operator in HM ,
we get, taking into account the fact that π{n} can be viewed as the restriction
to A0 of a *-representation of the simple C*-algebra AS ,

‖ π{n}(A) ‖M=‖ A ‖ , ∀A ∈ A0 ,

where the norm on the right hand side is the C*-norm of A0.
On the other hand, the CQ*-norm

‖ π{n}(A) ‖M,M=‖ e−Mπ{n}(A)e−M ‖
is, in general different from ‖ A ‖.

Of course, to each {n} it corresponds a CQ*-algebra of the kind discussed
above. This algebraic set-up could also be taken as a reasonable framework
where discussing problems like the existence of the thermodynamical limit
of the local Heisenberg dynamics. The results would, however, depend on
{n} and hence on the representation π{n}. For some models, like for instance
-the so-called almost-mean field (Bagarello and Trapani 1991, Bagarello and
Trapani 1993), the dependence on the representation is not crucial at all,
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provided that the states {n} are chosen in a suitable family of relevant states
(Bagarello and Trapani 1996a).

There is, however, no simple way of eliminating this dependence on the
representation for more general models. Therefore it may be convenient to
define a topology which takes into account the whole class F of states under
consideration. This topology, which we call weak physical topology and denote
by τF is defined by the family of seminorms (we will explicitly write the
dependence of M on {n}):

A ∈ A0 −→‖ e−M{n}π{n}(A)e−M{n} ‖ , {n} ∈ F .

Of course τF is the weakest locally convex topology such that each π{n}
is continuous from A0 into (Bc(HM ,HM ), ∗,Bc(HM ), [). The completion of
A0[τF ] will be denoted with A. The following proposition is now obvious.

Proposition 3.1 Let A denote the completion of A0[τF ]. Then (A[τF ],A0)
is a topological quasi *-algebra.

3.1 Thermodynamical Limits

When we deal with a specific model, the key of the construction of a topology
τF that allows a successful discussion of the thermodynamical limits, is just
the family F of relevant states. A clever choice of F should be made in
close connection with the specific form of the local hamiltonian. Of course,
also extreme situations are allowed: for instance, if the hamiltonian is good
enough, they may be freely chosen (for instance, for short range interactions).
The other extreme (i.e., a very poor family F) is also, in principle, possible.

If HV is the finite volume hamiltonian of the system, we put, as usual,

δV (A) = i[HV , A] , A ∈ A0

and
δkV (A) = i[HV , A]k , A ∈ A0 ,

where [HV , A]1 = [HV , A] and [HV , A]k = [HV , [HV , A]k−1].

Proposition 3.2 Let the finite volume hamiltonian HV of the system be a
polynomial pV (SiV , σ

j
k) in the variables SiV with SiV ∈ A0, i = 1, 2, . . . , N

and a continuous function of the σjk’s. Assume that

(i) ∀A ∈ A0, [HV , A] depends on V only through the SiV ’s;
(ii) lim|V |→∞(SiV )n exists in A[τF ], ∀n ∈ N, i = 1, 2, . . . , N .

Then for each A ∈ A0 and for any k ∈ N the limits

lim
|V |→∞

δkV (A)

exist in A[τF ]. Setting δ(A) = τF − lim|V |→∞ δV (A), A ∈ A0, then δ has the
properties:
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(a) δ(A∗) = δ(A)∗, ∀A ∈ A0;
(b) δ(AB) = δ(A)B +Aδ(B), ∀A,B ∈ A0.

The derivation δ describes, at infinitesimal level, the infinite volume dynamics
of the system. What we expect is that it is the generator of a one-parameter
group of automorphisms of the completion of A0 in a suitably chosen topol-
ogy. Since δV is bounded in A0, we also get

αtV (A) =
∞∑
k=0

(it)k

k!
δkV (A) , A ∈ A0

and we know that δkV (A) is τF -convergent to δ(k)(A). The problem of find-
ing the limit for |V | → ∞ of αtV (A) is then solved if the behavior of
‖π{n}(δkV (A))‖M,M , for |V | → ∞ can be conveniently controlled. For this,
additional conditions on HV are needed.

Proposition 3.3 Assume that the local hamiltonian HV of a spin model can
be written in the form

HV = |V |p(S1
V , S

2
V , S

3
V ) ,

where p is a polynomial and

SiV =
1

|V |
∑
p∈V

σip , i = 1, 2, 3 .

Then for each A ∈ A0 there exists a positive number rA such that the local
dynamics

αtV (A) = eiHV tAe−iHV t

converges in the topology τF , when |V | → ∞, to a limit which we denote by
αt(A), for any t with |t| < rA.

It is worth mentioning that, in spite of their appearance, the assumptions
made on HV are fulfilled by several interesting models such as the mean field
spin models. For the Heisenberg model, for instance, the local hamiltonian
has the form

HV =
J

|V |
∑
p,q∈V

3∑
i=1

σipσ
i
q, (7)

and the operators SiV are defined as

SiV =
1

|V |
∑
p∈V

σip , i = 1, 2, 3 .

Another possible approach, that may be helpful if the assumptions on
HV fail, makes use of the possibility of defining an effective hamiltonian, by
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which we mean that for each {n} ∈ F there exists a self-adjoint operator
H

{n}
eff in H{n} such that the derivation π{n} ◦ δ is weakly-spatial, i.e.,

< π{n}(δ(A))φ, ψ > = i
{
< π{n}(A)φ,H{n}

eff ψ > − < H
{n}
eff φ, π{n}(A∗)ψ >

}
,

∀φ, ψ ∈ D(H{n}
eff ), ∀A ∈ A0 .

In this case, we can consider the subset D of D(δ) = {A ∈ A0 : δ(A) ∈ A0}
consisting of all the generalized analytic elements of δ, i.e., A ∈ D iff

eiH
{n}
eff tπ{n}(A)e−iH{n}

eff t =
∞∑
k=0

(it)k

k!
π{n}(δ(k)(A)) ,

where the series on the right hand side is understood to converge with respect
to ‖ ‖M{n},M{n}

.

Proposition 3.4 Let F0 ⊂ F be a set of states such that for each {n} ∈ F0,
M{n} and H

{n}
eff commute strongly (i.e., their spectral families commute).

Then, for each A ∈ D, the series
∑∞
k=0

(it)k

k! (δ(k)(A)) converges, with respect
to the topology τF0 , to an element of A which we call αt(A). Moreover, αt
can be extended to the closure D of D in A[τF0 ].
If D = A, then αt is a one-parameter group of automorphisms of A.

Effective Hamiltonians do really exists, for instance, in the case of the
mean field models (Thirring and Wehrl 1967) and also for the almost mean
field models considered in (Bagarello and Trapani 1991, Bagarello and Tra-
pani 1993).

4 Conclusions

For several quantum models, many alternative possible ways of overcoming
the problems that cannot be directly solved in the C*-approach, have been
proposed in the literature.
The approach sketched in this paper represents only an additional contribute
to this research area.
However, in our opinion, it has the advantage that it can be used regard-
less to the specific model: indeed, it provides a common language for classes
of models enjoying sufficiently many properties to allow the construction of
families of CQ*-algebras.
From a merely mathematical point of view, it puts on the stage the possibil-
ity of extending the structure properties of C*-algebras to certain classes of
topological partial *-algebras.
A lot of work is still to be done first from the mathematical side, where a more
detailed analysis of the structure properties of topological partial *-algebras
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is still in order.
From the point of view of physical applications, there is, first the need of in-
vestigating several aspects of the theory (automorphisms groups, KMS-states
. . . ) that would make of CQ*-algebras a more useful tool for the study of con-
crete models. On the other hand, the problem of finding quantum models for
which this approach appears to be strictly needed is still open.
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Abstract. We consider the superparticle models invariant under the supersym-
metries with tensorial central charges, which were not included in D = 4 Haag-
Lopuszanski-Sohnius (HLS) supersymmetry scheme.

We present firstly a generalization of D = 4 Ferber-Shirafuji (FS) model with
fundamental bosonic spinors and tensorial central charge coordinates. The model
contains four fermionic coordinates and possesses three κ-symmetries thus providing
the BPS configuration preserving 3/4 of the target space supersymmetries. We show
that the physical degrees of freedom (8 real bosonic and 1 real Grassmann variable)
of our model can be described by OSp(8|1) supertwistor. Then we propose a higher
dimensional generalization of our model with one real fundamental bosonic spinor.
D = 10 model describes massless superparticle with composite tensorial central
charges and in D = 11 we obtain 0-superbrane model with nonvanishing mass which
is generated dynamically. The introduction of D = 11 Lorentz harmonics provides
the possibility to construct massless D = 11 superparticle model which can be
formulated in a way preserving 1/2, 17/32, 18/32, . . ., 31/32 supersymmetries. In
a special case we obtain the twistor-like formulation of the usual massless D = 11
superparticle proposed recently by Bergshoeff and Townsend.

1 Introduction

It is our great pleasure to contribute this article to the volume dedicated to
Professor Jan Lopuszanski on his 75-th birthday. He is one of the founders
of algebraic background for present supersymmetric theories. In seventies,
when in 1975 he published fundamental paper with Haag and Sohnius (see
(Haag et al. 1995)) it was however assumed that the relativistic superalgebra
should contain in its bosonic sector a direct summ of space-time symmetry
generators (Poincaré, de-Sitter, conformal) and internal symmetry genera-
tors, i.e., the space-time bosonic generators and internal bosonic generators
should commute. As a consequence the internal Abelian generators, called
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also central charges, had to be scalar. Recently however this conclusion has
been relaxed, and in present algebraic framework of SUSY appear general-
ized central charges - tensorial (van Holten and van Proyen 1982–(Hewson
and Perry 1997; Hewson 1997) or even spinorial (d‘Auria and Fré 1982, Sez-
gin 1997) ones. The best example can be provided by D=11 supersymmetry
algebra, containing topological contributions from M2 and M5 superbranes:

{Qα, Qβ} = PmΓ
m
αβ + Zm1m2Γ

m1m2
βα + Zm1...m5Γ

m1...m5
βα . (1.1)

In this lecture we shall consider the new superparticle models, invariant
under SUSY with tensor charge generators. We shall formulate such a model
following the ideas of supertwistor formulation by Ferber and Shirafuji (Fer-
ber 1978, Shirafuji 1983). In Sect 2 we shall consider the D=4 model which
is invariant under the following D=4 SUSY algebra

{QA, QB} = ZAB , {Q̄Ȧ, Q̄Ḃ} = Z̄ȦḂ , (1.2)

{QA, Q̄Ḃ} = PAḂ ,

where (QA)∗ = Q̄Ȧ, (PAḂ)∗ = PBȦ, (ZAB)∗ = Z̄ȦḂ and six real commuting
central charges Zµν = −Zνµ are related to the symmetric complex spin-tensor
ZAB by1

Zµν =
i

2

(
Z̄ȦḂσ̃

ȦḂ
µν − ZABσ

AB
µν

)
. (1.3)

Thus the spin-tensors ZAB and ZȦḂ

ZAB =
i

4
Zµνσ

µν
AB , Z̄ȦḂ = − i

4
Zµν σ̃

µν

ȦḂ
,

represent the self-dual and anti-self-dual parts of the central charge matrices.
It should be stressed that the superalgebra (1.2-3) goes outside of the HLS
scheme.

The D = 4 model considered in Section 2 can be reformulated in terms
of two Weyl spinors λA, µA and one real Grassmann variable ζ expressed by
the generalization of supersymmetric Penrose–Ferber relations (Ferber 1978,
Shirafuji 1983, Bengtsson et al. 1987; Lukierski and Nowicki 1988) between
supertwistor and superspace coordinates. Such reformulation is described by
OSp(8|1) invariant free supertwistor model with the action

S = −1
2

∫
dτYAGABẎB , (1.4)

where YA = (y1, . . . , y8; ζ) ≡ (λα, µα, ζ) is the real SO(8|1) supertwistor (see
e.g., (Lukierski 1979; Heidenreich and Lukierski 1990)) and

1 For two-component D = 4 Weyl spinor formalism see e.g., (Corson 1953). We
have
(σmn) B

A = 1
2i

(
(σµ)AḂσ̃ḂB

ν − (σν)AḂσ̃ḂB
µ

)
= − i

2eµνρl(σρl) B
A = [(σ̃µν)Ḃ

Ȧ
]∗.
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GAB =
(
ω(8) 0

0 2i

)
=




02 I2 02 02
−I2 02 02 02
02 02 02 I2
02 02 −I2 02

 | 0

0 | i

 (1.5)

is theOSp(8|1) supersymplectic structure with bosonic Sp(8) symplectic met-
ric
ω(8) = −(ω(8))T . It should be mentioned therefore that due to the presence
of tensorial central charges the standard SU(2, 2|1) supertwistor description
(Ferber 1978, Shirafuji 1983, Bengtsson et al. 1987; Lukierski and Nowicki
1988, Sorokin et al. 1989; Volkov and Zheltukhin 1988, 1990; Sorokin et al.
1989, Gumenchuk and Sorokin 1990, Townsend 1991) of the Brink–Schwarz
(BS) massless superparticle (Brink and Schwarz 1981) with one complex
Grassmann coordinate is replaced by a model with OSp(8|1) invariance and
one real Grassmann degree of freedom.

It should be stressed that by the use of spinor coordinates in the presence
of tensorial central charges

– we do not increase the initial number of spinor degrees of freedom (four
complex or eight real components) in comparison with the model without
tensorial central charges;

– we keep the manifest Lorentz invariance despite the presence of tensorial
central charges.

In fact, when we use our formulae (see Section 3)

PAḂ = λAλ̄Ḃ , ZAB = λAλB , Z̄ȦḂ = λ̄Ȧλ̄Ḃ , (1.6)

we find that, in comparison with standard FS model (PAḂ = λA l̄Ḃ , ZAB =
Z̄ȦḂ = 0), only the phase of spinor λA becomes an additional physical bosonic
degree of freedom.

In Section 3 we shall consider the D=10 and D=11 models described
by multidimensional extensions of FS model with one fundamental spinor
coordinates. The D=11 model is invariant under the superalgebra (1.1). It
appears that D=10 model is massless (due to the famous Fierz identities for
D=10 gamma matrices) and D=11 is generally a massive one with a mass
generated dynamically. In Section 4 we shall consider the large family of D=11
massless models with particular fundamental spinor coordinates described by
Lorentz harmonics.

We would like to add that the results presented in Sections 2 and 3 can
also be found in our recent article (Bandos and Lukierski 1998), but all the
results from Section 4 are new.
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2 Generalization of Ferber–Shirafuji
Superparticle Model: Spinor Fundamental Variables
and Central Charges

We generalize the model presented in (Shirafuji 1983) as follows

S =
∫
dτ
(
λAλ̄ḂΠ

AḂ
τ + λAλBΠ

AB
τ + λ̄Ȧλ̄Ḃ Π

ȦḂ
τ

)
, (2.1)

where
ΠAḂ ≡ dτΠAḂ

τ = dXAḂ + i
(
dΘAΘ̄Ḃ −ΘAdΘ̄Ḃ

)
,

ΠAB ≡ dτΠAB
τ = dzAB − i Θ(A dΘB) ,

Π̄ȦḂ ≡ dτΠ̄ȦḂ
τ = dz̄ȦḂ − i Θ̄(Ȧ dΘ̄ Ḃ) ,

(2.2)

are the supercovariant one–forms in D = 4, N = 1 generalized flat superspace

M (4+6|4) = {YM} ≡ {(XAȦ, zAB , z̄ȦḂ ;ΘA, Θ̄Ȧ)} , (2.3)

with tensorial central charge coordinates zmn = (zAB , z̄ȦḂ) (see (1.3)). The
complete configuration space of the model (2.1) contains additionally the
complex-conjugate pair (λA, l̄Ȧ) of Weyl spinors

M(4+6+4|4) = {qM} ≡ {(YM ;λA, l̄Ȧ)}

= {(XAȦ, zAB , z̄ȦḂ ;λA, l̄Ȧ;ΘA, Θ̄Ȧ)} ,
(2.4)

Calculating the canonical momenta

PM =
∂L

∂q̇M = (PAȦ, ZAB , Z̄ȦḂ ;PA, P̄ Ȧ;πA, π̄Ȧ) , (2.5)

we obtain the following set of the primary constraints

ΦAḂ ≡ PAḂ − λAλ̄Ḃ = 0 , (2.6)
ΦAB ≡ ZAB − λAλB = 0 , (2.7)
ΦȦḂ ≡ Z̄ȦḂ − λ̄Ȧλ̄Ḃ = 0 , (2.8)
PA = 0, P̄Ȧ = 0 , (2.9)

DA ≡ −πA + iPAḂΘ̄
Ḃ + iZABΘ

B = 0 , (2.10)

D̄Ȧ ≡ π̄Ȧ − iΘBPBȦ − iZ̄ȦḂΘ̄
Ḃ = 0 . (2.11)

Because the action (2.1) is invariant under the world line reparametriza-
tion, the canonical Hamiltonian vanishes

H ≡ q̇MPM − L(qM, q̇M) = 0 . (2.12)
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It can be deduced that the set (2.6)–(2.11) of 14 bosonic and 4 fermionic
constraints contains 6 bosonic and 3 fermionic first class constraints

B1 = lA l̄ḂPAḂ = 0 , (2.13)

B2 = lA ˆ̄µḂPAḂ − λAµ̂BZAB = 0 , (2.14)

B3 ≡ (B2)∗ = µ̂A l̄ḂPAḂ − l̄Ȧ ˆ̄µḂZ̄ȦḂ = 0 , (2.15)

B4 = 2µ̂A ˆ̄µḂPAḂ − µ̂Aµ̂BZAB − ˆ̄µȦ ˆ̄µḂZ̄ȦḂ = 0 , (2.16)
B5 = lA l̄BZAB = 0 , (2.17)

B6 ≡ (B5)∗ = l̄Ȧ l̄ḂZ̄ȦḂ = 0 , (2.18)
F1 = lADA = 0 , (2.19)

F2 ≡ (F1)∗ = l̄ȦD̄Ȧ = 0 , (2.20)

F3 = µ̂ADA + ˆ̄µȦD̄Ȧ = 0 , (2.21)

where we assume that λAµA 6= 0 and

µ̂A =
µA

λBµB
, ˆ̄µȦ =

µ̄Ȧ

λḂµḂ
, (2.22)

i.e., λAµ̂A = l̄Ȧ ˆ̄µ = 1. One can show2 that our first class constraints (2.13)–
(2.21) can be chosen for any particular form of the second spinor µA as
a function of canonical variables (qM,PM). Further we shall propose and
motivate the choice for µA, µ̄Ȧ.

The remaining 8 bosonic and 1 fermionic constraints are the second class
ones. They are

lA ˆ̄µḂPAḂ + λAµ̂BZAB = 0 , µ̂A l̄ḂPAḂ + l̄Ȧ ˆ̄µḂZ̄ȦḂ = 0 , (2.23)

µ̂Aµ̂BZAB − 1 = 0 , ˆ̄µȦ ˆ̄µḂZ̄ȦḂ − 1 = 0 , (2.24)
PA = 0, P̄Ȧ = 0 , (2.25)

SF ≡ µ̂ADA − ˆ̄µȦD̄Ȧ = 0 . (2.26)

We see that the number # of on-shell phase space degrees of freedom in our
model is

# = (28B + 8F ) − 2 × (6B + 3F ) − (8B + 1F ) = 8B + 1F , (2.27)

in distinction with the standard massless superparticle model of Brink–
Schwarz (Brink and Schwarz 1981) or Ferber-Shirafuji (Ferber 1978, Shirafuji
1983) containing 6B + 2F physical degrees of freedom.
2 We recall (Dirac 1967) that the first class constraints are defined as those whose

Poisson brackets with all constraints weakly vanish. Then one can show (Dirac
1967) that the first class constraints form the closed algebra.
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In order to explain the difference in the number of fermionic constraints,
let us write down the matrices of Poisson brackets for the fermionic con-
straints (2.10), (2.11). In our case it has the form

Cαβ =
( {DA, DB}P {DA, D̄Ḃ}P

{D̄Ȧ, DB}P {D̄Ȧ, D̄Ḃ}P
)

=
(
λAλB λA l̄Ḃ
l̄ȦλB l̄Ȧ l̄Ḃ

)
, (2.28)

while for the standard FS model (Ferber 1978, Shirafuji 1983) we obtain

CFSαβ =
(

0 λA l̄Ḃ
l̄ȦλB 0

)
. (2.29)

Now it is evident that in our case the rank of the matrix C is one, while for
FS model it is equal to two

rank(C) = 1, rank(CFS) = 2 .

Consequently, in our model there are three fermionic first class constraints
generating three κ–symmetries (Azcarraga and Lukierski 1982), one more
than in the FS model.

In order to clarify the meaning of the superparticle model (2.1) and
present an explicit representation for its physical degrees of freedom, we shall
demonstrate that it admits the supertwistor representation in terms of inde-
pendent bosonic spinor λA, bosonic spinor µA being composed of λA and
superspace variables

µA =
(
XAḂ + iΘAΘ̄Ḃ

)
λ̄Ḃ + 2zABλB + iΘA(ΘBλB) , (2.30)

µ̄Ȧ =
(
XBȦ − iΘBΘ̄Ȧ

)
λB + 2z̄ȦḂλ̄Ḃ − iΘ̄ȦΘ̄Ḃλ̄Ḃ , (2.31)

and one real fermionic composite Grassmann variable ζ

ζ = ΘAλA + Θ̄Ȧλ̄Ȧ . (2.32)

Equations (2.30)–(2.32) describe OSp(8|1)–supersymmetric generalization of
the Penrose correspondence which is alternative to the previously known
SU(2, 2|1) correspondence, firstly proposed by Ferber (Ferber 1978). Per-
forming integration by parts and neglecting boundary terms we can express
our action (2.1) in terms of OSp(8|1) supertwistor variables as follows:

S = −
∫ (

µAdλA + µ̄Ȧ dλ̄Ȧ + idζ ζ
)
. (2.33)

Equation (2.33) presents the free OSp(8|1) supertwistor action. It can be
rewritten in the form (1.4) with real coordinates Y A = (µα, λα, ζ) where
real Majorana spinors µα, λα are obtained from the Weyl spinors (µA, µ̄Ȧ),
(λA, l̄Ȧ) by a linear transformation changing for the D = 4 Dirac matrices
the complex Weyl to real Majorana representation.
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The action (2.33) produces only the second class constraints

P
(λ)
A − µA = 0, P

(µ)
A = 0 , (2.34)

P̄
(λ)
Ȧ

− µȦ = 0 , P̄
(µ)
Ȧ

= 0 , (2.35)

π(ζ) = iζ . (2.36)

The Dirac brackets for the OSp(8|1) supertwistor coordinates are

[µA, λB ]D = δ BA , [µ̄Ȧ, l̄
Ḃ ]D = δ Ḃ

Ȧ
, (2.37)

{ζ, ζ}D = − i

2
. (2.38)

They can be also obtained after the analysis of the Hamiltonian system de-
scribed by the original action (2.1). For this result one should firstly perform
gauge fixing for all the gauge symmetries, arriving at the dynamical sys-
tem which contains only second class constraints, and then pass to the Dirac
brackets in a proper way (see (Gumenchuk and Sorokin 1990) for correspond-
ing analysis of the BS superparticle model). This means that the generaliza-
tion of the Penrose correspondence (2.30), (2.31), (2.32) should be regarded
as coming from the second class constraints (primary and obtained from the
gauge fixing) of the original system and, thus, should be considered as a rela-
tions hold in the strong sense (i.e., as operator identities after quantization)
(Dirac 1967). Hence, after the quantization performed in the frame of super-
twistor approach, the generalized Penrose relations (2.30), (2.31), (2.32) can
be substituted into the wave function in order to obtain the D = 4 superspace
description of our quantum system.

We shall discuss now the relation of (2.30), (2.31), (2.32), (2.33) with
the known FS SU(2, 2|1) supertwistor description of the BS superparticle
(Ferber 1978, Shirafuji 1983, Bengtsson et al. 1987; Lukierski and Nowicki
1988, Sorokin et al. 1989; Volkov and Zheltukhin 1988, 1990; Sorokin et al.
1989, Gumenchuk and Sorokin 1990, Townsend 1991). The standard FS de-
scription is given by the action

S = −
∫ (

µAdλA + µ̄Ȧ dλ̄Ȧ + idξ ξ̄
)
, (2.39)

supplemented by the first class constraint

µAλA − µ̄Ȧ λ̄Ȧ + 2iξξ̄ = 0 . (2.40)

The SU(2, 2|1) supertwistor (λA, µ̄Ȧ, ξ̄), contains complex Grassmann
variable ξ and the supersymmetric Penrose–Ferber correspondence is given
by

µ̄Ȧ =
(
XBȦ − iΘBΘ̄Ȧ

)
λB , (2.41)

ξ = ΘAλA, ξ̄ = Θ̄Ȧλ̄Ȧ . (2.42)
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Comparing equations (2.39)–(2.42) with our OSp(8|1) supertwistor de-
scription (2.30)–(2.33) of the superparticle (2.1) with additional central
charge coordinates, we note that

– Besides additional terms proportional to tensorial central charge coordi-
nates zAB , z̄ȦḂ , there is present in (2.31) the second term quadratic in
Grassmann variables. This second term, however, does not contribute to
the invariant µAλA.

– In our model we get

µAλA − µ̄Ȧ λ̄Ȧ = 2λAλBzAB − 2l̄Ȧ l̄Ḃ z̄
ȦḂ + 2iΘAλAΘ̄Ȧ l̄Ȧ , (2.43)

i.e., we do not have additional first class constraint generating U(1) sym-
metry (compare to (2.40) of the standard supertwistor formulation). Thus
our action (2.33) is not singular in distinction to (2.39), where the first
class constraint (2.40) should be taken into account, e.g., by introducing
it into the action with Lagrange multiplier (Townsend 1991).

– The complex Grassmann variable ξ (2.42) of FS formalism is replaced in
our case by the real one ζ (2.32). This difference implies that in our super-
twistor formalism the limit zAB → 0, z̄ȦḂ → 0 does not reproduce the
standard SU(2, 2|1) supertwistor formalism. Indeed, this is not surprising
if we take into account that, from algebraic point of view, SU(2, 2|1) is
not a subsupergroup of OSp(8|1).

The model (2.1) can be slightly generalized as follows

S =
∫
dτ
(
λA l̄ḂΠ

AḂ
τ + ZλAlBΠ

AB
τ + Z̄l̄Ȧ l̄ḂΠ̄

ḂḂ
τ

)
, (2.44)

where Z, Z̄ are complex numerical constants. It appears that for all values
of Z 6= 1 the model (2.44) will have only two κ-symmetries, and only for
particular value Z = 1 we obtain three κ-symmetries. The quantization of
the model (2.44) is now under consideration (Azcarraga et al. in preparation).

3 D = 10 and D = 11 Models
with One Fundamental Spinor

Recently the most general superparticle model associated with space–time
superalgebra (1.1) was proposed by Rudychev and Sezgin (Sezgin and Rudy-
chev 1997). Introducing generalized real superspace (Xαβ , Θα) they consider
the following action

S =
∫
dτL =

∫
dτ

(
Pαβ Π

αβ
τ +

1
2
eαβ P

αγ Cγδ P
δβ

)
, (3.1)
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where Παβ
τ = Ẋαβ−θ̇(αθβ) (ȧ ≡ da

dτ ), C is the charge conjugation matrix and
eαβ is the set of Lagrange multipliers, generalizing einbein in the action for
standard Brink-Schwarz massless superparticle (Brink and Schwarz 1981).

Generalized mass shell condition, obtained by varying eαβ in (3.1), takes
the form

PαγCγδP
δβ = 0 . (3.2)

We shall look for Pαβ expressing it as spinor belinears and satisfying the
generalized mass shell condition (3.2). Particular solution is provided by the
following extension of our representation (1.6) to any dimension D > 4 with
the use of one real D-dimensional Majorana spinor λα (α = 1, ..., 2k, k = 4
for D = 10, k = 5 for D = 11):

Pαβ = λαλβ , (λα)∗ = λα , (3.3)

where (1.6) is obtained if k = 2. The expression (3.3) solves the BPS condi-
tion detPαβ = 0 as well as more strong Rudychev-Sezgin generalized mass
shell constraint (3.2) valid in the model (3.1) with antisymmetric charge con-
jugation matrix C (Cαβ = −Cβα).

Using (3.3) we get the multidimensional generalization of our action (2.1)
which reads

S =
∫

M1
λαλβΠ

αβ , (3.4)

Παβ = dXαβ − idΘ(αΘβ) ,

α = 1, ..., 2k ,

and for k = 2 we get the action (2.1).
The case k = 4 can be treated as describing spinorial D = 10 massless

superparticle model with 126 composite tensorial central charges Zm1...m5

(cf. with (van Holten and van Proyen 1982, Eisenberg and Solomon 1989)).
Indeed, using the basis of antisymmetric products of D = 10 sigma matrices
we obtain

λαλβ ≡ Pαβ = Pmσ
m
αβ + Zm1...m5σ

m1...m5
βα . (3.5)

Contraction of this equation with σ̃mαβ produces the expression for momenta
in terms of bosonic spinors

Pm =
1
16
λασ

αβ
m λβ ⇒ PmP

m = 0 . (3.6)

The mass shell condition PmP
m = 0 appears then as a result of the D = 10

identity (σm)(αβ(σm)γ)δ = 0.
The action (3.4) for k = 8 can be treated as describing a 0–superbrane

model in D = 11 superspace with 517 composite tensorial central charge
described by 32 components of one real Majorana D = 11 bosonic spinor.
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In distinction to the above case such model does not produce a massless
superparticle3). Indeed, decomposing (3.3) in the basis of products of D = 11
gamma matrices, one gets

λαλβ = PmΓ
m
αβ + Zm1m2Γ

m1m2
βα + Zm1...m5Γ

m1...m5
βα . (3.7)

The D = 11 energy-momentum vector is then given by

Pm =
1
32
λαΓ

mαβλβ , (3.8)

and the D = 11 mass-shell condition reads

M2 = PmP
m =

1
1024

(λΓmλ) (λΓmλ) . (3.9)

Using the D = 11 Fierz identities one can prove that the mass shell condition
acquires the form

M2 = PmP
m = 2 ZmnZmn − 32.5! Zm1...m5Zm1...m5 , (3.10)

with Zmn = − 1
64λΓmnl, Zm1...m5 = 1

32.5!λΓm1...m5 l.
If we take into consideration that the equations of motion for our model

(3.4) imply that the bosonic spinor λα is constant (dλα = 0), we have to
conclude that (3.4) with k = 8 provides the D = 11 superparticle model with
mass generated dynamically in a way similar to the tension generating mecha-
nism, studied in superstring and higher branes in (Townsend 1992; Bergshoeff
et al. 1992; Townsend 1997; Cederwall and Townsend 1997; Cederwall and
Westenberg 1998; Bergshoeff and Townsend 1998).

Performing the integration by parts we can rewrite the action (3.4) in the
OSp(1|2k) (i.e., OSp(1|16) for D = 10 and OSp(1|32) for D = 11) super-
twistor Y A = (µα, ζ) components:

S = −
∫

(µαdλα + idζ ζ), α = 1, . . . , 2k . (3.11)

The generalized Penrose–Ferber correspondence between real supertwistors
and real generalized superspace looks as follows

µα = Xαβλβ − iΘα(Θβλ)
¯
, ζ = Θαλα . (3.12)

4 A Set of D = 11 Massless Superparticle Models
with Conservation of More than 1/2 Target Space
Supersymmetries

In order to formulate the model we need to describe SO(1, 10)/(SO(1, 1) ⊗
SO(9) ⊂×K9) Lorentz harmonic formalism.
3 Note, that the D = 11 Green–Schwarz superparticle model does exist and was

presented in (Bergshoeff and Townsend 1997
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4.1 SO(1,10)
SO(1,1)⊗SO(9)⊂×K9

Spinor Moving Frame

The SO(1, 10) valued moving frame matrix uam splits into two light–like and
9 space–like vectors (Sokatchev 1987)

uam = (u++
m , u−−

m , uIm) ∈ SO(1, 10) , (4.13)

⇔ uamubm = ηab ⇔



u++mu++
m = 0 ,

u−−mu−−
m = 0 ,

u±±muIm = 0 ,

uImuJm = −δIJ ,

where I = 1, ..., 9 is SO(9) vector index.
The Spin(1, 10) valued spinor moving frame matrix v

α
µ representing the

same Lorentz rotation
uamΓ

m
µν = v αµ Γ

a
αβv

β
ν , (4.14)

uamΓ
αβ
a = v αµ Γ

µν
a v

β
ν , (4.15)

splits into two rectangular blocks

vαµ = (v +
µA, v

−
µA) ∈ Spin(1, 10) , (4.16)

where A = 1, ..., 16 is SO(9) spinor index and the sign superscripts denote
the SO(1, 1) weight of the vector and spinor harmonics.

As the Spin(1, 10) transformations keep invariant not only the gamma
matrices (4.14), but the D = 11 charge conjugation matrix as well

v αµ C
µνv

β
ν = Cαβ , (4.17)

the spinor harmonics (4.16) are normalized by

v
+µ
A v −

µB = −v−µ
A v +

µB = −iδAB , v
−µ
A v −

µB = 0 , v
+µ
A v +

µB = 0 .
(4.18)

Equations (4.18) is equivalent to the following decomposition of 32×32 unity
matrix4

δ
µ
ν = iv −

νAv
+µ
A − iv −

νAv
+µ
A . (4.19)

In a suitable SO(1, 1) ⊗ SO(9) ⊂×K9 invariant representation for D = 11
gamma matrices the (4.14) acquire the form

4 The appearance of multiplier i in (4.18), (4.19) is due to the fact that D = 11
charge conjugation matrix is imaginary for our choice of notations and signature
ηab = diag(+1, −1, . . . , −1)
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u++
m Γmµν = 2v +

µAv
+
νA, u−−

m Γmµν = 2v −
µAv

−
νA, uImΓ

m
µν = 2v +

{µ|AΓ
I
ABv

−
ν|B] ,

(4.20)
(compare e.g., with D = 10 cases from Refs. (Galperin et al. 1992b, Galperin
et al. 1992a, Bandos and Zheltukhin 1991, 1992, 1993, 1994, Bandos et al.
1995)). The decomposition of the relations (4.15) includes, in particular

v −
µAΓ

µν
m v −

νB = 2δABu−−
m , (4.21)

4.2 Action for D = 11 Massless Superparticle
with Tensorial Central Charge Coordinates

The twistor-like action for D = 11 massless superparticle with tensorial cen-
tral charge coordinates has the form

S =
∫

M1
P++
AB v

−
Aµv

−
BνΠ

µν , (4.22)

with
Πµν = dXµν − idΘ(µΘν) ,

and symmetric SO(9) spin-tensor Lagrange multiplier P++
AB .

The canonical momenta

Pµν =
∂L

∂Ẋµν
= P++

AB v
−
Aµv

−
Bν , (4.23)

evidently satisfy the BPS condition

det(Pµν) = 0 ,

as well as the more strong Rudychev-Sezgin generalized mass shell constraint

PµρC
ρσPσν = 0 .

The rank of the matrix Pµν is less or equal to 16, equal in fact to the rank
of the matrix P++

AB . As we will demonstrate just this rank defines the number
of preserved target space supersymmetries.

The variation of the action (4.22) with respect to the coordinate fields

δS =
∫

M1
P++
AB v

−
Aµv

−
Bν(diδΠµν − 2idΘ(µδΘν)) , (4.24)

iδΠ
µν = δXµν − iδΘ(µΘν) ,

includes effectively the δΘµ variation only in the combination

dΘνv −
AνP

++
AB δΘ

µv −
Aµ .

Thus the half of Θ variations δΘµv +
Aµ are not involved in the variation of

action and, therefore, parametrize the 16 kappa symmetries.
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When det(P++
AB ) 6= 0, the rest 16 of the 32 Grassmann variations δΘµv −

Aµ

acts effectively and produce nontrivial equations of motion

dΘνv −
AνP

++
AB = 0, ⇒ dΘνv −

Aν = 0 .

We see that there are only 16 kappa symmetries in such dynamical system
and so it describes the BPS state preserving 1/2 of the D = 11 target space
supersymmetry.

We obtain an important particular case of the model (4.22) with
det(P++

AB ) 6= 0 when the Lagrange multiplier P++
AB is proportional to the

unity matrix P++
AB = P++δAB . Due to the properties (4.20) of the Lorentz

harmonic, the product of spinor harmonics v −
Aµv

−
Aν is proportional to the

gamma matrix Γmµν , hence it does not contain components proportional to
Γmnµν , Γmnklpµν . Thus the central charge coordinates disappear from the action
which in this case can be equivalently rewritten as

S =
1
32

∫
M1

P−−v −
Aµv

−
AνΓ

µν
m Πm , (4.25)

Πm = dXm − idΘµΓmµνΘ
ν .

The formula (4.25) provides the twistor-like formulation of the action for the
’standard’ D = 11 massless superparticle (without tensorial central charge
coordinates), whose ’standard’ (Brink–Schwarz type) action was proposed
recently in Ref. (Bergshoeff and Townsend 1997).

The generic case of nondegenerate P++
AB matrix corresponds the model

with central charge coordinates and half of 32 space time supersymmetries
conserved.

The case with the matrix P++
AB having the rank 1 can be described by

P++
AB = λ+

Aλ
+
B ,

with one bosonic SO(16) spinor λ+
A. The action (4.22) in this case reduces to

S =
∫

M1
(λ+
Av

−
Aµ)(λ+

Av
−
Bν)Πµν . (4.26)

If one denotes λ+
Av

−
Aµ = λµ, one arrives to the expression S =

∫
M1 λµλνΠ

µν

which formally coincides with the action proposed in (Bandos and Lukierski
1998). But the composite nature of the bosonic spinor λµ in the action (4.26)
results in the relation

32Pm ≡ λµΓ
m
µνλν = (λ+

Av
−
Aµ)(λ+

Av
−
Bν)Γµνm = λ+

Aλ
+
Au

−−
m , (4.27)

where u−−
m is a light-like harmonic vector u−−mu−−

m = 0. Thus PmPm = 0
and we conclude that (4.26) describes a massless D = 11 superparticle with
central charge coordinate in distinction with the D = 11 model described by
(3.4) (Bandos and Lukierski 1998), where, in general, the particle is massive
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with mass generated dynamically (Townsend 1992; Bergshoeff et al. 1992;
Townsend 1997; Cederwall and Townsend 1997; Cederwall and Westenberg
1998; Bergshoeff and Townsend 1998).

Nevertheless both the models (3.4) and (4.26) describe BPS configurations
with preservation of 31/32 part of the D = 11 target space supersymmetries.

Indeed the variation of the action (4.26) includes effectively only one
Grassmann variation δΘµλµ (with λµ composed from harmonic and SO(16)
spinor as in (4.26)), which remains the same for the action (3.4), where the
λµ spinor is fundamental (see (Bandos and Lukierski 1998)).

The matrix P++
AB of the rank r, 1 < r < 8 can be represented as

P++
AB = λ+s

A λ+s
B , s = 1, ..., r, 1 < r < 8 . (4.28)

It is easy to see that such a model describes the BPS states preserving (32−r)
32

supersymmetries.

5 Final Remarks

We would like to recall that in the ’M-theoretic’ approach (see e.g., (Azcar-
raga et al. 1989, Townsend 1995; 1996; 1997, Sorokin and Townsend 1997))
the tensorial central charges Zm1...mp are considered as carried by p-branes.
Following such treatment, one should interpret e.g., in D = 4 central charges
Zµν as an indication of presence of D = 4 supermembrane (p = 2). The
relation of our superparticle model with such D = 4 membrane states is not
clear now and can be regarded as an interesting subject for further study.
Here we should only guess that there should be some singular point–like
limit of supermembrane, which should keep the nontrivial topological charge
and increase the number of preserved (realized linearly) D = 4 target space
supersymmetries. Similar limiting prescription should be possible e.g., for 5–
branes in D = 10, 11 leading to the D = 10 and D = 11 superparticle actions
(3.4) with the relation (3.3) describing composite tensor charges.

At the end of the paper we proposed a generalized FS model for D > 4.
The straightforward generalization provides us with D = 10 massless super-
particle model preserving 15/16 supersymmetries and D = 11 superparti-
cle model with arbitrary, in general nonvanishing, mass generated dynami-
cally (Townsend 1992; Bergshoeff et al. 1992; Townsend 1997; Cederwall and
Townsend 1997; Cederwall and Westenberg 1998; Bergshoeff and Townsend
1998). The latter concerves 31/32 of the target space supersymmetries. Then
we introduce spinor harmonics and formulate massless D = 11 superparti-
cle model preserving 1/2, 17/32, 18/32, . . ., 31/32 supersymmetries depen-
dent on the rank of the Lagrange multiplier matrix P++

AB . The case with 1/2
corresponds to nondegenerate matrix P++

AB : det(P++
AB ) 6= 0. For the choice

P++
AB =∝ δAB , the dependence on central charge coordinates disappears and

we arrive at the twistor-like formulation of the usual massless D = 11 super-
particle proposed recently by Bergshoeff and Townsend.
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It should be also mentioned that the superparticle model invariant under
superPoincare symmetries with central charges can be obtained as a contrac-
tion limit of superparticle model defined on the orthosymplectic supergroup
manifolds. The D = 4 case (OSp(4|1) model) is now under consideration
(Bandos et al. in preparation).
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Abstract. The implementation of supersymmetry transformations by Hilbert
space operators is discussed in the framework of supersymmetric C∗–dynamical
systems. It is shown that the only states admitting such an implementation are
pure supersymmetric ground states or mixtures and elementary excitations thereof.
Faithful states, such as KMS–states, are never supersymmetric.

1 Introduction

Supersymmetry is an intriguing mathematical concept which has become a
basic ingredient in many branches of modern theoretical physics. In spite of its
still lacking physical evidence, its far–reaching theoretical implications uphold
the belief that supersymmetry plays a prominent role in the fundamental laws
of nature.

As for the theory of elementary particles, the possible manifestations of
unbroken supersymmetry have been fully clarified by Haag,  Lopuszanski and
Sohnius (Haag et al., 1975,  Lopuszański 1991). On the other hand it is known
that supersymmetry is inevitably broken in thermal states. As a matter of
fact, this breakdown is much stronger than that of internal bosonic symme-
tries: one may speak of a spontaneous collapse of supersymmetry (Buchholz
and Ojima 1997).

These facts seem to indicate that supersymmetry is only implementable
in states describing elementary systems. It is the aim of the present article to
clarify this point for general C∗–dynamical systems. Apart from supersymme-
try, the only ingredient in our analysis is the assumption that the dynamics is
asymptotically abelian (see below for precise definitions). So our framework
covers also non–local theories.

We shall show in the subsequent section that supersymmetric states are
always ground states. If these states are mixed (not pure), they can be decom-
posed into pure states which are also supersymmetric. At the other extreme,
faithful states (such as KMS–states) are never supersymmetric. States which
are not supersymmetric but still admit an implementation of the supersym-
metry transformations by Hilbert space operators coincide asymptotically
with supersymmetric ground states and may thus be regarded as excitations
thereof. The physical significance of these results is discussed in the conclu-
sions.

A. Borowiec et al. (Eds.): Proceedings 1998, LNP 539, pp. 211−220, 2000.
 Springer-Verlag Berlin Heidelberg 2000
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2 Implementations of Odd Derivations

We discuss in this section the consequences of unbroken supersymmetry. As
our results do not rely on a specific physical interpretation we present them
in the general mathematical setting of C∗–dynamical systems (Sakai 1991).

Definition: Let F = F+ ⊕ F− be a graded C ∗–algebra, let αt, t ∈ R, be
a group of automorphisms of F which respects the grading and let A ⊂ F
be the dense subalgebra of analytic elements with respect to the action of
α. The dynamical system (F , α) is said to be supersymmetric if the (skew
symmetric) generator of α

δ0
.= −i d

dtαt |t=0 (2.1)

can be represented in the form

δ0 = 1
2 (δ · δ + δ · δ) , (2.2)

where δ is a closable odd derivation which is defined on A and commutes
with α, and the associated linear map δ on A is fixed by

δ(F±) .= ∓ δ(F±∗)∗ (2.3)

for F± ∈ A±
.= A ∩ F±.

The even and odd parts F± of F may be interpreted as the Bose and Fermi
parts of some field algebra. There holds in particular F+ ·F− = F− ·F+ ⊂ F−
and F± ·F± ⊂ F+. We recall that an odd derivation is a densely defined linear
mapping which maps even operators into odd ones and vice versa, and which
satisfies the graded Leibniz rule

δ(F±G) = δ(F±)G± F± δ(G) (2.4)

for F± ∈ A± and G ∈ A. It is easily checked that δ is also an odd derivation.
Note that the right hand side of relation (2.2) always defines an even

derivation. Hence, given δ, one can determine a corresponding δ0 and if the
latter derivation is sufficiently well behaved it is the generator of a group
of automorphisms α satisfying relation (2.1) ((Sakai 1991 Ch. 3.4)). In this
sense the whole structure is fixed by δ. We turn now to the analysis of su-
persymmetric states.

Definition: A state ω on F is said to be supersymmetric if ω ·δ = 0.

The following result on the implementability of derivations in represen-
tations induced by symmetric states is well known in the even case (Sakai
1991). Its straightforward generalization to odd derivations is given here for
completeness.
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Lemma 2.1 Let ω be a supersymmetric state on F and let (π,H, Ω) be its
induced GNS–representation. The operator Q given by

Qπ(F )Ω .= π(δ(F ))Ω for F ∈ A (2.5)

is well defined and closable. Moreover, there holds on its domain π(A)Ω

π(δ(F±)) = Qπ(F±) ∓ π(F±)Q for F± ∈ A± . (2.6)

Proof: By relation (2.4) and the supersymmetry of ω there holds for any
F ∈ A and G± ∈ A±

(π(G±)Ω, π(δ(F ))Ω) = ω(G±∗ δ(F )) = ω(∓ δ(G±∗)F )
= (π(∓ δ(G±∗)∗)Ω, π(F )Ω)
= (π(δ(G±))Ω, π(F )Ω) . (2.7)

As in the case of even derivations one concludes from this equality that Q
is a well defined linear operator which is closable. In fact, its adjoint Q ∗ is
also defined on π(A)Ω and Q ∗ π(F )Ω = π(δ(F ))Ω, F ∈ A. The second
part of the statement follows from relations (2.4) and (2.5) after a routine
computation. 2

Next we show, by making use of arguments in (Buchholz and Ojima 1997),
that supersymmetric states are ground states with respect to the group α. If
they are mixed, all states appearing in their decomposition are also super-
symmetric.

Proposition 2.2 Let ω be a supersymmetric state on F . Then the group of
automorphisms α is implemented in the corresponding GNS–representation
(π,H, Ω) by a continuous unitary group U with positive generator and Ω
is invariant under the action of U . If ω is a mixed state, any component
(sub–ensemble) ω< appearing in its decomposition is also supersymmetric.

Proof: As ω · δ = 0 there holds ω · δ = 0, hence ω · δ0 = 0. It therefore follows
from standard arguments that αt, t ∈ R, is implemented by a continuous
unitary group U(t), t ∈ R, which leaves Ω invariant. Now for any σ, τ ∈ {±}
and Fσ ∈ Aσ, Gτ ∈ Aτ we have

δ(Fσ∗ δ(Gτ )) = δ (Fσ∗) δ(Gτ ) + σ Fσ
∗ (δ · δ (Gτ ))

= −σ δ (Fσ)∗ δ(Gτ ) + σ Fσ
∗ (δ · δ (Gτ )) , (2.8)

and consequently ω(Fσ∗ (δ ·δ (Gτ ))) = ω(δ(Fσ)∗ δ(Gτ )). By interchanging the
role of δ and δ we also get ω(Fσ∗ (δ · δ (Gτ ))) = ω(δ(Fσ)∗ δ(Gτ )). Since δ, δ
are linear we conclude that for F ∈ A

ω(F ∗δ0(F )) = 1
2 ω(F ∗(δ · δ (F ))) + 1

2 ω(F ∗(δ · δ (F )))

= 1
2 ω(δ(F )∗ δ(F )) + 1

2 ω(δ(F )∗ δ(F )) ≥ 0 , (2.9)
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proving that the generator of U is a positive selfadjoint operator ((Sakai 1991
Ch. 4.2)).

Next, if t 7→ f(t) is any absolutely integrable function whose Fourier
transform has support in R− and if F ∈ F we put αf (F ) .=

∫
dt f(t)αt(F ).

Since t 7→ αt(F ) is strongly continuous there holds αf (F ) ∈ F . It follows from
the preceding result that ω(αf (F )∗ αf (F )) = 0. Hence if ω< ≤ c · ω for some
positive constant c, there holds ω<(αf (F )∗ αf (F )) = 0 and consequently ω<

is also invariant under the action of α. Setting FT
.= T−1

T∫
0
dt αt(F ), F ∈ A,

we get ω<(δ(F )) = ω<(δ(F )T ) = ω<(δ(FT )) and making use of relation (2.9)
we obtain the inequality

|ω<(δ(F ))|2 = |ω<(δ(FT ))|2 ≤ ω<(δ(FT )∗ δ(FT ))
≤ c · ω(δ(FT )∗ δ(FT )) + c · ω(δ(FT )∗ δ(FT ))
= 2c · ω(F ∗

T δ0(FT )) . (2.10)

As δ0(FT ) = −iT−1(αT (F ) −F ), the right hand side of this inequality tends
to 0 as T → ∞ and the assertion follows. 2

The following proposition is a straightforward consequence of this result.

Proposition 2.3 If ω is a faithful state on F and δ 6= 0, there holds ω ·δ 6= 0.

Proof: If ω · δ = 0, it follows from the preceding proposition that for any
absolutely integrable function f whose Fourier transform has support in R−
and any F ∈ F there holds ω(αf (F )∗ αf (F )) = 0. Since ω is faithful this
implies αf (F ) = 0 and α f (F ∗) = αf (F )∗ = 0. As the Fourier transform of
the complex conjugate f of f has support in R+ and f, F are arbitrary we
arrive at αf (F ) = 0 whenever the Fourier transform of f does not contain
0 in its support. Hence αt(F ) = F for t ∈ R and consequently δ0 = 0.
Because of relation (2.9) this implies ω(δ(F )∗δ(F )) = 0 for all F ∈ A. But
this is incompatible with the assumption that ω is faithful and δ 6= 0. Hence
ω · δ 6= 0. 2

More can be said if there acts on F some group of automorphisms in an
asymptotically abelian manner. In order to simplify the discussion we assume
that α itself has this property and indicate below which of the subsequent
results hold more generally.

Definition: The group αt, t ∈ R, is said to act on F in an asymptotically
abelian manner (shortly: it is asymptotically abelian) if

||αt(F±)G± ∓ G± αt(F±)|| → 0 (2.11)

for F±, G± ∈ F± and |t| → ∞.

A well known consequence of asymptotic abelianess is the following result
on the asymptotic behaviour of averages of odd operators (Buchholz and
Ojima 1997, Narnhofer and Thirring 1994).
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Lemma 2.4 Let αt, t ∈ R, be asymptotically abelian. Then

lim
T→∞

||T−1

T∫
0

dt αt(F−)|| = 0 for F− ∈ F− . (2.12)

Proof: Since for F ∈ F there holds ||F ||2 = ||F ∗F || ≤ ||F ∗F + FF ∗|| we
obtain the estimate

||T−1

T∫
0

dt αt(F−)||2 ≤ ||T−2

T∫
0

dt

T∫
0

dt′ (αt(F−)∗αt′(F−) + αt′(F−)αt(F−)∗)||

≤ T−2

T∫
0

dt

T∫
−T

dt′ ||F−∗ αt′(F−) + αt′(F−)F−∗|| . (2.13)

According to relation (2.11) the norm under the integral on the right hand
side of this inequality tends to 0 if |t′| → ∞, so the statement follows. 2

With these preparations we can establish now more detailed information
on the representations induced by supersymmetric states. Our result relies
on familiar arguments in algebraic quantum field theory (Sakai 1991).

Proposition 2.5 Let the group αt, t ∈ R, be asymptotically abelian. If the
state ω is supersymmetric, the GNS–representation π of F induced by ω is
of type I. More specifically, the commutant π(F)′ of π(F) coincides with the
center of π(F)′′.

Proof: According to Proposition 2.2 the automorphisms α are implemented
in the GNS–representation (π,H, Ω) by a continuous unitary group U with
positive generator, and Ω is invariant under the action of U . Hence U(t) ∈
π(F)′′ for t ∈ R by a theorem of Araki ((Sakai 1991 Ch. 2.4)). Let E0 be
the projection onto the U–invariant subspace in H. The statement follows
if E0π(F)E0 can be shown to be a commutative family ((Sakai 1991 Prop.
2.4.11)). Now by the preceding Lemma there holds for F− ∈ F−

E0 π(F−)E0 = E0 π( T−1

T∫
0

dt αt(F−))E0 → 0 (2.14)

as T → ∞ and consequently E0 π(F−)E0 = 0. Similarly, if F+, G+ ∈ F+, we
obtain from relation (2.11) by standard arguments (mean ergodic theorem)

[E0 π(F+)E0, E0 π(G+)E0] = lim
T→∞

T−1

T∫
0

dtE0 π([F+, αt(G+)])E0 = 0 ,

(2.15)
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where the convergence is understood in the weak operator topology. 2

The preceding result and the second part of Proposition 2.2 imply that
any supersymmetric state is a pure supersymmetric ground state or a mix-
ture of such states. Hence supersymmetric states describe the most elemen-
tary systems of the theory. Next we analyze the class of states which are not
supersymmetric but still admit an implementation of supersymmetry trans-
formation by Hilbert space operators.

Definition: A state ω on F is said to be super–regular if δ is implementable
in its GNS–representation (π,H, Ω), i.e., if there is some densely defined,
closed operator Q on H such that there holds in the sense of sesquilinear
forms

π(δ(F±)) = Qπ(F±) ∓ π(F±)Q for F± ∈ A± . (2.16)

Note that it is not required that Ω is contained in the domain of Q.

In order to proceed we need the following technical result which seems of
interest in its own right. In its proof we apply similar arguments as in the
analysis of even derivations in (Buchholz et al. 1992).

Lemma 2.6 If ω is a super–regular state on F , there is for any ε > 0 a
constant cε such that for all F± ∈ A±

|ω(δ(F±))| ≤ cε(||π(F±)Ω||+ ||π(F±∗)Ω||)+ε(||δ(F±)||+ ||δ(F±)||) . (2.17)

Proof: We begin by recalling that if Q is a densely defined, closed operator
its adjoint Q∗ has the same property and the operators QQ∗ and Q∗Q are
selfadjoint and positive. From the equality

(Φ, π(δ(F±))Ψ) = ∓ (Ψ, π(δ(F±∗)Φ)) , (2.18)

where F± ∈ A± and Φ, Ψ are vectors in the domains ofQ andQ∗, respectively,
it follows that δ is also implementable and

δ(F±) = Q∗F± ∓ F±Q∗ (2.19)

in the sense of sesquilinear forms. Putting for η > 0

Lη
.= (1 + iη QQ∗)−1, Rη

.= (1 + iη Q∗Q)−1 (2.20)

it is clear that Lη, Rη as well as LηQ ⊂ (Q∗L∗
η)∗ and QRη are bounded

operators. Moreover, by making use of relations (2.16) and (2.19) one finds
after a straightforward computation that for F± ∈ A±

LηQπ(F±)∓π(F±)QRη = Lη π(δ(F±))Rη∓iη LηQπ(δ(F±))QRη . (2.21)

Now with the help of the spectral theorem one sees that the norms of the
vectors η1/2QRη Ω, η1/2 (LηQ)∗Ω, (1−Rη)Ω and (1−Lη)∗Ω tend to 0 as
η → 0. Thus by taking matrix elements of relation (2.21) in the state Ω and
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applying to the left hand side of the resulting equation the Cauchy–Schwarz
inequality one arrives at the statement. 2

We can now establish the following result about the asymptotic properties
of super–regular states.

Proposition 2.7 Let αt, t ∈ R, be asymptotically abelian. If ω is a super–
regular state on F , there holds (point-wise on A)

lim
T→∞

T−1

T∫
0

dt ωαt ·δ = 0 . (2.22)

In particular, all limit points of the net of states {T −1
T∫
0
dt ωαt}T>0 for T →

∞ are supersymmetric.

Proof: Because of Lemma 2.4 we have T −1
T∫
0
dt ωαt(F−) → 0 for F− ∈ F− and

T → ∞ and since δ is an odd derivation it follows that (2.22) holds on A+.

If F− ∈ A−, we put F−T

.= T−1
T∫
0
dt αt(F−) and obtain with the help of the

preceding lemma the estimate

| T−1

T∫
0

dt ωαt ·δ(F−)| = |ω ·δ(F−T
)|

≤ cε (||π(F−T
)Ω|| + ||π(F−T

∗)Ω||) + ε (||δ(F−T
)|| + ||δ(F−T

)||)

≤ 2cε ||F−T
|| + ε (||δ(F−)|| + ||δ(F−)||) , (2.23)

where, in the final step, we made use of the fact that δ and δ are linear
and of the triangle inequality. Applying Lemma 2.4 another time we see that
the first term on the right hand side of this inequality vanishes in the limit
T → ∞. Since ε > 0 is arbitrary the statement follows. 2

This result shows that if there exist in a theory super–regular states there
exist also supersymmetric ground states which asymptotically approximate
the regular ones. In particular, any α–invariant super–regular state is super-
symmetric.

In the proof of these results we made use of the assumption that α is
asymptotically abelian, but this condition can be relaxed. It suffices if there
is some group of automorphisms β which acts on F in an asymptotically
abelian manner and commutes with δ. If one replaces in the formulations of
Lemma 2.4 and Proposition 2.7 the group α by any such β, the resulting
statements hold as well.
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3 Conclusions

In the preceding analysis we have seen that the implementation of super-
symmetry transformations by Hilbert space operators can be accomplished
only in a very special class of states. We want to discuss here the physical
implications of this observation.

In order to fix ideas let us assume that we are dealing with a theory
with an asymptotically abelian time evolution which commutes with the su-
persymmetry transformation δ (yet it need not necessarily coincide with α).
There then emerges the following general picture from our results: According
to Proposition 2.3 no thermal state is symmetric with respect to the action
of δ, for thermal states are faithful as a consequence of the KMS–condition.
This holds therefore a fortiori for any mixture of such states. Furthermore,
the action of supersymmetry cannot be implemented by operators on the cor-
responding state spaces (thermal states are not super–regular). This follows
from Proposition 2.7, respectively its generalization mentioned at the end of
the preceding section, according to which any super–regular state which is
invariant under the time evolution is also supersymmetric. We may therefore
state:

(a) Thermal states and their mixtures are neither supersymmetric nor do they
admit the implementation of supersymmetries by Hilbert space operators.

The fact that one cannot restore supersymmetry in thermal states by pro-
ceeding to suitable mixtures was termed spontaneous collapse in (Buchholz
and Ojima 1997). Our present results are slightly more general than those in
the latter article since they hold without the assumption that the supersym-
metry transformation δ is related to the generator of the time evolution.

It is another intriguing consequence of Proposition 2.7 that all super–
regular states coincide at asymptotic times with stationary mixtures of su-
persymmetric states. The latter states in turn are, by Proposition 2.2 and 2.5,
mixtures of pure (and hence in their respective representations unique) super-
symmetric states which can be distinguished by central observables (macro-
scopic order parameters). This general result provides evidence to the effect
that the asymptotic limits of super–regular states are vacuum states.

In order to substantiate this idea let us consider the pertinent examples of
supersymmetry in particle physics ( Lopuszański 1991). There the generator
δ0 of the time evolution can be expressed, in any given Lorentz system, by
two odd derivations δ1, δ2 which commute with space and time translations,

δ0 = 1
4 (δ1 · δ1 + δ1 · δ1) + 1

4 (δ2 · δ2 + δ2 · δ2) . (3.1)

If the spatial translations act on the field algebra in an asymptotically abelian
manner (which is the case if this algebra is generated by local fields), it fol-
lows from Proposition 2.7, respectively its generalization, that all states which
are super–regular with respect to δ1 and δ2 coincide in asymptotic spacelike
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directions with supersymmetric states. The latter states are, by Proposi-
tion 2.2, ground states for the time evolution, and this holds in all Lorentz
frames (Buchholz and Ojima 1997). Hence these states are relativistic vacuum
states which can be decomposed into pure vacuum states. (The requirement
of asymptotic abelianess of the time evolution is not needed here (Sakai 1991
Ch. 2.4)). We can summarize these results as follows:

(b) States admitting the implementation of supersymmetry agree in spacelike
asymptotic regions with (mixtures of) pure supersymmetric vacuum states.

Hence in a supersymmetric theory all super–regular states are excitations of
vacuum states and therefore describe only elementary systems. More complex
systems do not admit an action of supersymmetry.

We are led by these results to the conclusion that supersymmetry is ex-
tremely vulnerable to thermal effects and there is no way of restoring the
broken symmetry by physical operations on the states. In contrast, such a
restoration can in general be accomplished quite easily in the case of bro-
ken bosonic symmetries: given a non–isotropic system such as a ferromagnet,
say, one can prepare a corresponding rotational invariant (mixed) state by
rotating the probe. As we have seen, there is no corresponding symmetry
enhancing operation in the case of supersymmetry.

In view of these facts one may wonder how supersymmetry manifests it-
self in complex physical systems, such as the presumed early supersymmetric
stages of the universe, where matter has been in a hot thermal imbroglio. It
may well be that the presence of supersymmetry at the microscopic level of
fields has no clearly visible consequences for such states. From the theoreti-
cal viewpoint this vulnerability of supersymmetry may be a virtue, however.
First, it could explain why it is so difficult to establish this symmetry ex-
perimentally, should it be present in nature. Second, it might be used to
distinguish in the theoretical setting preferred states by imposing supersym-
metry as a selection criterion.

Thinking for example of quantum field theory on curved space-time man-
ifolds which do not admit a global time evolution (future directed Killing
vector field), the notion of vacuum state becomes meaningless. But there
might still exist in such theories some distinguished odd derivation. One
could then characterize the preferred states and their corresponding folia by
demanding that they be symmetric with respect to its action. The results of
the preceding analysis would justify the view that such states describe the
most elementary systems of the theory.

This idea suggests the following mathematical question whose solution is
known in the case of even derivations (Sakai 1991 Prop. 3.2.18): Under which
conditions do there exist for an odd derivation on some graded C∗–algebra
states which are annihilated by it? We hope that the present results will
stimulate some interest in this problem.
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On Generalized Quantum Statistics
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Abstract. A generalization of quantum statistics suitable for the study of one–
dimensional models is presented. It is indicated that the essential structure for
such generalization is a cross symmetry instead of the braid one. The Fock space
representation is discussed. The problem of existence of the well–defined scalar
product is also considered.

1 Introduction

Recently the concept of generalized quantum statistics and related topics has
been under intensive study (Greenberg 1990, Greenberg 1991, Mohapatra
1990). The generalization of the notion of quantum statistics is motivated by
many different applications in quantum field theory and statistical physics
(Zee 1995, Jain 1989, 1990, Haldane 1981, Byczuk and Spalek 1995). It is
known that there is an approach to particle system with generalized statistics
based on the concept of the braid group Bn (Wu 1984, Imbo and March-
Russel 1990). In this attempt the configuration space for the system of n–
identical particles moving on a manifold M is Qn(M) = (M×n −D)/Sn,
where D is the subset of the Cartesian product M×n on which two or more
particles occupy the same position and Sn is the symmetric group. The group
π1 (Qn(M)) ≡ Bn(M) is known as the n–string braid group on M. There
is a group Σn(M) which is a subgroup of Bn(M) and it is an extension of
the symmetric group Sn describing the interchange process of two arbitrary
indistinguishable particles. It is obvious that the statistics of the given system
of particles is determined by the group Σn (Wu 1984, Imbo and March-Russel
1990). This picture breaks up in the one-dimensional case. The difficulty
arises with the proper definition of the group Σn(M), see (Jacak et al. 1995).
Hence in this case we need an other approach to the concept of generalized
statistics. In this paper we are going to describe a generalization of quantum
statistics which works also in the one–dimensional case.
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2 Fundamental Assumptions

The starting point for our study of generalized statistics is a system of charged
particles interacting with certain external quantum field. The proper physical
nature of the system is not essential for our considerations. Our fundamental
assumption is that every charged particle is transform under interactions
into a system which contains quasiparticles and quasiholes. A quasiparticle
is in fact the charged particle dressed with a single quantum of the external
field. A particle without quantum is called undressed or a quasihole. It is
natural to expect that some new excited states of the system have appear
as a result of certain specific interaction. We are going to describe all such
excited states as composition of quasiparticles and quasiholes. It is interesting
that quasiparticles and quasiholes have also their own statistics. We describe
the generalized statistics of a charged particle as the interchange statistics of
quasiparticles and quasiholes. We have here the following assumptions:

A0. There is a state |0 >= 1 called the ground one. There is also the
conjugate ground state < 0| ≡ 1∗.

A1. There is an ordered (finite) set of single quasiparticle states

S := {xi : i = 1, . . . , N < ∞} . (1)

These states are said to be elementary, they represent elementary excitations
of the system. The set S forms a basis for a linear space E over a field of
complex numbers C.

A2. There is also a corresponding set of single quasihole states

S∗ := {x∗i : i = N,N − 1, . . . , 1} . (2)

These states are said to be conjugated. The set S∗ of conjugate states forms
a basis for the complex conjugate space E∗.

A3. The pairing (.|.) : E∗⊗E −→ C and the corresponding scalar product
is given by

gE(x∗i ⊗ xj) ≡ (x∗i|xj) = 〈xi|xj〉 := δij . (3)
A4. There is a linear, invertible and Hermitian operator T : E∗ ⊗ E −→

E ⊗ E∗
T (x∗i ⊗ xj) = Σ T ijklx

k ⊗ x∗l (4)
called a cross. The operator T describes the interchange statistics of quasi-
particles and quasiholes.

A5. There is a pair of algebras A and A∗ such that

A :=
⊕
n

An, A∗ :=
⊕
n

A∗n . (5)

and there is an antilinear and involutive isomorphism (−)∗ : A −→ A∗, i. e.
we have the relations

mA∗(b∗ ⊗ a∗) = (mA(a⊗ b))∗, (a∗)∗ = a , (6)

where a, b ∈ A and a∗, b∗ are their images under the isomorphism (−)∗. The
algebra A∗ is said to be the conjugated algebra of A.
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3 Hermitian Wick Algebras

Let A∗ be the conjugate algebra of A. A linear mapping Ψ : A∗⊗A −→ A⊗A∗

such that

Ψ |E∗⊗E = T + gE , (7)

and we have the following relations (Cap et al. 1995)

Ψ ◦ (idA∗ ⊗mA) = (mA ⊗ idA∗) ◦ (idA ⊗ Ψ) ◦ (Ψ ⊗ idA),
Ψ ◦ (mA∗ ⊗ idA) = (idA ⊗mA∗) ◦ (Ψ ⊗ idA∗) ◦ (idA∗ ⊗ Ψ) (8)

is said to be a cross symmetry or generalized twist. We use here the notation

Ψ(b∗ ⊗ a) = Σa(1) ⊗ b∗(2) (9)

for a ∈ A, b∗ ∈ A∗. The tensor product A ⊗ A∗ equipped with the multipli-
cation

mΨ := (mA ⊗mA∗) ◦ (idA ⊗ Ψ ⊗ idA∗) (10)

is an associative algebra called a Hermitian Wick algebra (Jorgensen et al.
1995, Borowiec and Marcinek in preparation) and it is denoted by W =
WΨ (A) = A>�ΨA∗. Let H be a linear space. We denote by L(H) the algebra
of linear operators acting on H.

Let W ≡ A>�ΨA∗ be a Hermitian Wick algebra. If πA : A −→ L(H) is
a representation of the algebra A, such that we have the relation

(πA(b))∗πA(a) = ΣπA(a(1))πA∗(b∗(2)) ,
πA∗(a∗) := (πA(a))∗ ,

(11)

then there is a representation πW : W −→ L(H) of the algebra W (Borowiec
and Marcinek in preparation).

The relations (11) are said to be a commutation relation if there is a
positive definite scalar product on A such that

〈πA∗(x∗)f |g〉 = 〈f |πA(x)g〉 . (12)

Note that if we use the notation

πA(xi) ≡ a+
xi , πA∗(x∗i) ≡ ax∗i , (13)

and the cross T is given by its matrix elements (4), then the commutation
relations (11) can be given in the following form

ax∗ia+
xj − T ijkl a

+
xlax∗k = δij1 . (14)
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4 Fock Space Representation

We have here an interest in the study of Fock representation. In this case the
representation act on the algebra A. For the ground state and annihilation
operators we assume that

〈0|0〉 = 0, as∗ |0〉 = 0 for s∗ ∈ A∗ . (15)

We define creation operators as multiplication in the algebra A
a+
s t := mA(s⊗ t), for s, t ∈ A . (16)

The proper definition of the action of annihilation operators on the whole
algebra A is a problem. If the action a of annihilation operators are given
in such a way that there is unique, nondegenerate, positive definite scalar
product, creation operators are adjoint to annihilation ones and vice versa,
then we say that we have the well–defined Fock representation for a system
with generalized quantum statistics (Marcinek 1998).

Example 1. We assume here that the algebra of states A is the full tensor
algebra TE over the space E, and the conjugate algebra A∗ is identical with
the tensor algebra TE∗. If T ≡ 0 then we obtain the most simple example
of well–defined system with generalized statistics. The corresponding statis-
tics is the so–called infinite (Bolzman) statistics (Greenberg 1990, Greenberg
1991, Marcinek 1998).

Example 2 Let T : E∗ ⊗ E −→ E ⊗ E∗ be an arbitrary cross. Then there is
the cross symmetry ΨT : TE∗ ⊗ TE −→ TE ⊗ E∗. It is defined by a set of
mappings Ψk,l : E∗⊗k ⊗ E⊗k −→ E⊗l ⊗ E∗⊗k, where Ψ1,1 ≡ R := T + gE ,
and

Ψ1,l := R
(l)
l ◦ . . . ◦R(1)

l ,
Ψk,l := (Ψ1,l)(1) ◦ . . . ◦ (Ψ1,l)(k) ,

(17)

here R(i)
l : E(i)

l −→ E
(i+1)
l , E(i)

l := E ⊗ . . .⊗E∗ ⊗E ⊗ . . .⊗E (l+ 1-factors,
E∗ on the i-th place, i ≤ l) is given by the relation

R
(i)
l := idE ⊗ . . .⊗R⊗ . . .⊗ idE︸ ︷︷ ︸

l times

,

where R is on the i-th place, (Ψ1,l)(i) is defined in similar way like R(i). We
also introduce the operator T̃ : E ⊗ E −→ E ⊗ E by its matrix elements

(T̃ )ijkl = T kilj . (18)

If the operator T̃ is a bounded operator acting on some Hilbert space such
that we have the following Yang-Baxter equation on E ⊗ E ⊗ E

(T̃ ⊗ idE) ◦ (idE ⊗ T̃ ) ◦ (T̃ ⊗ idE) = (idE ⊗ T̃ ) ◦ (T̃ ⊗ idE) ◦ (idE ⊗ T̃ ) , (19)
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and ||T̃ || ≤ 1, then according to Bożejko and Speicher (Bożejko and Spe-
icher 1994) there is a positive definite scalar product. Note that the existence
of nontrivial kernel of operator P2 ≡ idE⊗E + T̃ is essential for the nonde-
generacy of the scalar product (Jorgensen et al. 1995). One can see that if
this kernel is trivial, then we obtain the well–defined system with generalized
statistics (Marcinek and Ra lowski 1995, Ra lowski 1997).

Example 3: If the kernel of P2 is nontrivial, then the scalar product is de-
generate. Hence we must remove this degeneracy by factoring the mentioned
above scalar product by the kernel. In this case we have A := TE/I, A∗ :=
TE∗/I∗, where I is an ideal in TE such that

ΨT (A∗ ⊗ I) ⊂ I ⊗ A∗ , P2(N) = 0, I := gen(N) , N ⊂ E ⊗ E (20)

and I∗ is the corresponding ideal in TE∗. One can see that there is the cross
symmetry and the action of annihilation operators can be defined in such a
way that we obtain that the system with generalized statistics is well–defined
(Marcinek and Ra lowski 1995, Ra lowski 1997).

Example 4: If a linear and invertible operator B : E ⊗ E −→ E ⊗ E defined
by its matrix elements B(xi ⊗ xj) := Bijkl(x

k ⊗ xl) is given such that we have
the following conditions

B(1)B(2)B(1) = B(2)B(1)B(2) ,

B(1)T (2)T (1) = T (2)T (1)B(2) ,

(idE⊗E + T̃ )(idE⊗E −B) = 0 ,

(21)

then I := gen{idE⊗E −B} and one can prove that the corresponding system
is well defined (Marcinek and Ra lowski 1995, Ra lowski 1997).
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We have asked how the Heisenberg relations of space and time change if
we replace the Lorentz group by a q-deformed Lorentz group (Lorek et al.
1997).

By the Heisenberg relations we mean:

XaXb = XbXa ,

P aP b = P bP a , (1)

XaP b = P bXa + iηab .

The indices a, b run from 0 to 3, 0 being the time component, ηab is the
Lorentz metric. This relation is covariant under the Lorentz group, Xa and
P a are four vectors, that is representations or equivalently modules of the
Lorentz group.

The relations are compatible with an involution

Xa = Xa , P b = P b . (2)

Dividing the free algebra generated by Xa, P b by the ideal generated by
the relations (1) we obtain an algebra.

We can consider this setup as the definition of a relativistic kinematics in
the following sense:

To make contact with physics - nature, this should be - we have to produce
real numbers. It is only via real numbers that nature talks to us. A natural
way to produce real numbers from an algebra is to study its representations
in terms of matrices or linear operators in a Hilbert space over the field of
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complex numbers. In such a representation we shall impose that the involu-
tion is represented by the conjugation of the respective linear operators. If we
then succeed in realizing the algebraic selfadjointness by the selfadjointness
of linear operators in the Hilbert space we know that the spectrum of such
operators is real. Thus we can follow the rules of quantum mechanics and
identify the eigenvalues of a selfadjoint operator with the possible results of a
measurement. In this way we can satisfy the demands of a physicist to relate
the algebraic scheme to measurements.

It is desirable, however, also from the point of view of a mathematician
to study representations in a Hilbert space - this adds topological properties
to the purely algebraic ones.

Following this approach we would find that the spectrum of the operator
Xa (or P a) is continuous, and by identifying Xa with the coordinates of our
system we would learn that we live in a fourdimensional Minkowski manifold.
Minkowski refers to the Lorentz metric ηab.

We are going to generalize to an algebra where the Lorentz group is
replaced by a q-deformed Lorentz group. Why? Just generalizing the algebra
without additional assumptions would leave the game too open, we could
not do much. Usually we consider the algebra (1) based on a geometrical
construction on a differentiable manifold and change the manifold. Here we
would like to give the priority to the algebra. Furthermore we try to keep
as much algebraic structure as possible - all that can be done explicitly is
usually based on some algebra. This is the experience of a physicist who is
always trying to do as much as possible explicitly. The q-deformed Lorentz
group lends itself quite naturally because we can use an enormous amount
of mathematical knowledge that has been gathered within the last twenty
years. In addition it has the property that it contains the Lorentz group as
a special case. We shall consider real q 6= 0 and we know that for q = 1 we
should obtain the known case.

Let’s follow this strategy to find out how physics changes if we change the
underlying algebraic relation (1).

We use textbook knowledge to deform the Lorentz group. We also use
textbook knowledge for constructing comodules that we identify with coordi-
nates and momenta. On these comodules we impose algebraic relations that
ought to be compatible with the comodule property. But it also has to allow
an involution. Finally, we impose one more condition concerning the size of
the algebra, it should be the same as the size of the undeformed algebra. For
a physicist this means that there are no new relations generated. The ordered
monomials of the coordinates should remain a basis for the algebra of coor-
dinates. Any new relation would restrict the results of measurements of what
we would like to be independent observables. Mathematically we will refer
to this condition as the Poincaré-Birkhoff-Witt property. Technically this is
closely related to the Yang-Baxter equation, thus we should not be surprised
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that an R̂-Matrix enters the definition of the algebra. This is a matrix with
complex entries that satisfies the quantum Yang-Baxter equation.

As a result of these conditions we find a quite unique algebra.

X0Xc = XcX0 , (3)

εqCB
AXBXC = (1 − q2)X0XA .

The indices A, B, C run from 1 to 3, X0 is the time coordinate. As was
stated before, q is a real number (q 6= 0). The q-deformed ε-symbol is the
q-deformed Clebsch-Gordon coefficient that combines two threedimensional
representations of the q-deformed rotation group (SOq(3)) to a threedimen-
sional representation again. These q-Clebsch-Gordan coefficients are textbook
knowledge. To give an impression of what they look like we write (3) expli-
citly:

X3X+ − q2X+X3 = (1 − q2)X0X+ ,

X−X3 − q2X3X− = (1 − q2)X0X− , (4)

qX−X+ − qX+X− + (1 − q2)X3X3 = (1 − q2)X0X3 .

As coordinates we use X+ and X−, these are deformations of X1 ± X−

and they occur naturally if we use textbook knowledge on q-deformed groups.
Equation (4) shows that our space has become noncommutative - some-

thing we have the intention to study anyhow.
For the momenta we get the same relations. Coordinates and momenta

have the same comodule structure.
The Heisenberg algebra changes as well.

P aXb − q−2R̂−1
II

ab
cdX

cP d

= − i

2
Λ− 1

2
{
(1 + q4)ηabU + q2(1 − q4)V ab

q

}
.

(5)

The indices a, b etc. now run from 0 to 3. As promised there enters an
R̂ matrix of the q-Lorentz group. It is a 16 by 16 matrix that satisfies the
Yang-Baxter equation. The metric ηab is the Clebsch-Gordan coefficient that
combines two q-deformed four vectors to a scalar

ηabX
aY b = X3Y 3 − qX+Y − +

1
q
X−Y + − X0Y 0 . (6)

For real q it is quite generally true that the representations of the q-
deformed groups have the same pattern of decomposing the product of
two representations into irreducible representations. The respective Clebsch-
Gordan coefficients become q-dependent.
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At the right hand side of (5) appear new operators, V ab
q , U and Λ− 1

2 .
V ab

q are the q-deformed generators of the q-Lorentz algebra. They are in
the six-dimensional q-antisymmetric representation of the q-Lorentz group.
The operator U is related to the Casimir operator of the q-Lorentz group. It
becomes one (U → 1) for q → 1.

The additional operator Λ− 1
2 is a scaling operator:

Λ− 1
2 Xa = qXaΛ− 1

2 ,

Λ− 1
2 P a = q−1P aΛ− 1

2 , (7)

Λ− 1
2 U = UΛ− 1

2 ,

Λ− 1
2 V ab

q = V ab
q Λ− 1

2 .

Without this operator an algebra with q-commutators would be very re-
strictive. An example should illustrate this:

XP − qPX = iH . (8)

If all the quantities are hermitean it would follow that

PX − qXP = −iH , (9)

or

(1 − q2)XP = i(1 − q)H , PX + XP = 0 . (10)

To avoid this the right hand side cannot depend on hermitean operators
only. Bearing in mind that operators can usually be written as a product of
unitary operators times hermitean operators we have introduced the operator
Λ− 1

2 .
The algebras (4) and (5) are consistent with the conjugation property:

X0 = X0 , X3 = X3 , X+ = −qX− , X− = −1
q
X+ , (11)

the same for the momenta and

Λ− 1
2 = q−4Λ

1
2 , (12)

U = U .

The generators V ab
q have the usual conjugation property of the q-Lorentz

algebra generators.
This is the legend to the equation (5). It should be noted that the q-

Heisenberg algebra does not decompose into an algebraic relation involving
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X and P only and a relation defining the generators of the Lorentz algebra
in terms of ordered X, P polynomials as we are used to in the case q = 1.

Now we would like to study a world that is based on the algebra defined
by (3), (5) and (6) as well as by the defining relations of the q-Lorentz group
and the comodule structure of X0 and P a. The first step is to construct
Hilbert space representations where coordinates and momenta are selfadjoint
linear operators. This was done in a work with B.L. Cerchiai (Cerchiai and
Wess 1998) - let me here state the results.

A complete set of commuting observables is

X0 , r2 = gABXBXA = X3X3−qX+X−−1
q
X−X+ , L2

q and Lq,3 . (13)

X0 is the time, r2 the three-dimensional radius, Lq,3 the third component
of this q-deformed angular momentum and L2

q the Casimir operator for this
angular momentum. This would be a complete set for q = 1 and remains a
complete set in the deformed case. Its eigenvalues are sufficient to label all
the states in the representation.

As we insist in representations where X0 and r2 are selfadjoint we can
assume them to be diagonal and compute the spectrum from the algebra.

We find three types of representations. The first are of the timelike nature.
This means that the q-Lorentz invariant length

s2 = ηqabX
aXb = X0X0 − gabX

BXA (14)

has positive eigenvalues.
There are representations forward timelike, i.e., the eigenvalues of X0 are

positive as well. There is one parameter τ0, 1 ≤ τ0 < q if q is assumed to
be larger than one, that labels inequivalent representations of the timelike
forward representations. It is related to a Casimir and carries the dimension
time. The eigenvalues of X0 and r2 are labeled by two integers n, M where

M = −∞ . . .∞ , n = 0 , . . .∞

X0 : τ0q
M qn+1 + q−n−1

q +
1
q

,

r2 : τ2
0 q2M (qn+2 − q−n−2)(qn − q−n)

(q +
1
q
)2

.

(15)

The eigenvalue of the angular momentum is restricted by 0 ≤ j ≤ n.
The timelike backward (eigenvalue of the time negative) can be obtained

from (15) by replacing τ0 by −τ0.
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There also are the spacelike representations. s2 has negative eigenvalues.
They are also characterized by a parameter l0, this time carrying the dimen-
sion of a length. The eigenvalues are again labeled by two integers n, M but
this time

M = −∞ . . .∞ , n = −∞ . . .∞
and l is not restricted.
We found:

X0 : l0q
M qn − q−n

q +
1
q

,

r2 : l20q
2M (qn+1 − q−n−1)(qn−1 − q−n+1)

(q +
1
q
)2

.

(16)

What is characteristic for the spectrum is that the eigenvalues are of the
form of polynomials in qM , q±n.

There is no lightlike representation but the light cone (s2 = 0) is full of
limit points of all the representations.

That timelike and spacelike regions should carry independent representa-
tions of the algebra appears to be a strange situation. Having a closer look
at these representations, that is trying to diagonalize the momenta instead
of the coordinates we realize that this is impossible. The momenta have an
overcomplete set of eigenvectors with eigenvalues that are complex as well.
This clearly shows that the representations of P a are symmetric but not sel-
fadjoint. Symmetric means that the matrix elements have the property of
hermitean operators. Selfadjointness is a question of domain and range of the
operators.

We can construct selfadjoint extensions of the individual representations.
These extensions will not satisfy the algebra.

It is, however, possible to consider reducible representations composed
of a spacelike as well as a timelike forward and timelike backward represen-
tation and they will allow a selfadjoint extension of the operators P a that
satisfies the algebra. For a physicist this is somehow similar to the situation
that arises with field theoretic anomalies. We have to put together several
representations to cancel the anomalies.

The requirement that a selfadjoint operator P 0 should represent the mo-
mentum in the algebra tells us that we need a past, a future and spacelike
distances. This situation is best illustrated by the Figure 1.

The time t and the three-dimensional radius r are plotted. The points
represent the results of an exact measurement of space and time. Each point
represents a sphere defined by measuring angular momentum (q-deformed).
In the lightlike region the quantum number for angular momentum l is re-
stricted by l ≤ n where n counts points on the clearly visible hyperbolas
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Fig. 1. Admissible values of t versus those of r for q = 1.1 and t0 = 1.

starting at r = 0. The hyperbolas are labeled by the quantum number M . In
the spacelike region there is no limit on l.

Looking at Fig. 1 we realize that this space-time concept is clearly in
contradiction with what we know of larger distances in space time, that is
larger than 10−19 cm. It could, however, be that it approximates a space time
structure at very short distances, i.e., at very high energies and for a very
short period of time. This could be thought of by assuming that space time
exists in different phases - the continuous phase at larger distances and normal
(that is quite low) energy density as we know it and a latticized phase at very
high energy densities. Describing states of this very high density it might be
a better approximation to start from the lattice sphase as represented in Fig.
1, then from the continuous phase.
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It should be clear that up to now we have not spoken about any dynamics
- all we have done is “quantize” the underlying space time structure.

A dynamics can be introduced by a q-deformed Klein-Gordon equation.
That is, we have to solve the eigenvalue problem associated with the operator
gabP

bP a = P 2. This is done by diagonalizing the respective momenta. The
eigenfunctions are known and it is not surprising that in a particlelike region
of the momenta the eigenvalues of P 2 are discrete and have the form:

P 2 :
1
l̃20

q2M̃ M̃ = −∞ . . .∞ . (17)

The eigenvalues at M → −∞ are clearly not representing a reasonable
physical system. It is, however, possible to calculate the size of the corre-
sponding wave packets - it increases very fast for small energies. If the size
becomes larger than the size of the system where the lattice is a good ap-
proximation the eigenvalues have no physical significance - the system would
change its phase. For large energies the wave packets become smaller and
smaller - an exponentially growing energy spectrum is not in clear contradic-
tion with what we know about physical systems.

This is just to encourage further research on quantum group guided sy-
stems - we might learn not only about mathematically interesting structures
but also about physical features that are connected with a noncommutative
space time structure.
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Abstract. The second Newton law is encoded into a completely not integrable
Pfaffian system (an ideal) of the differential forms. The aim of this note is to
motivate and present a new inverse problem for this Pfaffian system. A new notion of
the descendant differential two-form for an exterior differential system is introduced
and the set of all descendant forms for the Newton law is determined. The maximal
de Rham sub-complex on which the descendant differential form is closed generalize
the Hamilton and the Lagrange formalisms.

1 Introduction

An inverse problem reverses an order convenient for physicists: given a La-
grangian (a field of densities) to find it’s Euler & Lagrange equation (a vec-
tor field). In the inverse problem the order is phenomenological, seems more
natural — the equation of the motion (i.e., a vector field) is the primary ob-
ject, what we try to find is the Lagrangian (Santilli 1978), (Oziewicz 1982),
(Oziewicz 1985), (Della Riccia 1982), (Marmo et al. 1990), (Cis lo et al. 1995).

In this note we give a sketch of a new inverse problem for the second
Newton law. Closely related ideas has been considered by de León & Lacomba
(de León and Lacomba 1988), (de León and Lacomba 1989).

By equation of the motion we understand a Pfaffian system or - equiva-
lently - it’s annihilator, the Cauchy characteristic distribution. Our consid-
erations are algebraic. What we need to formulate the problem is

[(i)] an associative, unital and commutative R-algebra F , e.g., R-algebra of
R-valued smooth functions on R ×TT ∗Q. An R-algebra needs to include
(or be generated by) time (the proper time), positions, velocities, mo-
menta and forces denoted respectively by the letters (n = dimQ ∈ N is
the number of degrees of freedom)

i = 1, . . . , n; t, qi, vi, pi, fi ∈ F . (1)

[(ii)] an F-module M of differential one forms and de Rham F-complex

dimF M = 4n+ 1, M∧ ≡
⊕
i≥0

M∧i with M∧0 ≡ F , M∧1 ≡ M.

(2)

A. Borowiec et al. (Eds.): Proceedings 1998, LNP 539, pp. 237−244, 2000.
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The time-dependent Hamiltonian formalism is a symplectic form σ (on
R×T ∗Q) which is a closed and regular differential two-form. It is the calculus
of variations that needs in mechanics a closed differential two-form (Oziewicz
1992). The name ‘symplectic’ is reserved usually for even-dimensional man-
ifolds, so we should use the name ‘pre-symplectic’ - however for brevity we
will use here the shorter name. The kernel kerσ is a one dimensional distri-
bution of the vector fields, and this distribution is an annihilator of a Pfaffian
system (an equation of the motion). In this usual case the Pfaffian system is
of a dimension 2n and of a codimension 1, due to the fact that we work with
the F-module of the differential one-forms generated by 2n + 1 differentials
dt, dqi, dpi. The velocities and forces are defined in terms of the Hamiltonian
function. Such system is completely integrable. For more details see, e.g.,
(Kocik 1981), (Oziewicz 1985), (Borowiec & Oziewicz 1990).

In the present note we impose no relations between letters (1). The Pfaf-
fian system encoding the second Newton law is again 2n-dimensional, but
its codimension is 2n + 1 and it is completely not integrable. We demand
the Cauchy characteristic distribution to be the kernel of a differential two
form, a generalized analogon of the symplectic form. Such two-form is called
descendant for this Pfaffian system. For a Pfaffian system we will find all de-
scendant two-forms (Definition 2.1). The descendant two-form exists only for
the even-dimensional Pfaffian systems. The choice of the descendant differen-
tial two-form is not unique – this is contrary to the unique choice ‘β’ (3) given
by de León & Lacomba (de León and Lacomba 1988), (de León and Lacomba
1989). One would ask whether within the set of all descendant forms for the
Newton law there exists a subset of the closed forms. We prove that within
this set of all descendent differential forms there are no closed forms. This is
an obstacle if we would like to develop the analogy to symplectic form further
on. In this point there arises naturally a need of defining a formalism (Defini-
tion 4.1), i.e., an epimorphism of the differential graded algebras which maps
de Rham complex onto the sub-complex, generated by the smaller number
of letters, with the smaller dimension of the module of differential one-forms
and with the condition that this is the largest sub-complex on which the
image of the descendant form under this epimorphism is a closed differential
form. In this way we come back to the known Lagrangian and Hamiltonian
formalisms as to the images of the solutions of the equation on epimorphisms.

De León and Lacomba (de León and Lacomba 1988), (de León and La-
comba 1989) are starting from the given Lagrangian or Hamiltonian scalar
fields, i.e., functions and not from the densities, and then they are showing
that these functions determine the Lagrangian submanifolds of the symplec-
tic manifold T ∗T (R ×Q) ' TT ∗(R ×Q). This approach is exactly the same
as the Hamilton & Jacobi theory. Hamilton discovered in 1834 that the in-
tegration of a Hamiltonian vector field (a Pfaffian system) can be reduced
to the determination of the Hamilton two-point ‘principal (or characteristic)’
function S on the Lagrangian sub-manifold ` of the symplectic manifold T ∗Q.
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Hamilton concluded incorrectly that a function S must satisfy the set of the
two partial differential equations (of the first order). Jacobi in 1838 pointed
out that only one of these equations is needed: for the given differential one
form α (e.g., for the Liouville differential one-form) this equation is dS = `α.
This equation (for the Lagrangian submanifold ` in fact) is said to be the
Hamilton & Jacobi equation. De León and Lacomba define the Liouville - like
differential one-form on T ∗T (R ×Q) ' TT ∗(R ×Q) (de León and Lacomba
1989 p. 3810),

β ≡ fidq
i − vidpi, α ≡ fidq

i + pidv
i dα = dβ, β∧2n 6= 0. (3)

Then the Hamilton & Jacobi equations for two Lagrangian submanifolds are
(de León and Lacomba 1988), (de León and Lacomba 1989),

`dβ = 0, −dH = hβ, and dL = `α.

In this note, contrary to the canonical approach by de León & Lacomba,
we start from not symplectic case corresponding to completely not integrable
Pfaffian system. Then our phenomenological descendant differential two form
Ω is not closed, dΩ 6= 0, Ω∧n 6= 0. Instead of the de León & Lacomba equation
for zero form (for a scalar functions H or L), our Hamilton & Jacobi like
equation is an equation on the formalism, i.e., on the differential Poincaré &
Cartan one form α (Definition 4.1),

dα = `Ω, Ω ' dpi ∧ dqi + β ∧ dt, dΩ ' dβ ∧ dt.
Therefore our approach can be coined as the higher grade generalization of the
Hamilton & Jacobi equation, in our case in mechanics grade α = 1, whereas
originally grade S = 0. The canonical approach of de León & Lacomba seems
to show that the Lagrangian formalism and the Hamiltonian formalism are
the only possibilities. In our (not canonical) approach there is room for other
(mixed) possibilities and we are interested in all other formalisms besides
the Lagrangian and Hamiltonian formalisms. However both approaches are
strongly related.

Extended version of this approach including proofs of theorems and ex-
amples beyond of the known Lagrangian and of the Hamiltonian formalisms,
with the mixed formalism among other, will be published elsewhere.

2 Newtonian System and Descendant Differential Form

In this section we give the definition of the special kind of Pfaffian system —
the Newtonian system.

For introduction to exterior differential systems we refer to excellent
monographs (Cartan 1946), (Ślebodziński 1959, 1970), (Choquet-Bruhat et
al. 1977), (Griffiths 1983), (Bryant et al. 1991), (Yang 1992). In the table on
the next page we introduce the notation we use throughout this paper.
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Some notation

F is an associative, unital and commutative R-algebra.
M is a finite dimensional F-module of the differential

one-forms.
M∧ is a differential associative and unital graded F-algebra

of the differential forms, i.e., de Rham complex, with
M∧0 ≡ F and M∧1 ≡ M.

M∗ ≡ modF (M,F) ≡ FM is a dual F-module, M∗∗ ' M.
i|M∗ ∈ derF (M∧) is a graded derivation.
D < M∗ is called a distribution (following Chevalley).
D⊥ ≡ annD < M such that D⊥D = 0 ∈ F ,

and dimD = codimD⊥

N (1) < M is a maximal sub-F-module such that dN (1) ⊂ IN

Let N < M be sub-F-module of the differential one-forms. N generates
a two-sided ideal IN , called a Pfaffian differential system. We do not assume
that it is closed, nor that its integral elements are integrable.

Lemma 2.1 Let N < M be a Pfaffian system. Then

codimN = 1 =⇒ N (1) = N.

Definition 2.2 A sub-F-module N < M of the differential forms is said to
be the Newtonian system if the following two conditions hold

(i) The first derived system is zero: N (1) = 0,
(ii) codimN = 1 + dimN = odd.

Let dimF N = 2n. From (ii) it follows that dimF M = 4n+ 1.
The most important fact for us is that for the Newtonian system N (Def-

inition 2.2) the only closed two-form in N∧2 is the zero two-form.

Theorem 2.3 Let N < M, N (1) = 0 and Ω ∈ N∧2. Then

dΩ = 0 ⇐⇒ Ω = 0.

Definition 2.4 (Descendant differential form) A differential two-form
Ω ∈ M∧2 is said to be descendant for the Pfaffian differential system N < M
if Ω is such that

kerΩ = N⊥.

Lemma 2.5 Let N < M, dimF N = 2n be a Pfaffian system. The necessary
and sufficient conditions that Ω ∈ M∧2 is descendant for N are that

Ω ∈ N∧2 and Ωn 6= 0 ∈ N∧ dimN .
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3 The Second Newton’s Law as a Pfaffian System
and Its Descendant Differential Form

Let F be an associative, commutative R-algebra possessing 4n + 1 letters
(1) and let the F-module M of the differential one-forms be of F-dimension
4n + 1. The R-algebra F and M generate the differential graded F-algebra
(de Rham F-complex) M∧ (2). Following to Newton (Newton 1686, 1990)
let

ωi ≡ dpi − fidt, ϑi ≡ dqi − vidt ∈ M,

M > N ≡ spanF{ωi, ϑi}, dimF N = 2n, codimFN = 2n+ 1. (4)

Sub-F-module N is a Pfaffian system and its first derived system is zero.
It is therefore, according to Definition 3.2, the Newtonian sub-F-module.
The differential one forms ωi, ϑi are formally analogous to the Lie contact
forms on a jet manifold J1(R×T ∗Q) or better on the manifold (de León and
Lacomba 1988), (de León and Lacomba 1989)

R × TT ∗Q ' R × T ∗TQ.

We need a descendant differential two-form Ω for the Newtonian system
N (4), that is such two-form Ω that kerΩ = N⊥.

We will use the following notation.

Kj
i ≡ Ω(∂pj

∧ ∂qi) ∈ F , K ≡ {Kj
i },

Γij ≡ Ω(∂qi ∧ ∂qj ) ∈ F , Γ ≡ {Γij},
χij ≡ Ω(∂pi

∧ ∂pj
) ∈ F , χ ≡ {χij},

Theorem 3.1 A differential two-form Ω ∈ N∧2 has the general form,

Ω = Ki
j · ωi ∧ ϑj + 1

2Γij · ϑi ∧ ϑj + 1
2χ

ij · ωi ∧ ωj , (5)

and is descendant differential form for the Newton law (4) iff

F 3 det
(

Γ K
−KT χ

)
6= 0. (6)

In particular if β ≡ fidq
i − vidpi is the differential one form on TT ∗Q

introduced by de León & Lacomba (de León and Lacomba 1989 p. 3810),
then

ωi ∧ ϑj = dpi ∧ dqi + β ∧ dt and d(ωi ∧ ϑj) = dβ ∧ dt.
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4 Formalism

If Ω is a homogeneous differential multi-form (of any grade) and c is a mor-
phism of the differential graded F-algebras then the equations cdΩ = 0 and
cΩ = dα are said to be the Hamilton & Jacobi (like) equation for c (for the
given Ω).

The descendant two-forms for the Newton law are, according to the previ-
ous sections, not closed. It explains the necessity of defining a formalism. We
need a Pfaffian system as, e.g., in (Kocik 1981), (Griffiths 1983), (Oziewicz
1985), (Borowiec & Oziewicz 1990) of even dimension 2n and its descendant
form σ with dσ = 0 and σn 6= 0. It means that σ is symplectic. The classical
determinism demands that dim kerσ = 1. It follows that the codimension of
the Pfaffian system is one, so it must be a sub-F-module of a F-module of
dimension 2n+ 1, and it also means that it is completely integrable, Lemma
2.1.

In what follows we need a pair of R-algebras, F and A, and a F-module
M and A-module A.

For the given descendant two-form we are looking for an exact split se-
quence of the differential graded F-algebras, i.e., for the epimorphism of the
R-algebras c ∈ epi(F ,A) and for de Rham A-complex A∧, A ≡ A∧0, and for
two morphisms of de Rham complexes

0 −→ ker c −→ M∧ c−→ A∧ −→ 0 ,

φ ∈ alg(A∧,M∧), c ∈ alg(M∧, A∧), c ◦ φ = idA∧ . (7)

We assume that φ must be a mono-morphism and that c must be an epi-
morphism of the differential Z-graded algebras (of de Rham complexes) such
that dimAA = 2n+ 1 and the image of the descendant form is a symplectic
two-form.

Definition 4.1 (Formalism) Let Ω ∈ M∧2 be descendant differential form
(5) for a Pfaffian system N. An epimorphism c ∈ alg(M∧, A∧) is said to be
a formalism for Ω (and for N) if A-module A ≡ im(c|M), dimAA = 2n+ 1,
is such that cΩ ∈ A∧2 is symplectic.

Corollary 4.2 Every formalism c is defined by the Poincaré & Cartan dif-
ferential one-form {α ∈ A} modulo one-cocyles Z1,

cΩ = dα ∈ A∧2 and dim ker cΩ = 1 (⇐⇒ 0 6= (dα)n ∈ A∧2n). (8)

For a given descendant differential two-form Ω ∈ N∧2 the equation (8)
is the equation on an epimorphism c and the Poincaré & Cartan differential
form α depends on Ω and on c.
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ical Systems and Microphysics, Geometry and Mechanics, Academic Press, New
York, pp. 281–292, ISBN 0-12-068720-8

Griffiths, P.A., (1983): Exterior Differential Systems and the Calculus of Variations,
Birkhäuser
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Abstract. We investigate classical and quantum dynamics of relativistic particle
in 2-dimensional space–time with constant curvature. Singularities of space–time
metric, in case of negative curvature, lead to creation and annihilation phenomenon
at the classical level. In case of positive curvature, anomaly free quantization leads
to discretization of particle mass.

1 Introduction

Consolidation of General Relativity and Quantum Mechanics has not been
completed yet. This is an extremely difficult problem. We present some results
concerning this problem but at the level of two dimensional theory. In 2d the
situation is much simpler, many steps can be done analytically and one can
get some insight.

2 Dynamics of Particle in Curved 2d Space-Time

Let us consider a relativistic particle of mass m0 moving in a gravitational
field gµν(x0, x1); µ, ν = 0, 1. Action describing such a system is proportional
to the length of a particle world-line

S =
∫
dτL(τ), L(τ) := −m0

√
gµν(x0(τ), x1(τ))ẋµ(τ)ẋν(τ) , (1)

where τ is an evolution parameter along trajectory xµ(τ) and ẋµ(τ) :=
dxµ(τ)/dτ.

The action (1) is invariant under reparametrization τ → f(τ), which leads
to the constraint

Φ := gµνpµpν −m0 = 0 , (2)

where pµ := ∂L/∂ẋµ.
In the case of 2d Minkowskian manifold, one can always choose local

coordinates in such a way that
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gµν(x0, x1) = expϕ(x0, x1)
(

1 0
0 −1

)
, (3)

where ϕ is a field.
Since the scalar curvature R for (3) is

R(x0, x1) = exp
(−ϕ(x0, x1)

)
(∂2

1 − ∂2
0) ϕ(x0, x1) , (4)

the Einstein-Hilbert Lagrangian reads

L = −
√

| g | R = (∂2
0 − ∂2

1) ϕ(x0, x1) , (5)

and it does not lead to dynamical equation for ϕ. One can specify the 2d
general relativity model (see for example (Jackiw 1984)) assuming that ϕ is
a solution to the Liouville equation (Liouville 1853)

(∂2
0 − ∂2

1)ϕ(x0, x1) +R0 expϕ(x0, x1) = 0 , (6)

where R0 is a real constant (R0 ∈ R).
For ϕ satisfying (6) the scalar curvature is R(x0, x1) = R0. In what

follows we shall consider two cases: R0 < 0 and R0 > 0.
General solution to (6) is

ϕ(x+, x−) = log
4A+′(x+)A−′(x−)

m2 [A+(x+) − εA−(x−)]2
, (7)

where m2 := |R0|/2, x± := x0 ± x1, A± are smooth functions, A±′ :=
dA±/dx±, ε := |R0|/R0.

For (7) the Lagrangian (1) reads

L(τ) = −2c

√
A+′(x+(τ)) A−′(x−(τ))

[A+(x+(τ)) − ε A−(x−(τ))]2
, (8)

where c := m0/m.
The Lagrangian (8) is formally invariant under the transformations

y+ −→ ay+ + b

cy+ + d
, y− −→ ay− + εb

εcy− + d
, (9)

where y± = A±(x±). Thus, formally SL(2,R)/Z2 is the group of symmetry
of our system.

The conformal transformation for the metric (3) is defined by

x± −→ y±(x±) , (10)

ϕ(x+, x−) −→ ϕ̃(x+, x−) := ϕ(y+(x+), y−(x−)) + log[y+′(x+)y−′(x−)] ,
(11)

where y±′ := dy±/dx±.
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Due to (10) and (11) the general solution (7) is locally equivalent to the
following simple solution

ϕ(x+, x−) = log
[

2
m(x+ − εx−)

]2
. (12)

Therefore, dynamics of a particle can be locally described by (12).

2.1 The Case R0 < 0

The solution (12) leads to singular metric

gµν(x+, x−) =
[

2
m(x+ + x−)

]2(1 0
0 −1

)
. (13)

The infinitesimal transformations for (9) are

x± −→ x± ± α0, x± −→ x± + α1x
±, x± −→ x± ± α2(x±)2 (14)

and the dynamical integrals corresponding to (14) read

P := p+ − p−, K := p+x
+ + p−x−, M := p+(x+)2 − p−(x−)2 , (15)

where p± := ∂L/∂ẋ±.
The Poisson brackets on the extended phase space

Γ := {(x+, x−, p+, p−)} ⊂ R4 read

{P,K} = P, {K,M} = M, {P,M} = 2K (16)

and define Lie algebra isomorphic to the sl(2,R) algebra.
The integrals (15) are not independent. By (2) we get

K2 − PM = c2 . (17)

Equations (15) and (17) define the trajectories of the particle

x1(x0) =

{−(Mη)/(2c), for P = 0(
K + η

√
(x0P )2 + c2

)
/P , for P 6= 0 , (18)

where η := x0/|x0|.
From (18) we get that, for P = 0, K = −ηc. Therefore the trajectories

with P = 0, K = −c for x0 < 0 and trajectories with P = 0, K = c for
x0 > 0 do not exist. This leads to serious problems when we quantize the
system.
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2.2 The Case R0 > 0

The infinitesimal transformations corresponding to (9) are now defined by

x± −→ x± + α0, x± −→ x± + α1x
±, x± −→ x± + α2(x±)2 . (19)

Making use of the Noether theorem leads to

E := −p+ − p−, K := p+x
+ + p−x−, L := −p+(x+)2 − p−(x−)2 . (20)

The Poisson brackets

{E,K} = E, {K,L} = L, {E,L} = 2K (21)

give again sl(2,R) algebra.
The constraint (2) leads to the relation

EL−K2 = c2 . (22)

Equations (20) and (22) define the trajectories

(x+ +K/E)(x− +K/E) = −(c/E)2 , (23)

which are hyperbolas with light-cone asymptotics.

3 Quantization

Quantization in our case means finding an appropriate, irreducible self-
adjoint representation of sl(2,R) algebra on a Hilbert space.

3.1 The Case R0 < 0

One can find an unique quantum system corresponding to our classical sys-
tem in the case when we consider the set of all trajectories defined by (18).
For anomaly free quantization we have to take into account the following
trajectories:

1. For P 6= 0 and arbitrary K trajectories are defined by (18) and have
discontinuity 2c/P at x0 = 0, i.e., particle is ‘annihilated’ at (x0, x1) =
(0, (K − c)/P ) and then it is ‘created’ at (x0, x1) = (0, (K + c)/P ).

2. For P = 0, K = c and any M trajectories are defined by x1 = M/2c
for x0 < 0, (18), and there are no trajectories for x0 > 0, i.e., particle is
annihilated at (x0, x1) = (0,M/2c) and it cannot appear for x0 > 0.

3. For P = 0, K = −c and any M there are no trajectories for x0 < 0;
for x0 > 0 trajectories are defined by x1 = −M/2c, (18), i.e., particle is
created by singularity at (x0, x1) = (0,−M/2c).
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This set of trajectories is isomorphic to the hyperboloid (17) and has
SL(2,R)/Z2 symmetry (see (Jorjadze and Piechocki 1998a)).

Since P,K and M are gauge invariant and they are constant along the
trajectories, we choose them as the observables of the system. Due to (17)
only two of them are functionally independent on the constraint surface
Γc := {(x+, x−, p+, p−) ∈ Γ | Φ = 0}.

To quantize the system we use the following parametrization of the hy-
perboloid (17):

P = J(1 − cosβ) − c sinβ , (24)

M = J(1 + cosβ) + c sinβ , (25)

K = −J sinβ + c cosβ, (26)

where J ∈ R, β ∈ S1 are the canonically conjugated variables.
The corresponding operators

P̂ = −i(1 − cosβ)∂/∂β − (c+ i/2) sinβ , (27)

M̂ = −i(1 + cosβ)∂/∂β + (c+ i/2) sinβ , (28)

K̂ = i sinβ∂/∂β + (c+ i/2) cosβ (29)

are self-adjoint on L2(S1) and define the unitary irreducible representation
of SL(2,R)/Z2 group.

3.2 The Case R0 > 0

The irreducible self-adjoint representation of sl(2,R) algebra is defined by
(see (Jorjadze and Piechocki 1998b))

Ê = −(∂q + ∂q∗), K̂ = −i(q∂q + q∗∂q∗) , (30)

L̂ = ic(q∗ − q) − i(q2∂q + q∗2∂q∗) , (31)

where
q := (K + ic)/E, q∗ := (K − ic)/E (32)

are the complex coordinates on half plane Im q > 0.
The corresponding Hilbert space is defined by the set of functions

Ψ(q, q∗) :=
(
q − q∗

2i

)c
ψ(q), c = m0/m > 1/2 , (33)

where
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ψ(q) := (q + i)−2c
∑
n≥0

bn

(
q − i

q + i

)n
,

∑
n≥0

|bn|2 < ∞

is a holomorphic function.
The scalar product is given by

〈Ψ1|Ψ2〉 =
∫
dqdq∗

2π

(
q − q∗

2i

)2(c−1)

ψ∗
1(q)ψ2(q) . (34)

For c = m0/m = 2, 3, 4, ... the representation (30-34) leads to the unitary
irreducible representation of SL(2,R)/Z2 group. Since m is the parameter
of the Liouville equation being well defined for any m ∈ R, we conclude that
the mass of the particle m0 must be discrete.

4 Summary

The assumptions:

– space–time is curved (we consider the simplest case when the scalar cur-
vature R = const)

– classical and quantum systems should have the same global
SL(2,R)/Z2 symmetry

lead to the results:

– singularity of the metric annihilate and/or creates a particle (R0 < 0
case)

– there is violation of causality (due to discontinuities of trajectories) at
the singularity (R0 < 0 case)

– mass of the quantum particle must have discrete value (R0 > 0 case).
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Abstract. The existence of two sterile neutrinos νs and ν′
s (blind to all Standard–

Model interactions) is shown to be implied by a model of fermion ”texture” that
we develop since some time. They may mix nearly maximally with two of three
conventional neutrinos, say νe and νµ, thus leading to neutrino oscillations, say νe →
νs and νµ → ν′

s, with nearly maximal amplitudes. Then, they can be responsible
for the observed deficits of solar νe’s and atmospheric νµ’s, respectively, but by
themselves do not help to explain the LSND results for νµ → νe oscillations. On the
other hand, they are consistent with the CHOOZ negative result. At the moment,
the experiment cannot decide, whether the deficit of atmospheric νµ’s, confirmed by
the recent Super–Kamiokande findings, has to be related to the oscillations νµ → ντ

or νµ → ν′
s. In the last Section of the paper, a new notion of ”non–Abelian spin–1/2

fermions” is presented in the context of a composite option for fermion families.

PACS numbers: 12.15.Ff , 12.90.+b , 14.60.Gh

1 Introduction

The hypothetic sterile neutrinos, by definition interacting only gravitation-
ally, are blind to all Standard–Model interactions, in contrast to the conven-
tional neutrinos (or, rather, their lefthanded parts) which participate first
of all in the weak sector of Standard–Model interactions. Such Standard–
Model–inactive fermions are invoked from time to time by theorists, who
want to explain (e.g., Smirnow 1997) through neutrino oscillations not only
the observed deficits of solar and atmospheric neutrinos, but also the results
of LSND experiment. The sterile neutrinos may also form a Standard–Model–
inactive fraction of the dark matter.

In the present paper, we demonstrate how two different sterile neutrinos
are implied by a model of fermion ”texture” (Królikowski 1990, Królikowski
1996) that we develop since some time. As shown previously, this model jus-
tifies (Królikowski 1990) the existence of three and only three families of con-
ventional leptons and quarks (νe , e− , u , d), (νµ , µ− , c , s), (ντ , τ− , t , b)
and, moreover, describes reasonably (Królikowski 1996) the masses and mix-
ing parameters of quarks and charged leptons, making also some useful sug-
gestions as to neutrinos. Note that in this model all neutrinos are Dirac
particles having both lefthanded and righthanded parts.

A. Borowiec et al. (Eds.): Proceedings 1998, LNP 539, pp. 251−262, 2000.
 Springer-Verlag Berlin Heidelberg 2000



252 W. Królikowski

In order to make our presentation fairly comprehensible, we will first
recapitulate briefly the basic features of the model in its part concerning
the existence of fundamental–particle families (Królikowski 1990). Then, we
shall discuss the existence of two sterile neutrinos and the related neutrino
oscillations.

2 Dirac’s Generalized Square Root

The starting point of our model is the conjecture that all kinds of matter’s
fundamental particles existing in Nature can be deduced from Dirac’s square–
root procedure

√
p2 → Γ · p.

As is easy to observe, this procedure leads in general to the sequence
N = 1, 2, 3, . . . of different (generally reducible) representations

Γµ ≡ 1√
N

N∑
i=1

γµi (1)

of the Dirac algebra

{Γµ, Γ ν} = 2gµν , (2)

constructed with the use of the sequence N = 1, 2, 3, . . . of Clifford algebras{
γµi , γ

ν
j

}
= 2δijgµν (i, j = 1, 2, . . . , N) . (3)

Then, the sequence N = 1, 2, 3, . . . of Dirac–type equations follows,

{Γ · [p− gA(x)] −M}ψ(x) = 0 , (4)

where gΓ ·A(x) may symbolize the minimal coupling of ψ(x) to the Standard–
Model gauge fields Aµ(x) including all SU(3) ×SUL(2) ×U(1) coupling ma-
trices: λ’s, τ ’s, Y and Γ 5 ≡ iΓ 0Γ 1Γ 2Γ 3.

In (4) the matrices (1) can be presented in the reduced forms

Γµ = γµ ⊗ 1 ⊗ · · · ⊗ 1︸ ︷︷ ︸
(N−1)times

(5)

with γµ and 1 denoting the usual 4×4 Dirac matrices. Then, the Dirac–type
equations (4) can be rewritten as

{γ · [p− gA(x)] −M}α1β1
ψβ1α2···αN

(x) = 0 (6)

with ψ(x) = (ψα1α2···αN
(x)), where α1, α2, · · · , αN stand for N Dirac

bispinor indices: αi = 1, 2, 3, 4 for i = 1, 2, . . . , N . Here, the chiral representa-
tions are used to define all αi (i = 1, 2, . . . , N). This means that αi = 1, 2, 3, 4
correspond to four different pairs (1,1), (1,-1), (-1,1), (-1,-1) of eigenvalues of
the matrices
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Γ 5
i ≡ iΓ 0

i Γ
1
i Γ

2
i Γ

3
i , Σ3

i ≡ iΓ 5
i Γ

0
i Γ

3
i , (7)

simultaneously diagonal for all i, which choice is allowed because all Γ 5
i and

Σ3
i commute both for equal and different i. The Γµi matrices (i = 1, 2, . . . , N)

appearing in (7) are defined as N (properly normalized) Jacobi combinations
of γµi matrices (i = 1, 2, . . . , N), where in particular Γµ1 ≡ Γµ is given as
in (1). Then, {Γµi , Γ νj } = 2δijgµν (i, j = 1, 2, . . . , N) due to (3), and also
{Γµi , Γ 5

j } = 0, but
[
Γ 5
i , Γ

5
j

]
= 0, where particularly Γ 5

1 ≡ Γ 5. Note that
in the one–body Dirac–type equations (4) there appear only the ”centre–
of–mass” Γµ1 matrices, while all ”relative” matrices Γµ2 , . . . , Γ

µ
N are absent.

In spite of this, all α1, α2, . . . , αN are present in (6): both the ”centre–of–
mass” Dirac bispinor index α1 as well as the ”relative” Dirac bispinor in-
dices α2, . . . , αN , the latter are decoupled, however, even in the presence of
Standard–Model coupling gΓi ·A(x).

For N = 1 (6) is obviously the usual Dirac equation, for N = 2 it is
known as the Dirac form (Banks et al. 1982) of the Kähler equation (Kähler
1962; Ivanenko and Landau 1928), whilst for N = 3, 4, 5, . . . we obtain new
Dirac–type equations (Królikowski 1990).

If the Standard–Model coupling gΓ · A(x) is really present in (6), then
the Dirac bispinor index α1, which is the only αi affected by the gauge fields
Aµ(x), is distinguished by its correlation with the set of all diagonal Standard–
Model charges ascribed to any particle of the fields ψα1 α2...αN

(x) (a label f of
this set is here suppressed). The remaining Dirac bispinor indices α2, . . . , αN
are all decoupled and so, physically unobservable in the gauge fields Aµ(x).
It is natural to conjecture that they are physically undistinguishable and,
therefore, are formal objects obeying Fermi statistics along with Pauli prin-
ciple. This implies that ψα1 α2...αN

(x) is fully antisymmetric with respect to
α2, . . . , αN .

The above conjecture, together with the probabilistic interpretation of
wave functions ψα1 α2...αN

(x) and the requirement of their relativistic covari-
ance applied to all bispinor indices α1, α2, . . . , αN , leads to the conclusion that
there are three (and only three) families N = 1, 3, 5 of leptons and quarks
(Królikowski 1990), and two (and only two) families N = 2, 4 of some, not
yet observed, fundamental scalars (Królikowski 1992). They correspond to
the wave functions

ψ(1)
α1

≡ ψα1 ,

ψ(3)
α1

≡ 1
4
(
C−1γ5)

α2α3
ψα1α2α3 = ψα1 12 = ψα1 34 ,

ψ(5)
α1

≡ 1
24
εα2α3α4α5ψα1α2α3α4α5 = ψα1 1234 (8)

and
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φ(2) ≡ 1
2
√

2

(
C−1γ5)

α1α2
ψα1α2 =

1√
2

(ψ12 − ψ21) =
1√
2

(ψ34 − ψ43) ,

φ(4) ≡ 1
6
√

4
εα1α2α3α4ψα1α2α3α4 =

1√
4

(ψ1234 − ψ2134 + ψ3412 − ψ4312) ,(9)

respectively. Each of these wave functions carries the (here suppressed)
Standard–Model label f = ν , e , u , d denoting four sorts of fundamental par-
ticles corresponding to the signature of conventional neutrinos ν and charged
leptons e as well as up quarks u and down quarks d, all four following from the
Standard Model (though the existence of three and two fundamental–particle
families does not follow from it). In the case of fundamental fermions, the
three families are, of course, (νe , e− , u , d), (νµ , µ− , c , s), (ντ , τ− , t , b),
while in the case of fundamental scalars one of (a priori) possible options may
be that the two families correspond to the first and second fermion family
(Królikowski 1992).

Now, in contrast, if the Standard–Model coupling gΓ · A(x) is absent
from (6), then only physically undistinguishable i.e., antisymmetric bispinor
indices αi (i = 1, 2, . . . , N) can appear at the wave functions ψα1α2...αN

(x).
In this case, the argument similar to the used before shows that on the
fundamental level there are two (and only two) Standard–Model–inactive
spin–1/2 fermions N = 1, 3 corresponding to the wave functions

ψ(1)
α1

≡ ψα1 ,

ψ(3)
α1

≡ 1
6
(
C−1γ5)

α1 α2
εα2α3α4α5ψα3α4α5 (10)

(with no suppressed f label). They can be identified with two sterile neutrinos
denoted in this paper by νs and ν′

s, respectively. Analogically, on the funda-
mental level there should exist also two (and only two) Standard–Model–
inactive spin–0 bosons N = 2, 4 that may be called sterile scalars, φ(2) and
φ(4) (with no suppressed f label).

3 Neutrino Oscillations Involving νs and ν′
s

Let us conjecture tentatively that the sterile neutrinos νs and ν′
s are com-

pelled to mix nearly maximally with the conventional neutrinos νe and νµ,
respectively, in order to form four related neutrino mass states ν1 or ν4 and ν2
or ν5. Other neutrino mixings are assumed not to appear at all or to be neg-
ligible. In particular, the third conventional neutrino ντ is left not mixed and
so, ν3 = ντ is a neutrino mass state. Evidently, the mixings of νe with νs and
νµ with ν′

s would be forbidden, if the electroweak SUL(2) × U(1) symmetry
were not spontaneously broken. Thus, we can say that neutrino oscillations,
being a consequence of these mixings, are caused in fact by the spontaneous
breaking of electroweak symmetry (if, of course, sterile neutrinos exist).
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Under the above conjecture, the unitary transformation νI =
∑
α VI ανα

between neutrino mass states νI = ν1, ν2, ν3, ν4, ν5 and neutrino flavor states
να = νe, νµ, ντ , νs, ν

′
s is given as

ν1 = V11νe + V14νs , ν4 = V41νe + V44νs ,

ν2 = V22νµ + V25ν
′
s , ν5 = V52νµ + V55ν

′
s ,

ν3 = ντ , (11)

where the nonzero coefficients are

V11 = V44 =
1√

1 + Y 2
, V14 = −V ∗

41 = − Y√
1 + Y 2

eiϕ ,

V22 = V55 =
1√

1 +X2
, V25 = −V ∗

52 = − X√
1 +X2

eiϕ
′
,

V33 = 1 (12)

(in (11) and (12), for notation convenience, we write VIJ in place of VI α,
where I, J = 1, 2, 3, 4, 5). The magnitudes of these coefficients are determined
by the parameters

Y =
M11 −mν1

|M14| = −M44 −mν4

|M14| ,

X =
M22 −mν2

|M25| = −M55 −mν5

|M25| (13)

involving neutrino masses

mν1, ν4 =
M11 +M44

2
∓
√(

M11 −M44

2

)2

+ |M14|2 ,

mν2, ν5 =
M22 +M55

2
∓
√(

M22 −M55

2

)2

+ |M25|2 . (14)

On the other hand mν3 = M33. Here, (MIJ) (I, J = 1, 2, 3, 4, 5) is a
5 × 5 neutrino mass matrix with M14 = M∗

41 = |M14| exp iϕ and M25 =
M∗

52 = |M25| exp iϕ′ as the only off-diagonal elements. Then, (VIJ) (I, J =
1, 2, 3, 4, 5) is a 5×5 lepton counterpart of the familiar Cabibbo—Kobayashi—
Maskawa matrix for quarks, where now V14 = −V ∗

41 and V25 = −V ∗
52 are the

only nonzero off-diagonal elements.
Some (here neglected) small corrections to the neutrino mixings (11)

may be caused by possible small deviations of the charged–lepton mass
matrix from a diagonal form (Królikowski 1996). In fact, these deviations
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produce small deviations of the related diagonalizing unitary matrix from
the unit matrix. In turn, such a charged–lepton diagonalizing matrix con-
tributes multiplicatively to the lepton Cabibbo—Kobayashi—Maskawa ma-
trix (Królikowski 1996), changing a little its leading form (12) (in particular,
almost all zero elements of its leading form become nonzero but small).

Now, making use of (12), we can calculate the probabilities of neutrino
oscillations νe → νs and νµ → ν′

s (in the vacuum) from the general formula

P (να → νβ) = |〈νβ |να(t)〉|2

=
∑
K L

VLβV
∗
LαV

∗
K βVK α exp

(
i
∆m2

LK

2|p| t

)
, (15)

where ∆m2
LK = m2

νL
− m2

νK
(on the rhs of (15), for notation convenience,

we will replace α , β by I , J = 1, 2, 3, 4, 5). Here, να(0) = να, 〈νβ | = 〈0|νβ ,
〈νβ |να〉 = δβ α and, as usual, t/|p| = L/E (c = 1 = ~), what is equal
to 4 × 1.2663L/E if ∆m2

LK , L and E are measured in eV2, m and MeV,
respectively (L is, of course, the source–detector distance). Further on, we
will denote

xLK = 1.2663
∆m2

LKL

E
(16)

and use the identity cos 2xLK = 1 − 2 sin2 xLK .
In such a way, we derive the following formulae for probabilities of neutrino

oscillations νe → νs and νµ → ν′
s (in the vacuum):

P (νe → νs) = 4
Y 2

(1 + Y 2)2
sin2 x41 ,

P (νµ → ν′
s) = 4

X2

(1 +X2)2
sin2 x52 , (17)

while all other P (να → νβ) with α 6= β vanish [except, of course, for
P (νs → νe) = P (νe → νs) and P (ν′

s → νµ) = P (νµ → ν′
s)]. Thus, the

neutrino–oscillation formulae (in the vacuum) for survival probabilities of
νe and νµ are

P (νe → νe) = 1 − 4
Y 2

(1 + Y 2)2
sin2 x41 ,

P (νµ → νµ) = 1 − 4
X2

(1 +X2)2
sin2 x52 . (18)

In the case of solar neutrinos, the observed deficit of νe’s can be explained
through the neutrino oscillations (in the vacuum), when using the two–flavor
formula for survival probability of νe,
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P (νe → νe) = 1 − sin2 2θsolar sin2
(

1.27
∆m2

solar L

E

)
, (19)

with the parameters (Hata and Langacker 1997; Fogli et al. 1997)

sin2 2θsolar ∼ 0.65 to 1 , ∆m2
solar ∼ (5 to 8) × 10−11 eV2 . (20)

These give the so called vacuum fit, in contrast to two other known fits based
on the resonant MSW mechanism (Wolfenstein 1978; Mikheyev and Smirnow
1985) in the Sun matter. In our model of neutrino oscillations (where νe → νs
oscillations are responsible for the deficit of solar νe’s), this fit leads to

4Y 2

(1 + Y 2)2
∼ 0.65 to 1 , ∆m2

41 ∼ (5 to 8) × 10−11 eV2 (21)

(asm2
ν4 > m2

ν1). Hence, Y ∼ 0.507 to 1 and so, we get a large mixing of νe with
νs: V11 = V44 ∼ 0.892 to 1/

√
2 and V14 = −V ∗

41 ∼ −(0.452 to 1/
√

2) exp iϕ
(the phase ϕ remains not determined).

In the case of atmospheric neutrinos, the recent findings of the Super–-
Kamiokande experiment (Fukuda et al. 1998) show that the observed deficit of
νµ’s can be explained also through the neutrino oscillations (in the vacuum),
when making use of the two–flavor formula for survival probability of νµ,

P (νµ → νµ) = 1 − sin2 2θatm sin2
(

1.27
∆m2

atmL

E

)
, (22)

with the parameters

sin2 2θatm ∼ 0.82 to 1 , ∆m2
atm ∼ (0.5 to 6) × 10−3 eV2 . (23)

In our model of neutrino oscillations (where νµ → ν′
s oscillations are respon-

sible for the deficit of atmospheric νµ’s), this implies

4X2

(1 +X2)2
∼ 0.82 to 1 , ∆m2

52 ∼ (0.5 to 6) × 10−3 eV2 (24)

(as m2
ν5 > m2

ν2). Hence, X ∼ 0.636 to 1 and thus, we obtain a large
mixing of νµ with ν′

s: V22 = V55 ∼ 0.844 to 1/
√

2 and V25 = −V ∗
52 ∼

−(0.537 to 1/
√

2) exp iϕ′ (the phase ϕ′ remains not determined).
On the other hand, the CHOOZ experiment (Appolonio et al. 1998) found

no evidence for neutrino–oscillation modes of ν̄e in a parameter region over-
lapping the range (23) of sin2 2θatm and ∆m2

atm, what shows that within this
parameter range there are no mixings of νe with νµ, ντ , νs, ν′

s. In particular
for νµ, this is consistent with the assumed dominance of mixing between νµ
and ν′

s over mixing between νµ and νe within the range (23) of sin2 2θatm
and ∆m2

atm (at the moment, however, it cannot be decided experimentally
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(Fukuda et al. 1998), whether the mixing of νµ with ν′
s or the here neglected

mixing of νµ with ντ is responsible for the deficit of atmospheric νµ’s). For νs,
this requires that the assumed strong mixing of νe with νs must correspond
to parameters sin2 2θsolar and ∆m2

solar belonging to a range very different
from (23) [in fact, they can lie in the range (20)]. Finally for ντ , the lack of
mixing between ντ and νe is one of necessary and sufficient conditions for the
assumed identity ν3 = ντ (another is the lack of mixing between ντ and νµ,
if this really is true).

Of course, the sterile neutrinos νs and ν′
s by themselves cannot help to

explain the results of LSND experiment (Athanassopoulos et al. 1996) which
gave evidence for ν̄µ → ν̄e and νµ → νe oscillations corresponding to a
much larger ∆m2

LSND than both ∆m2
solar and ∆m2

atm. These oscillations, if
eventually confirmed, would require a considerable mixing of νµ with νe,
corresponding to parameters sin2 2θLSND and ∆m2

LSND lying in a range very
different from (23). This mixing should be stronger than that induced by the
(mentioned before) nondiagonal charged–lepton corrections appearing in our
model of fermion ”texture” (Królikowski 1996).

The comparison of mass squared differences ∆m2
41 and ∆m2

52 as estimated
in (21) and (24) suggests that m2

ν1 and m2
ν4 are possibly much smaller than

m2
ν2 and m2

ν5 (alternatively, m2
ν1 and m2

ν4 may be much more degenerate than
m2
ν2 and m2

ν5).

4 Outlook: Non–Abelian Spin–1/2 Fermions

When the Dirac–type equations (4) are considered, one may ask a (perhaps)
profound question, as to whether these one–body equations could be un-
derstood physically as point–like limits of some N–body equations for tight
bound states of N spin–1/2 preons with equal masses. If it was so, the four–
positions of such subelementary constituents (called here preons, as usual)
should tend practically (within the bound states) to their centre–of–mass
four–position,

xi = X + δxi → X , X ≡ 1
N

N∑
i=1

xi ,
N∑
i=1

δxi ≡ 0 , (25)

while then δpi, defined by their four–momenta

pi = P + δpi , P ≡
N∑
i=1

pi ,
N∑
i=1

δpi ≡ 0 , (26)

should vanish in action on the wave functions [here, xi = (ti , xi), δxi =
(δti , δxi) and X = (t,X)].

Of course, the physical mechanism for realization of such practically
point–like limits in N–body systems would be provided by an unknown, very
strong and shortrange attraction between their N constituents (described,
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for convenience, in the equal–time formalism, where δti ≡ 0 and δp0
i vanish

in action on the wave functions). The (necessarily) non–Standard–Model na-
ture of such an attraction would be certainly the most obscure aspect of the
compound option for the Dirac–type equations (4).

Let us denote by Pi and Xi (i = 1, 2, . . . , N), with P1 ≡ P and X1 ≡ X,
the (properly normalized) Jacobi combinations of four–momenta pi and four–
positions xi (i = 1, 2, . . . , N), respectively, for N particles. Then,[

Pµi , X
ν
j

]
= iδijg

µν . (27)

Making use of this notation, we can write the identities

N∑
i=1

(γi · pi −mi) =
1√
N

N∑
i=1

(
Γi · Pi −

√
Nmi

)
, (28)

where Γµi (i = 1, 2, . . . , N), with Γµ1 ≡ Γµ, stand for the (properly normal-
ized) Jacobi combinations of γµi matrices (i = 1, 2, . . . , N) for N particles
[the Γµi matrices were already introduced in (7), though only in reference to
the one–body Dirac–type equations(4)]. Then,{

Γµi , Γ
ν
j

}
= 2δijgµν (i, j = 1, 2, . . . , N) , (29)

as follows from (3). Here, in particular, Γµ1 ≡ Γµ is given as in (1).
In this notation, the natural candidates for the hypothetic N–body equa-

tions would be

{
Γ1 · [P1 − gA(X1)] +

N∑
i=2

Γi · Pi

−
√
N

(
N∑
i=1

mi + I

)}
ψ(X1, X2, . . . , XN ) = 0 , (30)

where I(X2, . . . , XN ) would symbolize the unknown non–Standard–Model
attraction between N constituents. In (30), the Standard–Model gauge fields
Aµ(x) are coupled to the hypothetic N–body systems at four–points describ-
ing their centre–of–mass four–positions X1 ≡ X. This is approximately true,
when Aµ(X + δxi) are only weakly dependent on δxi.

In the point–like limits, where the relative four–positionsX2, . . . , XN (i.e.,
also all δxi) tend to zero and then the relative four–momenta P2, . . . , PN (i.e.,
also all δpi) vanish in action on the wave functions, equations (30) are really
reduced to the Dirac–type equations (4) with p ≡ P ≡ P1, X ≡ X ≡ X1,
Γ ≡ Γ1 and M ≡ √

N (Nm+ IXi→0) (mi ≡ m). Note that M grows with N
faster than linearly.

In the equal–time formalism, where the relative times t2, . . . , tN (i.e., also
all δti) are zero and the relative energies P 0

2 , . . . , P
0
N (i.e., also all δp0

i ) vanish
in action on the wave functions, equations (30) assume the forms
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P 0
1ψ(X1,X2, . . . ,XN , t)

=

{
Γ 0

1 Γ1 · [P1 − gA(X1, t)] + gA0(X1, t) +
N∑
i=2

Γ 0
1 Γi · Pi

+ Γ 0
1

(√
N

N∑
i=1

mi + IX0
i =0

)}
ψ(X1,X2, . . . ,XN , t) , (31)

where P 0
1 ≡ P 0 = i∂/∂t and IX0

i =0 = I(X2, . . . ,XN ).
In the point–like limits, equations (31) are reduced to the equations

p0ψ(x, t) =
{
Γ 0Γ · [p − gA(x, t)] + gA0(x, t) + Γ 0M

}
ψ(x, t) (32)

with p ≡ P ≡ P1 , x ≡ X ≡ X1 , Γ ≡ Γ1 and M ≡ √
N(Nm + IXi→0)

(mi ≡ m). Of course, p0 ≡ P 0 = i∂/∂t and IXi→0 stands for a reasonably
defined point–like limit of I.

Note that the eigenvalues (P 0
1 )kin of the kinetic part of the hamiltonian

appearing on the rhs of the state equation (31) get for any N the form
± [P2

1 + . . .+ P2
N +N(Nm)2

]1/2 = ±√
N
[
p 2

1 + . . .+ p 2
N +N(Nm)2

]1/2,
as if our N–body system were a single Dirac particle with the mass Nm
in a (3N + 1)–dimensional spacetime (notice, however, the additional factor√
N).

A fundamental feature of (30) is that, via Γµi (i = 1, 2, . . . , N), they con-
tainN Dirac nonconventional γµi matrices (i = 1, 2, . . . , N) which do not com-
mute for different particles, in contrast to Dirac conventional gammas com-
muting for different particles [in fact, the nonconventional γµi (i = 1, 2, . . . , N)
anticommute for different i, as is seen from (3)]. The spin–1/2 fermions
i = 1, 2, . . . , N described within an N–body system with the use of such
nonconventional γµi matrices (i = 1, 2, . . . , N), anticommuting for different
particles, might be called non–Abelian spin–1/2 fermions (Królikowski 1991).
In contrast, in the familiar case of Dirac conventional gammas, commuting
for different particles, one could use the term Abelian spin–1/2 fermions.

Now, let us observe that the form of spin tensors for spin–1/2 fermions
i = 1, 2, . . . , N is identical in the non–Abelian and Abelian case:

σµνi ≡ i

2
[γµi , γ

ν
i ] =

 iαli for µ = 0 , ν = l

εklmσmi for µ = k , ν = l
, (33)

where αli ≡ γ0
i γ

l
i and σmi ≡ γ5

i γ
0
i γ

m
i ≡ γ5

i α
m
i with γ5

i ≡ iγ0
i γ

1
i γ

2
i γ

3
i . In fact,

for each i the components 1
2σ

µν
i satisfy in both cases the usual Lorentz–group

commutation relations, while for different i they commute in both cases as
being bilinear in γµi . Also γ5

i commute for different i in both cases. So, the
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total generators of Lorentz group for a system of N spin–1/2 fermions are
given in both cases by the operators

Jµ =
N∑
i=1

(
xµi p

ν
i − xνi p

µ
i +

1
2
σµνi

)
. (34)

Let us note, by the way, the following identity valid for the total spin
tensor in both cases

N∑
i=1

σµνi =
N∑
i=1

Σµν
i , (35)

where

Σµν
i ≡ i

2
[Γµi , Γ

ν
i ] =

 i Ali for µ = 0, ν = l

εklmΣm
i for µ = k, ν = l

(36)

with Ali ≡ Γ 0
i Γ

l
i and Σm

i ≡ Γ 5
i Γ

0
i Γ

m
i ≡ Γ 5

i A
m
i . Evidently, Σµν

1 ≡ Σµν with
Σµν ≡ i

2 [Γµ, Γ ν ] is the centre–of–mass spin tensor for the system of N spin–
1/2 fermions, while Σµν

2 , . . . , Σµν
N are its relative spin tensors. All spin tensors

Σµν
i , being bilinear in Γµi , commute for different i in both cases.

Thus, in this Section, we can draw the important conclusion that for a
system of N spin–1/2 fermions the Lorentz–group commutation relations get
two (and only two) realizations: either with the use of Dirac conventional
gammas commuting for different particles, or with the use of Dirac noncon-
ventional gammas anticommuting for different particles. Such an intriguing
statement seems to support the logical consistency and unexpected natural-
ness of the notion of non–Abelian spin–1/2 fermions. They may provide an
unconventional alternative for familiar Abelian spin–1/2 fermions in the po-
tential structure of particle theory. In this Section, their role as hypothetic
preons was underlined.

Finally, we should like to emphasize some unconventional features of
the quantization procedure which would work in the case of non–Abelian
spin–1/2 fermions. It is not difficult to observe that in the case of spin–
1/2 fermions, only the Fock–space states related to Dirac conventional gam-
mas (commuting for different particles) can be constructed by means of the
familiar second–quantization procedure based on Fermi creation and anni-
hilation operators for single particles. This is so, because the repetition of
single–particle creation operators can lead to Fock–space states of particles
with commuting Dirac gammas only. In order to construct the Fock–space
states related to Dirac nonconventional gammas (anticommuting for differ-
ent particles), new Fermi or Bose operators creating and annihilating at once
whole N–particle configurations with odd or evenN = 1, 2, 3, . . ., respectively,
must be introduced. Of course, these N particles are then non–Abelian spin–
1/2 fermions. Such a new procedure might be called the third quantization
(Królikowski 1991).
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Abstract. Subject of this talk is an overview of results on self-gravitating non-
abelian magnetic monopoles. The coupling to the gravitational field leads to new
features absent in flat space: gravitating monopoles have unstable “radial excitati-
ons” and they exist only up to a maximal mass (related to a kind of “gravitational
confinement” at the Planck scale). In addition to the globally regular monopoles
there are “coloured” black holes, i.e., magnetically charged black holes carrying a
non-trivial YM field outside their event horizon. The latter give rise to a violation
of the “No Hair” Conjecture.

1 Introduction

This talk is an overview of results on self-gravitating magnetic monopoles. It
is mainly based on analytical and numerical results obtained in collaboration
with P. Breitenlohner and P. Forgács (Breitenlohner et al. 1992, 1995). Many
other people, who have contributed in establishing our present understanding
of this subject will be mentioned in due course.

As a genuine non-linear structure magnetic monopoles play an important
role in the non-perturbative aspects of the Yang-Mills-Higgs (YMH) theory.
Originally they were found as solutions of the YMH field equations in flat
space, but in a very interesting early paper van Niewenhuizen et.al. (van
Nieuwenhuizen et al. 1976) considered also the gravitational self-interaction
of monopoles. However these authors made no attempt to actually construct
solutions with analytical or numerical methods. Only twenty years later, trig-
gered by the discovery of globally regular solutions of the Einstein-Yang-Mills
theory by Bartnik and McKinnon (Bartnik and McKinnon 1988) new interest
in the subject arose.

A systematic numerical study of the effects of gravity on magnetic mono-
poles (Ortiz 1992, Lee et al. 1992, Breitenlohner et al. 1992, 1995) revealed
a number of interesting phenomena. In contrast to monopoles in flat space
gravitating monopoles allow for “radial excitations”, which have some close
connection with the solutions discovered by Bartnik and McKinnon. As to

A. Borowiec et al. (Eds.): Proceedings 1998, LNP 539, pp. 263−278, 2000.
 Springer-Verlag Berlin Heidelberg 2000
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be expected gravitating monopoles develop a gravitational instability for suf-
ficiently strong gravitational self-force, manifesting itself in some kind of a
“Gravitational Confinement”. Systematically increasing the strength of the
gravitational self-coupling (resp. letting the monopole mass approach the
Planck scale) one reaches a limiting solution, which in its exterior part has
the geometry of an extremal black hole.

Obviously one may question the physical relevance of monopoles with a
mass close to the Planck mass, since on the one hand even in GUTs the
monopole mass would be considerably lower and on the other hand at the
Planck scale one would expect quantum gravity effects to come into play.

In addition to the regular monopoles there are also black hole solutions
carrying a non-trivial exterior YM field (“Coloured Black Holes”). Taking
into account their radial excitations, one finds a rich spectrum of such static
black hole solutions. This is to be contrasted with Einstein’s theory in vacuum
resp. with the Einstein-Maxwell theory, where according to a theorem of Israel
(Israel 1967 1968) the Schwarzschild resp. Reissner-Nordstrøm solution are
the only static black holes. The co-existence of all these black hole solutions
with the same magnetic charge gives rise to an interesting violation of the
“No-Hair” Conjecture (Chruściel 1994; Bizon 1993).

2 Magnetic Monopoles and Sphalerons in Flat Space

Let me start with a short reminder on the static, spherically symmetric so-
lutions of the YMH system in flat space. For simplicity I restrict myself to
the gauge group SU(2) from now on.

The so-called ’t Hooft-ansatz for the static, spherically symmetric YM
field in polar coordinates reads

W a
0 = 0 W a

i = εiak
xk

r2 (W (r) − 1) . (1)

Inserting it into the standard YM action

SY M = − 1
4π

∫
d4 x

[ 1
4g2 TrF 2

]
(2)

yields the reduced action

SY M,red = −
∫

dr
[ 1
g2 (W ′2 +

(1 − W 2)2

2r2 )
]

. (3)

A rescaling of the radial coordinate r → r/λ leads to a rescaling of the action
SY M,red → λSY M,red. This property (related to the scale invariance of the 4-
dimensional theory) prevents the existence of any non-trivial stationary point
of SY M,red with finite non-zero action (energy), manifestating the general
statement, that the flat YM theory has no solitons (Coleman 1975; Deser
1976).
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The situation changes with the inclusion of the Higgs field. Through its
“vacuum expectation value” v two scales are introduced, the mass MW = gv
of the YM field and the Higgs mass MH =

√
λv. There are two different cases

Fig. 1. a) PS-monopole, b) DHN-sphaleron, both for vanishing (solid) and infinite
(dashed) Higgs mass

to be considered, leading to rather different types of solutions. The Higgs field
can be either in a triplet or in a doublet representation. In either case the
action is

SH =
1
4π

∫
d4 x

[1
2
|Dφ|2 − λ

8
(|φ|2 − v2)

]
. (4)

The finite energy solutions in the case of a Higgs triplet are the ’t Hooft-
Polyakov magnetic monopoles (’t Hooft 1974; Polyakov 1974). They are ob-
tained with the ansatz

φa =
xa

r
H(r) . (5)

Inserting this ansatz in the action (4) one gets

SH,red = −
∫

dr
[r2

2
H ′2 +

λr2

8
(H2 − v2)2 + W 2H2

]
. (6)

In order to obtain finite total energy the Higgs field has to tend to its vacuum
value v for r → ∞, forcing in turn W → 0. Outside a “core” of size 1/MW the
solution is essentially equal to the embedded abelian Dirac monopole W ≡ 0
avoiding the singular center at r = 0 of the latter (compare Fig. 1a).

For large values of MH and hence of β the function H(r) rises quickly to
its asymptotic value v. In the limit β → ∞ the Higgs field may be replaced
by v for all r > 0 and its only role is to give a mass to the YM field. The
total energy of the solution stays finite in this limit. In fact, it only varies
by a factor ≈ 1.8 as β varies from 0 to ∞. Of particular interest is the exact
BPS monopole solution for β = 0 with the simple exact form (using h = rH
for convenience)
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W (r) =
vr

sinh(vr)
h(r) = vrcoth(vr) − 1 , (7)

satisfying a system of first order equations (Bogomolny equations)

rW ′ = Wh , (8a)
rh′ = h + 1 − W 2 (8b)

implying the second order field equations. Considered as a solution of a sui-
table supersymmetric extension (N=2 SUSY-YM theory) it has the special
property of being “half supersymmetric”, i.e., it is annihilated by one half of
the infinitesimal supersymmetry generators. This implies the relation E = vP
between the energy of the solution and its magnetic charge P (equalling the
central charge of the N = 2 SUSY algebra). If “quantizing” the solution does
not destroy supersymmetry, i.e., the above relation is preserved, any quantum
corrections to its mass have to vanish (Witten and Olive 1978).

Due to the topological character of the magnetic charge, related to the
asymptotic vacuum structure of configurations with finite energy, the mono-
pole is a stable solution.

The second possibility is a Higgs field in the doublet representation. The
relevant ansatz of the Higgs field is Φα = H(r)ξα with some constant spinor ξ.
Although this ansatz is not itself spherically symmetric it leads to a consistent
reduction. The corresponding reduced action is

SH,red = −
∫

dr
[r2

2
H ′2 +

λr2

8
(H2 − v2)2 +

1
4
(W + 1)2H2

]
. (9)

The only essential difference of this action to the one for the triplet is the
form of the mass term. It destroys the symmetry W → −W and enforces W
to turn to W = −1 for r → ∞ in order to have finite total energy (compare
Fig. 1b). This asymptotic behaviour implies that the solution has no magnetic
charge in contrast to the previous case with W → 0.

Unlike the stable monopole the sphaleron, i.e., the solution minimizing
the energy E = −S, is unstable. In order to understand this instability it is
important to consider the most general spherically symmetric ansatz for the
YM field.

W a
t = (0, 0, A0) , W a

θ = (W1, W2, 0) , (10a)
W a

r = (0, 0, A1) , W a
ϕ = (−W2 sin θ, W1 sin θ, cos θ) . (10b)

The ansatz used above for the monopole and the sphaleron corresponds to
a consistent truncation, putting A0 = A1 = W2 = 0 and W1 = W . The
sphaleron turns out to be stable under variations staying within the minimal
ansatz, but not if δW2 6= 0 and δA1 6= 0. As was discussed by Manton (Man-
ton 1983) this instability may be attributed to the non-trivial topology of the
configuration space of the spherically symmetric YM potential, again related
to the asymptotic vacuum structure of configurations with finite energy.
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Fig. 2. Conformal diagram for the Schwarzschild solution

3 The Spherically Symmetric Gravitational Field

Spherically symmetric space-times M4 have the structure of an orthogonal
product M4 = M2 × S2 of a 2-dimensional space M2 with a 2-sphere with a
corresponding decomposition of the metric ds2

4 = ds2
2 + r2dΩ2, where dΩ2 is

the invariant metric on S2 and its inverse curvature r is a function on M2. A
convenient parametrization of ds2

2 is

ds2
2 = A2Bdt2 − dR2

B
, (11)

with arbitrary time resp. radial coordinates t and R. The standard choice
for the latter is the “Schwarzschild” coordinate R ≡ r, which is possible as
long as dr/dR 6= 0. We are only interested in static solutions, with A and B
independent of the canonical time coordinate (“Killing-time”) t. Insertion of
the ansatz into the standard Einstein action then yields

SG,red =
1

2
√

G

∫
dr

[
A(B + rB′ − 1)

]
. (12)

The dimensionality of G introduces a mass scale MPl = 1/
√

G, the Planck
mass. Variation with respect to A and B yields (with suitable boundary
condition at infinity) the Schwarzschild solution A = 1, B = 1 − 2M/r. 1

1 Although SG,red is also just rescaled under a scaling r → λr similar to SY M,red,
there is now a non-trivial stationary point with vanishing action, because SG,red

is indefinite.
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As is well known it describes a static black hole of total mass M and event
horizon located at the Schwarzschild radius rS = 2M . The fact that its
total mass is finite, although the solution has a real singularity at the origin,
illustrates a general difference to flat space, where the finiteness of the total
energy of a field configuration in general implies some regularity properties.
This remark is not made without hindsight, as it explains the unsuitability
of the energy (mass) functional for existence proofs of solutions once the
gravitational self-interaction is included.

Fig. 3. a) Schwarzschild b.h., t = 0 hyperplane for r > 2M (each circle is actually
a 2-sphere), b) same for r < 2M

The geometry of black hole space-times is best illustrated with their con-
formal diagram Fig. 2 (Hawking and Ellis 1973). Since we are considering the
solutions for fixed t, the hyper-surfaces t = const. are of particular interest.
They meet the horizon at the so-called “bifurcation surface” of the horizon.
In order to study their geometry it is useful to switch to another radial coor-
dial coordinate, avoiding the apparent singularity of the metric at r = 2M .
A convenient choice is

ρ =

r∫
2M

dr′
√

B
. (13)

Due to the square-root ρ is a double-valued function of r, the continuation
through the branch point at r = 2M leading to another copy of the original
surface and thus giving the surfaces t = const. their famous “wormhole”
structure (Fig. 3). A similar construction for the corresponding (time-like)
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Fig. 4. a) Extremal Reissner-Nordstrøm b.h., part of the t=0 hyperplane for r > M ,
b) same for r < M

surfaces inside the horizon (replacing B by −B in (13)) leads to a compact
surface with a second singular center (r = 0).

Next we consider the static black holes of the Einstein-Maxwell theory,
described by the Reissner-Nordstrøm (RN) solution. There are two possibi-
lities for a static, spherically symmetric Maxwell field, the electric monopole
with the potential A0 = q/r or a magnetic monopole with Aϕ = qcosθ with
the Dirac string singularity, leading to the same metric given by A = 1,
B = 1 − 2M/r + q2/r2. For M > |q| the function B has two zeros, leading to
an outer and an inner horizon. Outside the outer horizon the structure of the
t = const. surfaces is as before. However, as |q| tends to M the worm-hole
develops a long “throat” with r ≈ M . The limiting case M = |q| represents
the “extremal” RN black hole, whose horizon is degenerate, due to the double
zero of B at r = M . There is no more wormhole, but an infinitely long throat.
Also the t = const. (space-like!) surfaces inside the horizon show this infinite
throat as r → M (Fig. 4).

4 Gravitating Monopoles – BPS-Type Solutions

As already mentioned the flat BPS monopole plays a very special role in
connection with supersymmetry. Amazingly it is possible to embed the flat
solution into certain supergravity theories, satisfying the coupled field equa-
tions. The first such embedding is due to Gauntlett et.al. (Gauntlett et al.
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1993). The relevant SUGRA theory is the N = 4 extended SUGRA coup-
led to N = 4 SUSY-YM, derived from the corresponding N = 1 theory in
ten dimensions, which itself is a field theory limit of heterotic string theory.
Besides the gravitational field the theory contains a dilaton ϕ and an axion
Hλµν . For the solution considered, the members of the SUGRA multiplet can
be expressed through the YM potential W and the Higgs field h of the flat
BPS solution as

e2ϕ = 2
r2 (1 − W 2 + 2h) gµν = e2ϕηµν (14a)

Hij4 = 2εijk
xk

r4 h(1 − W 2) Hijk = 0 . (14b)

As in flat space the solution solves first order Bogomolny equations and pre-
serves one half of the supersymmetries.

Another embedding discovered more recently by Chamseddine and
Volkov (Chamseddine and Volkov 1977) is even more surprising, since the
model contains no Higgs field. The corresponding SUGRA is the N = 4 gau-
ged supergravity (Friedman and Schwarz 1978), which may be obtained as a
non-trivial Kaluza-Klein reduction from the N = 1 SUGRA in ten dimensions
(related to type II strings). The YM field results from the non-trivial structure
of the internal space S3 × S3, on which the compactification is performed.
The non-vanishing curvature of the internal space leads to a cosmological
constant in four dimensions. After a suitable truncation the 4-dimensional
(bosonic) action considered in (Chamseddine and Volkov 1977) is

S = −
∫

d4x
√−g

[R

2
− 1

2
(∂ϕ)2 +

1
4g2 e2ϕTrF 2 − 1

4
e−2ϕ

]
. (15)

The gravitational the gravitational field and the dilaton can be expressed
through the flat BPS solution

R2 = 2h − W 2 + 1 with R =
r√
2
e−ϕ (16a)

B = 1 +
(R2 + W 2 − 1)2

4R2 (16b)

A =
r

ρ
(16c)

2e2ϕ = A2B , (16d)

where the coordinate ρ is chosen such that ds2
2 = A2B(dt2 − dρ2). Again the

solution satisfies a first order system of Bogomolny equations

ρ
d

dρ
W = − W

2
√

B
(R2 + W 2 − 1) , (17a)

ρ
d

dρ
ϕ =

1
4
√

B

(
R2 − (W 2 − 1)2

R2

)
. (17b)

The solution is not asymptotically flat due to the cosmological term in the
action (not even asymptotically anti-deSitter) and it preserves 1/4 of the
supersymmetries.
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5 Gravitating Monopoles without SUSY

Let us now proceed to the case of self-gravitating magnetic monopoles with-
out SUSY. Through gravity another mass scale MPl has entered and we can
form two dimensionless ratios α =

√
Gv = MW /gMPl and β = MW /MH .

As long as MW << MPl, i.e., α << 1 the influence of gravity is small and
we expect to find a weakly self-gravitating version of the flat monopole (van
Nieuwenhuizen et al. 1976). However, for values α ≈ 1 the situation changes.
The size of the monopole is determined by Rm = 1/MW =

√
G/gα, whe-

reas its Schwarzschild radius is given by 2GMmon ≈ GMW /g2 = α
√

G/g.
For α → 1 both radii approach each other and we expect the monopole to
become gravitationally unstable, i.e., we expect regular monopoles to exist
only up to some maximal value of α of order one. Since no exact solutions are
known (besides the ones involving a dilaton discussed in the previous section)
, we have to take recourse to numerical methods for their study.

Combining the flat space ansatz for the YM resp. Higgs field with the
one for the static, spherically symmetric gravitational field (11) the reduced
Einstein-YM-Higgs (EYMH) action can be expressed as (using Schwarzschild
coordinates for simplicity)

S =
∫

drA
[1
2
(rB′ + B − 1) − r2BV1 − V2

]
, (18)

with

V1 =
(W ′)2

r2 +
1
2
(H ′)2 , (19)

and

V2 =
(1 − W 2)2

2r2 + W 2H2 +
β2r2

8
(H2 − α2)2 . (20)

Through a suitable rescaling we have achieved that the action depends only
on the dimensionless parameters α and β.

Upon variation we obtain the corresponding field equations

(ABW )′ = AW
(W 2 − 1

r2 + H2
)

(21a)

(ABr2H)′ = AH
(β2

2
r2(H2 − α2) + 2W 2

)
(21b)

rB′ = 1 − B − 2(r2BV1 + V2) (21c)
rA′ = 2r2V1A . (21d)

This system of ODE’s has singular points at r = 0,∞ and for B = 0. Gra-
vitating monopoles are globally regular solutions of the this singular system.
Although it is not too difficult to prove local existence of suitable families of
regular solutions the question of global existence is a very difficult problem,
still beyond reach (except in some simple cases, e.g., for β = ∞). Recall that
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Fig. 5. W and H for (β = 0) a) the gravitating monopole solutions for
α = 0.05, αmax = 1.403 and αc = 1.386; b) first radial excitation for
α = 0.01, 0.2, 0.5 and 0.86.

Fig. 6. a) Masses (in units of MW ) of fundamental monopole solutions versus α
(for β = 0); b) Masses (now in units of MPl/g) of fundamental monopole solutions
and first and second radial excitations versus α (for β = 0);

the energy functional has no good functional analytic properties in this case.

Thus our knowledge about the solutions is based to a large extent on nu-
merical computations. There are several methods available for that purpose,
one sided (“Shooting and aiming”) or two sided methods (“matching”) (Brei-
tenlohner et al. 1992, 1995) and for stable solutions also relaxation methods
may be applied.

The numerical analysis (Ortiz 1992, Lee et al. 1992, Breitenlohner et al.
1992, 1995) revealed that there are self-gravitating versions of the flat-space
non-abelian monopoles for values of α ranging from zero up to some maxi-
mal value αmax(β), fully in accordance with our expectations (Fig. 5a). As
α increases the solutions develop a typical limiting behaviour, which may be
characterized as “gravitational confinement” of the monopole. As the func-
tion B develops a double zero at the finite value rl = 1 (measured in units
of 1/MPl), the spatial hyper-surface t = const. develops an infinite throat
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separating an interior region with a smooth origin and non-trivial YM field
from an exterior solution with W ≡ 0, which is nothing but an extremal RN
black hole. Thus there is a “confined” interior essentially non-abelian region
and an outer abelian monopole. All this is much like the t = const. surfaces of
the extremal RN solution, with the only difference, that the interior part of
the throat is in no sense the continuation of the exterior one. In fact the me-
tric function A blows up along the throat coming from the interior, whereas
A ≡ 1 for the RN solution. Hence the interior solution has no extremal ho-
rizon at r = rl, instead it represents a geodesically complete, asymptotically
AdS “cosmological” kind of solution.

Actually, what was just said is only true for not too large values of the
parameter β (roughly β < 10), i.e., for not too large Higgs mass. For larger
values of β it is still true that B(r) develops a double zero at some finite
value rl < 1, thus there is the infinite throat again, but now W (r) does not
tend to zero there and A(r) remains bounded. This means that the limiting
solution, obtained for some maximal value αmax(β), represents an extremal
black hole with “non-abelian hair” (E. Weinberg, private communication).
Due to the large difference between the mass scales for W and H it seems
that this solution can be obtained numerically only with the use of a suitable
relaxation method. Amazingly this extremal black hole is completely regular
inside its horizon with a regular origin. At the horizon W (r) and H(r) are
continuous, but not C∞, due to some power behaviour of the type (r − rh)pi

with some real exponents pi > 1.
The observation, that the onset of a gravitational instability as the para-

meter α becomes too large, manifests itself within the family of static soluti-
ons in the formation of an extremal black hole (as far as the outer part of the
solution is concerned) seems to be rather general. A similar phenomenon was
observed for rigidly rotating dust discs by Neugebauer and Meinel (Meinel
1997). In their case the exterior part of the solution tends to the extremal
Kerr solution, whereas the interior part is again some kind of a “cosmologi-
cal” solution. In contrast to the flat space monopoles gravitating monopoles

Fig. 7. W for the first two Bartnik-McKinnon solutions
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also allow for radial excitations (compare Fig. 5b). As seen from Fig. 6b their
mass stays finite (in units of MPl) as α tends to zero. At this point it is im-
portant to observe, that the limit α → 0 can be achieved in two different
ways:

i) G → 0, MW fixed, in which the gravitational field decouples (flat space);
ii) v = MW /g → 0, G fixed, in which the Higgs field becomes trivial and

can be ignored.

Whereas the fundamental monopole tends to its flat version as α → 0, the
excited ones have no flat limit, instead tend to a class of solutions without
a Higgs field, discovered by Bartnik and McKinnon (Bartnik and McKinnon
1988). There is a countably infinite number of these BM solutions distinguis-
hed by the number of zeros of the YM potential W . Their mass is of the order
of MPl, the only scale of the EYM theory. As r → ∞ the function W (r) tends
to ±1 (compare Fig. 7), thus they carry no magnetic charge. In fact, they may
be understood as some kind of gravitationally bound sphalerons (Volkov and
Gal’tsov 1991; Sudarsky and Wald 1992), in particular as they turn out to be
unstable (Straumann and Zhou 1990; Boschung et al. 1994; Volkov 1995). In
addition to the “topological” instability of the flat YMH sphalerons however
the gravitational BM sphalerons show additional “gravitational” instabilities
within the minimal ansatz (Lavrelashvili and Maison 1995).

Turning back to the radially excited monopoles, it appears quite natu-
ral (at least for small values of α) to consider them as a Planck scale BM
sphaleron sitting inside a 1/MW size monopole. All these radial excitations
disappear at the same value of α =

√
3/2 merging in the by now well-known

manner with the extremal RN black hole.
A few remarks should be made here about the stability properties of the

gravitating monopoles. I shall discuss here only stability against infinitesimal,
spherically symmetric perturbations. In view of the time-independence of
the solutions this amounts to analyzing the spectrum of perturbations with
harmonic time-dependence obeying suitable boundary conditions. Imaginary
frequencies correspond to unstable modes of the solution. As to be expected
the branch of gravitating monopoles connected to the flat space solution is
stable up to αmax. All the excited regular monopoles turn out to be unstable
(Hollmann 1994).

6 Coloured Black Holes

Apart from the solutions with Minkowskian space-time topology there are
non-abelian, “coloured” black holes, parametrized by their radius rh (the
value of r at the event horizon) in addition to α and β (Breitenlohner et
al. 1992, 1995, Lee et al. 1992). For rh << 1/MW these non-abelian black
holes may be interpreted as a tiny Schwarzschild black hole sitting inside a
monopole (Kastor and Traschen 1992). On the other hand, when rh becomes
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Fig. 8. Domains of existence for non-abelian black holes: a) for β = 0, 1, 2, 3, and
4; b) for β = 6 and ∞

bigger than ≈ 1/MW this type of solution disappears and only the abelian
RN black holes exist. For rh → 0 the matter fields tend uniformly to those of
the globally regular solutions, whereas for the metrical functions this limit is
clearly more delicate.

Detailed numerical analysis reveals that non-abelian black holes exist only
in a limited domain of the α-rh-plane, whose shape undergoes some charac-
teristic changes as β varies from 0 to ∞. Fig. 8 shows some of these domains.
Observe that we use αrh instead of rh as the abscissa - equivalent to expres-
sing rh in units of 1/MW - in order to obtain domains remaining bounded
for α → 0.

In the following I shall discuss in some more detail the structure of these
“Phase Diagrams” and the phenomena happening at their boundaries. Let
me start with the case β = 0. It is appropriate to subdivide the relevant
sector α ≥ 0, rh ≥ 0 into the four subregions I-IV (compare Fig. 9).

In regions I and II we find coloured black holes. Above the diagonal,
i.e., in regions II and III we have the abelian RN black holes, the extremal
RN black holes sitting on the diagonal. Below the diagonal the RN solution
has a naked singularity and does not represent a black hole. No black holes,
neither abelian nor non-abelian, could be found in region IV. Region I may be
subdivided in region Ia, where only the black hole version of the fundamental
monopole resides and region Ib, where in addition their radial excitations
are found. Thus region Ia contains only one black hole solution 2 for given
values of α and rh, whereas in region Ib countably many solutions exist for
any given α and rh.

In region Ib fundamental and radially excited solutions coexist, whereas
in region II even abelian and non-abelian black holes coexist. This establishes
an obvious violation of the so-called “No-Hair” Conjecture. According to the
latter static black holes of a given mass (or size, i.e., given value of rh) should
be uniquely determined through their “gauge charges” - their magnetic charge
2 This is not strictly true for small values of β, where two solutions exist in a small

interval αc(rh) < α < αmax(rh).
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in the present case. However, all these black holes carry the same magnetic
charge. Although black holes of the same size differ in general in their mass,
degeneracy in mass also occurs. In some cases abelian and non-abelian black
holes are even degenerate in mass and size.

As β increases from 0 to β = 4 the structure of the “Phase Diagram”
remains essentially the same, the right boundary curve moving in to the left.
However, for β > 4 this boundary curve develops a second, concave branch
(compare Fig. 8b) determined by another mechanism – the formation of a
degenerate inner (above P) resp. outer (between P and Q) horizon, leading
to extremal black holes with non-abelian hair.

The boundary curve above the diagonal is essentially characterized by
the bifurcation of the non-abelian with the abelian RN solution. For a given
value of α this happens at some value rc,n(α) depending on the number n of
zeros of W (Fig. 8). Approaching this value from below the value Wh of W
at the horizon tends to zero, thus abelian and non-abelian black holes merge.

Fig. 9. Domains of existence for abelian and non-abelian black holes, β = 0

Finally again a remark concerning the stability of the solutions. Similar
to the situation with regular monopoles the fundamental coloured black hole
solutions are stable, likewise the radially excited ones are unstable. It is,
however, interesting to observe that the abelian RN black hole is unstable
in the framework of the non-abelian theory for α smaller than some value
α(rh) <

√
3/2 (Bizon and Wald 1991; Lee et al. 1992a, Breitenlohner et al.

1992, 1995). In particular, the extremal RN solution is unstable for α ≤ √
3/2

and stable above this value. At the limiting value α =
√

3/2 the extremal
RN solution bifurcates with infinitely many non-abelian solutions and in fact
develops infinitely many unstable modes.
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7 Additional Remarks

The interpretation of the BM sphalerons as gravitationally bound sphalerons
is supported by the fact that similar solutions have been found for a theory
where the gravitational field is replaced by a dilaton, serving the same pur-
pose (Lavrelashvili and Maison 1992, 1993; Bizon 1993; Donets and Galtsov
1993). There is also an investigation of magnetic monopoles coupled to gra-
vity and a dilaton (without SUSY) (Forgacs and Gyürüsi 1996). Gravitating
monopoles resp.sphalerons for higher gauge groups (SU(3) etc. ) were studied
in (Kleihaus et al. 1995, 1998) with similar results.

Furthermore axially symmetric, static generalizations of the BM solutions
were constructed numerically (Kleihaus and Kunz 1997). Similar solutions
generalizing multiply charged axially symmetric flat monopoles are expected
also with gravity. However more interesting is the question, if there are sta-
tionary rotating solutions. It seems that only the neutral BM solutions can
rotate (Volkov and Straumann 1997; Brodbeck et al. 1997), whereas rotating
magnetic monopoles are excluded (even in flat space) (Brodbeck and Heusler
1997; Heusler et al. 1998).
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Abstract. Using reflection positivity as the main tool, we establish a connection
between the existence of a critical point in classical spin models and the triviality of
a certain local cohomology class related to the Noether current of the model in the
continuum limit. Furthermore we find a relation between the location of the critical
point and the momentum space autocorrelation function of the Noether current.

1 Introduction: Lattice and Continuum

It is well known that one possible approach to the construction of a Quantum
Field Theory (QFT) goes by way of taking the continuum limit of a system
of Classical Statistical Mechanics on a lattice, such as the Ising model, the
classical Heisenberg model or more generally a classical spin model. Taking
the continuum limit means in this context that one has to drive the system
to a critical point, that is a point at which the dynamically produced scale(s)
become infinite in terms of the lattice spacing; the continuum limit is then
obtained by an infinite rescaling of the lattice model (see below; a rather
detailed discussion of how this is done is contained in (Patrascioiu and Seiler
1997)). A bonus of this construction is that the continuum limit inherits
certain properties of the lattice model, such as Reflection Positivity (RP)
which leads to positivity of the state space metric and the spectrum condition
of the QFT.

More precisely we have to distinguish between two kinds of continuum
limits:

– The massive continuum limit: one chooses the dynamically generated
length (correlation length) ξ of the system as the standard of length,
considers the system at length scales that are fixed multiples of that
standard, and sends ξ → ∞ by driving the system to criticality.

– The massless continuum limit: the lattice system is put right on a critical
point; one then chooses an arbitrary length scale that becomes infinite in
lattice units and rescales the system accordingly.

A. Borowiec et al. (Eds.): Proceedings 1998, LNP 539, pp. 279−290, 2000.
 Springer-Verlag Berlin Heidelberg 2000
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The first option will produce a (Euclidean) QFT with unit mass, the
second one a massless QFT, which according to standard lore will also be
conformally invariant. In 2D it is believed that this allows to classify the
critical behaviors according to the well-studied (rational) Conformal QFTs
(Belavin et al. 1984, Friedan et al. 1984).

In this talk we want to discuss this connection, and actually close some
gaps. In the course of the argument it turns out that one has to prove the
triviality of a certain ‘local cohomology class’ related to the Noether current.
This is possible with the use of lattice Ward identities (WI) and RP.

The same ingredients lead at the same time to an interesting and maybe
unexpected relation between the location of the critical point of the lattice
model and the Noether current 2-point function of the continuum model. This
leads to a new criterion that allows to discriminate between the ‘conventional
wisdom’ about nonabelian spin models in 2D, which posits that they do
not become critical at any temperature and the scenario long advocated by
us (Patrascioiu and Seiler 1993, 1995) that they do have a transition to a
massless spin wave phase, just as the plane rotator model.

2 Local Cohomology

It has been noted long ago (Strocchi 1967, Pohlmeyer 1972, Roberts 1978)
that the imposition of locality (local commutativity, Einstain causality) may
make the cohomology of Minkowski space nontrivial.

The problem of local cohomolgy may be stated as follows: assume that an
antisymmetric tensor field Φµ1,...,µk

(x) is given, which satisfies Wightman’s
axioms and is closed, i.e., satisfies

dΦ ≡ d(
∑

Φµ1,...,µk
dxµ1 ...dxµk) = 0 (1)

(in the notation of alternating differential forms).
The question is then under which conditions the field Φ is exact, i.e., there

exists a local antisymmetric tensor field Ψ such that Φ = dΨ .
There are some well-known examples where the answer is ‘no’, even

though Minkowski space is topologically trivial:
(1) the free Maxwell field F in dimension D ≥ 2 (Strocchi 1967);
(2) the gradient of the massless free scalar field φ in 2D, because the field

φ does not exist as a local (Wightman) field.
There is also a simple 2D example on which we hit in our analysis of 2D

classical spin models: let
Φ = φcdx

1dx2 , (2)

where φc has the Euclidean two-point function

〈φc(0)φc(x)〉 =
1

(x2)2
. (3)
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Then Φ is trivially closed in 2D, but it is not exact, i.e., there is no local
vector field jµ such that

φc = εµν∂µjν . (4)

This example can be made more explicit by requiring φc to be a general-
ized free, i.e., Gaussian field, with its two-point function given by (3). If we
solve the differential equations that the two-point function of jµ has to fulfill
in order to satisfy (4) and impose euclidean covariance, we find that there is
no scale invariant solution. The covariant solutions are

Gµν(x) = −δµν lnx2 + λ

8x2 + xµxν
lnx2 + 1 + λ

4x2 . (5)

This is not the two point function of a local vector field, continued to euclidean
times: it violates the so-called reflection positivity (Osterwalder and Schrader
1973, 1975), because the logarithm changes sign. Similarly it also does not
obey the positivity required for a random field.

3 What Is the Massles Continuum Limit
of a Critical Classical Spin Model?

There is an old argument (Affleck 1985) that a classical spin model with a
continuous symmetry group G will have a massless contiuuum limit that has
an enhanced G × G symmetry; this is supposed to come about due to the
splitting of the model into two independent ‘chiral’ theories. Affleck (Affleck
1985) gave this argument in the the framework of Quantum Field Theory
in Minkowski space, but it can be easily rephrased in the euclidean setting.
In (Patrascioiu and Seiler 1998a, Patrascioiu and Seiler 1998b) we pointed
out two possible gaps in those arguments coming from hidden assumptions
whose validity ahs to be checked. But in those papers we also showed that
these gaps can be closed, using properties like reflection positivity.

The core of the euclidean version of Affleck’s argument is the following:
assume that we have a scale invariant continuum theory with a conserved
current jµ(x). Euclidean covariance requires that the two-point function Gµν
of jµ is of the form

Gµν ≡ 〈jµ(0)jν(x)〉 = δµν
b

x2 +
axµxν
(x2)2

(x 6= 0) . (6)

Imposing current conservation means

∂µGµν = 0 , (7)

for x 6= 0, which implies
a = −2b , (8)

Gµν(x) = b

(
δµν
x2 − 2xµxν

(x2)2

)
. (9)
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This is, up to the factor b, equal to the two point function of ∂µφ where φ
is the massless free scalar field (it is irrelevant here that the massless scalar
field does not exist as a Wightman field). If we look at the two-point function
of the dual current εµνjν , it turns out to be

G̃µν ≡ εµλερνGλρ = −Gµν , (10)

so the dual current two point function satisfies automatically the conservation
law. Conservation of the two currents j and j̃ is equivalent to conservation
of the two chiral currents j± = j0 ± j1 in Minkowski space.

By general properties of local quantum field theory (Reeh-Schlieder theo-
rem, see (Reeh and Schlieder 1961, Streater and Wightman 1978)) it follows
that the dual current is conserved as a quantum field. So the two conservation
laws together imply that

jµ =
√
b∂µφ , (11)

where φ is the massless scalar free field, and also that

jµ =
√
bεµν∂νψ , (12)

where ψ is another ‘copy’ of the massless scalar free field.
As presented, this argument is certainly correct. But it depends on the

assumption that the Noether currents exist as Wightman fields, and this
assumption is in fact nontrivial and could a priori fail in the critical spin
models. A simple example of a Quantum Field Theory with a continuous
symmetry in which the Noether current does not exist as a Wightman field
is given by the two-component free field in 2D in the massless limit. It is
simply given by a pair of independent Gaussian fields Φ(1), Φ(2), both with
covariance

C(x) =
1

(2π)2

∫
d2p

eipx

p2 +m2 , (13)

where we are interested in the limit m → 0. This system has a global O(2)
invariance rotating the two fields into each other. It is well known that the
massless limit only makes sense for functions of the gradients of the fields.
But the Noether current of the O(2) symmetry is given by

jµ(x) = Φ(1)(x)∂µΦ(2)(x) − Φ(2)(x)∂µΦ(1)(x) (14)

and it cannot be written as a function of the gradients. It is also easy to
see directly that its correlation functions do not have a limit as m → 0 (see
(Patrascioiu and Seiler 1998b)). The Noether current itself makes sense as a
quantum field only if it is smeared with test functions fµ satisfying∫

d2xfµ(x) = 0 . (15)

On the other hand, it is not hard to see that φc(x) = curl(j) can be written
as a function of the gradients:
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φc(x) = 2
(
(∂2Φ

(1)(x))(∂1Φ
(2)(x)) − (∂1Φ

(1)(x))(∂2Φ
(2)(x))

)
(16)

and its two-point function is of the form

〈φc(0)φc(x)〉 ∝ 1
(x2)2

. (17)

In other words, in this model we have found exactly the nontrivial lo-
cal cohomology class described in the previous section. The problem in the
massless contiuum limits of classical spin models is then the following: it is
conceivable that both curl j and div j have bona fide continuum limits, but
the current itself does not. In other words, it could happen that there is a
nontrivial second ‘local cohomology class’ just as in the example discussed
above. But it turns out that reflection positivity can be used to rule out such
a possibility, provided we are dealing with a model that becomes critical at
a finite value of the inverse temperature β (this is, however, a prerequisite
for constructing a massless continuum limit anyway). Our arguments show
that both curl j and div j have correlations that are pure contact terms in
the continuum limit; this means that in Minkowski space both the current
and its dual are conserved, thereby justifying Affleck’s claim.

For completeness, let us mention an even more exotic possible way in
which the conformal classification of the critical behavior of the classical spin
models could fail: one could be imagine that the current itself has correlations
that are pure contact terms in the continuum, which would mean that the
Noether current simply vanishes as a quantum field. Of course this would
also imply vanishing of the corresponding charge, and since the commutator
of the charge with the (renormalized) spin field should be a component of
the (renormalized) spin field, those fields themselves would have to vanish,
leading to a totally trivial theory containing only the vacuum. There is a
huge body of numerical results that makes this inconceivable, and we also
did some numerical simulations to eliminate this possibility directly in the
case of the O(2) model (Patrascioiu and Seiler 1998a, Patrascioiu and Seiler
1998b).

4 The Noether Current: Some Generalities

The O(N) model is determined by its standard Hamiltonian (action)

H = −
∑
〈ij〉

s(i) · s(j) , (18)

where the sum is over nearest neighbour pairs on a square lattice and the
spins s(.) are unit vectors in R

N . As usual Gibbs states are defined by using
the Boltzmann factor exp(−βH) together with the standard a priori measure
on the spins first in a finite volume, and then taking the thermodynamic limit.
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It is rigorously known (Froehlich and Spencer 1981) that for N = 2
the model has a transition to a massless spin wave phase at a certain
β = βKT ≈ 1.12, the so-called Kosterlitz-Thouless transition (Kosterlitz
and Thouless 1975). This transition separates a high temperature phase with
exponential clustering from a low temperature one with only algebraic de-
cay of correlations. For N > 2 the standard wisdom is that there is no such
transition and the model does not become critical at any finite β, but is
asymptotically free. For many years, however, we have been criticizing the
arguments on which this standard wisdom is based and gave arguments for
an alternative scenario according to which ALL the O(N) models have a
transition to a spin wave phase (Patrascioiu and Seiler 1993, 1995).

Here we do not want to enter into this discussion, but we will produce a
criterion that distinguishes between these two scenarios.

But at first let us assume that our model has a finite critical point and
study the consequences. We are in particular interested in the correlations of
the Noether currents, given by

jabµ (i) = β
(
sa(i)sb(i+ µ̂) − sa(i)sb(i+ µ̂)

)
. (19)

Typically we will restrict ourselves to the case a = 1, b = 2 and omit the
flavor indices on the current.

On a torus the current can be decomposed into 3 pieces, a longitudinal,
a transverse and a constant (harmonic) piece. This decomposition is easiest
in momentum space, and effected by the projections

PTµν =

(
δµν − (eipµ − 1)(e−ipν − 1)∑

α(2 − 2 cos pα)

)
(1 − δp0) , (20)

PLµν= =
(eipµ − 1)(e−ipν − 1)∑

α(2 − 2 cos pα)
(1 − δp0) (21)

and
Phµν = δµνδp0 (22)

with pµ = 2πnµ/L, nµ = 0, 1, 2, ..., L− 1.
In the following we will mostly discuss these correlations in momentum

space. In particular we study the tranverse momentum space 2-point function

F̂T (p, L) ≡ Ĝ(0, p;L) = 〈|ĵ1(0, p)|2〉 (23)

(for p 6= 0; the hat denotes the Fourier transform)
and the longitudinal two-point function

F̂L(p, L) ≡ Ĝ(p, 0;L) = 〈|ĵ1(p, 0)|2〉 (24)

(for p 6= 0).
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Because the current is conserved, its divergence in the Euclidean world
should be a pure contact term, and for dimensional reasons the two-point
function should be proportional to a δ function, i.e.,

F̂L(p, L) = const. (25)

The constant is in fact determined by a Ward identity in terms of E =
〈s(0) · s(µ̂)〉: consider (for a suitable finite volume) the partition function

Z =
∫ ∏

i

ds(i)
∏
〈ij〉

exp
(
βs(i) · s(j)) , (26)

where ds denotes the standard invariant measure on the (N − 1)-sphere.
Replacing under the integral s(i) by exp(αL12), where L12 is an infinitesimal
rotation in the 12 plane, does not change the integral. So expanding in powers
of α, all terms except the one of order α0 vanish indentically in α(i). This
leads in a well-known fashion to Ward identities expressing the conservation
of the current. Looking specifically at the second order term in α and Fourier
transforming, we obtain for all p 6= 0

〈|j1(p, 0)|2〉 = F̂L(p, L) =
2
N
βE . (27)

This is confirmed impressively by the Monte Carlo simulations (Patrascioiu
and Seiler 1998b).

The thermodynamic limit is obtained by sending L → ∞ for fixed p =
2πn/L, so that in the limit p becomes a continuous variable ranging over
the interval [−π, π). The O(N) models do not show spontaneous symmetry
breaking according to the Mermin-Wagner theorem, and presumably have a
unique infinite volume limit at any temperature.

The massive continuum limit is contructed as follows: First one takes the
thermodynamic limit of the the model in its high temperature phase. There
is a dynamically generated length scale ξ, the correlation length regulating
the exponential decay of the correlations. This is now taken as the standard
of length, and the fields are rescaled accordingly. In particular the Noether
current is rescaled as follows:

jrenµ (x) = ξjµ(i) (28)

with x = i/ξ. After that, the system is driven to the critical point, where
ξ → ∞.

The massless continuum limit, on the other hand, is obtained as follows:
we take the thermodynamic limit of the model right at its critical point.
Since there is no dynamically generated scale, we take an arbitrary sequence
ln going to infinity as our standard of length. The currents are then rescaled
as

jrenµ (x) = lnjµ(i) (29)

with x = i/ln and we take the limit n → ∞.
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5 The Noether Current: Bounds and Inequalities

The Gibbs measure formed with the standard action on the periodic lattice
has the property of reflection positivity (see for instance (Osterwalder and
Seiler 1978)). Reflection positivity means that expectation values of the form

〈Aθ(A)〉 (30)

are nonnegative, where A is an observable depending on the spins in the
‘upper half’ of the lattice ({x|x1 > 0}, and θ(A) is the complex conjugate of
the same function of the spins at the sites with x1 replaced by −x1. Applied
to the current two-point functions this yields:

FL(x1, L) =
∑
x2

〈j1(x1, x2)j1(0, 0)〉 ≤ 0 , (31)

for x1 6= 0 and

FT (x1, L) =
∑
x2

〈j2(x1, x2)j2(0, 0)〉 ≥ 0 , (32)

for all x1. From these two equations and (27) it follows directly that

0 ≤ F̂T (p, L) ≤ F̂T (0, L) = F̂L(0, L) ≤ F̂L(p, L) =
2
N
βE . (33)

These inequalities remain of course true in the thermodynamic limit,
but we have to be careful with the order of the limits. If we define
F̂T (p,∞) and F̂L(p,∞) as the Fourier transforms of limL→∞ FT (x, L) and
limL→∞ FL(x, L), respectively, one conclusion can be drawn immediately:

Proposition: F̂T (p,∞) and F̂L(p,∞) are continuous functions of p ∈
[−π, π).

The proof is straightforward, because due to the inequalities (32) (33)
and (34) together with the finiteness of βcrt the limiting functions FL and
FT in x-space are absolutely summable. But it is not assured that the limits
L → ∞ and p → 0 can be interchanged, nor that the thermodynamic limit
and Fourier transformation can be interchanged. On the contrary, by the
numerics presented in (Patrascioiu and Seiler 1998a, Patrascioiu and Seiler
1998b), as well as finite size scaling arguments, it is suggested that

lim
p→0

lim
L→∞

F̂L(p, L) > lim
L→∞

F̂L(0, L) (34)

and therefore also

lim
p→0

lim
L→∞

F̂L(p, L) > lim
p→0

lim
L→∞

F̂T (p, L) . (35)

The fact that these are strict inequalities plays an important role in the
justification of Affleck’s claim, as will be seen below.
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To continue, let us describe how the two types of continuum limit are
taken in Fourier space, concretely for our functions F̂T (p,∞), F̂L(p,∞).

The massive continuum limit means considering F̂T (p) etc. for a sequence
of ξ values diverging to ∞ as functions of q ≡ p/m = pξ, i.e., taking

lim
ξ→∞

T̂ (q) ≡ F̂T (qm) . (36)

In this context it is important to note that the functions F̂T (p) depend
explicitly on β which is sent to βcrt, and through this on the correlation
length ξ, which is sent to ∞.

The massless continuum limit on the other hand is obtained by going to
the critical point and considering F̂T (p) etc. as a function of q ≡ p/ln, i.e.,
taking

lim
n→∞ T̂ (q) ≡ F̂T (q/ln) . (37)

In this case we are always dealing with only one function F̂T (p), not depend-
ing on n, because β is fixed to its critical value.

6 Consequences

For the massless continuum limit the inequalities (33) lead to an important
consequence, which closes the main gap in Affleck’s argument by showing
the triviality of the second local cohomology class defined by the curl of the
Noether current:

Proposition: In the massless continuum limit both F̂L(p,∞) and
F̂T (p,∞) converge to constants for p 6= 0.

Corollary: The local cohomology class defined by curl(j) is trivial.
Proof: Let F̂ (p) be the Fourier transform of either F̂T (p,∞) or F̂L(p,∞).

We consider F̂ (p) as a distribution on [−π, π). We extend F̂ (p) to a peri-
odic distribution on the whole real line. The continuuum limit of F (n) (the
corresponding function in x space) also has to be considered in the sense of
distributions. If we change our standard of length to lM = M , the lattice
spacing will be a = 1/M , respectively. For an arbitrary test function f (in-
finitely differentiable and of compact support) on the real axis we then have
to consider the limit M → ∞ of

(F, f)M ≡
∑
n

f(n/M)F (n) . (38)

We claim that the right hand side of this is equal to

1
2π

∞∫
∞
dqF̂ (q/M)f̂(q). (39)

Proof: Insert in (38)
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F (n) =
1

2π

π∫
−π

dpF̂ (p)eipn (40)

and

f(n/M) =
1

2π

π∫
−π

dpf̂(p)eipn/M (41)

and use the identity∑
n

eipn+iqnb = 2π
∑
r

δ(p+ qb+ 2πr) . (42)

This produces, after carrying out the trivial integral over q using the δ dis-
tribution,

M

2π

π∫
−π

dp
∞∑

r=−∞
F̂ (−p)f̂((p+ 2πr)M)

=
1

2π

∞∑
r=−∞

Mπ∫
−Mπ

dqF̂ (−q/M)f̂(q + 2πMr) . (43)

Finally, using the periodic extension of F̂ (p), this becomes what is claimed
in (39).

From (39) one sees that what is relevant for the continuum limit is the
small momentum behavior of F̂ (p). In particular, if limp→0 F̂ (p) ≡ F̂ (0)
exists, we obtain

lim
M→∞

(F, f)M =
1

2π
F̂ (0)

∫
dqf̂(q) =

1
2π
f(0)F̂ (0) (44)

expressing the fact that in this case the limit of F is a pure contact term.
This finishes the proof of the proposition.

In spite of this result, Affleck’s claim could still fail in a different way if
F̂T (p,∞) and F̂L(p,∞) converged to the same constant in the continuum
limit. Let us denote the continuum limit of F̂T (p,∞) by g. Then the current-
current correlation in this limit is

〈jµjν〉(̂p) = βEPLµν + gPTµν = gδµν + (βE − g)
pµpν
p2 . (45)

So we see that if g = βE, the current-current correlation reduces to a pure
contact term and vanishes in Minkowski space. Above we proved only that

g ≤ βE . (46)

But if the current-current correlation were a pure contact term, it would be
unavoidable to conclude that also the spin field becomes ultralocal. This can
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be seen as follows: if the current is ultralocal in the euclidean world, by the
Osterwalder-Schrader reconstruction (Osterwalder and Schrader 1973, 1975)
the current field operator in Minkowski space has to vanish, and so does the
charge operator Q12 =

∫
dxjo(x, t). But if the charge operator generates a

global O(N) symmetry, it has to have the following commutation relation
with the (renormalized, Minkowskian) spin field s(x):

[Q12, sa(x)] = sa(x), a > 2 , (47)

[Q12, s1(x)] = s2(x) , (48)

[Q12, s2(x)] = −s2(x) , (49)

which would then imply that s(x) vanishes identically. This argument is
not fully rigorous, because it assumes (47) as well as the validity of the
Osterwalder-Schrader axioms; both have not been proven in full rigor for the
continuum limit of the O(N) models. Also there is only numerical evidence,
but no rigorous proof, that the continuum limit of the spin field is not ul-
tralocal. For these reasons we presented in (Patrascioiu and Seiler 1998b)
numerical data which (together with finite size scaling arguments) rule out
directly ultralocality of the current.

Let us now turn to the massive continuum limit. For this the inequalities
(33) yield the announced bound on the transition temperature in terms of
the tranverse Noether current in momentum space:

Proposition: For the O(N) models the critical inverse temperature sat-
isfies

βcrt ≥ N

2
sup
p
F̂T (p) . (50)

The quantity J(p) = F̂T (p) − F̂T (0) satisfies

J(p) ≤ 2
N
βcrt . (51)

Proof: Both statements follow directly by taking first the thermodynamic
and then the massive continuum limit of (33), using also the trivial fact
E ≤ 1.

This result is the announced criterion distinguishing between βcrt < ∞
and βcrt = ∞ by the boundedness or unboundedness of J(p) or F̂T (p). Of
course it is a highly nontrivial matter to verify this criterion. Balog and
Niedermaier (Balog and Niedermaier 1997) gave arguments that J(p) is un-
bounded in their form factor construction of the O(3) model, which seems
to suggest βcrt = ∞. But we found by very precise numerical simulations
evidence (Patrascioiu and Seiler 1998) that the form factor construction dis-
agrees with the (massive) continuum limit of the lattice O(3) model, leaving
open the possibility that indeed βcrt < ∞ as long advocated by us.
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Bose–Einstein Correlations
in High Energy Multiple
Particle Production Processes?

K. Zalewski
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Institute of Nuclear Physics, Kraków, Poland

Abstract. Correlations among identical bosons, which are familiar from statisti-
cal physics, play an increasingly important role in high energy multiple particle
production processes. They provide information about the region, where the parti-
cles are produced and, if Einstein’s condensation can be reached, they can lead to
spectacular new phenomena.

1 Introduction

In this paper we will consider Bose-Einstein correlations in high-energy par-
ticle production processes, i.e., the correlations among identical bosons in
the final state, which follow from Bose-Einstein statistics. When hundreds
of identical bosons are being produced in a single scattering act, as hap-
pens e.g., in heavy ion collisions at high energy, such correlations can lead
to spectacular phenomena. They are also, most probably, the best way of
getting information about the space-time structure of the region, where the
final state particles are produced. Let us begin with a very simple example.

Consider the elastic scattering of two alpha particles with initial momenta
equal in magnitude, opposite and parallel to a horizontal axis, say the x-axis.
Suppose that the detectors register the final state particles if and only if
the scattering is at 90◦ and one of the final particles goes up and hits the
upper detector (U), while the other goes down and hits the lower detector
(L). There are two possibilities. Either particle 1, say the particle coming
from the left, hits detector U and particle 2 hits detector L, or particle 1
hits detector L and particle 2 hits detector U . Let us denote the probability
amplitudes for these two processes by A and B respectively. Since a rotation
around the x-axis can convert these two processes into each other, |A| = |B|.
Since the alpha particles are identical bosons and an exchange of the two
final state particles converts the two processes into each other, A = B. The
detection probability is |A+B|2 = 4|A|2. If the particles were distinguishable,
the probability would be |A|2 + |B|2 = 2|A|2. Thus, the fact that the particles
are indistinguishable increases the probability by a factor of two.
? Supported in part by the KBN grant 2P03B 086 14

A. Borowiec et al. (Eds.): Proceedings 1998, LNP 539, pp. 291−303, 2000.
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Let us make a few comments about this simple result.

– In the example the two amplitudes interfere constructively, because they
are coherent. This is sometimes called first order interference. We will see
in the following that the Bose-Einstein correlations of interest for us are
due to the incoherence of the production process, and are a manifestation
of the so called second order interference.

– The statement that the scattering probability for identical particles is
twice the corresponding probability for distinguishable particles is not
possible to check experimentally, because non identical alpha particles
are not available. The best one can do is to compare the experimental
result for the identical alpha particles with the calculation for the non
identical ones. In the present example, where the calculation is simple and
non controversial, this is not much of a problem, but in multiple produc-
tion processes a calculation from first principles is not possible and the
definition of the distribution for distinguishable particles, which should
be modified by the Bose-Einstein correlations to yield the distribution
which can be compared with experiment, is a difficulty.

– The final state can be represented by the density operator

ρ̂ =
1
2
|U1L2 + U2L1〉〈U1L2 + U2L1| , (1)

where UiLk is the state, where particle i is registered by the detector U
and particle k by detector L. Expanding the left-had-side one obtains four
terms, if, however, the density operator is to be used only for calculating
averages of operators symmetric with respect to exchanges of the identical
particles, which is sufficient for all practical applications, one can use the
simpler form

ρ̂ = |U1L2〉〈U1L2| + |U1L2〉〈U2L1| . (2)

It is useful to rewrite this formula in the form

ρ̂ =
∑
P

|U1L2〉〈UP1LP2| , (3)

where the summation is over all the permutations P of the indices 1 and
2 and Pi denotes the index obtained from index i under permutation P .
For our simple example this formula is ridiculously complicated, for more
difficult cases, however, its analogues are very convenient.

2 HBT Contribution

An interesting application of the Bose-Einstein interference to find the sizes
of the emitting objects was discovered in the fifties by two astronomers,
R. Hanbury Brown and R.Q. Twiss (Hanbury Brown and Twiss 1956). By
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studying the second order Bose- Einstein interference of photons, they were
able to measure the radii of some stars. The idea may seem obvious today, but
it was not so at the time it was put forward. In the seventies Hanbury Brown
wrote (Hanbury Brown and Twiss 1974) (quoted after (Silverman 1995))

Now to a surprising number of people this idea seemed not only hereti-
cal but patently absurd and they told us so in person, by letter, in pub-
lications, and by actually doing experiments which claimed to show
that we were wrong. At the most basic level they asked how, if photons
are emitted at random in a thermal source can they appear in pairs at
the two detectors. At a more sophisticated level the enraged physicist
would brandish some sacred text, usually by Heitler, and point out
that . . . our analysis was invalidated by the uncertainty relation . . .

Since the distances to many stars are known, their radii could be deter-
mined, if the opening angles between the light rays coming from the stars
could be measured. These angles, however, are in most cases too small for
a direct measurement. Hanbury Brown and Twiss suggested the following
procedure. Consider two light rays coming from two points on the surface
of the star – ray a from point a and ray b from point b. The problem is to
measure the angle Θ between the two rays. Each of the rays falls on two
photodetectors denoted 1 and 2. The distance between the photodetectors is
d. Elementary trigonometry yields to first order in Θ the relation

Θ =
∆a −∆b

d sinα
, (4)

where ∆i is the difference of distances between point i on the star and the
two photodetectors, while α is the angle between the line connecting the
two photodetectors and the direction of the two rays. Thus the problem of
measuring the opening angle Θ reduces to the problem of measuring ∆a −
∆b. Of course in practice, in order to find the radius of the star a suitable
averaging over the possible emission points is necessary, this, however, is
rather simple and we shall not discuss it any further.

The current generated in the photodetector is proportional to the intensity
of the incident light. Thus for counter 1 it is

i1u = K1 [Ea sin(ωat+ φa) + Eb sin(ωbt+ φb)]
2
, (5)

where φi, Ei, ωi denote respectively the phase at the star surface, the am-
plitude and the frequency for ray i, and K1 is a proportionality coefficient
dependent on the working of the photodetector 1. For simplicity, the polariza-
tion effects have been ignored and the time necessary to reach photodetector
1 has been put equal t for both point a and point b. In the apparatus the
current i1u is further filtered so that only frequencies from 1 Hz to 100 Hz
survive. Thus finally, the current from the first photodetector is
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i1 = K1EaEb cos[(ωa − ωb)t+ (φa − φb)] . (6)

This current is zero on the average and does not look particularly interesting.
The analysis for the second photodetector is similar except that the time
necessary to reach the detector for the ray from point i on the star is increased
by ∆i/c . One obtains

i2 = K2EaEb cos
[
(ωa − ωb)t+

ω

c
(∆a −∆b) + (φa − φb)

]
, (7)

where ω ≈ ωa ≈ ωb. This is again a rather uninteresting current, but the
average of the product of the filtered currents from the two photodetectors

〈i1i2〉 = K1K2EaEb cos
[ω
c

(∆b −∆a)
]
, (8)

which is measurable, yields ∆a−∆b and consequently the necessary opening
angle Θ.

Note that the result is obtained in spite of the fact that the presence of the
random phases φi means that light from a is incoherent with respect to light
from b. Because of these phases the product of two amplitudes, one for the
ray a and one for the ray b averages to zero, The product of four amplitudes,
two from a and two from b, however, can survive. For this reason one calls
this effect second order interference or intensity interferometry.

3 The GGLP Contribution

The first application of intensity interferometry in particle physics was made
by the Goldhabers, Lee and Pais (Goldhaber et al. 1960). Their problem was
somewhat different from that that in the HBT case. The interfering particles
were like sign pion produced at two points within the interaction region of
a hadron–hadron collision. The interference of interest was not between the
measurements at two points in space, but between momentum measurements.
Assuming that at the production space-time point xk the pion wave function
has phase φk and that the momentum of the pion pk is well-defined, one
expects at the registration point x an amplitude proportional to exp[ipk(xk−
x) + iφk]. The probability of finding the two pions produced at points x1 and
x2 with momenta p1 and p2, after proper symmetrization of the wave function,
is proportional to

1
2

∣∣∣ei(p1x1+p2x2) + ei(p1x2+p2x1)
∣∣∣2 = 1 + cos[(p1 − p2)(x1 − x2)] . (9)

We assume now that the production process is incoherent, so that the av-
eraging over the times and positions x1, x2 should be made at the level of
probabilities and not of amplitudes. Then the distribution of the difference
in momenta should be approximately given by the formula
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C(p1 − p2) = 1 + 〈cos[(p1 − p2)(x1 − x2)]〉 , (10)

where the averaging is over x1 and x2. Qualitatively, the result does not
depend much on the actual prescription being used for the averaging. For
p1 ≈ p2 the argument of the cosine is close to zero and consequently C ≈ 2.
For large momentum differences, the argument of the cosine is a rapidly
oscillating function of x1 −x2, which is strongly suppressed by the averaging
process, and C ≈ 1. If the weight function used for the averaging contains
just one parameter with the dimension of length, let us denote it R, the width
of region in p1 − p2, where C is significantly bigger than one, must be of the
order of R−1. There are many specific recipes how to perform the averaging.
The results obtained for the correlations of momenta and for the sizes and
shapes of the interaction regions are reasonable. For reviews see (Boal et al.
1990) and (Haywood 1995). In spite of this success many difficulties remain.

– Since the energy of a pion is determined by its momentum, one has data
only on the three-dimensional distribution of the differences of spatial
momenta. This is not enough to derive the four-dimensional distribution
of the sources in space-time. Therefore, the results are strongly model
dependent.

– The averaging over the square of the wave function corresponds to the as-
sumption that the density matrix of the final pions in coordinate represen-
tation is diagonal. This in turn implies that the momentum distribution
should be flat, which contradicts experiment. A closely related question
is, how the pion can be initially localized at the production point and then
represented by a plane wave corresponding to well-defined momentum.

– Information about the production region is, in practice, obtained only
from pairs of pions with similar momenta. Consequently, what is being
measured is not the whole interaction region, but the region, where the
pions with similar momenta are produced. This, incidentally, explains
the fact that the interaction regions usually come out roughly spherical,
while one believes that the full interaction region is more string like.

– There are many corrections, which probably should be applied, but it
is controversial how. Here belong the corrections for Coulomb repulsion
between the charged like sign pions, the corrections for the final state
interactions due to strong coupling, the corrections due to resonance pro-
duction, the corrections due to partial coherence of the source etc.

4 Density Matrix Approach

In order to obtain a more general formulation for the GGLP problem it is
convenient to use the formalism of density matrices. This has been described
by a number of people, here we are the closest to the formulation used by
Bialas and Krzywicki (Bialas and Krzywicki 1995). We introduce an auxiliary,
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unphysical process, where all the particles produced are distinguishable. We
assume that for this process simple, intuitive ideas work. Then we correct
for the Bose-Einstein correlations in order to obtain results comparable with
experiment. This approach has its defects as discussed in the Introduction
(see also (Boal et al. 1990), (Haywood 1995)), but for lack of a better idea it is
widely used. As our starting point for the distinguishable particles we use an
independent production model (cf (Bialas and Zalewski 1998a), (Bialas and
Zalewski 1998b), (Bialas and Zalewski 1998c) and references contained there).
In this model the multiplicity distribution for the particles is Poissonian

P
(0)
N =

νN

N !
e−ν (11)

and for each multiplicity the density matrix is a product of single particle
density matrices

ρ
(0)
N (q, q′) =

N∏
i=1

ρ
(0)
1 (qi, q′

i) . (12)

The momentum distribution is given, as usual, by the diagonal elements of
the density matrix in the momentum representation

Ω0N (q) = ρ
(0)
N (q, q) . (13)

It is convenient to normalize it to unity

σ
(0)
N =

∫
dq Ω0N (q) = 1 . (14)

For identical particles the density matrix should be symmetrized as ex-
plained in the Introduction

ρN (q, q′) =
∑
P

ρ
(0)
N (q, q′

P ) . (15)

The corresponding momentum distribution for a given multiplicity is

ΩN = ρN (q, q) . (16)

This, however, is no more normalized to unity, because

σN =
∫
dq ΩN (q) = 1 + . . . . (17)

The first term in the last expression corresponds to the identity permutation,
but there are (N −1)! further terms. This yields the multiplicity distribution

PN = NP
(0)
N σN , (18)

where N is anN -independent normalizing factor, which ensures that
∑
PN =

1.
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5 Simple Case: Pure Final State

In order to present simply the qualitative features of the result, let us consider
first the case, when for each multiplicity the final state is pure. This is a
grossly oversimplified model, but we will find that it contains some features
of the much more realistic approach presented in the following section. For
the pure state model

ρ̂
(0)
N = |ψ(0)

N 〉〈ψ(0)
N | . (19)

We assume that each of the state vectors |ψ(0)
N 〉 is symmetric with respect

to exchanges of particles. Thus the effect of the summation over the per-
mutations P is simply to multiply the operator ρ̂(0)

N by N !. As a result the
probability of producing exactly N particles is also multiplied by the factor
N !. The Poisson distribution goes over into a geometrical distribution and
after evaluating the normalization factor we get

PN = (1 − ν)νN . (20)

This formula makes sense only if ν < 1, because otherwise the sum of the
probabilities PN diverges. For the average number of particles one finds

N =
ν

1 − ν
(21)

with a singularity at ν = 1. From the model presented in the following section
it will be seen that this singularity corresponds to Einstein’s condensation.

In order to avoid the repeated summation of series it is convenient to in-
troduce the generating functions. The generating function for the multiplicity
distribution is

Φ(z) =
∞∑
N=0

PNz
N =

1 − ν

1 − zν
. (22)

The logarithmic derivative of this function with respect to z at z = 1 yields
the average multiplicity. The second derivative of the logarithm with respect
to z at z = 1 is the dispersion and in general the p-th cumulant of the
multiplicity distribution is given by

Kp = (p− 1)!
(
∂pLogΦ

∂zp

)
z=1

= (p− 1)!
(

ν

1 − ν

)p
. (23)

Inclusive and exclusive momentum distributions, as well as all the corre-
lation functions in momentum space, can be calculated by functional differ-
entiation from the generating functional

Φ[u] =
∞∑
N=0

NP
(0)
N

∫
dq ΩN (q)

N∏
i=1

u(qi) =
1 − ν

1 − ν
∫
dqiΩ01(qi)u(qi)

. (24)
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For instance, the single particle distribution is(
δΦ[u]
δu

)
u=1

=
ν

1 − ν
Ω0(q) . (25)

Thus symmetrization (Bose-Einstein statistics) introduces in this simple
model only a change of normalization.

6 Independent Production

Let us consider now the full independent production model. In order to find
the modification of the multiplicity distribution due to Bose-Einsten statistics
it is necessary to calculate the correction factors

σN =
∑
P

∫
dq

N∏
i=1

ρ
(0)
1 (qi, qPi) . (26)

Since each permutation can be decomposed into cycles, this integrals can be
expressed in terms of the cycle integrals

Ck>1 =
∫
d3kq ρ

(0)
1 (q1, q2)ρ(0)

1 (q2, q3) . . . ρ(0)
1 (qk, q1) . (27)

It is convenient to add the definition

C1 = 1 . (28)

Similarly the integrals necessary to calculate the generating functional for
the momentum distributions can be expressed in terms of the cycle integrals

Ck[u] =
∫
d3k qu(q1)ρ(0)

1 (q1, q2)u(q2)ρ(0)
1 (q2, q3) . . . u(qk)ρ(0)

1 (qk, q1) . (29)

After some combinatorics, very similar to that used when deriving the
linked clusters expansion familiar from quantum field theory and many body
theory, one finds the generating functional

Φ[u] = exp

[ ∞∑
k=1

νk
Ck[u] − Ck[1]

k

]
. (30)

Substituting in this functional z for u one obtains the generating function for
the multiplicity distribution. Without exhibiting the actual calculations we
will now present some general results, obtained for this model.
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– The single particle momentum distribution and all the momentum corre-
lation functions can be expressed in terms of one function depending on
two single particle momenta

L(q1, q′
1) =

∞∑
k=1

νk

∫
d3q2 . . . d

3qk ρ
(0)
1 (q1, q2)ρ(0)

1 (q2, q3) . . . ρ(0)
1 (qk, q′

1) .

(31)
For instance the momentum distribution is

Ω(q) = L(q, q) . (32)

The two particle cumulant is

K2(q1, q2) = L(q1, q2)L(q2, q1) . (33)

In general the p-th correlation function is

Kp(q1, q2, . . . , qp) = L(q1, q2)L(q2, q3) . . . L(qp, q1)
+ (permutations of the indices 2, . . . , p) . (34)

– For typical density matrices the average square of the difference of mo-
menta between two particles 〈q2〉 decreases due to symmetrization.

– For typical density matrices the average difference between the produc-
tion points of pairs of particles decreases due to symmetrization.

– For typical density matrices the size of the interaction region as evalu-
ated from the width of the two-particle momentum correlation function
decreases due to symmetrization.

We will discuss these predictions in a further section, where we will rederive
them in a more intuitive way. The references to ”typical density matrices”
mean that the statement is true for most density matrices, but not for all. We
have not been able to find a condition defining the relevant class of density
matrices.

Probably the most interesting implication is the possibility of Einstein’s
condensation, but this will be discussed in the following section.

7 Einstein’s Condensation

Using matrix notation one can rewrite the definition of the function L given
in the previous section in the form

L(q, q′) =
∞∑
k=1

νk〈q|
(
ρ̂
(0)
1

)k
|q′〉 . (35)
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Expanding the single particle density operator in terms of its eigenvectors
and eigenvalues, we find

ρ̂
(0)
1 =

∑
n

|n〉λn〈n| (36)

and for its k-th power (
ρ̂
(0)
1

)k
=
∑
n

|n〉λkn〈n|. (37)

Thus in the momentum representation

L(q, q′) =
∑
n

〈q|n〉〈n|q′〉
∞∑
k=1

νkλkn . (38)

This expression makes sense only if for all n there is λnν < 1. Denoting the
largest eigenvalue of the density operator by λ0, we expect problems when
νλ0 → 1.

Performing the summations of the geometric series, we can rewrite the
expression for L(q, q′) in the form

L(q, q′) =
∑
n

ψn(q)ψ∗
n(q′)νλn

1 − νλn
. (39)

For νλ0 → 1 it is convenient to use the equivalent formula

L(q, q′) =
ψ0(q)ψ∗

0(q′)
1 − νλ0

+ L̃(q, q′) , (40)

where L̃ remains bounded in the limit. Putting q = q′ and integrating over q
we get the corresponding formula for the average multiplicity

N =
1

1 − νλn
+ bounded term . (41)

From these formulae it is clear that when νλ0 tends to one, Einstein’s con-
densation occurs. Increasing ν corresponds to the increasing of the number
of particles in the system. In all the states with indices n 6= 0 there is place
only for a limited number of particles, while all the surplus, which can be
arbitrarily large, gets located in the state |0〉. In this sense, when the number
of particles becomes very large, we recover the model with the pure state dis-
cussed previously. A very interesting question is, whether experimentally it is
possible to create condition, where the Einstein condensate would dominate.

Let us conclude this section with two remarks. For the Gaussian single
particle density matrix

ρ
(0)
1 (q, q′) =

1√
2π∆2

exp
[
− q2+

2∆2 − R2

2
q2−

]
, (42)
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where q+ = (q + q′)/2 and q− = q − q′, the eigenvalues and eigenfunction
are known (Bialas and Zalewski 1998a). Thus all the calculations can be
easily performed. In fact they have been performed by various methods (Pratt
1993), (Pratt and Zelevinsky 1994), (Pratt 1994), (Csörgö and Zimanyi 1998).

The theory can be reformulated in the second quantization formalism.
Then the function L(q, q′) appears as the Green function 〈â†

qâq′〉 and the
possibility of expressing all the correlation functions in terms of L(q, q′) is
the Wick theorem with L as the only non zero contraction.

8 Statistical Physics Interpretation

Many results from the previous sections can be simply reinterpreted and
rederived using standard statistical physics. Consider the single particle un-
symmetrized density operator

ρ̂0
1 =

∑
n

|n〉λn〈n| (43)

with the condition
∑
n λn = 1. This can be reinterpreted as the density

operator corresponding to the canonical ensemble, if we put

λn =
1
Z
e−βεn , (44)

where, as usual, εn is the energy of state |n〉, β is the inverse temperature in
energy units and Z =

∑
n exp[−βεn] is the canonical partition function. The

corresponding (single particle) Hamiltonian is

Ĥ =
∑
n

|n〉εn〈n| . (45)

This Hamiltonian, when written in the coordinate representation, may look
quite unusual, but some cases are simple. For instance, the Gaussian density
matrix corresponds to the Hamiltonian of a harmonic oscillator.

For indistinguishable particles a single particle is not a convenient subsys-
tem and, as suggested by Pauli long ago, it is better to choose as subsystem
the open system consisting of all the particles in state |n〉. The state of this
subsystem is defined by the number of particles (N) in it. The probability of
state N of the subsystem is

Pn(N) =
1

Zn ν
Ne−βNεn . (46)

The grand partition function

ZN =
1

1 − νe−βε (47)
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is chosen so that
∑∞
N=0 Pn(N) = 1, the parameter ν is known in statistical

physics as the fugacity and is connected to the chemical potential µ by the
formula

ν = eβµ . (48)

In order to reproduce the formulae from the previous sections, one puts Zν =
ν. The grand partition function can be used to find the moments of the
multiplicity distribution very much like the multiplicity generating function.
For instance, for the average occupation of state n we find

〈Nn〉 = − 1
β

∂LogZn
∂µ

=
1

eβ(εn−µ) − 1
=

νλn
1 − νλn

. (49)

The probability of no particles in state n is

Pn(0) =
1

Zn = 1 − νe−βεn =
1

〈Nn〉 + 1
. (50)

The probability of no particle in the whole system is

P (0) =
∏
n

1
〈Nn〉 + 1

. (51)

Let us consider two limiting cases. When all the occupation numbers are very
small, the product equals approximately exp[−〈N〉] and for large multiplici-
ties it is very small. Very large fluctuations of the multiplicity are very unlikely
to occur. When most particles are in the state n = 0, the product is approx-
imately (〈N〉 + 1)−1, which is much bigger than in the previous case. Thus,
when there is much Einstein condensate, large multiplicity fluctuations be-
come much more probable. Cosmic ray physicists have been reporting (Lates
et al. 1980) observations of centauro and anticentauro events. This are high
multiplicity events, where respectively either the neutral pions or the charged
pions are missing. One could speculate that this phenomena are related to
Einstein’s condensation.

Statistical physics gives also a simple interpretation for the function
L(q, q′). One finds

L(q, q′) =
∑
n

ψn(q)ψ∗
n(q′)

1
eβ(εn−µ) − 1

. (52)

This is the canonical density matrix with the Maxwell-Boltzmann weights re-
placed by the Bose-Einstein weights. The fact that the Bose-Einstein weights
fall with increasing energy εn faster than the Maxwell-Botzmann weights ex-
plains qualitatively most of the observations reported previously. For most
Hamiltonians the wave function spreads in ordinary space and in momentum
space, when energy is increased. Since the Bose-Einstein weights enhance the
low energies, they reduce the average momenta and radii. Also the reduction
of the effective radius of the interaction region, as determined from the width
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of the correlation function in momentum space, can be easily understood.
If in the previous formula all the terms had equal weights, we would obtain
L(q, q′) = δ3(q−q′). The stronger the cut on the sum, the broader the peak in
q−q′ becomes. Since the Bose-Einstein weights are more peaked at low ener-
gies than the Maxwell-Boltzmann ones, they correspond to a broader peak in
the correlation function. Since the width of this peak is inversely proportional
to the radius of the production region, symmetrization reduces the radius of
this region. All these qualitative arguments are usually true. It is, however,
easy to show examples of Hamiltonians, where e.g., with increasing energy
the wave function shrinks either in ordinary space, or in momentum space.
Additional assumptions necessary to convert these qualitative arguments into
rigorous theorems are, therefore, necessary, but not yet known.
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Reduction of Couplings in Massive Models
of Quantum Field Theory

W. Zimmermann

Max-Planck-Institut für Physik
Munich, Germany

Dedicated to Prof. Jan  Lopuszański
on the occasion of his 75th birthday

Abstract. The method of reducing the number of couplings is reviewed for mas-
sive models of quantum field theory. It is shown that the principle of reduction
is independent of the scheme of renormalization used. Finally the possibility of
eliminating the mass parameters is discussed.

First I would like to thank the organizers for this invitation which gives
me the opportunity to congratulate Jan  Lopuszański personally to the com-
ing event of his 75th birthday. Between us this has been a long friendship.
The other day we recollected that we met for the first time in New York in
1960, this is almost four decades ago. Among many other things we both
share a certain conservative attitude towards particle physics, in particular
our dedication to local quantum field theory. Most of  Lopuszański’s work is
concerned with this subject as is mine. In this context it should be mentioned
that local quantum field theory is just completing its seventh decade. It is
still alive and well, having passed all experimental and mathematical tests
- at least so far. Quite appropriate for this occasion I will discuss issues of
local quantum field theory in four dimensions.

The purpose of the reduction method is to find relations among cou-
pling constants which are compatible with the renormalization group
(Zimmermann 1985a). This is a generalization of coupling relations which
follow from symmetry properties. Such relations can be used to express some
couplings of a system in terms of other parameters (see refs. (Zimmermann
1985b, Oehme 1986, Sibold 1988) for a review). In a paper with Kubo and
Sibold an application was made to the standard model (Kubo et al. 1985).
The main result was a prediction of the top mass. In lowest order we com-
puted a value of about 90 GeV, including two-loop corrections Kubo obtained
appr. 100 GeV (Kubo 1991). At the time, when we wrote the paper, this
was in 1985, this was considered much too high. But now the experimen-
tal value is around 175 GeV. There is no chance of improving or correcting
our calculations which would be substantial enough to bring the value up
close to the experimental mass. So it has to be accepted that the applica-
tion to the standard model as such failed. On the other hand the method

A. Borowiec et al. (Eds.): Proceedings 1998, LNP 539, pp. 304−314, 2000.
 Springer-Verlag Berlin Heidelberg 2000
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itself is certainly correct, therefore we think that the deviation is due to the
influence of heavier particles beyond the standard model. Moreover there
is the important aspect of asymptotic freedom (Gross and Wilczek 1973,
1974, 1985, Politzer 1973). The principle of reduction is equivalent to having
asymptotic freedom simultaneously for several couplings in the ultraviolet
or infrared region - apart from the case that all β functions vanish identi-
cally (Oehme and Zimmermann 1985, Oehme et al. 1985) (see refs. (Sibold
1985, Zimmermann 1986) for a review). Obviously the standard model as a
whole cannot be asymptotically free due to the opposite signs of the β func-
tions for the gauge couplings. Therefore, we applied the reduction method
only to QCD extended by the Higgs and Yukawa couplings. The remaining
electroweak couplings were treated as perturbations of the system.

This deficiency of the standard model - I mean the violation of asymptotic
freedom in the gauge sectors - is removed by unifying the gauge couplings.
Then asymptotic freedom becomes possible. Applying the reduction method
to supersymmetric grand unified theories Kubo, Mondragón and Zoupanos
indeed found asympotically free solutions. In this way they were able to
obtain acceptable values of the top mass (Kubo et al. 1994).

In this lecture I want to talk about problems with formulating the re-
duction method in massive models of quantum field theory. Originally the
reduction method was developed only for massless models. We applied it
to massive models nevertheless, since the β functions on which all calcula-
tions are based are massless, if computed by dimensional renormalization
(Weinberg 1973), (Collins and Mac Farlane 1974). So the question arises,
whether or not the reduction principle is scheme independent. In the first
part of my talk I will set up the reduction method in massive models. Then
the simplifications occurring for massless β functions will be discussed. Next
the scheme independence of the reduction method is sketched. In the final
part it will be shown - following a suggestion of Maison - how the mass param-
eters can be eliminated in the beta functions without referring to dimensional
renormalization.

1 Reduction in Massive Models

We consider a model with m fields

φ1, ..., φm ,

n+ 1 dimensionless coupling parameters

λ0, λ1, ..., λn

and pole masses
m1, ...,mc
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with normalization mass κ (κ2 < 0). Starting point are the differential equa-
tions of the renormalization group. In a model with dimensionless couplings
they have the form (Osviannikov 1956, Callan 1970; Symanzik 1970)(

κ2 ∂

∂κ2 +
∑

βj
∂

∂λj
+
∑

γl

)
τ = 0

for the Fourier transforms

τ = τ(k1, . . . , ks;λ0, . . . , λn;m2
1, . . . ,m

2
c , κ

2)

of the time ordered functions

〈Tφj1(x1) . . . φjs(xs)〉
of field operators. The coefficients β and γ depend on couplings and dimen-
sionless mass ratios

βj = βj

(
λ0, . . . , λn,

m1

|κ| , . . .
mc

|κ|
)
.

These differential equations are based on Stueckelberg’s concept of the renor-
malization group first formulated in 1953 within perturbation theory and
further developed by Bogoliubov and Shirkov (Stueckelberg and Petermann
1953, Bogoliubov and Shirkov 1955). Renormalization group invariance actu-
ally concerns the exact theory as well, and the consequences are sometimes
in contradiction to perturbation theory. The phenomenon of asymptotic free-
dom, for instance, is a rigorous consequence of renormalization group invari-
ance, but is not valid in a given order of perturbation theory. Stueckelberg’s
renormalization group is simply defined as the group of transformations

φ′
1(x) = z

1/2
j φj(x) with zj > 0 ,

which multiply each field operator by a positive number. So from the math-
ematical point of view this group is very trivial. Invariance under this group
reflects the arbitrariness which one has in normalizing a field operator. The
differential equations follow from the requirement that the normalization of
the field operators and the couplings be uniquely determined by the normal-
ization conditions

λj = Γj , (m2
j − k2)Gj = 1 at k2 = κ2 .

Γj is a suitable vertex function with a certain configuration of momenta so
that Γj is a function of a momentum square only. Gj is a suitable structure
function of a propagator. The differential equation describes the variation of
the correlation functions under an infinitesimal change of the normalization
mass. Stueckelberg’s concept seems to be too general, but the differential
equations become non-trivial by the form of the β and γ functions which
involve the dynamics of the particular model. They are derived as asymptotic
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series in the couplings whose coefficients are computed in perturbation theory.
In particular, the lowest order coefficients are relevant for the asymptotic
behavior of the correlation functions.

Let me now introduce the concept of the reduction principle. It generalizes
a certain aspect of symmetries. An important consequence of symmetries is
that the number of independent parameters of a system is reduced. So masses
in a multiplet become equal and simple relations among coupling constants
follow. Suppose a symmetry of a model involving several dimensionless cou-
pling parameters is strong enough to constrain the couplings such that only
one, say λ0, remains independent, then all other couplings become functions
of λ0,

λj = λj(λ0) .

Of course, this is only correct, if the symmetry can be implemented to all
orders of perturbation theory, that means that no anomalies occur which
spoil the symmetry of the classical theory.

Mostly one has simple relations like

λj = ρjλ0 or λj = ρjλ
2
0 ,

where the ρj are certain numerical coefficients given by the structure of the
group. The relations hold to all orders, usually, provided the normalization
conditions defining the couplings can be chosen in a way which respects the
symmetry to all orders. For more general normalization conditions unrelated
to the symmetry one obtains power series expansions instead,

λj = ρj1λ0 + ρj2λ
2
0 + . . . ,

where the higher order coefficients are uniquely determined and may depend
on the masses of the system.

It is this aspect of symmetry which is generalized by the reduction princi-
ple using the renormalization group concept. From now on we will not assume
any symmetry properties. Instead we ask ourselves, whether it is possible to
express all couplings as functions of a single one, say λ0:

λj = λj

(
λ0,

m2
1

|κ2| , . . . ,
m2
c

|κ2|
)
.

As requirements we impose

1. λj → 0 simultaneously with λ0 → 0,
2. λj power series in λ0,
3. renormalization group invariance for the reduced model.

Taking a more general point of view one might drop the power series
requirement. In that case one has only the first condition that all couplings
simultaneously approach zero. This could be interpreted as as generalization
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of broken symmetry constraints. For appropriate signs of the β functions this
represents the case of asymptotic freedom in several variables.

An interesting possibility which is not discussed in this talk should be
mentioned: One can apply the reduction principle as well to the behavior of
couplings near a non-trivial fixed point instead of the origin.

Next we discuss the problem of finding functions

λj = λj

(
λ0,

m2
1

|κ2| , . . .
)
,

which are compatible with the renormalization group invariance for both,
the original and the reduced model. To this end we compare the original
differential equation(

κ2 ∂

∂κ2 +
∑

βj
∂

∂λj
+
∑

γl

)
τ = 0

with the corresponding equations for the reduced model(
κ2 ∂

∂κ2 + β′
0
∂

∂λ0
+ β′

0

)
τ ′ = 0 ,

τ ′ is the time ordered function with

λj

(
λj(λ0,

m2
1

|κ2| , . . .
)

substituted for λj . Inserting

∂τ ′

∂λ0
=

∂τ

∂λ0
+
∑ ∂τ

∂λj

∂λj
∂λ0

,

∂τ ′

∂κ2 =
∂τ

∂κ2 +
∑ ∂τ

∂λj

∂λj
∂κ2

and comparing the coefficients we obtain

β′
0 = β0, κ2 ∂λj

∂κ2 + β′
0
∂λj
∂λ0

= βj .

So the result is a system of partial differential equations

κ2 ∂λj
∂κ2 + β0

∂λj
∂λ0

= βj

for the functions λj . This system must be solved under the condition

λj → 0 for λ0 → 0

and the power series condition, if so desired. These are the reduction equa-
tions. In this form - with the mass dependence - they were set up by Piguet
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and Sibold (Piguet and Sibold 1989). They further derived reduction equa-
tions from the Callan-Symanzik equation and related partial differential equa-
tions of the system. For those reduction solutions which are uniquely deter-
mined power series in the primary coupling Piguet and Sibold proved that
the reduction of couplings and dependence on parameters (like masses) are
consistent. Due to the partial with respect to κ2 it is hard to study reduction
equations in the general case. Fortunately, a systematic treatment of finding
all solutions is possible by eliminating the normalization mass κ along with
the other masses. This will be the subject of my talk. The issue is connected
to the question of scheme independence. Before we come to that, let me first
review the simplifications in the massless case.

2 Massless β Functions

For a massless model the dependence on κ2 drops out in the β functions.
This is also the case for a massive model in the scheme of dimensional renor-
malization provided pole masses are used as mass parameters. Then we have
a system of ordinary differential equations

β0
dλj
dλ0

= βj .

These equations, of course, are much easier to treat than the partial differ-
ential equations involving κ. It is obvious that these equations can always
be solved. We may take any point λ0, λ1, . . . , λn, where the β functions are
sufficiently regular, so that a Lipschitz condition holds. Then exactly one
solution passes through this point. But the conditions

1. λj → 0 for λ0 → 0,
2. λj power series (optional)

have to be imposed. Already the first condition is very restrictive. For the
point λ0, λj = 0 is not regular, since β functions in 4-dimensional models
vanish quadratically at the origin

dλj
dλ0

=
βj
β0

→ 0
0

for λj , λ0 → 0 .

If the power series condition is included, there are only a finite number of
solutions possible in most cases and sometimes none at all.

As a simple example I mention the pseudoscalar interaction. The interac-
tion term

igψ̄γ5Aψ

must be supplemented by a direct scalar interaction

− λ

4!
A4 .
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The reason is that diagrams like the box diagram lead to divergent con-
tributions which cannot be compensated by a counter term, since there is
no available renormalization constant. Therefore a self-coupling of the scalar
field must be introduced in order to make the renormalization program work.
But then it is natural to require that all Green’s functions should only de-
pend on the original coupling instead of having a model with two independent
parameters. Then also λ, being defined through Green’s functions, will be a
power series in g. This is the principle of reduction to demand that λ be a
function of g,

λ = λ(g2)
consistent with the renormalization group and

λ → 0 for g → 0 ,

moreover
λ = ρg2 + ρ2g

4 + . . . .

The reduction equation becomes

βg2
dλ

dg2 = βλ

with
βg2

dλ

dg2 = bg4 + . . . , b =
5

16π2

and

βλ = c1λ
2 + c2λg

2 + c3g
4 + . . . =

1
16π2

(
3
2
λ2 + 4λg2 − 24g4

)
+ . . . .

For solving we make the ansatz

λ = ρg2 + ρ2g
4 + ρ3g

6 + . . . .

ρ satisfies the quadratic equation

c1ρ
2 + (c2 − b)ρ+ c3 = 0

with the roots
ρ =

1
3

± 1
3

√
145 .

Since λ > 0 we choose the positive root so that

λ =
1
3

(
1 +

√
145

)
g2 + ρ1g

4 + . . . .

All higher order coefficients are uniquely determined recursively. By a repa-
rametrization, i.e., a simple redefinition of the coupling λ,

λ′ = λ+ a2λ
2 + . . . ,

it can always be arranged that the lowest order approximation

λ′ =
1
3

(
1 +

√
145

)
g2

becomes exact like in case of a symmetry. This is an example of a reduction
which does not seem to be related to a symmetry because of the root

√
145.
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3 Scheme Independence

In this section we turn to the proof of the scheme independence. This will
indicate a natural way of eliminating κ and the masses. We return to the
general case of mass dependent β functions. For simplicity a model is chosen
with only two couplings, λ0 and λ1. In this case the differential equations of
the renormalization group are

κ2 ∂τ

∂κ2 + β0
∂τ

∂λ0
+ β1

∂τ

∂λ1
+
∑

γlτ = 0 , (1)

βj = βj

(
λ0, λ1,

m1

|κ| , . . .
)
, γj = γj

(
λ0, λ1,

m1

|κ| , . . .
)
. (2)

Next the scheme will be changed, for instance by using other vertex func-
tions or momentum configurations in defining the couplings. Then the new
couplings are given by the following transformations

Λj = Λj(λ0, λ1,m
2
1, . . . , κ

2); j = 0, 1 . (3)

The dependence of the Green’s functions on the couplings of the new scheme
is given by

τ(k1, . . . ;λ0, λ1,m
2
1, . . . , κ

2) = τ̂(k1, . . . , κ
2) . (4)

From this follow the differential equations of the renormalization group in
the new scheme

κ2 ∂τ̂

∂κ2 + β̂0
∂τ̂

∂Λ0
+ β̂1

∂τ̂

∂Λ1
+
∑

γ̂lτ̂ = 0 (5)

with
κ2 ∂Λj
∂κ2 + β0

∂Λj
∂λ0

+ β1
∂Λj
∂λ1

= β̂j , γj = γ̂j . (6)

In the old renormalization scheme the differential equations of the renor-
malization group for a reduced system are

κ2 ∂τ
′

∂κ2 + β0
∂τ ′

∂λ0
+
∑

γlτ
′ = 0 . (7)

As a consequence of eqs. (1) and (7) the reduction equations

κ2 ∂λ1

∂κ2 + β0
∂λ1

∂λ0
= β1 (8)

follow.
In the new scheme the corresponding equations are

κ2 ∂τ̂

∂κ2 + β̂0
∂τ̂

∂Λ0
+ β̂1

∂τ̂

∂Λ1
+
∑

γ̂lτ̂ = 0 (9)

for the original system and
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κ2 ∂τ̂
′

∂κ2 + β̂0
τ̂ ′

∂Λ0
+
∑

γ̂lτ̂
′ = 0 (10)

for the reduced system. The reduction equations in the new system are

κ2 ∂Λ1

∂κ2 + β̂0
∂Λ1

∂Λ0
= β̂1 . (11)

In order to establish the scheme independence we have to show that the
reduction equations (8) and (11) in the old and new system are equivalent.
That means that each solution λ1(λ0) expressed as function Λ1(Λ0) in terms
of the new variables Λ0 and Λ1 is also a solution of (11). Vice versa, each
solution Λ1(Λ0) should provide a solution of (8) by change of variables. A
direct proof of this statement is possible, but quite lengthy. It is much easier
to prove the equivalence of (8) and (11) in an indirect manner by first
showing the equivalence of the renormalization group equations (original and
reduced) in both schemes, i.e., the equivalence of (1) and (7) to (5) and
(10). The equivalence of the reduction equations (8) and (11) is then an
obvious consequence.

4 Elimination of Mass Parameters

With the result that the reduction principle is scheme independent one might
believe that the problem of mass dependence is already resolved, since dimen-
sional renormalization is just another scheme of renormalization. Accordingly,
it seems justified to drop the mass dependence in the reduction equations, be-
cause the β functions are massless by dimensionless renormalization at least
for models with dimensionless couplings only as considered in this talk. How-
ever, the connection between dimensional renormalization and other meth-
ods of renormalization is not well understood. Therefore, instead of relying
on consequences of dimensional renormalization, we will try to remove the
mass dependence from the β functions. For the model of the φ4 -coupling
Maison has shown that the mass can be eliminated in the β function by a
transformation of the coupling combining the renormalization group with the
Callan-Symanzik equation (Maison private communication). I modified Mai-
son’s approach by using the renormalization group equations alone in order
to eliminate the masses in the β functions. This method applies to general
systems provided the massless limits of the β functions exist and are ap-
proached smoothly for vanishing masses. As example we take again a model
involving two dimensionless couplings.

In the last section we obtained relations (6) which provide the form of
the new β functions after transforming the couplings. We now use the same
relations but with a completely different meaning: They will be interpreted
as the defining relations for the transforming functions Λj yet to be deter-
mined with the functions β̂j chosen to be the massless limits of the original
β functions.
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There are, of course, many solutions of (6). But it turns out that only
one is reasonable. One could, for instance, impose the condition that the old
and new couplings be equal at a certain value of the renormalization mass

Λj = λj at κ2 = κ2
0 .

It can be shown that such solution exists uniquely. But the disadvantage
would be that the Green’s functions now involve a new dimensional param-
eter, the mass κ0, where the couplings are adjusted. There is an ideal way
out, namely to adjust the two couplings at infinite normalization mass. For
formulating this in a precise manner one replaces κ2 by

ζ =
1
|κ| .

Then the equations to be solved are

β0
∂Λj
∂λ0

∂λ0 + β1
∂Λj
∂λj

− 1
2
∂Λj
∂ζ

= β̂j ,

with the initial condition

Λj = λj at ζ = 0

to be imposed. The dependence of the β functions on the coupling and mass
ratios is of the form

βj

(
λ0, λ1,

m1

|κ| , . . . ,
mc

|κ|
)

= βj (λ0, λ1,m1ζ, . . . ,mcζ) ,

β̂j = βj (λ0, λ1, 0, . . . , 0) .

Infinite normalization mass may be a dangerous limit considering the
evolution of a system. But it is harmless when couplings of different schemes
are adjusted. First of all, this is a very natural choice. For the new β functions
represent the massless limit. On the other hand, for the β functions the
massless limit is equivalent to the limit ζ = 0. Moreover, it can be shown
that there is a unique solution by expanding with respect to powers of the
couplings provided the β functions have a sufficiently smooth behavior in the
massless limit.

As an example we construct the coefficient c00 in the ansatz

Λ0 = λ0 + c00λ
2
0 + c01λ0λ1 + . . . .

For the expansions of the β functions we use the notation

β0 = a00λ
2
0 + a01λ0λ1 + a11λ

2
1 + . . . ,

β̂0 = â00Λ
2
0 + â01Λ0Λ1 + â11Λ

2
1 + . . . .
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c00 satisfies the ordinary differential equation

a00 − 1
2
∂c00
∂ζ

= â00 .

With the initial condition this is solved uniquely by

c00 = 2

ζ∫
0

a00 − â00

ζ ′ dζ ′ .

In conclusion it can be said that the method of reduction works inde-
pendently of the renormalization scheme used. Moreover, the masses can be
eliminated from the reduction equations provided certain conditions for the
massless limit are satisfied.
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Particle–Hole Asymmetry
in the BCS Thermodynamics?

J. Czerwonko
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Wybrzeże Wyspiańskiego 27, 50-370 Wroc law, Poland

It has been shown that the particle-hole asymmetry (PHA) of DOS leads
to the first-order phase transition, a small deviation from the Luttinger theo-
rem, and to very strange behaviour of subcritical specific heat. Because of the
accuracy of the BCS thermodynamics in the thermodynamic limit (Bogol-
ubov) it is strange that in trying to strengthen the theory while taking into
account the tendency of DOS, we are in fact causing the deterioration of the
theory. The answer lies in the retardation of the electron- phonon interaction
for low temperature superconductors. Hence, if some elements of the BCS
theory are applied for HTSC, it becomes necessary to be very careful in the
question of thermodynamic properties. Moreover, the criteria of stability of
the superconducting state has been formulated, at constant p and V as well,
for one-component superconductors and isotropic Fermi superfluids. These
criteria are free of the strong connection with the BCS model, they are purely
thermodynamical. It is also shown that for the superconducting/superfluid
Fermi systems the specific heat at constant p and V differ substantially, in
contrast to any other low-temperature systems.
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On Generalizations
of the Gravitational Interaction

L. Halpern
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Views of Einstein and Schrödinger on the limitations of the validity of
the general theory of relativity are compared with the mainstream view held
today.

A modernized relativistic version of the principle if inertia serves as guide-
line for the formulation of a theory which describes elementary particle spin
as the analog of a gravitational charge generalizing the character of a gauge
theory and removing some of the isolation of gravitation from the rest of
physics.

The relativistic version of the principle of inertia is formulated on the
manifold of the Anti De Sitter group G = SO(3, 2). It prescribes the orbits of
structureless and spinning test particles as the natural projection π : G → B
of orbits of one–dimensional subgroups on the Anti De Sitter universe B
which is the space of right cosets B = G/H with H = SO(3, 1) the Lorentz
subgroup. Einstein‘s equations with a cosmological member are fulfilled on
the group manifold for the Cartan–Killing metric γ. They project with π on
Einstein‘s equations on B with the corresponding projected metric g.

P (G,H, π,B) forms a principal fibre bundle with typical fibre H. A con-
nection is chosen by defining four tangent vector fields as horizontal and
the tangent vectors of H everywhere as vertical; it is a metric connection if
horizontal and vertical vector fields are mutually perpendicular with respect
to a generalized metric γ for which the vertical vectors retain the Killing
property and the commutation relations of the group H. Only the commu-
tation relations of the horizontal vectors are generalized; they determine the
curvature two–form of a gauge formalism. Restricting such geometries to so-
lutions of Einstein‘s equations results in a Kaluza–Klein formalism, the only
one in which the metric g and the curvature two–form are truly unified and
determine the geometry on B. The curvature produces the correct force on a
spinning particle‘s orbit (an orbit which includes vertical components). The
spin precession is however not taken into account because the Kaluza–Klein
formalism does not consider charges with space–time properties and is thus
only an approximation. To obtain the spin precession we note that the com-
mutation relations of the ten tangent vectors are at every point those of a
Lie algebra. The modified connection is then constructed on the group man-
ifold G as a linear connection formed out of left invariant vectors only; it
is left invariant and no more bi–invariant as in conventional K–K theories,

A. Borowiec et al. (Eds.): Proceedings 1998, LNP 539, pp. 318−319, 2000.
 Springer-Verlag Berlin Heidelberg 2000
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but it is a metric connection. The connection has thus contortion terms on
G (not necessarily also on B). These terms are functions of the curvature on
B. The Einstein equations projected on B now result there in an Einstein
term with a source term which is bilinear in the curvature and apart from
this in a Maxwell–Yang term which is formed out of covariant derivatives of
the curvature (Halpern 1996; Yang 1974). The term bilinear in the curva-
ture conteracts gravitational collapse and leads to violations of equivalence.
Such effects become significant only in domains where curvature is excessively
large. The forces resulting from the dependence of the center of gravity on
the system of reference are not taken into account here and will be dealt
with in a following publication. The introduction of a connection which is
not bi–invariant with contortion on G is a new feature, necessary to modify
the K–K formalism to the present case.
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