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Abstract Starting from the instant form of relativistic quantum dynamics for a system of interacting fields,
where amongst the ten generators of the Poincaré group only the Hamiltonian and the boost operators carry
interactions, we offer an algebraic method to satisfy the Poincaré commutators. We do not need to employ the
Lagrangian formalism for local fields with the Nöether representation of the generators. Our approach is based
on an opportunity to separate in the primary interaction density a part which is the Lorentz scalar. It makes
possible apply the recursive relations obtained in this work to construct the boosts in case of both local field
models (for instance with derivative couplings and spins ≥1) and their nonlocal extensions. Such models are
typical of the meson theory of nuclear forces, where one has to take into account vector meson exchanges and
introduce meson-nucleon vertices with cutoffs in momentum space. Considerable attention is paid to finding
analytic expressions for the generators in the clothed-particle representation, in which the so-called bad terms
are simultaneously removed from the Hamiltonian and the boosts. Moreover, the mass renormalization terms
introduced in the Hamiltonian at the very beginning turn out to be related to certain covariant integrals that are
convergent in the field models with appropriate cutoff factors.

1 Introduction

After Dirac [1], any relativistic quantum theory may be so defined that the generator of time translations
(Hamiltonian), the generators of space translations (linear momentum), space rotations (angular momentum)
and Lorentz transformations (boost operator) satisfy the well-known commutations. Basic ideas, put forward
by Dirac with his “front”, “instant” and “point” forms of the relativistic dynamics, have been realized in many
relativistic quantum mechanical models. In this context, the survey [2], being remarkable introduction to a
subfield called the relativistic Hamiltonian dynamics, reflects various aspects and achievements of relativistic
direct interaction theories. Among the vast literature on this subject we would like to note an exhaustive expo-
sition in lectures [3,4] of the appealing features of the relativistic Hamiltonian dynamics with an emphasis
on “light-cone quantization”. Following a pioneering work [5], the term “direct” is related to a system with a
fixed number of interacting particles, where interactions are rather direct than mediated through a field. In the
approach it is customary to consider such interactions expressed in terms of the particle coordinates, momenta
and spins.
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This notion supplemented by the principle of cluster separability (decomposition) was developed (see [2]
and refs. therein) and applied to build up the so-called separable interactions and relativistic center-of-mass
variables for composite systems [5,6]. There were assumed that the generators of the Poincaré group (�) can be
represented as expansions on powers of 1/c2 or, more exactly, (v/c)2, where v is a typical nuclear velocity (cf.
the (p/m) expansion, introduced in [7,8] in which m is the nucleon mass and p is a typical nucleon momentum).
Afterwards, similar expansions were rederived and reexamined (with new physical inputs) in the framework
of another approach [9] (sometimes called the Okubo–Glöckle–Müller method [10]). There, starting from a
model Lagrangian for “scalar nucleons” interacting with a scalar meson field (cf. the Wentzel model [11])
the authors showed (to our knowledge first) how the Hamiltonian and the boost generator (the noncommuting
operators), determined in a standard manner [12], can be blockdiagonalized by one and the same unitary trans-
formation (UT) after Okubo [13]. The corresponding blocks derived in leading order in the coupling constant
act in the subspace with a fixed nucleon number (the nucleon “sector” of the full Fock space RF ).

In general, the work [9] and its continuation [14,15] exemplify applications of local relativistic quan-
tum field theory (QFT), where the generators of interest, being compatible with the basic commutation rules
for fields, are constructed within the Lagrangian formalism using the Nöther theorem and its consequences.
Although the available covariant perturbation theory and functional-integral methods are very successful when
describing various relativistic and quantum effects in the world of elementary particles, the Hamilton method
can be helpful too.

It is well known that it is the case, where one has to study properties of strongly interacting particles, e.g., as
in nuclear physics with its problems of bound states for meson-nucleon systems. Of course, any Hamiltonian
formulation of field theory, not being manifestly covariant, cannot be ab initio accepted as equivalent to the
way after Feynman, Schwinger and Tomonaga. However, in order to overcome the obstacle starting from a
field Hamiltonian H one can consider it as one of the ten infinitesimal operators (generators) of space-time
translations and pure Lorentz transformations that act in a proper Hilbert space. Taken together they form a
basis of the Poincaré–Lie algebra with the aforementioned commutation relations to ensure relativistic invari-
ance (RI) in the Dirac sense, being referred to the RI as a whole. These relations will be recalled below to fix
the notations and simplify the reference processing. Our main purpose is to meet the Poincaré commutators
for a given interaction density which has the property to be a Lorentz scalar in the Dirac (D) picture. Such a
possibility may be realized both in local and nonlocal models taking account their invariance with respect to
space translations. It turns out that an algebraic method, which has been elaborated by us to get a recursive
solution of the problem in question, works also in models (for instance, with derivative couplings and spin
≥1) where only some part of the interaction density in the D picture is the scalar.

As an illustration of our method, we will show its application for a nonlocal extension of the Wentzel
model. At the point, let us remind of the nonlocal convergent field theory [16,17], where a conventional inter-
action Hamiltonian in the D picture (e.g., in quantum electrodynamics) is replaced by a nonlocal interaction
with a formfactor (FF) to separate the field operators related to different points of the Minkowski space (cf.
monograph [18] and refs. therein in which the same idea has been used directly for the initial action integral).
Unlike this in what follows, where we are addressing the particle representation (see, for example, Chapter
II in lectures [19] and Chapter IV of monograph [20]), the field concept has no its paramount importance,
being only a departure point for an alternative consideration of the RI with particle creation. In the framework
of the particle representation a nonlocal Hamiltonian for interacting particles can be built up by introducing
some “cutoff” function (shortly g-factor) in every vertex which is associated with any particle creation and/or
annihilation process. Such cutoffs in momentum space may be done either phenomenologically or with the
aid of deeper physical reasonings as in case of the meson-nucleon vertices that can be calculated in different
quark models (see, e.g., [21]).

As usually, the g-factors are needed, first of all, to carry out finite intermediate calculations trying to
remove ultraviolet divergences inherent in local field models. One should emphasize that we include them in
the Yukawa-type interactions in the “bare” particle representation (BPR) to derive or rather substantiate the
corresponding regularized interactions between the so-called clothed particles (see Appendix C in [22]). Their
falloff properties with the momenta increasing are also important to do convergent calculations of strong and
electromagnetic FFs (see Sect. 5).

Second, we will show how within the three-dimensional formalism used here one can define a covar-
iant generating function for the g-factors in case of a trilinear interaction. The function, being dependent
on some Lorentz scalars composed of the particle three-momenta, plays a central role when integrating the
Poincaré commutators and obtaining the analytical clothed-particle representation (CPR) expressions for the
Hamiltonian, the boost operators, the mass renormalization terms, etc. [23,24].
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Third, it is expected that by choosing appropriate g-factors (at least, as square integrable functions of the
particle momenta) one can remove certain drawback of the initial local interaction not to have a dense domain
in RF , i.e., not to be self-adjoint and bounded below (the same is related to the boost operators). The delicate
issue has been regarded in various papers devoted to the Nelson model [25] or “model with persistent vacuum”
(see, e.g., [26,27] and refs. therein). It is true that the authors have confined themselves to the explorations
with a sharp cutoff and antiparticles not included.

Along with a thorough option of the cutoffs for our nonlocal extensions of the conventional field models
with the threelinear couplings the present research exemplifies one more realization of a fruitful idea put for-
ward in relativistic QFT by Greenberg and Schweber [28] and developed by other authors, in particular, by
Shirokov and his coworkers (see the survey [29] and refs. therein). First of all, we are keeping in mind their
notion of “clothed” particles which points out a transparent way for including the so-called cloud or persistent
effects in a system of interacting fields (to be definite, mesons and nucleons). It is achieved with the help of
unitary clothing transformations (UCTs) (see article [30]) that implement the transition from the BPR to the
CPR in the Hilbert space H of meson-nucleon states. In the course of the clothing procedure a large amount
of virtual processes associated with the meson absorption/emission, the N N̄ -pair annihilation/production and
other cloud effects turns out to be accumulated in the creation (destruction) operators for the clothed particles.
The latter, being the quasiparticles of the method of UCTs, must have the properties (charges, masses etc.) of
physical (observable) particles. Such a bootstrap reflects the most significant distinction between the concepts
of clothed and bare particles.

As shown in [29] the total Hamiltonian H and the three boost operators N = (N 1, N 2, N 3) attain in the
CPR one and the same sparse structure in H due to the elimination of the so-called bad terms that prevent the
bare vacuum (the state without “bare” particles (following the terminology accepted in [29] (see also [30])
every time when we say bare particles the latter mean primary particles with physical masses)) and the bare
one-particle states to be the H eigenstates. This result has been obtained within a conventional local model of
the PS pion-nucleon coupling and, as we know, for local quantum theories usually one goes from a relativisti-
cally invariant Lagrangian to the corresponding Nöether integrals that satisfy the Lie algebra of the Poincaré
group �. Doing so, one can employ the Belinfante ansatz to express N through the Hamiltonian density (we
recall it in Sect. 3). Here, trying to apply the UCT method to nonlocal field models we will move in the opposite
direction, viz., from the fundamental Poincaré commutators towards the RI as a whole.

However, before to apply the UCT method (in particular, beyond the Lagrangian formalism with its local
interaction densities) we will show and compare the two algebraic procedures to solve the basic commutator
equations of � (see Sect. 2). One of them, proposed here, has some touching points with the other developed
in Refs. [31,32] and essentially repeated many years after by Chandler [33]. In paper [32] the author considers
three kinds of neutral spinless bosons and nonlocal interaction between them in a relativistic version of the
Lee model with a cutoff in momentum space. A similar model for two spinless particles has been utilized in
[33] with a Yukawa-type interaction that belongs to the realm of the so-called models with persistent vacuum
(see, for instance, [26]).

Certain resemblance between the present work and those explorations is that we prefer to proceed, as
previously [23,24], within a corpuscular picture (see Chapter IV in monograph [20]), where each of the ten
generators of the Poincaré group � (and not only they) may be expressed as a sum of products of particle
creation and annihilation operators a†(n) and a(n) (n = 1, 2, . . .) e.g., bosons and/or fermions. Some math-
ematical aspects of the corpuscular notion were formulated many years ago in [34] (Chapter III). As in [20],
a label n is associated with all the necessary quantum numbers for a single particle: its momentum p n ( or
the 4-momentum p n = (p0

n,p n) on the mass shell p2
n = p02

n − p2
n = m2

n with the particle mass mn), spin
z-component (or for massless particles, helicity) μ n , and species ξ n . The operators a†(n) and a(n) satisfy the
standard (canonical) commutation relations such as Eqs. (4.2.5)–(4.2.7) in [20].

In the framework of such a picture the Hamiltonian of a system of interacting mesons and nucleons can be
written as

H =
∞∑

C=0

∞∑

A=0

HC A, (1)

HC A =
∫∑

HC A(1
′, 2′, . . . , n′C ; 1, 2, . . . , n A)

× a†(1′)a†(2′) . . . a†(n′C )a(n A) . . . a(2)a(1), (2)
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where the capital C(A) denotes the particle-creation (annihilation) number for the operator substructure HC A.
Sometimes we say that the latter belongs to the class [C.A] (cf. the terminology from [29]). Operation

∫∑

implies all necessary summations over discrete indices and covariant integrations over continuous spectra.
Further, it is proved [20] that the S-matrix meets the so-called cluster decomposition principle (see, e.g.,

[35]) if the coefficient functions HC A embody a single three-dimensional momentum-conservation delta func-
tion, viz.,

HC A(1
′, 2′, . . . ,C; 1, 2, . . . , A) = δ(p′1 + p′2 + · · · + p′C − p1 − p2 − · · · − pA)

×hC A(p
′
1μ
′
1ξ
′
1, p′2μ′2ξ ′2, . . . , p′Cμ′Cξ ′C ; p1μ1ξ1, p2μ2ξ2, . . . , pAμAξA), (3)

where the c-number coefficients hC A do not contain delta function.
Following the guideline “to free ourselves from any dependence on pre-existing field theories” (cit. from

[20] on p. 175), the three boost operators N = (N 1, N 2, N 3) can be written as

N =
∞∑

C=0

∞∑

A=0

NC A, (4)

NC A =
∫∑

NC A(1
′, 2′, . . . , n′C ; 1, 2, . . . , n A)

×a†(1′)a†(2′) . . . a†(n′C )a(n A) . . . a(2)a(1). (5)

One of our purposes is to find some links between the coefficients in the r.h.s. of Eqs. (2) and (5), compatible
with the fundamental relations of the Lie algebra for �, that are given for convenience in Sect. 2.

In turn, the operator H , being divided into the no-interaction part HF and the interaction HI , owing to its
translational invariance allows HI to be written as

HI =
∫

HI (x)dx. (6)

Our consideration is focused upon various field models (local and nonlocal) in which the interaction density
HI (x) consists of scalar Hsc(x) and nonscalar Hnsc(x) contributions,

HI (x) = Hsc(x)+ Hnsc(x), (7)

where the property to be a scalar means

UF (�)Hsc(x)U
−1
F = Hsc(�x), ∀x = (t, x) (8)

for all Lorentz transformations �. Henceforth, for any operator O(x) in the Schrödinger (S) picture it is
introduced its counterpart

O(x) = ei HF t O(x)e−i HF t

in the Dirac (D) picture.
In this context we would like to remind that in “. . . theories with derivative couplings or spins j ≥ 1, it is

not enough to take Hamiltonian as the integral over space of a scalar interaction density; we also need to add
non-scalar terms to the interaction density to compensate non-covariant terms in the propagators” (quoted from
Chapter 7 in [20]). Such a situation has been considered recently for interacting vector mesons and nucleons
in the field-theoretical treatment [22,36] of nucleon-nucleon scattering. In any case, as will be shown, the
existence of division (7) makes it possible to use and extend the available experience [29] in constructing the
boost generators for a given HI (x).

As previously [24,29], special attention in our work is paid to the inclusion in H finite “mass-renormaliza-
tion” terms that play an important role in ensuring the RI [32]. We stress “finite” since in what follows in order
to get rid of the well known difficulties with divergences certain emphasis is made on nonlocal field models
with a covariant cutoff. Thereby we prefer to deal with introducing cutoff functions in momentum space that is
convenient for calculations of the S matrix (cf. a relativistic nonlocal field model proposed in [37] with cutoffs
in coordinate space).

After this introduction we arrive to Sect. 2 which is devoted to some preliminaries concerning the under-
lying problem. In Sect. 3, by considering nonperturbative and perturbative recipes for ensuring the RI, we
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recall a number of relevant definitions from local QFT. Such a reminder enables us to set bridges between
a traditional approach in QFT and direct algebraic means proposed here. By uniting our algebraic approach
with the notion of clothed particles in QFT, in Sect. 4 we are seeking the boost operators in the CPR. Along
the headline we introduce a nonstandard definition of the so-called mass renormalization terms and show their
importance for ensuring the RI within a wide class of field models (local and nonlocal). Section 5 is contained
explicit expressions for the interactions (quasipotentials) between the spinless scalar and charged bosons and
the corresponding renormalization integrals.

The Appendices A, B and C are contained, respectively,

a) formulae for the Poincaré generators of free pions and nucleons in the corpuscular picture
b) equal-time commutators for the pion-nucleon interaction densities with a nonlocal trilinear coupling
c) evaluation of an integral that determines the mass renormalization term in case of a relativistic nonlocal

model for interacting spinless neutral and charged bosons.

2 Basic Equations in Relativistic Theory with Particle Creation and Annihilation

For convenience, the Poincaré generators can be divided into the three kinds for: no-interaction generators

[Pi , Pj ] = 0, [Ji , J j ] = iεi jk Jk, [Ji , Pj ] = iεi jk Pk, (9)

generators linear in H and N

[P, H ] = 0, [J, H ] = 0, [Ji , N j ] = iεi jk Nk, [Pi , N j ] = iδi j H, (10)

and ones nonlinear in H and N

[H,N] = iP, [Ni , N j ] = −iεi jk Jk, (i, j, k = 1, 2, 3), (11)

where P = (P1, P2, P3) and J = (J 1, J 2, J 3) are the linear momentum and angular momentum operators,
respectively. In this context, let us remind that in the instant form of relativistic dynamics after Dirac [1] only
the Hamiltonian and the boost operators carry interactions with conventional partitions

H = HF + HI (12)

and

N = NF + NI , (13)

while P = PF and J = JF . In short notations, we distinguish the set G F = {HF ,PF , JF ,NF } for free particles
and the set G = {H,PF , JF ,N} for interacting particles.

In turn, every operator HC A can be represented as

HC A =
∫

HC A(x)dx, (14)

if one uses the formula

δ(p− p′) = 1

(2π)3

∫
ei(p−p′)xdx.

Thus, we come to the form well known from local field models,

H =
∫

H(x)dx (15)

with the density

H(x) =
∞∑

C=0

∞∑

A=0

HC A(x). (16)
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For instance, in case with C = A = 2,

H22(1
′, 2′; 1, 2) = δ(p′1 + p′2 − p1 − p2)h(1

′, 2′; 1, 2) (17)

and

H22(x) = 1

(2π)3

∫∑
exp[−i(p′1 + p′2 − p1 − p2)x]

× h(1′, 2′; 1, 2)a† (1′
)

a† (2′
)

a(2)a(1). (18)

Further, we will employ the transformation properties of the creation and annihilation operators with respect
to �. For example, in case of a massive particle with the mass m and spin j one considers that

UF (�, b)a†(p, μ)U−1
F (�, b) = ei�pb D( j)

μ′μ(W (�, p))a†(�p, μ′),

∀� ∈ L+ and arbitrary spacetime shifts b = (b0,b) (19)

with D-function whose argument is the Wigner rotation W (�, p), L+ the homogeneous (proper) orthochro-
nous Lorentz group. The correspondence (�, b) → UF (�, b) between elements (�, b) ∈ � and unitary
transformations UF (�, b) realizes an irreducible representation of � on the Hilbert space H (to be definite)
of meson-nucleon states. In this context, it is convenient to employ the operators a(p, μ) = a(p, μ)

√
p0 that

meet the covariant commutation relations

[a(p′, μ′), a†(p, μ)]± = p0δ(p− p′)δμ′μ,
[a(p′, μ′), a(p, μ)]± = [a†(p′, μ′), a†(p, μ)]± = 0.

(20)

Here p0 =
√

p2 + m2 is the fourth component of the 4-momentum p = (p0,p).
The relativistic invariance (RI) implies

UF (�, b)H22(x)U
−1
F (�, b) = H22(�x + b), ∀x = (t, x). (21)

Accordingly this definition we have

H22(x) = 1

(2π)3

∫∑
exp[i(p′1 + p′2 − p1 − p2)x]

× h(1′, 2′; 1, 2)a† (1′
)

a†(2′)a(2)a(1). (22)

With the aid of Eq. (19) it is easily seen that condition (21) imposes the following constraint upon the h-coef-
ficients in the r.h.s. of Eq. (22):

D
( j ′1)
η′1μ′1

(W (�, p′1))D
( j ′2)
η′2μ′2

(W (�, p′2))D( j1)∗
η1μ1

(W (�, p1))D
( j2)∗
η2μ2

(W (�, p2))

× h(p′1μ′1, p′2μ′2; p1μ1, p2μ2) = h(�p′1η′1,�p′2η′2;�p1η1,�p2η2). (23)

Of course, summations over all dummy labels are implied.

3 Nonperturbative and Perturbative Recipes for Ensuring Relativistic Invariance

We will find an effective way to meet the commutation relations of the Lie algebra for the Poincaré group in
terms of the creation (annihilation) operators of particles in momentum space with the concept of fields not to
be used. Our algebraic approach is aimed at the ensuring of RI as a whole unlike the Lagrangian formalism,
where requirements of relativistic symmetry are manifestly provided at the beginning. Meanwhile, we strive to
go out beyond the traditional QFT with local Lagrangian densities via a special regularization of interactions
in a total initial Hamiltonian.
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3.1 Definitions of the Poincaré Generators in a Local QFT. Application to Interacting Pion and Nucleon
Fields

It is well known that within the Lagrangian formalism the 4-vector Pμ = (H,P) is determined by the Nöether
integrals

Pν =
∫

T 0ν(x)dx (ν = 0, 1, 2, 3), (24)

where T 0ν(x) are the components of the energy-momentum tensor density T μν(x) at t = 0.
Other Nöether integrals are expressed through the angular-momentum tensor density

Mβ[μν](x) = xμT βν(x)− xνT βμ(x)+�β[μν](x), (25)

that contains, in general, so-called polarization part�β[μν] (henceforth, the symbol [α, β] for any labels α and
β means the property f [β,α] = − f [α,β] for its carrier f ) associated with spin degrees of freedom. Namely,
the six independent integrals

Mμν =
∫

M0[μν](x)dx

∣∣∣∣
t=0

(26)

are considered as the generators of space rotations

J i = εikl Mkl (i, k, l = 1, 2, 3) (27)

and the boosts

N k ≡ M0k = −
∫

xkT 00(x)dx +
∫
�0[0k](x)dx, (k = 1, 2, 3). (28)

As an illustration, for interacting pion and nucleon fields with the PS coupling starting from the Lagrangian
density after [38] (cf. model (13.42) in [39] with its non-hermitian Lagrangian density)

LSC H (x) = 1

2
ψ̄H (x)(iγ

μ−→∂ μ − m0)ψH (x)+ 1

2
ψ̄H (x)(−iγ μ

←−
∂ μ − m0)ψH (x)

+ 1

2

[
∂μϕH (x)∂

μϕH (x)− μ2
0ϕ

2
H (x)

]− ig0ψ̄H (x)γ5ψH (x)ϕH (x), (29)

one has (omitting argument x):
(i) Euler–Lagrange equations

∂LSC H

∂ψ̄H
− ∂μ ∂LSC H

∂ψ̄H μ

= 0,
∂LSC H

∂ψH
− ∂μ ∂LSC H

∂ψH μ

= 0, (30)

or

1

2
(iγ μ
−→
∂ μ − m0)ψH = ig0γ5ψHϕH ,

1

2
ψ̄H (−iγ μ

←−
∂ μ − m0) = ig0ψ̄Hγ5ϕH (31)

with “bare” nucleon mass m0, pion mass μ0 and coupling constant g0,
(ii) energy-momentum tensor density

T μν
SC H =

∂LSC H

∂ψ̄H μ

ψ̄νH +
∂LSC H

∂ψH μ

ψνH +
∂LSC H

∂ϕH μ

ϕνH − gμνLSC H

≡ T μν
N + T μν

π + T μν
I , (32)
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where

T μν
N = i

2
ψ̄Hγ

μ∂νψH − i

2
γ μψH∂

νψ̄H − gμνLN , (33)

T μν
π = ∂μϕH∂

νϕH − gμνLπ , (34)

T μν
I = ig0gμνψ̄Hγ5ψHϕH , (35)

(iii) polarization contribution

�
β[μν]
SC H =

1

2
iψ̄H {γ β� μν +�μνγ β}ψH , (36)

where

�μν = i

4
[γ μ, γ ν].

In formulae (29)–(36) unlike operators O(x) in the D picture, we have operators

OH (x) = ei Ht O(x)e−i Ht ,

in the Heisenberg (H) picture. As before we prefer to employ the definitions:

{γ μ, γ ν} = 2gμν, γ †
μ = γ0γμγ0, {γμ, γ5} = 0, γ †

5 = γ0γ5γ0 = −γ5.

The corresponding Hamiltonian density is given by

HSC H (x) = T 00
SC H (x) = H0

f erm(x)+ H0
π (x)+ V 0

ps(x), (37)

where

H0
f erm(x) =

1

2
ψ̄(x)[−i−→γ −→∂ + m0]ψ(x)+ 1

2
ψ̄(x)[+i←−γ ←−∂ + m0]ψ(x), (38)

H0
π (x) =

1

2

[
π2(x)+∇ϕ(x)∇ϕ(x)+ μ2

0ϕ
2(x)

]
, (39)

V 0
ps(x) = ig0ψ̄(x)γ5ψ(x)ϕ(x). (40)

Following a common recipe (see, e.g., Sect. 7.5 in [20]) we have introduced the canonical conjugate variable

π(x) ≡ ϕ̇(x)|t=0 (41)

for the pion field. One should note that the second integral in the r.h.s. of Eq. (28) does not contribute to the
model boost since operator (36) is identically equal zero. In fact,

γ 0� 0k +� 0kγ 0 = i

4
{γ 0[γ 0γ k − γ kγ 0] + [γ 0γ k − γ kγ 0]γ 0}

= i

4
{γ k − γ 0γ kγ 0 + γ 0γ kγ 0 − γ k} = 0.

Thus we have

NSC H = −
∫

xT 00
SC H (x)dx = −

∫
xHSC H (x)dx. (42)

The relation (42) exemplifies the so-called Belinfante ansatz:

N = −
∫

xH(x)dx, (43)

which, as it has first been shown in [41], holds for any local field model with a symmetrized density tensor
T μν(x) = T νμ(x). Such a representation helps [29] to get a sparse structure simultaneously for blockdiag-
onalization of the Hamiltonian and the generators of Lorentz boosts in the CPR. The relation (43) also has
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turned out to be useful when formulating a local analog of the Siegert theorem in the covariant description of
electromagnetic interactions with nuclei [40]. We shall come back to this point later.

By passing, we would like to note that the tensor (32) being symmetrized after Belinfante can be written
in the form

T μν
sym = T μν

N ,sym + T μν
π + T μν

I , (44)

T μν
N ,sym =

i

4
(ψ̄H (x)γ

μ∂νψH (x)+ ψ̄H (x)γ
ν∂μψH (x)

− ∂νψ̄H (x)γ
μψH (x)− ∂μψ̄H (x)γ

νψH (x))− gμνLN .

Further, the Hamiltonian density can be represented as

HSC H (x) = HF (x)+ HI (x) (45)

with the free part

HF (x) = Hπ (x)+ H f erm(x) (46)

and the interaction density

HI (x) = Vps(x)+ Hren(x), Vps(x) = igψ̄(x)γ5ψ(x)ϕ(x), (47)

where we have introduced the mass and vertex counterterms:

Hren(x) = Mmes
ren (x)+ M f erm

ren (x)+ Hint
ren(x), (48)

Mmes
ren (x) =

1

2
(μ2

0 − μ2
π )ϕ

2(x),

M f erm
ren (x) = (m0 − m)ψ̄(x)ψ(x)

and

Hint
ren(x) = i(g0 − g)ψ̄(x)γ5ψ(x)ϕ(x).

One should note that the densities in Eqs. (46)–(47) are obtained from Eqs. (38)–(39) replacing the bare
values m0, μ0 and g0, respectively, by the “physical” values m, μπ and g. Such a transition can be done via
the mass-changing Bogoliubov-type unitary transformations (details in [30]). In particular, the fields involved
can be expressed through the set α = a†(a), b†(b), d†(d) of the creation (destruction) operators for the bare
pions and nucleons with the physical masses,

ϕ(x) = (2π)−3/2
∫
(2ωk)

−1/2[a(k)+ a†(−k)]exp(ikx)dk, (49)

π(x) = −i(2π)−3/2
∫
(ωk/2)

1/2[a(k)− a†(−k)]exp(ikx)dk, (50)

ψ(x) = (2π)−3/2
∫
(m/Ep)1/2

∑

μ

[u(pμ)b(pμ)

+ v(−pμ)d†(−pμ)]exp(ipx)dp. (51)

Substituting (45) into (42), we find

N = NF + NI

with

NF = N f erm + Nπ = −
∫

xH f erm(x)dx −
∫

xHπ (x)dx

and

NI = −
∫

xHI (x)dx.



134 A. V. Shebeko, P. A. Frolov

Now, taking into account the transformation properties of the fermion field ψ(x) and the pion field ϕ(x)
with respect to �, it is readily seen that in the D picture density (45) is a scalar, i.e.,

UF (�, b)HSC H (x)U
−1
F (�, b) = HSC H (�x + b), (52)

so

UF (�, b)HI (x)U
−1
F (�, b) = HI (�x + b). (53)

Just such a property has been used for that example on p.7.
It is well known (see, e.g., Sect. 5.1 in [20]) that for a large class of theories the property (53) with the

corresponding interaction densities HI (x), being supplemented by the condition

[HI (x
′), HI (x)] = 0 f or (x ′ − x)2 ≤ 0, (54)

plays a crucial role in ensuring the RI of the S-matrix. Appendix A is contained explicit expressions of all free
generators for the πN system and tests for them to be satisfied the Poincaré algebra.

3.2 An Algebraic Approach within the Hamiltonian Formalism

As mentioned above, we are addressing those theories that start from a total Hamiltonian (12) with the inter-
action HI =

∫
HI (x)dx whose density is sum (7) so

HI = Hsc + Hnsc ≡
∫

Hsc(x)dx +
∫

Hnsc(x)dx. (55)

It means that only the density in the first integral has the property (53), i.e.,

UF (�, b)Hsc(x)U
−1
F (�, b) = Hsc(�x + b). (56)

Then, taking into account that the first relation (11) is equivalent to the equality

[NF , HI ] = [H,NI ], (57)

we will evaluate its l.h.s.. In this connection, let us regard the operator

Hsc(t) =
∫

Hsc(x)dx (58)

and its similarity transformation

eiβNF Hsc(t)e
−iβNF =

∫
Hsc(L(β)x)dx, (59)

where L(β) is any Lorentz boost with the parameters β = (β1, β2, β3).
From (59) it follows that

ieiβ1 N 1
F [N 1

F , Hsc(t)]e−iβ1 N 1
F = ∂

∂β1

∫
Hsc(L(β

1)x)dx, (60)

whence, for instance,

i[N 1
F , Hsc(t)] = lim

β1→0

∂

∂β1

∫
Hsc(t − β1x1, x1 − β1t, x2, x3)dx

= −
∫ (

t
∂

∂x1 Hsc(x)+ x1 ∂

∂t
Hsc(x)

)
dx, (61)

since for the infinitesimal boost

L(β)x = (t − βx, x − βt).
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In turn, from (61) we get

[N 1
F , Hsc] = i lim

t→0

∫
(−i t[P1, Hsc(x)] + i x1[HF , Hsc(x)])dx,

so

[NF , Hsc] = −
∫

x[HF , Hsc(x)]dx. (62)

By using Eq. (62) equality (57) can be written as

−
∫

x[HF , Hsc(x)]dx = [HF ,NI ] + [HI ,NI ] + [Hnsc,NF ]. (63)

Evidently, this equation is fulfilled if we put

NI = NB ≡ −
∫

xHsc(x)dx (64)

and

[Hsc,NI ] = −
∫

xdx
∫

dx′[Hsc(x′), Hsc(x)] = [NF + NI , Hnsc] (65)

or
∫

dx
∫

dx′(x′ − x)[Hsc(x′), Hsc(x)]

=
∫

xdx
∫

dx′[Hnsc(x′), HF (x)+ Hsc(x)]. (66)

In a model with Hnsc = 0 the latter reduces to
∫

e−iPXIeiPXdX = 0, (67)

where

I = 1

2

∫
rdr

[
Hsc

(
1

2
r
)
, Hsc

(
−1

2
r
)]
. (68)

By running again the way from Eq. (57) to Eqs. (67)–(68) we see that the nonlinear commutation (11)

[H,N] = iP

will take place once along with the Belinfante-type relation (64) the interaction density meets the condition
∫

rdr
[

Hsc

(
1

2
r
)
, Hsc

(
−1

2
r
)]
= 0. (69)

One should note that we have arrived to Eq. (64) being inside the Poincarè algebra itself without addressing the
Nöether integrals, these stepping stones of the Lagrangian formalism. In the context, we would like to stress
that the condition (69) is weaker compared to the constraint

[
Hsc

(
1

2
r
)
, Hsc

(
−1

2
r
)]
= 0 (70)

imposed for all r excepting, may be, the point r = 0. But we recall it as a special case of the microcausality
requirement that is realized in local field models. Beyond such models, as it will be shown in Appendix B,
Eqs. (64) and (57) may be incompatible. It makes us seek an alternative to assumption (64) in our attempts to
meet Eq. (63).
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At this point, we put NI = NB + D to get the relationship

[HF ,D] = [NB + D, Hsc] + [NF + NB + D, Hnsc], (71)

that replaces the commutator [H,N] = iP and determines the displacement D.
Assuming that the scalar density Hsc(x) is of the first order in coupling constants involved and putting

Hnsc(x) =
∞∑

p=2

H (p)
nsc (x), (72)

we will search the operator D in the form

D =
∞∑

p=2

D(p), (73)

i.e., as a perturbation expansion in powers of the interaction Hsc. Here the label (p) denotes the pth order
in these constants. By the way, one should keep in mind that the terms in the r.h.s. of Eq. (72) are usually
associated with perturbation series for mass and vertex counterterms. Evidently, their incorporation may affect
the corresponding higher-order contributions with p ≥ 2 to the boost. In this context, to comprise different
situations of practical interest let us consider field models in which

Hnsc(x) = Vnsc(x)+ Vren(x)

with a nonscalar interaction

Vnsc =
∫

Vnsc(x)dx

and some “renormalization” contribution

Vren =
∫

Vren(x)dx.

The latter may be scalar or not. Of course, such a division of Hnsc(x) can be done at the beginning in Eq. (55).
But the scheme, introduced here, seems to us more flexible.

By substituting the expansions (72) and (73) into Eq. (71) we get the chain of relations

[HF ,D(2)] = [NF , H (2)
nsc] + [NB, Hsc], (74)

[HF ,D(3)] = [NF , H (3)
nsc] + [D(2), Hsc] + [NB, H (2)

nsc], (75)

[HF ,D(p)] = [NF , H (p)
nsc ] + [NB, H (p−1)

nsc ] + [D(p−1), Hsc] + [D, Hnsc](p),
(p = 4, 5, . . .) (76)

for a recursive finding of the operators D(p) (p = 2, 3, . . .).
Further, after such substitutions into the commutators

[Pk, N j ] = iδk j H,

[Jk, N j ] = iεk jl Nl

and

[Nk, N j ] = −iεk jl Jl

we deduce, respectively, the following relations (the remaining Poincaré commutations are fulfilled once one
deals with any rotationally and translationally invariant theory):

[Pk, D(p)
j ] = iδk j H (p)

nsc (p = 2, 3, . . .) (77)
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from

[Pk, D j ] = iδk j Hnsc, (78)

[Jk, D(p)
j ] = iεk jl D(p)

l (79)

from

[Jk, D j ] = iεk jl Dl (80)

and

[NFk, NB j ] + [NBk, NF j ] = 0, (81)

[NFk, D(2)
j ] + [D(2)

k , NF j ] + [NBk, NB j ] = 0, (82)

[NFk, D(3)
j ] + [D(3)

k , NF j ] + [NBk, D(2)
j ] + [D(2)

k , NB j ] = 0, (83)

[NFk, D(p)
j ] + [D(p)

k , NF j ] + [NBk, D j ](p) + [Dk, NB j ](p) + [Dk, D j ](p) = 0,

(p = 4, 5, . . .) (84)

from

[NFk, NB j + D j ] + [NBk + Dk, NF j ] + [NBk + Dk, NB j + D j ] = 0. (85)

Now, keeping in mind an elegant method by Chandler [33], we invoke on the property (see [34]) of a formal
solution Y to the equation

[HF , Y ] = X (86)

to be any linear functional F(X) of a given operator X �= 0. In other words, it means that

[HF , F(X)] = X (87)

with F(λ1 X1+λ2 X2) = λ1 F(X1)+λ2 F(X2), where λ1 and λ2 are arbitrary c-numbers. In addition, one can
see that

[HF , F(X)] = F([HF , X ]). (88)

Moreover, it turns out that

[P, F(X)] = F([P, X ]), (89)

[J, F(X)] = F([J, X ]), (90)

[NF , F(X)] = F([NF , X ])+ i F(F([P, X ])). (91)

In order to prove the relations let us employ the Jacobi identity

[A, [B,C]] + [C, [A, B]] + [B, [C, A]] = 0 (92)

and write

[O, [HF , F(X)]] = −[F(X), [O, HF ]] + [HF , [O, F(X)]]
with some operator O. Then

[O, F(X)] = F([O, X ])+ F([F(X), [O, HF ]]). (93)

The formulae (89)–(91) follow from Eq. (93) if one takes into account the Poincaré commutators for the free
generators G F . We derive them here after [33] when moving from the nonlinear commutation (71) to ensuring
the RI as a whole. After this let us verify all commutations (77)–(85) when one uses the solution Y = F(X)
to Eq. (86).
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First, with the help of (89) we find from Eqs. (74)–(75),

[Pk, D(2)
j ] = F([Pk, [NF j , H (2)

nsc]]) = F([[Pk, NF j ], H (2)
nsc])

= iδk j F([HF , H (2)
nsc]) = iδk j H (2)

nsc, (94)

[Pk, D(3)
j ] = F([Pk, [NF j , H (3)

nsc]]) = F([[Pk, NF j ], H (3)
nsc])

= iδk j F([HF , H (3)
nsc]) = iδk j H (3)

nsc. (95)

We have used the formulae [Pk, NB j ] = iδk j Hsc and [Pk, Hsc] = [Pk, Hnsc] = 0. Analogously, one can verify
Eqs. (79) with p = 2, 3. Second, Eq. (81) is trivial.

Third,

[NFk, D(2)
j ] + [D(2)

k , NF j ] + [NBk, NB j ]
= F([NFk, [NB j , Hsc]])− F([NF j , [NBk, Hsc]])+ [NBk, NB j ]
= −F([NB j , [NBk, HF ]])+ F([NBk, [NB j , HF ]])+ [NBk, NB j ]
= F([HF , [NB j , NBk]])+ [NBk, NB j ] = 0 (96)

and

[NFk, D(3)
j ] + [D(3)

k , NF j ] + [NBk, D(2)
j ] + [D(2)

k , NB j ]
= −F([Hsc, [NFk, D(2)

j ]])− F([NBk, [D(2)
j , HF ]])

−[NBk, D(2)
j ] + F([NFk, [NB j , H (2)

nsc]])
+ F([Hsc, [NF j , D(2)

k ]])+ F([NB j , [D(2)
k , HF ]])

+[NB j , D(2)
k ] − F([NF j , [NBk, H (2)

nsc]])
+[NBk, D(2)

j ] + [D(2)
k , NB j ]

= F([Hsc, [NBk, NB j ]])+ F([NBk, [NB j , Hsc]])
+ F([NB j , [Hsc, NBk]])+ F([H (2)

nsc, [NFk, NB j ]])
+ F([NFk, [NB j , H (2)

nsc]])+ F([NB j , [H (2)
nsc, NFk]]) = 0. (97)

At last, Eqs. (77) and Eqs. (79) with p ≥ 3 and Eqs. (84) with p ≥ 4 can be proved inductively. One should
emphasize that for these derivations we have again addressed the strategy chosen in [33]. Unfortunately, that
approach by Chandler is either well forgotten or little known. Therefore, we are trying to present an entire
picture. However, to be more constructive one needs to have a definite realization of the functional F(X). In
this connection, we will use the representation

Y = −i lim
η→0+

∞∫

0

X (t)e−ηt dt (98)

of the operator Y that enters the equation (86). The existence proof for such a solution is sufficiently delicate
(see discussion in Appendix A of Ref. [29]). Of course, it depends on the operator X . We shall come back to
the point in Sect. 3.3 for a situation, where [HF , X ] = 0.

Henceforth, the ensuring of RI via Eqs. (71)–(76) calls the way I.

3.3 Comparison with Other Approaches: Application to a Nonlocal Field Model

There are different perturbative schemes to meet the Poincaré algebra (at least, in its instant form after Dirac).
One of them, elaborated in [14], is based upon a simultaneous blockdiagonalization of the field Hamiltonian
and the boost operators by using a development of the Okubo idea [9] and constructing the corresponding
unitary transformation in a perturbative way (see also Sect. 6 in [29]).
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An entirely algebraic approach [32] (see also [33] and a private communication to A.S.) is most close to
that exposed in Sect. 3.2. In fact, its departure point is to apply a perturbation expansion of the commutation
relations (9)–(11) inserting into them the series

HI =
∞∑

p=1

H (p)
I

and

NI =
∞∑

p=1

N(p)I ,

[HF ,N(1)I ] = [NF , H (1)
I ], (99)

[HF ,N(2)I ] = [NF , H (2)
I ] + [N(1)I , H (1)

I ], (100)

[HF ,N(3)I ] = [NF , H (3)
I ] + [N(1)I , H (2)

I ] + [N(2)I , H (1)
I ], (101)

[Pi , N (p) j
I ] = δi j H (p)

I (p = 1, 2, . . .) (102)

. . . . . . . . . . . .

The recursive procedure based upon Eqs. (99)–(101) will be referred to as the way II.
Now, making a comparison between I and II we obtain with the aid of formula (98) the lowest-order terms:

N(1)I = NB = −
∫

xH (1)
I (x)dx = −

∫
xHsc(x)dx (103)

and

N(2)I = D(2) = �([NF , H (2)
nsc])− i lim

η→0+

∞∫

0

[NB(t), Hsc(t)]e−ηt dt (104)

from Eq. (64) and Eq. (74) vs

N(1)I = −i lim
η→0+

∞∫

0

[NF (t), Hsc(t)]e−ηt dt (105)

and

N(2)I = �([NF , H (2)
nsc])− i lim

η→0+

∞∫

0

[N(1)I (t), Hsc(t)]e−ηt dt (106)

from Eq. (99) and Eq. (100), respectively. The first terms in the r.h.s. of Eq. (104) and Eq. (106) have been
expressed through a linear functional�(X) since its argument X = [NF , H (2)

nsc], in general, can embody a part
that commutes with HF (see that note below the recipe (98)).

It is easily seen that these relations give rise to identical results since the commutator in the r.h.s. Eq. (105)
can be written as (see Eq. (62))

[NF (t), Hsc(t)] = −
∫

xdx[HF , Hsc(t)] = [HF ,NB(t)] (107)

or

[NF (t), Hsc(t)] = −i
d

dt
NB(t),
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so

N(1)I = −i lim
η→0+

∞∫

0

[NF (t), Hsc(t)]e−ηt dt

= NB(0)− lim
η→0+ η

∞∫

0

NB(t)e
−ηt dt = NB .

By assumption,

lim
η→0+ η

∞∫

0

NB(t)e
−ηt dt = 0,

that should be verified every time for a given model interaction.
Besides, if the condition (69) takes place, the approach II enables us to arrive to the same result as our

approach does, i.e., the Belinfante ansatz by Eq. (64).
As mentioned, the latter is inherent in some local field theories. Therefore, we would like to employ the

way I when handling nonlocal field models. Let us consider a system of “scalar nucleons” (more precisely,
charged spinless bosons) and neutral scalar bosons (see, e.g., Chapter 1 in [42]) with the following interaction
density (cf. [9,37]):

HI (x) = Vloc(x)+ Vren(x), (108)

Vloc(x) = gϕs(x) : ψ†
b (x)ψb(x) : (109)

and

Vren(x) = δμs : ϕ2
s (x) : +δμb : ψ†

b (x)ψb(x) : (110)

with the mass shifts δμs = 1
2 (μ

2
0s − μ2

s ) (δμb = (μ2
0b − μ2

b)). In order to regard a nonlocal extension of this
local model let us substitute the expansions

ϕs(x) = [2(2π)3]−1/2
∫

dk
ωk
[a(k)+ a†(k−)]eikx,

ψb(x) = [2(2π)3]−1/2
∫

dp
Ep
[b(p)+ d†(p−)]eipx

into Eqs. (109) and (110) to get

Vloc(x) = g[2(2π)3]−3/2
∫

dp′

Ep′

∫
dp
Ep

∫
dk
ωk

exp[i(p+ k − p′)x]

× : [a(k)+ a†(k−)][b†(p′)+ d(p′−)][b(p)+ d†(p−)] : (111)

and

Vren(x) = δμs(x)+ δμb(x) (112)

with

δμs(x) = δμs

2(2π)3

∫
dk′

ωk′

∫
dk
ωk
: [a(k′)+ a†(k′−)]ei(k′+k)x[a(k)+ a†(k−)] :, (113)

δμb(x) = δμb

2(2π)3

∫
dp′

Ep′

∫
dp
Ep
: [b†(p′)+ d(p′−)]ei(p−p′)x[b(p)+ d†(p−)] : . (114)
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The interaction operator itself

HI =
∫

HI (x)dx = Vloc + Vren,

Vloc =
∫

Vloc(x)dx = g

2[2(2π)3]1/2
∫

dp′

Ep′

∫
dp
Ep

∫
dk
ωk
δ(p′ − p− k)

×a(k) : [b†(p′)b(p)+ b†(p′)d†(p−)+ d(p′−)b(p)+ d(p′−)d†(p−)] : +H.c., (115)

Vren =
∫
[δμs(x)+ δμb(x)]dx. (116)

Let us consider its nonlocal extension

HI = Vnloc + Ms + Mb, (117)

where in accordance with the representation (3) we introduce the following normally-ordered structures:

Vnloc =
∫

Vnloc(x)dx =
∫

dp′

Ep′

∫
dp
Ep

∫
dk
ωk

×{δ(p′ − p− k)g11(p
′, p, k)b†(p′)b(p)+ δ(p′ + p− k)g12(p

′, p, k)b†(p′)d†(p)

+ δ(p′ + p+ k)g21(p
′, p, k)d(p′)b(p)

+ δ(p′ − p− k)g22(p
′, p, k)d†(p′)d(p)}a(k)+ H.c. (118)

or in more compact form

Vnloc = Vb + V †
b ,

Vb =
∫

Vb(x)dx =
∫

dk
ωk
: F†

b G(k)Fb : a(k), (119)

where

Vb(x) =
∫

dk
ωk

eikx : F†
b Gk(x)Fb : a(k)

with

{Gk(x)}ε′ε = 1

(2π)3
ḡε′ε(p

′, p, k)exp[i((−1)ε
′
p′ − (−1)εp)x],

while the operators Ms and Mb will be given below.
Adopting the convention

[b†(p′), d(p′)]
[

X11(p′, p) X12(p′, p)
X21(p′, p) X22(p′, p)

] [
b(p)
d†(p)

]

= F†
ε′(p
′)Xε′ε(p′, p)Fε(p) ≡ F†

b (p
′)X (p′, p)Fb(p) (120)

for any 2× 2 matrix X (p′, p) and the column

Fb(p) =
[

b(p)
d†(p)

]
≡
[

F1(p)
F2(p)

]

(cf. formula (A.8) in [29]), sometimes it is convenient to proceed with
∫

dp′

Ep′

∫
dp
Ep

F†
b (p
′)X (p′, p)Fb(p) ≡ F†

b X Fb.

In this context the matrix G(k) in Eq. (119) is composed of the elements

Gε′ε(p
′, p, k) = ḡε′ε(p

′, p, k)δ(k + (−1)ε
′
p′ − (−1)εp),

(ε′, ε = 1, 2) (121)

where ḡε′ε(p′, p, k) coincide with gε′ε(p′, p, k) except ḡ22(p′, p, k) = g22(p, p′, k).
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It is implied that the operators a(a†), b(b†) and d(d†) meet the commutation relations

[a(k), a†(k′)] = k0δ(k − k′), (122)

[b(p), b†(p′)] = [d(p), d†(p′)] = p0δ(p− p′) (123)

with all the remaining ones being zero. Here k0 = ωk =
√

k2 + μ2
s (p0 = Ep =

√
p2 + μ2

b) is the energy of
the neutral (charged) particle with the mass μs(μb). By the way, from (123) it follows that

[Fε′(p′), F†
ε (p)] = p0δ(p′ − p)σε′ε, (124)

where σε′ε = (−1)ε−1δε′ε.
Furthermore, the creation/destruction operators have the transformation properties like (19). For example,

UF (�)a(k)U
−1
F (�) = a(�k). (125)

Therefore in the D picture

UF (�)Vloc(x)U
−1
F (�) = Vloc(�x), (126)

i.e., the interaction density Vloc(x) is a Lorentz scalar.
For our nonlocal model we will retain the property assuming that

UF (�)Vnloc(x)U
−1
F (�) = Vnloc(�x). (127)

It is readily seen that this relation holds if the coefficients gε′ε meet the condition

gε′ε(�p′,�p,�k) = gε′ε(p
′, p, k). (128)

On the mass shells with p′2 = p2 = μ2
b and k2 = μ2

s the latter means that the functions gε′ε(p′, p, k) can
depend only upon the invariants p′ p, p′k and pk.

The transition from Vloc to Vnloc can be interpreted as an endeavor to regularize the theory. In the context,
the introduction of some cutoff functions gε′ε in momentum space is aimed at removing ultraviolet divergences
typical of local field models with interactions like expression (109).

One should keep in mind that along with the requirement (128) these cutoffs are subject to other constraints
imposed by different symmetries. For example, the tacit invariance of the hermitian operator (118) with respect
to: (i) space inversion P; (ii) time reversal T and (iii) charge conjugation C yields the relations

gε′ε(p
′, p, k) = gε′ε(p, p′, k), ε′ �= ε (129)

gε′ε(p
′, p, k) = gε′ε(p

′−, p−, k−), (130)

g11(p
′, p, k) = g22(p

′, p, k), (131)

which can be derived assuming (see, e.g., Sect. 5.2 in [20]) the following properties

Pa(k)P−1 = a(−k), Pb(p)P−1 = b(−p), Pd(p)P−1 = d(−p), (132)

T a(k)T −1 = a(−k), T b(p)T −1 = b(−p), T d(p)T −1 = d(−p), (133)

Ca(k)C−1 = a(k), Cb(p)C−1 = d(p), Cd(p)C−1 = b(p), (134)

∀ p and k.
As to constructing the “mass renormalization terms” Ms and Mb we note that within the clothing procedure

exposed in the next section they can be represented in the form:

Ms =
∫

dk

ω2
k

{m1(k)a
†(k)a(k)+ m2(k)[a†(k)a†(k−)+ a(k)a(k−)]} (135)

and

Mb =
∫

dp
E2

p
{m11(p)b

†(p)b(p)+ m12(p)b
†(p)d†(p−)

+m21(p)b(p)d(p−)+ m22(p)d
†(p)d(p)}, (136)
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where the coefficients m1,2(k) and mε′ε(p), being for the time unknown, may be momentum dependent. Of
course, the latter (for simplicity, real) should be symmetrical, i.e. m12(p) = m21(p), to ensure the hermiticity
of Mb. We will confine ourselves to the consideration of such terms. Of course, the so-called charge and wave
function counterterms can be included too to be cancelled then by the g3-order contributions (cf. [43]) starting
from the commutator 1

3 [R, [R, Vbad ]] in expansion (159).
Now, in order to derive the corresponding lowest-order contributions to the boost operator for our nonlocal

model, we find using Eqs. (103)–(104),

N(1)I = NB = −
∫

xVnloc(x)dx, (137)

N(2)I = D(2) = �([NF , H (2)
nsc])− i lim

η→0+

∞∫

0

[NB(t), Vnloc(t)]e−ηt dt, (138)

N(3)I = D(3) = −i lim
η→0+

∞∫

0

[NB(t), H (2)
nsc(t)]e−ηt dt

−i lim
η→0+

∞∫

0

[D(2)(t), Vnloc(t)]e−ηt dt − i lim
η→0+

∞∫

0

[NF (t), H (3)
nsc(t)]e−ηt dt, (139)

. . . . . . . . . . . .

where H (2)
nsc(t) = exp(i HF t)(M (2)

s + M (2)
b )exp(−i HF t) with the leading-order contributions M (2)

s and M (2)
b

to the operators Ms and Mb that will be given explicitly below. We will confine ourselves to the evaluation of
contributions N(1)I and N(2)I . It suffices to conceive of some manifestations of the model nonlocality.

Thus, by handling relation (138), we encounter commutator

[NB(t), Vnloc(t)] = −
∫

x′[Vnloc(t, x′), Vnloc(t, x)]dxdx′

= −1

2

∫
dx′

∫
dx(x′ − x)[Vnloc(t, x′), Vnloc(t, x)] (140)

with

[Vnloc(t, x′), Vnloc(t, x)] = exp(i HF t)[Vnloc(x′), Vnloc(x)]exp(−i HF t),

where

[Vnloc(x′), Vnloc(x)] = [Vb(x′), Vnloc(x)] − H.c. (141)

and

[Vb(x′), Vnloc(x)] = [Vb(x′), Vb(x)] + [Vb(x′), V †
b (x)]. (142)

The first term in the r.h.s. of (142) is equal to

[Vb(x′), Vb(x)] = [(2π)6]−1
∫

dk
ωk

∫
dk1

ωk1

∫
dp′

Ep′

∫
dp
Ep

∫
dq
Eq

×[exp[i((−1)ε
′
p′ − (−1)ρ

′
q+ k)x′]exp[i((−1)ρq− (−1)εp+ k1)x]

− exp[i((−1)ε
′
p′ − (−1)ρ

′
q+ k)x]exp[i((−1)ρq− (−1)εp+ k1)x]]

× F†
ε′(p
′)ḡε′ρ′(p′, q, k)σρ′ρ ḡρε(q, p, k1)Fε(p)a(k)a(k1). (143)

This matrix form can be derived using commutations

[Fε′(p′), F†
ε (p)] = p0δ(p′ − p)σε′ε, (144)

where σε′ε = (−1)ε−1δε′ε.
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In turn, we have

F†
ε′(p
′)ḡε′ρ′(p′, q, k)σρ′ρ ḡρε(q, p, k1)Fε(p)

= F†
1 (p
′)[ḡ11(p

′, q, k)ḡ11(q, p, k1)− ḡ12(p
′, q, k)ḡ21(q, p, k1)]F1(p)

+ F†
1 (p
′)[ḡ11(p

′, q, k)ḡ12(q, p, k1)− ḡ12(p
′, q, k)ḡ22(q, p, k1)]F2(p)

+ F†
2 (p
′)[ḡ21(p

′, q, k)ḡ11(q, p, k1)− ḡ22(p
′, q, k)ḡ21(q, p, k1)]F1(p)

+ F†
2 (p
′)[ḡ21(p

′, q, k)ḡ12(q, p, k1)− ḡ22(p
′, q, k)ḡ22(q, p, k1)]F2(p).

When ḡ11(p′, p, k) = ḡ12(p′, p, k) = ḡ21(p′, p, k) ≡ ḡ(p′, p, k), we get

[Vb(x′), Vb(x)] = 0 (145)

and

[Vb(x′), V †
b (x)] − H.c. = 0 (146)

so

[Vnloc(x′), Vnloc(x)] = 0. (147)

Then we obtain from Eq. (138)

D(2) = �([NF ,M (2)
s + M (2)

b ]) (148)

and we see that even with relation (147) reminiscent of the well-known microcausality condition (cf. Eq. (54))
one has to evaluate the displacement operator D, if the mass renormalization terms are inequal to zero. But the
latter is the case. Otherwise, we would come to some contradiction with Eq. (74) and Eq. (77) (details see in
Sect. 4.2).

By using the formulae (234) and (235) and taking into account that to an accuracy of adding an arbitrary
function of HF the solution Y to [HF , Y ] = X repeats the operator structure of X , we arrive to the division

D(2) = D(2)con + D(2)ncon, (149)

where the particle-number-conserving and -nonconserving contributions D(2)con and D(2)ncon are determined by

D(2)con =
i

2

∫
dk′

ωk′

∫
dk
ωk
(ωk′ωk + k′k + μ2

s )

(
m(2)

1 (k)

ωk
− m(2)

1 (k′)
ωk′

)

× a†(k′)a(k)
ωk′ − ωk

∂

∂k
δ(k − k′)

+ i

2

∫
dp′

Ep′

∫
dp
Ep
(Ep′Ep + p′p+ μ2

b)

(
m(2)

11 (p)

Ep
− m(2)

11 (p
′)

Ep′

)

× b†(p′)b(p)
Ep′ − Ep

∂

∂p
δ(p− p′)

+ i

2

∫
dp′

Ep′

∫
dp
Ep
(Ep′Ep + p′p+ μ2

b)

(
m(2)

22 (p)

Ep
− m(2)

22 (p
′)

Ep′

)

× d†(p′)d(p)
Ep′ − Ep

∂

∂p
δ(p− p′) (150)
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and

D(2)ncon = i
∫

dk′

ωk′

∫
dk
ωk

m(2)
2 (k)

ωk′ωk + k′k + μ2
s

ωk

×a†(k′)a†(k−)− a(k′)a(k−)
ωk′ + ωk

∂

∂k
δ(k − k′)

+ i
∫

dp′

Ep′

∫
dp
Ep

m(2)
12 (p)

Ep′Ep + p′p+ μ2
b

Ep

×b†(p′)d†(p−)− b(p′)d(p−)
Ep′ + Ep

∂

∂p
δ(p− p′). (151)

One should point out that the operator D(2)con stems from the structure

[NF ,M (2)
s + M (2)

b ] ∼ a†a + b†b + d†d,

which commutes with HF .

4 Boost Operators for Clothed Particles

As shown in [29], the Belinfante ansatz turns out to be useful when constructing the Lorentz boosts in the
CPR. Their generator N ≡ N(α), being a function of the primary operators {α} (such as a†(a), b†(b) and
d†(d) for the examples regarded above) in the BPR, is expressed through the corresponding operators {αc}
for particle creation and annihilation in the CPR. The transition {α} �⇒ {αc} is implemented via the special
unitary transformations W (α) = W (αc), viz.,

α = W (αc)αcW †(αc), (152)

satisfying certain physical requirements (details can be also found in Refs. [24,30]).

4.1 Elimination of Bad Terms in Generators of the Poincaré Group

A key point of the clothing procedure exposed in [29] is to remove the so-called bad terms from the Hamiltonian

H ≡ H(α) = HF (α)+ HI (α) = W (αc)H(αc)W
†(αc) ≡ K (αc), (153)

more exactly, from a primary interaction V (α) that enters HI (α) = V (α) + Vren(α) (cf., e.g., our nonlocal
model with Vnloc = V (α) and Vren = Vren(α) = Ms(α)+ Mb(α)). For example, such terms b†

c bca†
c , b†

c d†
c ac,

b†
c d†

c a†
c , dcd†

c a†
c enter V (αc) determined by Eq. (115) after the replacement of the bare operators in it by the

clothed ones. These terms are removed together with their Hermitian conjugate counterterms to retain the
hermiticity of the similarity transformation (153). By definition, such terms prevent the physical vacuum |�〉
(the H lowest eigenstate) and the one-clothed-particle states |n〉c = a†

c (n)|�〉 to be the H eigenvectors for all n
included. Here creation operators a†

c (n) are clothed counterparts of those operators a†(n) that are contained in
expansion (2). The bad terms (a recursive scheme for successive eliminations of such terms has been regarded
in [30]) occur every time when any normally ordered product

a†(1′)a†(2′) . . . a†(n′C )a(n A) . . . a(2)a(1)

of the class [C.A] embodies, at least, one substructure which belongs to one of the classes [k.0] (k = 1, 2, . . .)
and [k.1] (k = 0, 1, . . .).

Therefore, in correspondence with the decomposition (55) we have

HI (α) =
∫

HI (x)dx = Hsc(α)+ Hnsc(α), (154)

Hsc(nsc)(α) =
∫

Hsc(nsc)(x)dx,
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assuming that

Hsc(α) = Vbad(α)+ Vgood(α)

to remove the bad part Vbad from the similarity transformation

K (αc) = W (αc)[HF (αc)+ HI (αc)]W †(αc)

= W (αc)[HF (αc)+ Vbad(αc)+ Vgood(αc)+ Hnsc(αc)]W †(αc). (155)

Remind that term “good”, as an antithesis of “bad”, is applied here to those operators (e.g., of the class [k.2]
with k ≥ 2) which destroy both the no-clothed-particle state � and the one-clothed-particle states. For the
unitary clothing transformation (UCT) W = expR with R = −R† (sometimes, for brevity, we omit evident
arguments) it is implied that we will eliminate the bad terms Vbad in the r.h.s. of

K (αc) = HF (αc)+ Vbad(αc)+ [R, HF ] + [R, Vbad ] + 1

2
[R, [R, HF ]]

+ 1

2
[R, [R, Vbad ]] + · · · + eR Vgoode−R + eR Hnsce−R (156)

(cf. Eq. (2.19) in [29]) by requiring that

[HF , R] = Vbad (157)

for the operator R of interest.
One should note that unlike the original clothing procedure exposed in [29,30] we eliminate here the bad

terms only from Hsc interaction in spite of such terms can appear in the nonscalar interaction as well. This
preference is relied upon the previous experience [36] and [22] when applying the method of UCTs in the
theory of nucleon-nucleon scattering. Now we get the division

H = K (αc) = KF + K I (158)

with a new free part KF = HF (αc) ∼ a†
c ac and interaction

K I = Vgood(αc)+ Hnsc(αc)+ [R, Vgood ]
+ 1

2
[R, Vbad ] + [R, Hnsc] + 1

3
[R, [R, Vbad ]] + · · · , (159)

where the r.h.s. involves along with good terms other bad terms to be removed via subsequent UCTs described
in Subsect. 2.4 of [29] and Sect. 3 of [30].

In parallel, we have

N ≡ N(α) = NF (α)+ NI (α) = W (αc)N(αc)W
†(αc) ≡ B(αc) (160)

or

B(αc) = NF (αc)+ NI (αc)+ [R,NF ] + [R,NI ] + · · · , (161)

where accordingly the division

NI = NB + D, (162)

NB = −
∫

xHsc(x)dx = Nbad + Ngood ,

Equation (161) can be rewritten as

B(αc) = NF (αc)+ Nbad(αc)+ [R,NF ] + [R,Nbad ] + 1

2
[R, [R,NF ]]

+1

2
[R, [R,Nbad ]] + · · · + eRNgoode−R + eRDe−R . (163)
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But it turns out (see the proof of Eq. (3.26) in [29]) that if R meets the condition (157), then

[NF , R] = Nbad = −
∫

xVbad(x)dx (164)

so the boost generators in the CPR can be written likely Eq. (158),

N = B(αc) = BF + BI , (165)

where BF = NF (αc) is the boost operator for noninteracting clothed particles while BI includes the contribu-
tions induced by interactions between them

BI = Ngood(αc)+ D(αc)+ [R,Ngood ]
+ 1

2
[R,Nbad ] + [R,D] + 1

3
[R, [R,Nbad ]] + · · · (166)

One should note that in formulae (159) and (166) we are focused upon the R-commutations with the first-elim-
inated interaction Vbad . As shown in [29], the brackets, on the one hand, yield new interactions responsible
for different physical processes and, on the other hand, cancel (as a recipe) the mass and other counterterms
that stem from Hnsc(αc) and D(αc). Such a cancellation will be regarded in the next subsection.

But at this point we will come back to our model with Vbad = Vnloc, Vgood = 0 and R = Rnloc to calculate
the simplest commutator [Rnloc, Vnloc] in which accordingly condition (157) the clothing operator Rnloc is
determined by

[HF , Rnloc] = Vnloc. (167)

From the equation it follows (cf. Appendix A in [29]) that its solution can be given by

Rnloc =
∫

dk
ωk
: F†

b R(k)Fb : a(k)− H.c. = Rnloc −R†
nloc. (168)

The matrix R(k) is composed of the elements

Rε′ε(p
′, p, k) = − ḡε′ε(p′, p, k)

ωk + (−1)ε′Ep′ − (−1)εEp
δ(k + (−1)ε

′
p′ − (−1)εp).

(ε′, ε = 1, 2) (169)

Such a solution is valid if μs < 2μb. In other words, under such an inequality the operator Rnloc has the same
structure as Vnloc itself. Then, all we need is to evaluate

[Rnloc, Vnloc] = [Rnloc −R†
nloc, Vnloc] = [Rnloc, Vnloc] + H.c., (170)

where accordingly (119)

[Rnloc, Vnloc] = [Rnloc, Vb] + [Rnloc, V †
b ]. (171)

Further, using Eqs. (119), (168) and identity (245) we find

[Rnloc, Vb] =
∫

dk′

ωk′

∫
dk
ωk

F†
b [R(k′),G(k)]Fba(k′)a(k) (172)

and

[Rnloc, V †
b ] =

∫
dk′

ωk′

∫
dk
ωk
{F†

b [R(k′),G(k−)]Fba†(k)a(k′)

+ δ(k′ − k) : F†
b R(k′)Fb :: F†

b G(k−)Fb :}, (173)

where the matrix G(k) is determined by Eq. (121) and it is implied that

[R(k′),G(k)](p′, p)

=
∫

dq
Eq
[R(p′, q, k′)G(q, p, k)− G(p′, q, k)R(q, p, k′)]. (174)
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After the normal ordering of meson and boson operators in commutator [Rnloc, Vnloc] one can obtain the
2→ 2 interactions of the type b†a†ba, d†a†da, b†d†aa, a†a†bd and b†b†bb, b†d†bd , d†d†dd in the r.h.s. of
Eqs. (172) and (173)and their H.c..

For example, the boson-boson interaction operator can be represented as

1

2
[Rnloc, Vnloc](bb→ bb)

= −1

4

∫
dp′2
Ep′2

∫
dp2

Ep2

∫
dp′1
Ep′1

∫
dp1

Ep1

δ(p′1 + p′2 − p1 − p2)g11(p
′
1, p1, k)g11(p

′
2, p2, k)

×
{

1

(p1 − p′1)2 − μ2
s
+ 1

(p2 − p′2)2 − μ2
s

}
b†

c(p
′
2)b

†
c(p
′
1)bc(p2)bc(p1) (175)

with k = p′1 − p1. Simultaneously, we get the pair-production interaction operator

1

2
[Rnloc, Vnloc](aa→ bb̄) = 1

2

∫
dp′

Ep′

∫
dp
Ep

∫
dk′

ωk′

∫
dk
ωk
δ(p′ + p− k′ − k)

×
(

1

Eq′
g11(p′, q ′, k′)g12(p, q ′, k)

Ep′ − Eq′ − ωk′
− 1

Eq′

g11(p, q ′−, k)g12(p′, q ′−, k′)
Ep′ + Eq′ − ωk′

+ 1

Eq

g12(p′, q ′, k′)g11(p, q ′, k)

Ep − Eq − ωk
− 1

Eq

g11(p′, q ′−, k′)g12(p, q ′−, k)

Ep + Eq − ωk

)

× b†
c(p
′)d†

c (p)ac(k
′)ac(k), (176)

where q′ = p′ − k′, q = p− k with the 4-momenta q ′ = (Eq′,q′) and q = (Eq,q).
In parallel, taking into account that in our model with Nbad = NB we find the respective contributions

to BI ,

1

2
[Rnloc,NB](bb→ bb)

= i

4

∫
dp′2
Ep′2

∫
dp2

Ep2

∫
dp′1
Ep′1

∫
dp1

Ep1

∂

∂p′1
δ(p′1 + p′2 − p1 − p2)

×g11(p
′
1, p1, k)g11(p

′
2, p2, k)

×
{

1

(p1 − p′1)2 − μ2
s
+ 1

(p2 − p′2)2 − μ2
s

}
b†

c(p
′
2)b

†
c(p
′
1)bc(p2)bc(p1) (177)

and
1

2
[Rnloc,NB](aa→ bb̄)

= − i

2

∫
dp′

Ep′

∫
dp
Ep

∫
dk′

ωk′

∫
dk
ωk

∂

∂p
δ(p+ p′ − k′ − k)

×
(

1

Eq′
g11(p′, q ′, k′)g12(p, q ′, k)

Ep′ − Eq′ − ωk′
− 1

Eq′

g11(p, q ′−, k)g12(p′, q ′−, k′)
Ep′ + Eq′ − ωk′

+ 1

Eq

g12(p′, q ′, k′)g11(p, q ′, k)

Ep − Eq − ωk
− 1

Eq

g11(p′, q ′−, k′)g12(p, q ′−, k)

Ep + Eq − ωk

)

× b†
c(p
′)d†

c (p)ac(k
′)ac(k). (178)

In Eqs. (175) and (177) we meet a covariant (Feynman-like) “propagator”

1

2

{
1

(p1 − p′1)2 − μ2
s
+ 1

(p2 − p′2)2 − μ2
s

}
, (179)

which on the energy shell

Ep1 + Ep1 = Ep′1 + Ep′2 (180)

is converted into the genuine Feynman propagator for the corresponding S matrix (cf. discussions in [29,44]).
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4.2 Mass Renormalization and Relativistic Invariance

We have seen how in the framework of the nonlocal meson-boson model one can build the 2→ 2 interactions
between the clothed mesons and bosons. They appear in a natural way from the commutator 1

2 [Rnloc, Vnloc]
as the operators b†a†ba, d†a†da, b†b†bb, b†d†bd , d†d†dd , b†d†aa, a†a†bd of the class [2.2]. Moreover,
this commutator is a spring of the good operators a†a, b†b and d†d of the class [1.1] together with the bad
operators aa and bd of the class [0.2] (henceforth, for brevity, we omit the subscript c) and their hermitian
conjugates a†a† and b†d† of the class [2.0]. These operators may be cancelled by the respective counterterms
from

Hnsc(α) = Ms(α)+ Mb(α) (181)

in the r.h.s. of Eq. (159). Let us show that such a cancellation gives rise to certain definitions of the mass
coefficients in Eqs. (135) and (136).

Indeed, with the help of the same technique as in [29] one can show

1

2
[Rnloc, Vnloc](a†a) = −1

2

∫
dk

ω2
k

∫
dp

Ep Ep−k
[ g2

21(p, q−, k−)
Ep + Ep−k + ωk

+ g2
12(p, q−, k)

Ep + Ep−k − ωk
]a†(k)a(k), (182)

where q = (Ep−k,p− k). In the same way we obtain

1

2
[Rnloc, Vnloc](aa) = −1

2

∫
dk

ω2
k

∫
dp

Ep Ep−k
g12(p, q−, k)g21(p, q−, k−)

×
[

1

Ep + Ep−k + ωk
+ 1

Ep + Ep−k − ωk

]
a(k)a(k−) (183)

or

1

2
[Rnloc, Vnloc](aa) =

∫
dk

ω2
k

∫
dp
Ep

g12(p, q−, k)g21(p, q−, k−)

×
[

1

μ2
s + 2p−k

+ 1

μ2
s − 2pk

]
a(k)a(k−). (184)

Recall that the last transition can be done by means of some trick considered in Appendix A from [29].
Furthermore, assuming that

M (2)
s (α)+ 1

2
[Rnloc, Vnloc]2mes = 0 (185)

with

[Rnloc, Vnloc]2mes

= [Rnloc, Vnloc](a†a)+ [Rnloc, Vnloc](aa)+ [Rnloc, Vnloc](a†a†),

we find

m(2)
1 (k) = 1

2

∫
dp

Ep Ep−k

[
g2

21(p, q−, k−)
Ep + Ep−k + ωk

+ g2
12(p, q−, k)

Ep + Ep−k − ωk

]
(186)

and

m(2)
2 (k) = −

∫
dp
Ep

g12(p, q−, k)g21(p, q−, k−)

×
[

1

μ2
s + 2p−k

+ 1

μ2
s − 2pk

]
. (187)
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The operators that conserve the boson (antiboson) number can be written as (details see in [24]):

1

2
[Rnloc, Vnloc](b†b) =

∫
dk
ωk

∫
dp

E2
p Ep−k

[
g2

11(p, q, k)

Ep − Ep−k − ωk

− g2
21(p, q−, k−)

Ep + Ep−k + ωk

]
b†(p)b(p), (188)

1

2
[Rnloc, Vnloc](d†d) =

∫
dk
ωk

∫
dp

E2
p Ep−k

[
g2

22(p, q, k)

Ep − Ep−k − ωk

− g2
21(p, q−, k−)

Ep + Ep−k + ωk

]
d†(p)d(p). (189)

One can show that from the condition

M (2)
b (α)+ 1

2
[Rnloc, Vnloc]2bos = 0, (190)

where

[Rnloc, Vnloc]2bos = [Rnloc, Vnloc](b†b)+ [Rnloc, Vnloc](b†d†)

+[Rnloc, Vnloc](db)+ [Rnloc, Vnloc](d†d)

it follows

m(2)
11 (p) = −

∫
dk

ωk Ep−k

[
g2

11(p, q, k)

Ep − Ep−k − ωk
− g2

21(p, q−, k−)
Ep + Ep−k + ωk

]
, (191)

m(2)
22 (p) = −

∫
dk

ωk Ep−k

[
g2

11(p, q, k)

Ep − Ep−k − ωk
− g2

21(p, q−, k−)
Ep + Ep−k + ωk

]
. (192)

Similarly one can obtain the non-diagonal coefficients

m(2)
12 (p) = m(2)

21 (p) = −
∫

dk
ωk Ep−k

g11(p, q, k)g21(p, q−, k−)

×
[

1

Ep − Ep−k − ωk
− 1

Ep + Ep−k + ωk

]
(193)

or

m(2)
12 (p) = m(2)

21 (p)

= −
∫

dk
ωk

g11(p, q, k)g21(p, q−, k−)
[

1

μ2
s − 2pk

+ 1

μ2
s + 2p−k

]

−
∫

dq
Eq

g11(p, q, u)g21(p, q−, u−)
(

1

2[μ2
b − pq] − μ2

s

+ 1

2[μ2
b + pq−] − μ2

s

)
, (194)

where u = (Ep−q,p− q).
The integrands in Eqs. (187) and (194) are contained the covariant denominators that have already occurred

in [24] and [29]. Thus the clothing procedure has allowed us to get analytical expressions for the interaction
operators between the clothed particles. Moreover, we have obtained some prescriptions when finding the
coefficients in the “mass renormalization” operators.

Unlike the momentum-independent mass shifts obtained in [24,29] and [14] these coefficients, as men-
tioned below Eq. (136), may be momentum dependent. But the most significant property of the integrals (186),
(187) and (191)–(193) is to take on finite values. In the context, those divergent integrals from [24,29], being
coincident with the Feynman one-loop ones for the pion and nucleon mass shifts, are of interest as a prelude
to the present exploration.

At last, one should emphasize that if one starts from expansion (72) with the second-order contribution
H (2)

nsc = 0, then the RI would be violated at the beginning because of the obvious discrepancy between Eqs. (74)
and (77).
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5 Discussion: Towards Working Formulae

We see that the way I in combination with the UCTs method makes our consideration more and more appropri-
ate for practical applications (in particular, as one has to work with the vertex cutoffs). It is well known that the
role of such cutoffs may be twofold, viz., first, as mentioned in Introduction to get rid of ultraviolet divergences
in the course of all intermediate calculations and, second, to introduce the particle finite-size effects. In this
context, we will proceed with the g-factors, which allow us, on the one hand, to do comparatively simple
calculations and, on the other hand, to preserve the basic premises. In addition, of interest are their properties
that could provide the momentum independence of the particle mass shifts.

5.1 The Leading Order Mass Shifts and Their Momentum Dependence

The formulae for the 2→ 2 interactions in Sect. 4.1 and for the mass coefficients in Sect. 4.2 become more
tractable if we assume that

gε′ε(p
′, p, k) = vε′ε([k + (−1)ε

′
p′ − (−1)ε p][k − (−1)ε

′
p′ + (−1)ε p]). (195)

One can verify the nonlocal model with such cutoffs possesses necessary properties (128)–(131). In terms of
the vε′ε functions we get

m(2)
1 (k) = 1

2

∫
dp

Ep Ep−k

[
v2

21(ω
2
k − (Ep + Ep−k)

2)

Ep + Ep−k + ωk

+ v
2
12(ω

2
k − (Ep + Ep−k)

2)

Ep + Ep−k − ωk

]
(196)

and

m(2)
2 (k) = −

∫
dp
Ep
v21(ω

2
k − (Ep + Ep−k)

2)v12(ω
2
k − (Ep + Ep−k)

2)

×
[

1

μ2
s + 2p−k

+ 1

μ2
s − 2pk

]
. (197)

Now, by handling the charge-independent cutoffs,

v12(x) = v21(x) = f (x), (198)

we obtain

m(2)
1 (k) = m(2)

2 (k)

=
∫

dp
Ep Ep−k

(Ep + Ep−k)
f 2(ω2

k − (Ep + Ep−k)
2)

(Ep + Ep−k)2 − ω2
k

= −
∫

dp
Ep

f 2(ω2
k − (Ep + Ep−k)

2)

[
1

μ2
s + 2p−k

+ 1

μ2
s − 2pk

]

= −
∫

dp
Ep

f 2(ω2
k − (Ep + Ep+k)

2)

μ2
s + 2pk

−
∫

dp
Ep

f 2(ω2
k − (Ep + Ep−k)

2)

μ2
s − 2pk

. (199)

The second form of these coefficients has been prompted by the trick [29] with

Ep + Ep−k

(Ep + Ep−k)2 − ω2
k

= −Ep−k

(
1

μ2
s − 2pk

+ 1

μ2
s + 2p−k

)

+ Ep − Ep−k

(Ep − Ep−k)2 − ω2
k
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and using the properties (129)–(131). In other words, the option (198) yields the momentum-independent
coefficients m(2)

1 (k) = m(2)
2 (k) ≡ m(2)

s . Indeed, along with the Lorentz invariant denominators the integrand
in the r.h.s. of (199) is contained function f (I ) whose argument

I (p,k) ≡ ω2
k − (Ep + Ep−k)

2 = μ2
s − 2μ2

b − 2Ep Ep−k − 2p(p− k)

does not change under the simultaneous transformation p ⇒ p′ = �p and p − k ⇒ �(p− k) on the mass
shells p2 = μ2

b and k2 = μ2
s . Similar combinations have been considered in [47], where the author, handling

the mass renormalization problem within noncovariant perturbation theory for a nonlocal extension of the
Wentzel model, gives some reasonings in favor of the momentum independence of such integrals as (199).
In particular, he has addressed earlier works [48,49] in which similar evaluations have been carried out by
means of a cumbersome procedure with so-calledw-transformation of integration variables. By invoking those
results, one can reduce the triple integral to the simple one,

m(2)
s = 8π

∞∫

0

t2dt√
t2 + μ2

b

f 2(μ2
s − 4t2 − 4μ2

b)

4t2 + 4μ2
b − μ2

s

. (200)

For our purposes it suffices to use alternate derivation of this result, given in Appendix C.
Furthermore, from Eqs. (191)–(193) it follows

m(2)
11 (p) = m(2)

22 (p)

= −
∫

dk
ωk Ep−k

[
v2

11(ω
2
k − (Ep − Ep−k)

2)

Ep − Ep−k − ωk
− v

2
21(ω

2
k − (Ep + Ep−k)

2)

Ep + Ep−k + ωk

]
, (201)

m(2)
12 (p) = m(2)

21 (p)

= −
∫

dk
ωk Ep−k

v11(ω
2
k − (Ep − Ep−k)

2)v21(ω
2
k − (Ep + Ep−k)

2)

×
[

1

Ep − Ep−k − ωk
− 1

Ep + Ep−k + ωk

]
. (202)

Evaluation of these coefficients is simplified once we put

v11(ω
2
k − (Ep − Ep−k)

2) = v21(ω
2
k − (Ep + Ep−k)

2)

= f (ω2
k − (Ep + Ep−k)

2). (203)

m(2)
b (p) ≡ m(2)

11 (p) = m(2)
21 (p) = −

∫
dk

ωk Ep−k
f 2(ω2

k − (Ep + Ep−k)
2)

×
[

1

Ep − Ep−k − ωk
− 1

Ep + Ep−k + ωk

]

= 2
∫

dk
ωk

f 2(ω2
k − (Ep + Ep−k)

2)

E2
p−k − (Ep − ωk)2

+ 2
∫

dk
Ep−k

f 2(ω2
k − (Ep + Ep−k)

2)

ω2
k − (Ep + Ep−k)2

(204)

or

m(2)
b (p) = C1(p)+ C2(p),

C1(p) = 2
∫

dk
ωk

f 2(ω2
k − (Ep + Ep−k)

2)

2pk − μ2
s

and

C2(p) = 2
∫

dq
Eq

f 2(μ2
s − 2μ2

b − 2pq)

μ2
s − 2μ2

b − 2pq
.
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Evidently, the second integral does not depend upon p so

C2(p) = C2(0) = 2
∫

dq
Eq

f 2(μ2
s − 2μ2

b − 2μb Eq)

μ2
s − 2μ2

b − 2μb Eq

= 8π

∞∫

0

q2dq

Eq

f 2(μ2
s − 2μ2

b − 2μb Eq)

μ2
s − 2μ2

b − 2μb Eq
. (205)

It is not the case for integral C1(p). Thus under the link (203) the boson “mass renormalization” coefficients
may be momentum dependent (cf. our comment below Eq. (136)).

At the point one should realize that within our approach, where we are trying to do without any fantom
such as the bare masses and coupling constants, the one-meson and one-boson operators Ms and Mb cannot
appear in the new form K (αc) of the initial Hamiltonian. Their main destination is to provide the RI as whole
(see the note below Eq. (148)) and we have seen how the second-order displacement D(2) by Eqs. (149)–(151)
and higher-order contributions to the boost operator can be evaluated in the CPR. It is important that the
integrals m(2)

s , C1(p) and C2(p) are convergent at proper choice of the cutoff function. Moreover, as shown in
Appendix C, the m(2)

s value considerably decreases when moving from the large� values (smeared cutoffs) to
smaller �’s, i.e., cutoffs more localized in momentum space. It is equivalent to an effective weakening of the
initial nonlocal interaction with its coupling constant g. A similar trend takes place for other “renormalization”
integrals C1(p) and C2(0) when the former changes very slowly with the p increase starting from p values
comparable to a fixed�. These results give us a spring of inspiration for future explorations of the convergence
of the recursive procedure proposed here.

Of course, the introduction of a unique cutoff factor f (x) simplifies the interpretation of the integrals
obtained in Sect. 4.1. In fact, under the conditions (198) and (203) we find, for example,

1

2
[Rnloc, Vnloc](aa→ bb̄) =

∫
dp′

Ep′

∫
dp
Ep

∫
dk
ωk

∫
dk′

ωk′
δ(p′ + p− k′ − k)

× f (ω2
k′ − (Ep′ + Ep′−k′)

2) f (ω2
k − (Ep + Ep−k)

2)

×
[

1

(p′ − k′)2 − μ2
b

+ 1

(p − k)2 − μ2
b

]
b†

c(p
′)d†

c (p)ac(k
′)ac(k). (206)

Again, we encounter the Feynman-like “propagator”, which on the energy shell is converted into the true
Feynman propagator for the corresponding S matrix. Moreover, it turns out that the commutator

[Vnloc(t, x′), Vnloc(t, x)] = 0

under the constraints (198) and (203) too (cf. Eq. (147)). Thus, we see that the correction D(2) is determined by

D(2) = D(2)con + D(2)ncon, (207)

D(2)con =
i

2
m(2)

s

∫
dk

ω2
k

(
∂a†(k)

∂k
a(k)− a†(k)

∂a(k)

∂k
)

+ i

2
C2(0)

∫
dp
E2

p

(
∂b†(p)

∂p
b(p)− b†(p)

∂b(p)

∂p
+ ∂d†(p)

∂p
d(p)− d†(p)

∂d(p)

∂p

)

+ i

2

∫
dp′

Ep′

∫
dp
Ep

(
Ep′Ep + p′p+ μ2

b

) (C1(p)

Ep
− C1(p′)

Ep′

)

× b†(p′)b(p)+ d†(p′)d(p)
Ep′ − Ep

∂

∂p
δ(p− p′) (208)
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and

D(2)ncon =
i

2
m(2)

s

∫
dk
ωk

k

ω3
k

(a†(k)a†(k−)− a(k)a(k−))

+ im(2)
s

∫
dk

ω2
k

(
∂a†(k)

∂k
a†(k−)− a(k−)

∂a(k)

∂k

)

+ i

2
C2(0)

∫
dp
Ep

p
E3

p
(b†(p)d†(p−)− b(p)d(p−))

+ iC2(0)
∫

dp
E2

p

(
∂b†(p)

∂p
d†(p−)− b†(p)

∂d†(p−)
∂p

− ∂b(p)

∂p
d(p−)+ b(p)

∂d(p−)
∂p

)

+ i
∫

dp′

Ep′

∫
dp
Ep

C1(p)
Ep′Ep + p′p+ μ2

b

Ep

× b†(p′)d†(p−)− b(p′)d(p−)
Ep′ + Ep

∂

∂p
δ(p− p′). (209)

Being compared with the free boosts by Eqs. (234) and (235) (of course, both in the CPR) the correction (207)
reduces to replacements of

1√
ωkωk′

−→ 1√
ωkωk′

(
1+ m(2)

s

ωkωk′

)

and

1√
Ep Ep′

−→ 1√
Ep Ep′

(
1+ C2(0)

Ep Ep′
+ 1

Ep′ − Ep

[
C1(p)

Ep
− C1(p′)

Ep′

])
,

respectively, in the integrands for the meson boost and the boson boost. It turns out that at moderate � val-
ues ∼1 GeV (typical of the theory of meson-nucleon interactions) in the cutoff function (266) the respective
numerical deviations from the free boosts can be small.

5.2 Deuteron Properties in the CPR

Besides, we would like to outline the basic elements of another our exploration that is in progress. It is the
case, where relying upon the available experience of relativistic calculations of the deuteron static moments in
[50–52] and the deuteron FFs (see reviews [53–55] and refs. therein) one has to deal with the matrix elements
〈P′,M ′|Jμ(0)|P = 0,M〉 (to be definite in the laboratory frame). Here the operator Jμ(0) is the Nöther
current density Jμ(x) at x = 0, sandwiched between the eigenstates of a “strong” field Hamiltonian H (cf.,
discussion in Sect. 5 of lecture [23]). In the CPR with H = K (αc) (Eq. (158)) and N = B(αc) (Eq. (160)) the
deuteron state |P = 0,M〉 (|P′ = q,M ′〉) in the rest (the frame moving with the velocity v = q/md ) meets
the eigenvalue equation

Pμ|P,M〉 = Pμd |P,M〉 (210)

with the three-momentum transfer q, four-momentum Pμd = (Ed ,P), Ed =
√

P2 + m2
d , md = m p+mn − εd

and the deuteron binding energy εd > 0.
We know that such observables as the charge, magnetic and quadrupole moments of the deuteron can be

expressed through the matrix elements in question (e.g., within the Bethe-Salpeter (BS) formalism [53–55]),
where, according to the original contribution [56], one introduces the corresponding covariant FFs. With the
aid of cumbersome numerical methods the latter have been evaluated in terms of the Mandelstam current
sandwiched between the deuteron BS amplitudes. Some results in the subfield one can find in [57,58].

Unlike this, following [23] and [59], we consider the expansion in the R-commutators

Jμ(0) = W Jμc (0)W
† = Jμc (0)+ [R, Jμc (0)] +

1

2
[R, [R, Jμc (0)]] + · · · , (211)
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where Jμc (0) is the initial current in which the bare operators {α} are replaced by the clothed ones {αc}.
Decomposition (211) involves one-body, two-body and more complicated interaction currents, if one uses the
terminology customary in the theory of meson exchange currents (MEC) [60]. Further, to the approximation

K I = K (N N → N N ) ∼ b†
c b†

c bcbc (212)

and

BI = B(N N → N N ) ∼ b†
c b†

c bcbc (213)

(see, respectively, (175) and (177)) the eigenvalue problem (210) becomes simpler so its solution acquires the
form

|P,M〉 =
∫

dp1

∫
dp2 DM ([P]; p1μ1;p2μ2)b

†
c(p1μ1)b

†
c(p2μ2)|�〉. (214)

In this connection, let us recall the relation

|q,M〉 = exp[iβB(αc)]|0,M〉 (215)

with β = βn, n = n/n and tanh β = v, that takes place owing to the property

eiβB Pμe−iβB = PνLμν (β), (216)

where L(β) is the matrix of the corresponding Lorentz transformation. Note also that the label M = (±1, 0)
denotes the eigenvalue of the third component of the total (field) angular-momentum operator in the deuteron
center-of-mass (details can be found in [22]). The c-coefficients DM in Eq. (214) are calculated by solving the
homogeneous Lippmann–Schwinger equation with the quasipotentials taken from [22] (see formulae (67)–(69)
therein). Numerical results can be obtained either using the angular-momentum decomposition (as in [22]) or
without it (as in [61,62]). In other words, we are able to do without a semirelativistic treatment, where only
lowest order relativistic contributions are included (see [63] and refs. therein).

In its turn, the operator (211) being between the clothed two-nucleon states contributes as

ηc Jμ(0)ηc = Jμone-body + Jμtwo-body, (217)

where the operator

Jμone-body =
∫

dp′dpFμp,n(p
′,p)b†

c(p)bc(p) (218)

with

Fμp,n(p
′,p)

= eū(p′)(F p,n
1 [(p′ − p)2]γ μ + iσμν(p′ − p)νF p,n

2 [(p′ − p)2])u(p) (219)

that describes the virtual photon interaction with the clothed proton (neutron). In Eqs. (217) ηc is the projection
operator on the subspace H2N ∈ H spanned on the two-clothed-nucleon states |2N 〉 = b†

c b†
c |�〉.

Its appearance follows from the observation, in which the primary Nöther current operator, being between
the physical (clothed) states |�N 〉 = b†

c |�〉, yields the usual on-mass-shell expression

〈�p,n(p′)|Jμ(0)|�p,n(p)〉 = Fμp,n(p
′,p)

in terms of the Dirac and Pauli nucleon FFs. Of course, all nucleon polarization labels are implied here together
with necessary summations over them in Eq. (218) and so on.

By keeping in the r.h.s. of Eq. (217) only the one-body contribution we arrive to certain off-energy-shell
extrapolation of the so-called relativistic impulse approximation (RIA) in the theory of e.m. interactions with
nuclei (bound systems). In a recent work by Dubovyk and Shebeko the deuteron magnetic and quadrupole
moments have been calculated, using the RIA, to be submitted to Few Body Systems, where the previous paper
[22] has been published.
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Of course, the RIA results should be corrected including more complex mechanisms of e-d scattering, that
are contained in

Jμtwo−body =
∫

dp′1dp′2dp1dp2 FμM EC (p
′
1,p′2;p1,p2)b

†
c(p
′
1)b

†
c(p
′
1)bc(p1)bc(p2). (220)

Analytic (approximate) expressions for the coefficients FμM EC stem from the R-commutators (beginning with
the third one) in the expansion (211), which, first, belong to the class [2.2], as in Eq. (218), and, second, depend
on even numbers of mesons involved. It requires a separate consideration aimed at finding a new family of
MEC, as we hope not only for the e-d scattering.

At last, one should note that, as before, we prefer to handle the explicitly gauge-independent (GI) representa-
tion of photonuclear reaction amplitudes with one-proton absorption or emittance [64,65]. This representation
is an extension of the Siegert theorem, in which, the amplitude of interest is expressed through the Fourier
transforms of electric (magnetic) field strengths and the generalized electric (magnetic) dipole moments of
hadronic system. It allows us to retain the GI in the course of inevitably approximate calculations.

6 Summary

We propose a constructive way of ensuring the RI in QFT with cutoffs in momentum space. In contrast to the
traditional approach, where the generators of� are determined as the Nöether integrals of the energy-momen-
tum tensor density, we do not utilize the Lagrangian formalism so fruitful in case of local field models. Our
purpose is to find these generators as elements of the Lie algebra of � starting from the total Hamiltonian
whose interaction density in the Dirac picture includes a Lorentz-scalar part Hsc(x). Respectively, the algebraic
aspect of the RI as a whole for the present exploration with the so-called instant form of relativistic dynamics
is of paramount importance.

In the context, using purely algebraic means the boost generators can be decomposed into the Belinfante
operator built of Hsc and the operator which accumulates the chain of recursive relations in the second and
higher orders in Hnsc. Thereby, it becomes clear that Poincaré commutations are not fulfilled if the Hamiltonian
does not contain some additional ingredients, which we call the mass renormalization terms, though beyond
local field models such a terminology looks rather conventional. We have shown how the method of UCTs
enables us to determine the corresponding operators for a given model. Moreover, it can be done using its
nonlocal extensions satisfying the requirements of special relativity and preserving certain continuity with
local QFTs.

We see that our approach is sufficiently flexible being applied not merely to local field models including
ones with derivative couplings and spin j ≥ 1. Its realization, shown here for the nonlocal extensions of
the well-known Yukawa-type couplings, gives us an encouraging impetus when constructing the interactions
between the clothed particles simultaneously in the Hamiltonian and the corresponding boost operator. In the
course of such a work that is under way (see Sect. 5.2) we are trying to understand to what extent the deuteron
quenching in flight affects the deuteron electromagnetic form factors. In our opinion, the present exploration
may be also helpful for a field-theoretical treatment of particle decays in flight.

The RI of the S-matrix, that follows from the RI as a whole, can be employed in future calculations, first, in
the Dirac picture owing to a unitary equivalence of the CPR to the BPR and, second, in the Heisenberg picture
after finding certain links between the in (out) states and the clothed-particle ones (see our talk in Durham
[45]). It is known that the latter is most appropriate for describing collisions with the bound systems. We are
ready to show our results in these directions somewhere else.

At last, we have tried to offer not only a fresh look at constructing the generators in question but also a
nonstandard renormalization procedure in relativistic quantum field theory. In this context, let us remind the pro-
phetic words by Dirac [46]: “I am inclined to suspect that renormalization theory is something that will not sur-
vive in the future, and the remarkable agreement between theory and experiment should be looked on as a fluke”.

Appendix A: Generators of the Poincaré Group in the BPR for Free Pion and Nucleon Fields

Replacing in the free densities Hπ (x) and H f erm(x) the fields and their conjugates by expansions (49)–(51)
we arrive to the operators of the no-interaction Hamiltonian

HF = Hπ + H f erm
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with

Hπ =
∫
ωka†(k)a(k)dk (221)

and

H f erm =
∫∑

Ep(b
†(pμ)b(pμ)+ d†(pμ)d(pμ))dp, (222)

the linear momentum P = PF = Pπ + P f erm with

Pπ =
∫

ka†(k)a(k)dk (223)

and

P f erm =
∫∑

p(b†(pμ)b(pμ)+ d†(pμ)d(pμ))dp, (224)

the angular momentum J = JF = Jπ + J f erm with

Jπ = i

2

∫
dkk ×

(
∂a†(k)
∂k

a(k)− a†(k)
∂a(k)
∂k

)
(225)

and J f erm = L f erm + S f erm , where

L f erm = i

2

∫∑
dpp×

(
∂b†(pμ)
∂p

b(pμ)− b†(pμ)
∂b(pμ)
∂p

+ ∂d†(pμ)
∂p

d(pμ)− d†(pμ)
∂d(pμ)
∂p

)
, (226)

S f erm = 1

2

∫∑
dpχ†(μ′)σχ(μ)(b†(pμ′)b(pμ)− d†(pμ′)d(pμ)), (227)

the boosts NF = Nπ + N f erm with

Nπ = i

2

∫
dkωk

(
∂a†(k)
∂k

a(k)− a†(k)
∂a(k)
∂k

)
(228)

and N f erm = Norb
f erm + Nspin

f erm , where

Norb
f erm =

i

2

∫∑
dpEp

(
∂b†(pμ)
∂p

b(pμ)− b†(pμ)
∂b(pμ)
∂p

+ ∂d†(pμ)
∂p

d(pμ)− d†(pμ)
∂d(pμ)
∂p

)
, (229)

Nspin
f erm = −

1

2

∫∑
dpp× χ

†(μ′)σχ(μ)
Ep + m

(
b†(pμ′)b(pμ)+ d†(pμ′)d(pμ)

)
. (230)

In these formulae ωk =
√

k2 + μ2
π (Ep =

√
p2 + m2) the pion (nucleon) energy and χ(μ) the Pauli spinor.

When deriving Eqs. (227) and (230) we have used the relations

u†(pμ′)∂u(pμ)
∂p

− ∂u†(pμ′)
∂p

u(pμ)

= v†(pμ′)∂v(pμ)
∂p

− ∂v
†(pμ′)
∂p

v(pμ) = i
χ†(μ′)σχ(μ)
m(Ep + m)

× p. (231)
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with the orthonormalization conditions

u†(pμ′)u(pμ) = v†(−pμ′)v(−pμ) = Ep

m
δμμ′,

u†(pμ′)v(−pμ) = v†(−pμ′)u(pμ) = 0.

such as in [39].
Strictly speaking the fundamental relations (9)–(11) should be verified for every field theory. In this con-

nection, let us check that

[
P j , Nl

F

]
= iδ jl HF . (232)

In fact, we find step by step

[
P j , Nl

F

]
= [P j

π , Nl
π ] + [P j

f erm, Nl
f erm],

[
P j
π , Nl

π

]
= −i

∂

∂u j

{
eiPπu Nl

πe−iPπu
}
|u=0

= 1

2

∂

∂u j

∫
dkωk

(
∂

∂kl
[eiuka†(k)]a(k)e−iuk − eiuka†(k)

∂

∂kl
[e−iuka(k)]

)
|u=0

= ∂

∂u j

{
i
∫
ωkdkula†(k)a(k)− iNl

π

}

u=0
= iδ jl Hπ ,

[
P j

f erm, Nl
f erm

]
=
[

P j
f erm, N orb,l

f erm

]

= − ∂

∂u j

∫∑
dpEp

(
∂

∂pl

[
eiupb†(pμ)

]
b(pμ)e−iup − eiupb†(pμ)

∂

∂pl

[
e−iupb(pμ)

]

+ b†(pμ)→ d†(pμ), b(pμ)→ d(pμ)
) |u=0

= ∂

∂u j

{
iul

∫∑
Epdp(b†(pμ)b(pμ)+ d†(pμ)d(pμ))− iNl

f erm

}

u=0

= iδ jl H f erm .

Analogously,

[HF ,NF ] = −i
d

dλ

{
ei HFλNF e−i HFλ

}
|λ=0 = iP. (233)

We also need the expression

Nmes = i

2

∫
dk′dka†(k′)a(k)

ω′kωk + k′k + μ2
s√

ω′kωk

∂

∂k
δ(k − k′), (234)

equivalent to (228) and the free boost

Nbos = i

2

∫
dp′dp(b†(p′)b(p)+ d†(p′)d(p))

E ′p Ep + p′p+ μ2
b√

E ′p Ep

∂

∂p
δ(p− p′), (235)

for the spinless charged bosons.



A Possible Way for Constructing Generators of the Poincaré Group in Quantum Field Theory 159

Appendix B: Evaluation of Commutator [Vπ N(x′), Vπ N(x)] with a Nonlocal π N Interaction

Let us rewrite the πN interaction density in the r.h.s of Eq. (47) as

Vps(x) ≡ Vloc(x) = ϕps(x) floc(x), (236)

floc(x) = ig
m

(2π)3

∫
dp′

Ep′

∫
dp
Ep
[B̄(p′), D̄(p′)]γ5

[
B(p)
D(p)

]
e−i(p′−p)x (237)

with notations

B(p) =
∑

μ

u(pμ)b(pμ),

D(p) =
∑

μ

v(p−μ)d†(p−μ)

and commutations

{Ba(p
′), B̄b(p)} = p0δ(p′ − p)(a|P+(p)|b), (238)

{Da(p
′), D̄b(p)} = p0δ(p′ − p)(a|P−(p−)|b), (239)

where a and b spinor indices and

P±(p) = p̂ ± m

2m

the standard projection operators.
Here we will consider a nonlocal extension of the Yukawa-type density (236) by introducing

Vnloc(x) = ϕps(x) fnloc(x), (240)

fnloc(x) = i
m

(2π)3

∫
dp′

Ep′

∫
dp
Ep

g(p′, p)[B̄(p′), D̄(p′)]γ5

[
B(p)
D(p)

]
e−i(p′−p)x (241)

with a real and permutably symmetric cutoff function g(p′, p). Henceforth, such an occurrence in Vnloc(x)
of the “coordinate” x and the subscript nloc does not contradict each other. The former originates from trans-
lational invariance (cf. the transition from Eq. (6) to Eq. (14)) while the latter allows us to work with the
interaction density not being constructed from fields (in our case ψ̄ and ψ) which are taken at one and the
same point. A similar nonlocal interaction one can find in [37] (see Eq. (4.45) therein). One more condition,

g(�p′,�p) = g(p′, p) (242)

allows for the operator Vnloc(x) to be the Lorentz scalar. Since

[Vnloc(x), Vnloc(y)] = ϕ(x)ϕ(y)[ fnloc(x), fnloc(y)],
the requirement in question

[Vnloc(x), Vnloc(y)] = 0 (243)

is equivalent to

[ fnloc(x), fnloc(y)] = 0. (244)

At this point, using that technique from Appendix A of [29] with the aid of the identities

= A{B,C}D − {A,C}B D − C{D, A}B + C A{D, B},
[AB,C D] = A[B,C]D + [A,C]DB + AC[B, D] + C[A, D]B. (245)

for four operators A, B, C and D, one can show that

[ fnloc(x), fnloc(y)]
= m

(2π)3

∫
dp′

Ep′

∫
dp
Ep

e−ip′x+ipy fnloc(x − y; p′, p)− H.c. (246)
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with

fnloc(x − y; p′, p) = − m

(2π)3

∫
dq
Eq

eiq(x−y)

×g(p′, q)g(p, q)[B̄(p′)+ D̄(p′)]γ5[P+(q+)+ P−(q−)]γ5[B(p)+ D(p)]
or

fnloc(x − y; p′, p) = g(x − y; p′, p)[B†(p′)+ D†(p′)][B(p)+ D(p)], (247)

where

g(x − y; p′, p) = 1

(2π)3

∫
dqeiq(x−y)g(p′, q)g(p, q). (248)

Putting g(p′, p) ≡ g that yields g(z; p′, p) = δ(z), we come back to the initial local model with its property

[ floc(x), floc(y)] = 0. (249)

In order to go out beyond the model one can regard the two options,

g(p′, p) = gexp

[
(p′ − p)2

2�2

]
= g(�)exp

[
− p′ p
�2

]
(250)

and

g(p′, p) = g
�2 − μ2

π

�2 − (p′ − p)2
. (251)

Here we will restrict ourselves to the first using the second for other applications. In the context, it is convenient
to deal with the invariants

I (±)(z; p′, p) =
∫

dq
Eq

e∓iqzg(p′, q)g(p, q) = I (±)(�z;�p′,�p). (252)

In case of the factor (250) we encounter the integrals

I (±)(x ′ − x; p′, p) = g2(�)

∫
dq
Eq

e∓iq(x ′−x)e−λuq , (253)

where u = p′ + p, λ = �−2 and g(�) = gexp(λm2). Thus, since I (−)∗ = I (+), our task is to evaluate

�(+)(x ′ − x + iλu;m) =
∫

dq
Eq

exp[i(x ′ − x + iλu)q]. (254)

But from �(+)(�z;m) = �(+)(z;m) it follows that

�(+)(x ′ − x + iλu;m) = �(+)(v + iλr;m), (255)

where the Lorentz transformation L = L(u) is such that Lu = (r0, 0)with r0 > 0. Recall that u2 = (p′+p)2 =
2m2 + 2p′ p > 0. In turn, v = L(x ′ − x).

Furthermore, it is well known (see, e.g., formula (3.961.1) in [66]) that

∞∫

0

e−β
√
γ 2+y2

sin ay
ydy√
γ 2 + y2

= ay√
γ 2 + a2

K1

(
γ

√
a2 + β2

)
,

[Reβ > 0, Reγ > 0, a > 0]
where K1(z) the modified Bessel function.
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Using the result we find

�(+)(v + iλr;m) =
∫

dq
Eq

e−Eq(λr0−iv0)eiqv

= 4π

∞∫

0

qdq√
q2 + m2

e−
√

q2+m2(λy0−iv0)
sin(q|v|)
|v|

= 4πm2 K1(z0)

z0
(256)

with z0 = m
√
λ2u2 − (x ′ − x)2 − 2iλv0

√
u2. In the case of interest x ′−x = (0, x−y) and v0 = L0

j (x−y) j =
u(x−y)√

u2
, so z0 = m

√
λ2u2 + (x − y)2 − 2iλu(x − y) = ς0 and

g(x − y; p′, p) = 4π im4λu0 K2(ς0)

ς2
0

. (257)

Here we have employed the matrix

Lμν (u) =
⎡

⎣
u0√
u2

u j√
u2

− ui√
u2

δi
j − ui u j

u2+√u2u0

⎤

⎦ .

Formula (257) suffices for the statement below (70).

Appendix C: Evaluation of Integral m(2)
s (k)

The alternative in question is prompted by Pauli and Rose [67] with their refined trick to be applied to

m(2)
s (k) =

∫
dp

Ep+ k
2
+ Ep− k

2

Ep+ k
2

Ep− k
2

f 2
(
ω2

k −
(

Ep+ k
2
+ Ep− k

2

)2
)

(
Ep+ k

2
+ Ep− k

2

)2 − ω2
k

. (258)

In order to go on let us introduce the new variables w, v and ϕ, where ϕ is the azimuthal angle around the
axis parallel to k, so

1

2

(
Ep+ k

2
+ Ep− k

2

)
= w, 1

2

(
Ep+ k

2
− Ep− k

2

)
= v. (259)

Using the corresponding Jacobian, we obtain

1

4

Ep+ k
2
+ Ep− k

2

Ep+ k
2

Ep− k
2

dp = w

k
dvdwdϕ. (260)

From (259) we get

1

2

(
E2

p+ k
2
+ E2

p− k
2

)
= w2 + v2 = p2 + k2

4
+ μ2

b, (261)

1

4

(
E2

p+ k
2
− E2

p− k
2

)
= wv = 1

2
pk cosϕ. (262)
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The limits of integration over the new variables are

0 ≤ ϕ ≤ 2π,

v− = −k

2

√√√√w2 − k2

4 − μ2
b

w2 − k2

4

≤ v ≤ v+ = k

2

√√√√w2 − k2

4 − μ2
b

w2 − k2

4

,

w0 ≡
√

k2

4
+ μ2

b ≤ w ≤ ∞. (263)

By integrating in (258) we arrive to

m(2)
s (k) = 4

∞∫

w0

dw

v+∫

v−

dv

2π∫

0

dϕ
1

k

w

4w2 − ω2
k

f 2(ω2
k − 4w2)

= 8π

∞∫

w0

√√√√w2 − k2

4 − μ2
b

w2 − k2

4

wdw

4w2 − ω2
k

f 2(ω2
k − 4w2)

= 8π

∞∫

μb

dε

√
ε2 − μ2

b

4ε2 − μ2
s

f 2(μ2
s − 4ε2)

= 8π

∞∫

0

t2dt√
t2 + μ2

b

f 2(μ2
s − 4t2 − 4μ2

b)

4t2 + 4μ2
b − μ2

s

(264)

that coincides with the formula (200). Using the popular form (251) we have the cutoff function

g12(p, q−, k) = g
�2 − μ2

s

�2 − (p − q−)2
(265)

that in combination with assumption (198) is equivalent to the relation

f (I ) = g
�2 − μ2

s

�2 + μ2
s − 4μ2

b − I
(266)

and gives the expression

m(2)
s = 2πg2 (�

2 − μ2
s )

2

�4

×
⎡

⎣ �2(4μ2
b − μ2

s )

(�2 − 4μ2
b + μ2

s )
2

⎛

⎝ �√
4μ2

b −�2
arctan

√
4μ2

b −�2

�
− �2

μs

√
4μ2

b − μ2
s

arctan
μs√

4μ2
b − μ2

s

⎞

⎠

+ �2

�2 − 4μ2
b + μ2

s

⎛

⎝ �(2μ2
b −�2)

(4μ2
b −�2)3/2

arctan

√
4μ2

b −�2

�
+1

2

�2

4μ2
b −�2

)]
, (267)
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if � < 2μb and

m(2)
s = 2πg2 (�

2 − μ2
s )

2

�4

×
⎡

⎣ �2(4μ2
b − μ2

s )

(�2 − 4μ2
b + μ2

s )
2

⎛

⎝ �

2
√
�2 − 4μ2

b

ln
�+

√
�2 − 4μ2

b

�−
√
�2 − 4μ2

b

− �2

μs

√
4μ2

b − μ2
s

arctan
μs√

4μ2
b − μ2

s

⎞

⎠

+ �2

�2 − 4μ2
b + μ2

s

⎛

⎝ �(�2 − 2μ2
b)

2(�2 − 4μ2
b)

3/2
ln
�+

√
�2 − 4μ2

b

�−
√
�2 − 4μ2

b

+1

2

�2

4μ2
b −�2

)]
, (268)

if � > 2μb.
By putting μs = μπ = 0.6994 f m−1 and μb = m = 4.7583 f m−1 we find the following sequence

m(2)
s 104/2πg2 = 1.853, 34.69, 109.84, 224.74, 335.05, . . .

at � = 1, 2, 3, 4, μb, . . .. All values in f m−1.
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