УДК 538.911

ДИФФЕРЕНЦИАЛЬНО-ТЕРМИЧЕСКИЙ И РЕНТГЕНОГРАФИЧЕСКИЙ АНАЛИЗ ХАЛЬКОГЕНИДОВ TIFeS, И TIFeSe,

© 2018 г. Э. Б. Аскеров^{1, 2,*}, Д. И. Исмаилов³, Р. Н. Мехдиева⁴,

С. Г. Джабаров^{1,3}, М. Н. Мирзаев², Э. М. Керимова³, Н. Т. Данг⁵

¹Объединенный институт ядерных исследований, 141980 Дубна,

Московская область, Россия

²Национальный ядерный центр, АZ-1143 Баку, Азербайджан

³Институт физики НАНА, АZ-1143 Баку, Азербайджан

⁴Институт радиационных проблем НАНА, AZ-1143 Баку, Азербайджан ⁵Institute of Research and Development, Duy Tan University, 550000 Da Nang, Viet Nam

*E-mail: elmar@jinr.ru

Поступила в редакцию 11.01.2018 г.

Методами рентгеновской дифракции, дифференциально-термического и термогравиметрического анализа исследованы тройные соединения составов TIFeS₂ и TIFeSe₂, обладающие магнитными свойствами. Определены их кристаллические структуры, и установлено, что в нормальных условиях они описываются моноклинной пространственной группой симметрии C2/m. Определены координаты атомов и межатомные расстояния. В результате дифференциально-термического и термогравиметрического анализа в температурном диапазоне 30–900 °C установлено, что в кристаллах TIFeS₂ по сравнению с TIFeSe₂ реализуются более сильные ковалентные связи. Наблюдаются эффекты, связанные с обменом энергии в исследуемых соединениях. Обсуждается физическая сущность наблюдаемых эффектов.

Ключевые слова: дифференциально-термический анализ, рентгенографический анализ, халькогенид.

DOI: 10.7868/S0207352818070090

ВВЕДЕНИЕ

В последнее время исследования слоистых и цепочечных полупроводников, входящих в общую группу химических соединений $A^3B^1C_2^6$, представляют большой научный интерес. Это связано с целым рядом разнообразных уникальных физических свойств, обнаруженных в данных материалах, и их сильной анизотропией. К таким материалам относятся тройные соединения составов TlFeS₂ и TlFeSe₂, входящие в общую группу полупроводников типа Tl*MeX*₂ (где *Me* – 3*d*-металл, *X* = S, Se, Te) [1–5].

В нормальных условиях кристаллы TIFeS₂ и TIFeSe₂ обладают моноклинной симметрией (пр. гр. *C*2/*m*), параметры элементарных ячеек: a = 11.646(1), b = 5.308(2), c = 6.831(3) Å, $\beta = 116.7^{\circ},$ Z = 4, V = 377.14(6) Å³ для TIFeS₂; a = 11.998(1),b = 5.498(9), c = 7.108(8) Å, $\beta = 118.2^{\circ}, Z = 4,$ V = 413.22(6) Å³ для TIFeSe₂ [6]. При низких температурах возникают антиферромагнитные фазы, температуры Нееля которых составляют 483 и 568 °C для TIFeS₂ и TIFeSe₂ соответственно. Рассчитанные упорядоченные магнитные моменты ионов Fe антиферромагнитной фазы равны 2.1(2) $\mu_{\rm B}$ ($\mu_{\rm B}$ – магнетон Бора) при $T = 285~^{\circ}{\rm C}$ для TlFeS₂ и 2.1(7) $\mu_{\rm B}$ при $T = 283~^{\circ}{\rm C}$ для TlFeSe₂ [7].

Эксперименты по нейтронной дифракции указывают, что магнитные моменты ионов Fe в низкотемпературной антиферромагнитной фазе в плоскости *ab* ориентированы антипараллельно оси *b*. Магнитные моменты меняют направления на противоположные в соседних плоскостях, перпендикулярных оси с кристаллической структуры. При таком типе антиферромагнитного упорядочения магнитная ячейка удваивается вдоль оси с кристаллической ячейки [7]. С понижением температуры от комнатной межатомные расстояния Fe-Fe резко уменьшаются и достигают в точке магнитного фазового перехода величины $l_{\rm Fe-Fe} \approx 2.501(3)$ Å для обоих соединений. При дальнейшем понижении температуры межатомные расстояния Fe-Fe уменьшаются слабо [6, 7].

Несмотря на то, что кристаллические, магнитные структуры и фазовые равновесия в системах Tl–Fe–S(Se) [8, 9], а также фазовые переходы в TlFeS₂(Se₂) при низких температурах [7] и высоких давлениях [10] изучены достаточно подробно, следует указать, однако, что какие-либо экспериментальные данные, полученные при высоких температурах, полностью отсутствуют. В настоящей работе с помощью дифференциально-термического анализа в диапазоне температур 30–650 °C проведены исследования термических явлений и фазовых переходов в TlFeS₂ и TlFeSe₂.

ОПИСАНИЕ ЭКСПЕРИМЕНТА

Поликристаллические образцы TlFeS₂ и TlFeSe₂ синтезированы сплавлением особо чистых компонентов (Tl, Fe, S или Se) в откачанных до 10^{-3} Па кварцевых ампулах с соблюдением стехиометрии составов. В процессе синтеза, начиная с 400-450 °C, происходила реакция между компонентами. Вращающуюся вокруг оси ампулу с веществом постепенно (в течение 7–8 ч) вводили в более горячую зону печи со скоростью 1.5–3.0 см/ч и после выдерживания при температуре 750 К в течение 1-2 ч медленно, в пределах 5-6 ч, охлаждали до комнатной температуры. Синтезированные таким образом соединения TlFeS₂ и TlFeSe₂ оказались однофазными. Более подробное описание режима их синтеза и выращивания монокристаллов приведено в [11].

Рентгеновские дифракционные данные получены на порошковом дифрактометре D8 Advance копании Bruker (Cu K_{α} -излучение, $\lambda = 1.5406$ Å). Режим работы трубки: 40 кB, 40 мА. Обработку данных осуществляли с помощью программы FullProf [12].

Дифференциально-термический анализ (ДТА) синтезированных TIFeS₂ и TIFeSe₂ (методы дифференциально-сканирующей калориметрии (ДСК) и термогравитометрии (ТГ)) проводили с использованием синхронного термического анализатора Perlin Elmer STA 6000 в температурном интервале 300–900 К, скорость нагрева 5 град/мин в атмосфере кислорода. Массы исследуемых образцов составляли 250– 300 мг. Эталоном служил оксид алюминия, прокаленный при 1000 °С в течение 24 ч [13].

ОБСУЖДЕНИЕ РЕЗУЛЬТАТОВ И ВЫВОДЫ

Рентгеновские дифракционные спектры TlFeS₂ и TlFeSe₂, полученные при комнатной температуре, представлены на рис. 1. Они соответствуют моноклинной пр. гр. симметрии *C2/m*. Параметры элементарной ячейки составляют a = 11.646(7), b = 5.308(8),c = 6.831(9) Å для TlFeS₂, а для TlFeSe₂ a = 11.998(4),b = 5.498(6), c = 7.108(2) Å. Рассчитанные на основе экспериментальных данных значения параметров элементарной ячейки представлены в таблице и хорошо согласуются с данными предыдущих исследований [6, 7, 10].

Рис. 1. Рентгеновские дифракционные спектры $TlFeSe_2$ (1) и $TlFeS_2$ (2), измеренные при комнатной температуре и обработанные методом Ритвельда. Показаны экспериментальные точки, вычисленные из профиля, разностные кривые. Вертикальными штрихами указаны рассчитанные положения структурных дифракционных пиков.

Параметры	Атом	x/a	y/b	<i>z,</i> /c
TlFeS ₂	T1	0.330(2)	0	0.361(1)
C2/m, Z = 4	Fe	0	0.254(1)	0
a = 11.646(1),	S1	0.041(1)	0	0.291(9)
b = 5.308(2),	S2	0.717(7)	0	0.120(7)
c = 6.831(3) Å	_	_	_	
$\beta = 116.7(4)^{\circ}$	_	_	_	_
TlFeSe ₂	T1	0.333(9)	0	0.367(2)
$C2/m$, $\tilde{Z}=4$	Fe	0	0.262(6)	0
a = 11.998(1),	Se1	0.039(1)	0	0.228(6)
b = 5.498(9),	Se2	0.685(8)	0	0.094(4)
c = 7.108(8) Å		_	_	
$\beta = 118.2(1)^{\circ}$	-	_	_	-

Кристаллохимические параметры соединений $TlFeS_2$ и $TlFeSe_2$ и координаты атомов в их структурах при комнатной температуре (Z – число формульных единиц)

Рис. 2. Термограмма кристалла состава TlFeS₂.

Результаты термического анализа соединений TIFeS₂ и TIFeSe₂ приведены на рис. 2. Экспериментально определенная масса TIFeS₂ была исследована в температурном интервале 20–650 °C. Как следует из термогравиметрического спектра (рис. 2), если на начальном этапе масса до 65 °C изменяется стабильно, то в интервале 65–190 °C наблюдается ее уменьшение, а в интервале температур 200–350 °C – увеличение. Свыше 350 °C процесс сопровождается стационарным уменьшением массы. Наблюдаемое в ТГ-спектре увеличение массы можно однозначно объяснить на основе эффекта, проявляющегося на кривой ДСК (рис. 3), – пик находится при 239.46 °C.

Обнаруженный на кривой ДСК эффект, для которого разность температур составляет 46 °C, а пик возникает при 239.46 °C (площадь под пиком

Рис. 3. Кривые ДСК (*1*) и ДТА (*2*) кристалла состава TIFeS₂.

1748.603 мДж, энтальпия 25.14 Дж/г), подтверждается полученной в результате дифференцирования кривой ДТА (рис. 3), которая свидетельствует о процессе обмена энергией. При температурах 460, 530 и 570 °C в спектре ДТА также наблюдаются определенные изменения энергии, и, возможно, эти эффекты связаны со сложными структурными изменениями, происходящими в исследуемых образцах. Установленная опытным путем масса кристалла TlFeSe₂ исследована в температурном интервале 20-650 °С (рис. 4). Изменение массы на кривой ТГ до 225 °С происходит стабильно. В интервале 225-445 °С масса увеличивается, а выше 445 °С она последовательно уменьшается. Наблюдаемое в спектре ТГ увеличение массы объясняется эффектом, наблюдаемым на кривой ДСК – выявляется пик при 307.80 °C. Поскольку в кристалле

Рис. 4. Термограмма кристалла состава TlFeSe₂.

TlFeS₂ эффект обнаруживается в области более высоких температур, то можно заключить, что в этих кристаллах реализуются более сильные ковалентные связи по сравнению с соединениями TlFeSe₂. Эффект, связанный с обменом энергией и обнаруженный на кривой ДСК (разность температур 33 °C, пик при 307.80 °C, площадь под пиком 991.209 мДж, энтальпия 15.94 Дж/г), так же как и в случае TlFeS₂, подтверждается кривой ДТА (рис. 5), полученной дифференцированием спектра во времени. При температуре 500 °C в спектре ДТА наблюдаются незначительные изменения значений энергии, связанные, по-видимому, со структурными изменениями, происходящими в результате внешних воздействий вообще и термической обработки в частности.

СПИСОК ЛИТЕРАТУРЫ

- 1. Kutoglu A. // Naturwissenchaften. B. 1974. B. 61. S. 125.
- Rosenberg M., Knulle A., Sabrowsky H., Platte C. // Phys. Chem. Sol. 1982. V. 43. P. 87.

Рис. 5. Кривые ДСК (*1*) и ДТА (*2*) кристалла состава TIFeS₂.

- 3. Велиев Р.Г., Садыхов Р.З., Асадов Ю.Г. // Кристаллография. 2008. Т. 53. С. 131.
- 4. Seidov Z., Krug von Nidda H.A., Hemberger J. et al. // Phys. Rev. B. 2001. V. 65. P. 014433.
- 5. Исмайылова Н.А., Оруджев Г.С., Джабаров С.Г. // ФТП. 2017. Т. 51. С. 497.
- 6. Аскеров Э.Б., Мададзада А.И., Бескровный А.И. и др. // Поверхность. Рентген., синхротр. и нейтрон. исслед.2014. № 12. С. 5.
- 7. Аскеров Э.Б., Dang N.T., Бескровный А.И. и др. // ФТП. 2015. Т. 49. С. 899.
- Аскеров Э.Б., Мададзада А.И., Исмаилов Д.И. и др. // ФТП. 2014. Т. 48. С. 1484.
- Аскеров Э.Б., Мададзада А.И., Исмаилов Д.И. и др. // ФТП. 2014. Т. 48. № 9. С. 1265.
- Asgerov E.B., Dang N.T., Ismayilov D.I. et al. // Mod. Phys. Lett. B. 2015. V. 29. P. 1550024.
- 11. Керимова Э.М. Кристаллофизика низкоразмерных халькогенидов. Баку: Елм, 2012. 708 с.
- Zlokazov V.B., Chernyshev V.V. // J. Appl. Crystallogr. 1992. V. 25. P. 447.
- 13. *Speyer R.F.* Thermal Analysis of Materials. New York: Marcel Dekker, 1994. 298 p.

Differential Thermal and X-Ray Analysis of Halcogenides TIFeS₂ and TIFeSe₂ E. B. Askerov, D. I. Ismailov, R. N. Mehdiyeva, S. H. Jabarov, M. N. Mirzayev, E. M. Kerimova, N. T. Dang

Triple compounds $TIFeS_2$ and $TIFeS_2$ compositions with magnetic properties have been studied by X-ray diffraction, differential-thermal, and thermogravimetric analyzes. Their crystal structures have been determined and it has been found that under normal conditions they are described by the monoclinic space group C2/m. The coordinates of atoms and interatomic distances are determined. As a result of differential thermal and thermogravimetric analysis in a temperature range 30-900 °C, covalent bonds are found to be stronger in $TIFeS_2$ crystals in comparison with $TIFeSe_2$. The effects associated with energy exchange in the compounds under study are observed. The physical nature of the observed effects is discussed.

Keywords: differential thermal analysis, X-ray analysis, chalcogenide.