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MONTE CARLO SIMULATION 
OF SILICON DETECTORS 
FOR THE ALICE EXPERIMENT AT LHC 

B.Batyunya, A.Zinchenko 

JINR Rapid Communications No.3[71]-95 

Some results of studies of silicon detector characteristics of the ALICE experiment are 
presented based on a «realistic» Monte Carlo simulation of the detector performance. The 
results obtained confirm general conclusions of the Letter of Intent. They also indicate some 
problems which have to be addressed in order to reach designed parameters. 

The investigation has been performed at the Laboratory .of High Energies, JINR. 

MoaTe· KapJio MOJleJIHpoaaaae 
KpeMHHeBitiX ,n:eTeKTopoa wur 3KcnepaMema AJIHCA aa LHC 

IJ.IJamJOH..R, A.3uH'leH1co 

llpe~CTaBJieHbl pe3yJJbTaTbl HCCJie,llOBaHHH xapaxTepHCTHK KpeMHHe biX ~eTeKTOpOB 3KC­
nepHMeHTa AJIHCA, OCHOBaHHble Ha «peaJJHCTH'IeCKOM» MoHre-Kapno MO~eJJHpOBaHHH HX 
pa6oTbl. llOJJY'IeHHble pe3YJJbTaTbl UO~TBepJI(JlaiOT OCHOBHble BbiBO~bl npoeKTa 3KCUepHMeHTa. 
0HH TaxlKe YKa3b1BaJOT Ha HeKOTOpble np06.neMbl, KOTOpble ~OJilKHbl 6b1Tb H3yqeHbl, 'ITOObl 
~OCTH'Ib 3aUJJaHHpoBaHHbiX napaMeTpOB. 

Pa6oTa BblnOJJHeHa B Jia6opaTopHH BbiCOKHx 3Heprnii OIUIH. 

1. Introduction 

In Ref. [1] we described a GEANT-based programme for a «realistic» simulation of 
silicon detectors of the ALICE experiment and presented some results demonstrating the 
programme performance. In this paper we show new results obtained during our continuing 
work on the ALICE silicon detector simulation. 

2. Silicon Tracker Geometry 

Description of the ALICE detector and simulation programme can be found in Refs. [1] 
and [2]. The silicon tracker includes five layers of silicon with the innermost layer being a 
pixel detector, next 3 layers being silicon drift detectors and the outermost one being a 
double-sided microstrip detector. The pixel detector has a pixel size of 75 ~m in r-1> and 
270 Jlm in z-direction, the silicon drift detector has the anode pitc of 250 Jlm (in r-1>) and 
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the drift direction along the beam line with the maximum drift distance of 35 mm, the 
double-sided microstrip detector has the strip pitch of I 00 Jl.m and a stereo angle of 
30 mrad. Charge collected on anodes of the silicon drift detector is digitized every 25 ns 
that corresponds to I 50 Jl.m in space for the 6 Jl.rnlnc drift velocity. 

The following results were obtained using a simple algorithm of cluster finding in 
silicon detectors, i.e., a cluster was defined as any continuous group of charges exceeding 
some threshold value. We took the threshold to be equal to 0 for the case without noise 
added and 4 x o . otherwise, where o . is a standard deviation of the gaussian noise 

DOISC DOISC 

distribution equal to 500 electrons for the pixel and SODs and I240e- for the microstrip. 

3 . Coordinate Res o lution of Silicon Drift Detectors 

It has been shown in [I] that effect of the electronic noise on coordinate resolution of 
silicon drift detectors is substantial at least when a coordinate is reconstructed as a simple 
center of gravity of a charge distributions in a cluster. It means that a good knowledge of 
noise conditions is essential for correct simulation. As expected in Ref. [3], the noise 
contribution to sequential time bins in SODs will be highly correlated. It should result in 
resolution improvement in z-direction and deterioration in r~-direction in our case. We 
checked that by generating the correlated noise according to the two-dimensional gaussian 
distribution : --" 

[ 
2 2 l I . qi + qi+I - 2Pqi qi+I 
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Fig.! . Distributions of «Xgen- xreco" (left~ and «Zgen- Zreco" (right) for silicon drift detectors with a 

correlated (full line) and uncorrelated (dashed line) noise 
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where q1, qi are noise char­

ges in the first and i-th bins, 
respectively; cr is a standard 
deviation of the noise distri­
bution and p is a correlation 
coefficient (we took it equal 
to 0.95 in our studies). The 
results obtained are shown in 
Fig.l, where differences of 
generated and reconstructed 
coordinates in azimuthal 
(x - x ) are shown. 

gen reco' 
These distributions were pro­
duced for muons with mo­
menta of 6 + 10 GeV/c ran­
domly distributed in angular 
intervals of - 180° + 180° in 
q, and 85° + 95° in 9. As can 
be seen, the noise correlation 
changes the resolution in ex­
pected direction. 

Figure 2 shows coordi­
nate resolution of the SDDs 
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Fig.2. Coordinate resolution of the SDDs with a correlated noise as 
a function of the drift distance: white circles - 7"-$-direction, black 
circles - drift direction 

as a function of the drift distance for the case with a correlated noise. The shape of the 
dependence can be easily understood if one considers the number of anode pads or F ADC 
bins which collect the charge released by a track. The resolution for long drift distances can 
be possibly improved using more sophisticated methods of coordinate reconstruction [4] . 

4 . dEl d.x-Measurements in Silicon Detectors 

Measurements of energy losses in silicon detectors can contribute to particle identi­
fication in the non-relativistic region. Moreover, for low-momentum tracks which do not 
reach the outer detectors the silicon tracker will be an independent particle spectrometer. Its 
dEl d.x-resolution is discussed below. (We considred the pixel detector as a digital device 
and did not include it in dEl d.x analysis). 

Figure 3 shows distributions of ionization losses in the silicon detectors for muons with 
momenta of 5 GeV/c and normal angle of incidence without noise added. The results 
obtained are very close to those in Lol [2] and confirm estimates that dEl d.x-measurements 
in the silicon tracker will be able to provide sufficient separation in the regions p < 
< 140 MeV/c (eht), p < 520 MeV/c (w K) and p < 1 GeV/c (K/ p), where «sufficient» 
means rejection factor of 100 at 95% efficiency. However, the electronics ' noise can make 
the dEl d.x-resolution worse as shown in Fig.4 for the SDDs and microstrip. One can see 
that the SDD response is affected significantly due to the fact that some part of the collected 
charge does not exceed the threshold and the fraction of the lost charge is not constant for 
all signals. 
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Fig.3. Energy ,loss distributions in silicon detectors, normalized to 1 at the most probable value. The 
parameters of a gaussian fit (full lines) around the most probable value are shown in the plots. a) Single 
detector response to minimum ionizing particle. b-d) Truncated mean using the m lowest of n measure­
ments (b: one of two, c: O!le of three, d: t~o of four) 
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One can try to restore the SDD resolution by introducing corrections. It looks reason­
able to assume that the fraction of the lost charge is larger for small signals and long drift 
distances as can be seen in Fig.S where a ratio of signals with noise added to those without 
noise (E IE ) is shown as a function of the signal (E ' and the drift distance (z '· reco gen reco' reco' 

We combined these functions into one (Fig.6) and used it to correct the detector response. 
Figure 7 shows that this procedure works and helps to restore the dEl dx-resolution in the 
SDDs (at least, partially). After the correction we obtain the rejection factor of 100 at the 
following efficiencies; 94% (e/ 1t and 1tl K) and 82% (K./ p), whereas without the correction 
results are significantly worse: 81%, 83% and 65%, respectively. 
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In conclusion it should be 
noted that this correction proce­
dure might be useful also for 
gas drift chambers. 

Fig. 7. Distribution of ionization los­
ses in the SODs for 5 Ge V /c muons 
with normal angle of incidence, nor­
malized to I at the most probable 
value: solid line - without noise 
added, dashed line - with noise 
before correction, dotted line - after 
correction 

In order to study the silicon tracker capabilities in a multitrack environment we simu­
lated one event of Pb-Pb central collisions with energy of 6.3 TeV/nucleon and charged 
particle density dN/ dy = 5000 at y = 0 using the HIJING-package [5]. Figure 8 shows lego 
plots of what we can expect to see from the SDDs in the experiment. 

Table I shows a distribution of the number of primary charged tracks with 
. 9 = 50° + 90° and momenta greater than 30 MeV/c producing a single cluster. Table 2 is 

similar to 1 except that all secondary charged tracks produced in the silicon tracker and 
beam pipe are taken into account. Table 3 is the same as 2 in configuration with additional 
passive material (support structure "and cooling system) included as described in [6]. 

From a comparison of the tables we can see that the probability for signals from several 
tracks to overlap is low enough and extra material does not cause very serious problems 
from the point of view of particle interactions. 

Another possible problem is a «ghost» activity in double-sided microstrip detectors 
with stereo angle. If the distance in ,...._direction between two tracks traversing a detector 
is smaller than some value (1.5 mm in our case), then fake («ghost») hits appear. We found 
the average number. of «ghost» hits per a real one to be equal to 0.18. This value is not 
significant and can be further reduced using a correlation of signals from two sides of the 
micros trip detector [7]. 

Thus, the current sil icon tracker design seems to be adequate for the expected expe­
rimental conditions from the point of view of its granularity. 

This can be further confirmed by the results on coordinate resolution. Distribtuions of 
generated and reconstructed coordinates for all charged tracks with momenta > 30 MeV/c 
are shown in Fig.9. The results shown are consistent with (and close to) the ones for single 
tracks [1] if the noise correlation in the SODs (see section 3) and lower average 9-angle 



Batyunya B., Zinchenko A. Monte Carlo Simulation 

EVENT 1 DET. 2 IPREC. 12 
NOVER. 1 NCL. 13 MOM .. 2159000E.Q2 

0 

60 
58 

58 

~ 54
52 

50 
z, mm 48 

EVENT 1 DET. 3 

46 

NOVER. 5 NCL. 1 MOM .. 1986990 

2250 

2000 
1750 

1500 

1250 

1000 

750 

500 

250 

0 

IPREC. 228 

A 
L 

I 

c 
E 

rep , mm 

A 

L 

I 

c 
E 

Fig.8. Lego plot of the silicon drift detector response (SDD # I) to 
tracks with 9 "" 70° (top); plot showing a cluster produced by 6 
close tracks (bottom) 

11 



12 Batyunya B., Zinchenko A. Monte Carlo Simulation 

Table 1. Number of primary charged tracks with 8 = 50" + 90" forming a cluster 

Tracks per cluster 
Detector Tracksnayer 

2 3 >3 mean 

pixel 3711 41 - - 1.011 3793 

SOD-I 3594 80 2 - 1.023 3760 

SDD-2 3654 35 - - 1.009 3724 

SDD-3 3623 8 - - 1.002 3639 

microstrip 3437 86 5 - 1.027 3624 

Table 2. The same as in Table 1 for all charged tracks 

Tracks per cluster 
Detector Tracksnayer 

I 2 3 4 5 6 >6 mean 

pixel 3815 54 I 2 I I - 1.018 3945 

SOD-I 3736 98 3 - - - - 1.027 3941 

SDD-2 3854 46 I I I - I 1.016 3965 

SDD-3 3937 18 2 I - - I 1.008 3990 

microstrip 3767 .119 5 - - 2 - 1.036 4032 

Table 3. The same as in Table 2 in configuration with passive material 

Tracks per cluster 
Detector Tracksnayer 

I 2 3 4 5 6 >6 mean 

pixel 3800 52 2 2 I - - 1.017 3923 

SDD-1 3748 101 5 - - - - 1.029 3965 

SDD-2 3867 58 2 I 2 - 2 1.025 4029 

SDD-3 4006 27 - I - - - 1.007 4064 

microstrip 3845 116 6 I - - • 2 1.037 4118 
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Fig.9. Distributions of the difference of generated and reconstructed coordi ates: upper - row-pixel, 
middle - SDDs, lower - microstrip; left column - ~coordinate, right - z-coordinate 

(which results in better z-coordinate resolution for the pixel detector) are taken into account. 
The average cluster size values are shown in Table 4. They are s mewhat larger than the 
ones for single tracks. 
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Table 4. Average cluster size values for the silicon detectors 

Detector 

pixel 

SOD 

microstrip 

6. Conclusion 

r-+-coordinate 

1.3 (pixels) 

2.0 (anode pads) 

1.3 (strips) 

• 

Cluster size 

z-coordinate 

I. 4 (pixels) 

3.0 (FADC bins) 

The results of the «realistic,. simulation of the ALICE silicon tracker performance 
presented here and in Ref. [1] confirm, in general, conclusions of the Loi [2]. However, 
they also indicate some problems which have to be addressed in order to reach designed 
parameters. 
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A STUDY OF SINGLE TAGGED MULTIHADRONIC 

rt EVENTS AT AN AVERAGE Q 2 OF 90 GeV2 

B.Batyunya, ].Bjarne 1
, F.Kapusta2

, V.Pozdnyakov, I.Tyapkin, N.Zimin 

A selection of multihadronic two-photon events has been performed in the single tagged 

mode using the forward electromagnetic calorimeter. The 60.6 pb-l integrated luminosity data 
was compared to a two-component model prediction: a Quark Parton Model (QPM) describing 
the point-like photon-quark coupling and a Generalized Vector meson Dominance Model 
(GVDM) for the hadron-like part. The agreement betweeq the data and ~e simulation is 

satisfactory to measure the photon structure function Fl(x, Q 2) and to check a QCD prediction 

on the Q 2 evolution of the photon structure function. 
The investigation has been performed at the Laboratory of High Ener ies, JINR. 

H1yqeHHe Me'leHhiX MYJihTH~poHHhiX yy"'-co6J.ITHH 

npu (Q 2) :: 90 r3B2 

IJ.IJamJOH.R u op. 
MyJibTHa.ztpDHHhle .O:Byx!fx>TOHHble C06biTHJI 6biJIH oro6paHbl B MO){e O){HHO'IHOro Me'leHHJI 

npH HCnOJib30BaHHH nepe){HerO 3JleKTpoManlHTHOro KaJIOpHMeTpa. 3KcnepHMeHTaJibHble ){aH­

Hble, COOTBeTCTBYIOIUHe HHTerpaJibHOH CBeTHMOCTH 60.6 n6-l, CpaBHHBaiOTCll C npe.O:CKa­
JaHHJIMH .O:ByxKOMUOHeHTHOH MO){eJIH - KBapK-napTOHHOH MO){eJIH H o6o6IUeHHOH MO){eJIH 
BeKTOpHOH ){OMHHaHTHOCTH ,ll1lll OUHCaHHJI, COOTBeTCTBeHHO, TO'Ie'IHOnO){OOHOro H a.ztpoHOUO­
){OOHOro npoueccos pacmenneHHJI !fx>ToHa. nOJIY'IeHo y.o:oBJieTBOpHTeJibHoe cornacue npe.o:cKa­
JaHHJI MO.O:eJIH C 3KCnepHMeHTaJibHbiMH ){aHHbiMH ,ll1lll UOCJie.o:yiOIUero H3 epeHHJI CTpYKTYPHOH 

IPYHKliHH !jJoroHa H nposepKH npe.o:cKaJaHHii KXJJ; o Q ~BOJIIOQHH CTpYKTYPHOii IPYHKliHH. 
Pa6oTa BbinOJIHeHa B Jia6opaTopHH BbiCOKHX 3Hepmii OHSIH. 

1. Introduction 

In the reaction e + e- ~ e +e-x, where X is a multihadronic system produced by the 
collision of two virtual photons coming from the beam particles, one of the scattered lep­
tons can be detected. Its energy Eta and scattering angle eta can be measured (figure 1), 

g g . 

1Dept. of Physics, University of Lund, Sweden 
2LPNHE, IN2P3-CNRS and Universities Paris VI and VII, France 
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electron 

. 2 (j = -ql 

p2 = -q~ 

eunta Eunta •••••••••••• 1&1 ••••••••••• !8 .•...••.• 
positron 

Fig. I 

thus giving the virtual photon squared mass through -Q 2 = -4Etalb sin2(918/2), where 

Eb is the beam energy. In these «single tag,. events the other photon can be required to be 

almost on-shell and the whole process is viewed as deep inelastic scattering of an electron 

· off a quasi-real photon with a squared mass -P 2 = 0. 

The corresponding. cross section. reads: 

with 

do 41ta2E 
dEtagdcos (9tag) = Q4y tag [(1 + (l-y)

2
) FJ(x, Q

2
)- lFL(x, Q2)] 

y = 1 - Eta/ Eb cos2(91a/2), 

2 
x=_f;L_ . 

Q2+W2 
Yr 

(1) 

F2(x, Q 2) and F L (x, Q 2) structure functions are defined in terms of cross sections for 

photons with different helicities (for details see [ 1 ]). W Yr is the invariant mass of produced 

hadron system. 
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Only a few previous experiments have studied the photon structure function Fi_ at Q 2 

greater than 50 GeV2 [2,3,4]. Using the DELPHI detector a new measurement of Fi_ can be 

obtained. The detailed description of the detector can be found lsewhere [5] . Experi­
mentally, a scattered lepton can be tagged in the Forward ElectroMagnetic Calorimeter 

(FEMC) at relatively large angles (10° :S etag :S 36.5°). Using estimates for Fi_ and FL in the 

Quark Parton Model [1], and taking into account that ( y) = 0. 15 under experimental 
conditions, it was found that the cross-section of the process is saturated by the structure 

function F J. only. 

The theoretical background of the photon structure function c n be found elsewhere 
[6,7]. Section 2 describes the data selection, while the two-component model used here is 
described in section 3. The background subtraction is discussed in section 4. Finally, in 
section 5 are the results and a comparison with a two-component model presented. 

2. Event Selection 

Since there is about two radiation lengths of materia in fro t of FEMC a specific 
algorithm was used to determine the tagged particle energy. The largest cluster in each 
FEMC arm was found. Smaller clusters, but with energies greater than 0.5 GeV, were then 
added if their distances to the largest cluster were smaller than 30 em in the R<p plane. The 

values were found based on 

e+e- events detected in FEMC. 
We will call this final cluster a 
«summed cluster». The kinema­
tic characteristics of the summed 
cluster are ·thus determined by 
the summed clusters barycenter, 
where a weight of each cluster 
component was proportional to its 
energy. The comparison of the 
distribution for the distance for 
the data and the simulation 
described below is shown on 
figure 2. 

Events were accepted if there 
was a summed cluster (tagged 
cluster) with energy greater than 
30 GeV in one FEMC arm and 
no summed cluster with energy 
greater than 15 Ge V in the other 
arm. 

The following selection cri-

teria were used: 

::::: 
§ 140 

f 120 
~ 
~ 

100 

80 

60 

40 

20 ~ 
~ 
-~ 0 o~~10~~2~0~~3~0~~4~0~~50~~6+.0~~~~0~~80 

distance (em) 

Fig.2 
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• At least 3 charged tracks having momentum greater than 0.4 GeV and polar angles 
9 between 20° and 160° were required. The relative error on the momentum had to 
be less than I 00%, while the impact parameter had to be smaller than 4 em in Rep 
and 10 em in z; 

• Neutral particles were required to deposit at least 1.0 GeV in the barrel 
electromagnetic calorimeter High-density Projection Chamber (HPC) or 0.5 GeV in 
FEMC; 

• To avoid the region of the two-photon resonance production and problems with the 
Monte Carlo fragmentation reliability, the invariant mass of the system (excluding 
tagged cluster) was required to be greater than 2.0 GeV; 

• The thrust (excluding the tagged cluster) was required to be smaller than 0.99 in 

order to reject photon conversion events as well as contaminations from 't+'t~ pairs. 
After the preselection there are 367, 1166 and 1087 events for the 1991, 1992 and 1993 
runs, respectively . It was checked that there was no essential disagreement between the 
different year data. The data was united into one sample. Since the threshold for trigger 
yy in FEMC is 25 GeV, the requirement of the large energy cluster in FEMC makes us sure 
that the efficiency to trigger events is close to 100%. 

3. Monte Carlo Simulation 

A two-component model was used for the yy event simulation. QPM describes a 
perturbative term of the process where a photon splits jnto a quark pair (the point-like 
term). The non-perturbative part describing a bound state in the photon quark coupling (the 
hadron-like term) was introduced through GVDM [8]. The GVDM multihadronic final 
system was generated as a qq system according to a distribution of the transverse 

momentum of the quaik in the yy c~nter-of-mass system quark (dcr/ dp~= exp (-5p~)). The 

TWOGAM yy event generator [9] was used with default parameters, while the JET SET 7.3 
string fragmentation scheme was used for the fragmentation of the produced quarks. 

2 . ' 2 
Measurements at PEP and PETRA have shown that for Q values greater than 20 Ge V 

the point-like coupling part dominates the cross section of the yy* process. The following 
table gives the cross sections cr

101 
when one of the scattered leptons is within the angular 

range of FEMC. The ·cross section crexpect is after detector simulation and selection proce­

dure introduced above. The large decrease of the cross section is due to the cuts applied to 
the hadron system. 

cross section in pb GVDM QPM 

a,"' 9.4 12.6 

0 expccl 0.5 1.5 
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4. Background Rejection 

The expected number of two-photon events (around I 00) is small compared with 

powerful z0 background. To determine criteria in order to extract yy events, one needs to 

make sure that the data and z0 Monte Carlo simulation are in agreement. Around 900000 

z 0 simulated hadronic events (:: 30pb-1
) were processed taking i to account the selection 

criteria. Also Monte Carlo simulation of other sources of a backgro nd was considered. The 

contribution of e + e- events in the sample was evaluated to be around 11±5 .5 events, 

z 0 ~ 't+'t- gives 6.3±1.8 events, yy* ~ 't+'t- gives 8±3 events. Figures 3(a,b) show energy 
and polar angle distributions for the tagged cluster. A charged multiplicity and invariant 
mass calculated using charged and neutral component distributions of hadron system are 
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Fig.3. The comparison of the distributions for the data (bars) and Monte Carlo simulation 
(histograms): tagged cluster energy (a); tagged cluster polar angle (b); charged multiplicity in the 
event (c); invariant mass of the hadron system calculated using charged particles and neutrals 
measured in the electromagnetic calorimeters (d) 
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shown in figure 3(c,d), respectively. All distributions are compared to the z0 simulated 
events together with yy simulation. The agreement is reasonable to choose for criteria to 
extract two-photon events based on Monte Carlo. 

Let us introduced two dimensionless variables: Normalized Longitudinal Momentum 
Balance 

""' ; hadron pmg+ ~ p; 
z 0 

I 
NIMB = sign (p':") Ebcam 

and Normalized Transverse Momentum Balance 

- ·-1 
~ 0.8 
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Fig.4. The correlation plots between NLMB and NTMB for the data (a), z0 (b) and rf (c) Monte 
Carlo simulation 
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II p + ~ pi, hadron II 
T, tag £..J T 

NTMB = _ ___ ...:..i ____ _ 

Ebearn 
(3) 

For the events with a few lost particles both the first variable and the second one express 
the fact that the longitudinal and transverse momentum are balanced. Besides from that at 
least one scattered lepton (most probable with a small transverse momentum) is undetected 
in two-photon single tagged mode. The main consequence is an expected unbalance in 
longitudinal direction for two-photon events. 

Figures 4(a-c) show the NLMB vs NTMB for the data, z 0 and two-photon Monte 

Carlo, respectively . It is seen that the main part of z 0 backgroun is concentrated below 
0.6 NLMB. The two-dimensional cut was used: 

• NTMB :::;; 0.2 and the domain above the line connecting the point (0.6, 0.0) and 
(0.85, 0.2) was rejected (solid line in figures 4 ). 

To suppress the remaining background the following cuts were added: 

• the sum of charged particle momentum in the event was lower than 20 GeV; 

• the polar angle of the tagged cluster was below 17 degree. Figure 3b shows that the 

polar angle distribution for a tagged cluster for z0 events has a uniform behaviour. 
Besides from that two-photon events are peaked at the sm II polar angle domain. 
The upper limit of the polar angle domain for the tagged cluster allows to remove 

many Z 0 events saving most part of yy events; 

• there is no particle detected in the luminosity monitor [5] with the energy greater 
than 20 GeV («antitagging condition»). 

After applying the cuts above we are left with 123 events with the background from z0 of 
9.4±3 .9 events. The other sources of a background like 't pair production (both in two­
photon and annihilation reactions), Bhabha events and beam-gas interactions were estimated 
as negligible. 

The main features of a single tagged event can be seen on the R<p and Rz projections 
(figure 5) for one selected event. The track detectors and electromagnetic calorimeters are 
drawn. The showers in calorimeters are drawn by boxes. The solid lines show reconstructed 
charged particles, the dashed show neutrals . It is seen a separate cl ster in FEMC produced 
due to a shower before FEMC. 

The features described below are consequence of the fact that both an energy and a 
polar angle of emitted photons are peaked at small values. Thus most probable that 
produced quarks (hadrons) are boosted in direction z of a target particle if its energy is 
small compared to the beam energy (the normalized longitudinal momentum balance 
NLMB introduced above is the quantitative description of such fea ture). The reconstructed 
energy of the tagged electron was 37.4 GeV for the selected event. It is seen on the Rz 
projection that the main part of produced hadrons move in positive z direction as the tagged 
electron. On the R<p projection one can see that the produced hadro s move in the direction 
opposite to the tagged particle, since a polar angle of the unta ged scattered lepton is 
peaked at small values. 
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5. Result and Conclusion 

Two photon events tagged in FEMC can be selected with less than 10% background. 
They are in qualitative agreement with the sum of two models: QPM and GVDM describing 
the point-like and bound state behaviours of the photon to quark coupling. Figures 6(a-d) 

show the charged invariant, multiplicity mass, Q 2 and x distributions respectively for the 
data compared to QPM plus GVDM Monte Carlo predictions. 

The squared mass of the virtual photon obtained from the measurement of the energy 

and the polar angle of the scattered lepton in FEMC varied from 40 GeV2 to 200 GeV2 with 

an average of 90 GeV2
• 
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Theory predicts specific features for the behaviour of F J<x. Q 2). The calculations have 

shown that the photon structure function increases with x. The Q 2 dependence of FJ in the 

restricted x domain was found to be proportional to In (Q 2) [ 1]. The test of these QCD 

predictions should proceed through FJ unfolding [10] to take into account the effect of 

limited acceptance and finite resolution of the detector. 
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IN ATMOSPHERIC DEPOSITION MONITORING 
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Experience in the use of epithermal neutron activation analysis (ENAA) in the monitoring 
atmospheric deposition by means of moss, lichens and pine needles is s mmarized. It is shown 
that 45 elements (Mg, K, Ca, AI, Cl, Sc, V, Cr, Mn, Fe, Co, Ni (using (n, p)-reaction), Zn, 
Cu, As, Se, Br, Rb, Sr, Zr, Mo, Ag, Sn, Sb, I, Cs, Ba, La, Ce, Nd, Sm, Eu, Gd, Tb, Tm, Yb, 
Lu, Hf, Ta, W, Au, Th and U, as well as Ir and Re in pine needles in the presence of 
anthropogenic pollution by the nickel smelter ·complex) are reliably determined. Examples of 
the use of lichens, moss and pine needles as biomonitors of atmospheric deposition in Franz 
Josef Land, the Kola Peninsula and in the Tver region are given. 

The investigation has been performed at the Frank Laboratory of Neutron Physics, JINR. 

3nHTeiiJIOBOH HeiiTpOHHbiH 8KTHB8l{HOHHbiH 8H8JIH3 MXOB, 

JIHW8HHHKOB H XBOH COCHbl 

B MOHHTOpHHre 8TMOCc}JepHbiX BbiD8J).eHHH 

B.M.Hll3apo8 u op. 
B HaCTollweit pa6oTe o6o6waeTCll onLIT ::mHTe!Uiosoro Heit-rpoH oro aKTHBaUHOHHoro 

ami.JIH3a (3HAA) 6HOMOHHTOpOB (MOX, JIHillaHHHKH, XBOll COCHbl}, HCnOJJL3yeMbiX )IJUI MOHH­
TOpHHra aTMOC!j>epHbiX Bbin3,LieHHH. noKa3aHO, 'ITO JTHM MeTOAOM MOI)'T 6h1Tb AOCTOBepHO 
onpeneneHLI 45 MeMeHTOB (Mg. K, Ca, AI, Cl, Sc, V, Cr, Mn, Fe, Co, Ni (HcnonL3Yll (n, p)­
peaKUHIO), Zn, Cu, As, Se, Br, Rb, Sr, Zr, Mo, Ag, Sn, Sb, I, Cs, Ba, La, Ce, Nd, Sm, Eu, 
Gd, Tb, Tm, Yb, Lu, Hf, Ta, W, Au, Th H U, a TaKJKe Ir H Res xsoe COCHbl npH HaJJH'lHH 
3HTponOreHHbiX 33lpli3HeHHH OKpyJKaJOWeH Cpeitbl HHKeJJelUI3BHJibHbiM MeTaJJJJypm'leCKHM 
KOM6HHaTOM). npHBO)tliTCll npHMepbl HCnOJIL30B3HHll JIHIII3HHHKOB, MXOB H XBOH COCHbl B Ka­
'leCTBe 6HOMOHHTOpoB aTMoc!j>epHLIX BLma,neHHH Ha 3eMJJe <I>paHua-HocH!j>a, KOJJLCKOM nony­
ocrpose H TsepcKoH o6naCTH. 

Pa6oTa BblnOJJHeHa B na6opaTOpHH HeHTJ>OHHOH !j>H3HKH OHJIH. 

*Institute of Industrial North Ecology Problems, Kola Scientific Centre of RAS, Apatity, Russia 
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Introduction 

At present, in the practice of biomonitoring of atmospheric deposition of trace ele­
ments, moss, lichens, and pine needles are used as biomonitors. The Scandinavian countres, 
and especially Norway [ 1-3] have extensive experience in the use of moss for this 
purpose. 

To determine the trace elements content, atomic absorption spectroscopy (AAS) in 
combination with INAA were frequently used. In the last few years inductively coupled 
plasma emission spectroscopy (ICP-ES) and inductively coupled plasma mass spectroscopy 
(ICP-MS) have been the chosen methods [4) . 

Experience in the use of NAA by means of thermal neutrons [4] shows that INAA of 
the moss Hylocomium splendens allows the determination of only 13 elements. 

Our experience with the use of resonance neutrons in INAA of lichens from Franz 
Josef Land [5] showed that at the IBR-2 reactor 45 elements (Mg. K, Ca, Fe, Na, Cl, Mn, 
Se, Zn, Cu, V, Zr, Ti, Br, Y, Cr. I, Ni, Ba, Co, Sc, Rb, Sn, W, Mo, Se, As, Hf, Ag; Sb, Ta, 
Cs, Au, La, Ce, Nd, Sm. Eu, Tb, Ho, Tm, Yb, Lu) were reliably determined. 

Thus, to extend the possibilities of using the IBR-2 reactor in analytical applications 
[6] the present investigations were carried out on the use of resonance neutrons for biomo­
nitoring by means of moss, pine needles and lichens. 

In the methodical investigations on the use of INAA for moss, lichens and pine needles 
analysis, moss samples from Norway [7] and pine needles samples from the Kola Peninsula 
and Tver region were uti li zed. 

Experiment 

Reliable determination of the trace element content in pine needles is based on samples 
of Pinus sylvestris L collected in II points of Tver region from five one-year old trees 
growing in a square of about I 00 sq .m. These II collection points are situated along the 
perimeter of approximately 3000 sq.km. In the same points the moss samples Hylocomium 
splendens were collected from the same square. Samples from 5 trees and 5 moss species 
were used for preparation of one averaged sample respectively to be analysed by INAA. 
Pine samples of the same type from the Kola Peninsula were collected from 7 trees . 

Lichens were collected in the region of the Lunnik glacier on Alexandra Island (Franz 
Josef Land). 

Moss, lichen and pine needle samples were airdried in the air and homogenized. Then 
0.5 g samples were chosen and packed in AI cups for long-term irradiation and in poly­
styrene packs for 3-5 minute irradiation. Samples were irradiated in channels ChI, Ch3 

and Ch4 of the IBR-2 reactor. Densities (n I (cm2·s)) of thermal (F
1
h), resonance (F .) and 

ep1 

fast (Fr 
1
) neutrons in these channels are given in Table I . • as 

Irradiation time for long-lived isotopes varied from 4 to 7 days in Ch.I and was I 0 
days in Ch .3 and Ch .4. Decay time for the first measurement was 4-6 days, for the second 
one it was 20-30 days. Measuring time varied from I to 5 h. 



Nazarov V.M. et al. Epithermal Neutron Activation 27 

Table 1. Characteristics of the irradiation channels at the IBR-2 reactor 

Irradiation Neutron flux density (n I (cm2·s))·1012 Chan. Chan. 
site T0 ,C diam., length, 

Thermal Resonance Fast mm mm 

Ch.l Cg coat 0.23 ± 0.03 1.4 ± 0.16 70 28 260 

Ch.2 0.54 ± 0.06 0.12 ± 0.014 0.64 ± 0.04 60 28 260 

Ch.3 Gd coat 0.9 ± 0.10 7.0 ± 0.5 30---40 30 400 

Ch.4 13.0 ± 0.5 1.25 ± 0.1 7.0 ± 0.5 30---40 30 400 

Ch.O no < 0.1 150 400 16 180 

To determine Cl, V, I, Mg, Cu .• Al, and Mn, Ch.1, equipped with a pneumatic system, 
was used. Irradiation time T. = 5 min., decay time T.d = 3-5 min., counting time T = 

I • C 

5-8 min. 
In the second measurement with Td = 15 h, the concentrations of K and Na were deter-

mined from the same samples. Comparison of our results is made with data on moss 
reference material DK-1 [7] . 

Gamma spectra were measured using Ge(Li) detectors with a resolution of 2.5 keV for 
the 6°Co 1332.4 keV line, with an efficiency of about 6% compared to 3" x 3" Nal detector 
for the same gamma line. Data processing and element concentration determination was 
performed on the basis of standard reference materials and comparators, using software 
developed in FLNP JINR [8]. 

In irradiations of more than 3 days in Ch.1, a single comparator of Au (10-{i g) was 

used. For 3-5 minutes of irradiation its concentration was (10-{i g). For comparison with 

Ch.3, a comparator of Zr (95Zr and 97Zr) (10 mg) was used. Concentrations of elements 
which had long-lived isotopes were also determined using standard reference materials 
SDM, SL-1 (International Atomic Agency, Vienna) and DK-1 [7] . 

Results and Discussion 

Element concentrations for moss reference material DK-1, lichens and pine needles 
with detection limits for pine needles are given in Tables 2 and 3. Detection limits for 
lichens and mosses are close to those in pine needles. Detection limits and element 
concentrations of anthropogenically polluted pine samples (Pechenga-Nickel), irradiated in 
Ch.1 and Ch.3, are shown in Fig. I. 

Detection limits .are significantly lower for Ch.3 with the exception of Cl, Cr, Nd, Tm, 
Gd, W. It can be seen from a comparison of results from Ch.1 and Ch.3 that the detection 
limits are only noticeably lower for Eu, Sc, Co, Lu, Hg, Cr, Fe, Na and U. This is under­
standable as these elements are characterized by low /0 I cr0 and by the use of Gd coat. 
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Table 2. Element concentrations In moss samples Hylocomium splendens, 
lichen ones Usnea sp, pine needles Pinus sylvestris L, and the detection limits 

for pine needles as measured in Irradiation channels 1 and 3 

Element concentrations, pm 

Moss DK-1 Lichen Usnea sp Pine needles Concentr. limit 

530(8) 900(5) 121(5) 5.01 

< 800 8200(10) 2500(15) 6001 

480(5) <50 750(5) 201 

328(11) 57(20) 810(20) 1001 

3300 1800(40) 5000(8) 190 

1630(3) 5100(~) 2500(35) 340 

0.16(13) 2.0(8) 0.~3(15) l.OE-3 

6.0(10) 17.0(6) 2.2(17) 0.61 

l .9(8) 3.2(8) 1.9(15) 0.1 

143(7) 53.0(4) 198(5) 3.51 

575(9) 2200(8) 194(17) 2.0 

. 0.26(5) 2.23(7) 6.8(7) 5 OE-3 

1.58(21) 2.70(15) 190(5) 0.3 

240(25) < 20 280(8) 251 

30.8( 13) 21 .4(5) 21.0(6) 0.3 

0.64(3) 0.12(8) 2.0(8) 4E-2 

0.43(9) 0.22( 13) 1.1 (13) 6E-3 

13.5(7) 5.8(6) 2.46(6) 3E-2 

12.9(7) 1.8(9) 24.8(8) 0.5 

33.0(4) 23.8( 17) 3.9(22) . 0.8 

11.0(11) 13.0(15) < 0.7 0.7 

< 1.4 < 0.3 7.3(27) 1.41 

0.16(25) < 0.1 < 0.01 0.01 

0.05(8) 0.02(7) 0.27(12) 3E-3 

< 0.1 < 0.1 0.15(27) 2E-3 

2.4(15) 1.7(1 0) 5.7(18) 2E-3 

0.37(6) 0.02(7) 0.36(9) 6E-4 

< 0.1 < 0.1 0.11(37) 0.1 

-

10 
-
cro 

0.59 

0.68 

0.74 

0.69 

0.97 

1.31 

0.44 

0.55 

0.53 

1.07 

1.30 

2.02 

(n, p) 

1.06 

1.96 

14.0 

10.9 

19.3 

14.8 

4.1 

282 

53.1 

3.63 

17.7 

48.0 

49.1 

28.8 

1.7 
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Element concentrations, pm 10 
Element -

Moss DK-1 Lichen Usnea sp Pine needles Co centr. limit cro 

I 3.8(8) 3.0(4) < 1.0 0.11 24.8 

Cs 0.29(7) 0.016(9) 0.046(8) 3E-3 18.5 

Ba 18.5(8) 2.5(12) 2.0(46) 0.3 23.5 

Hf 0.21(14) 0.12 < 0.002 2E-3 2.52 

Ta 0.026(14) 0.016(13) 0.00057(20) 2E-4 33.3 

w 0.73(27) < 0.2 0.34(12) 6E-21 13.7 

Re < 0.001 < 0.001 < 0.0022(23) l.OE-3 15.3 

Ir < 0.0003 < 0.0002 0.0007(20) 5E-4 5.8 

Au 0.00074(20) 0.0008(8) 0.0073(7) 5E-5 15.7 

Hg 0.67(10) < 0.05 < 0.02 . 2E-2 0.88 

Th 0.2(5) < 0.02 0.0021(9) I.OE-3 12.0 

u 0.19(5) < 0.02 < O.Dl5 2.0E-2 102.3 

I - detectrion limit for channel Ch.l . 

Table 3. Concentration of REE in moss samples Hylocomium splendens, 
the lichen ones Usnea sp, pine needles Pinus sylvestris L, and the detection limits 

for pine needles in channel 3 

Element concentrations, ppm 10 
Element -

Moss DK-1 Lichen Pine needles Detect. limit cro 

La 1.22(7) 1.07(9) 0.13(13) 3.0E-3 1.24 

Ce 2.92(8) 2.38(10) 0.16(19) 5.0E-2 0.82 

Nd 0.92(26) 2.55(16) 0.56(15) 2.0E-2* 2.35 

Sm 0.23(8) 0.46(6) 0.013(8) 1.4E-41 14.4 

29 

Eu 0.042(24) 0.060(11) 0.001(29) 5.0E-41 0.67/5 .67** 

Gd 0.21(14) < 0.1 0.026(16) l.OE-2 2.75 

Th 0.022(9) 0.089(8) 0.002(20) 5.0E-4 17.2 

Tm 0.015(13) 0.14(6) 0.0019(30) 1.4E-3* 17.9 

Yb 0.054(40) 0.012(10) 0.0065(28) 4. E-3 0.44 

Lu 0.028(29) 0.096(8) < 0.002 2. E-3 2.26 

*without Gd coat 
** for 152Eu 
I - detection limit for channel Ch.l. 
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Fig. I. Element concentrations (undashed columns) and detection limits for pine 
needles (Pechenga-Nickel) irradiated in Ch.l (light-dashed columns) and Ch.3 
(dark-dashed columns) 

But at the same time, the Compton gamma quanta registered (especially in the case of 
Sc, Co and Fe) strongly «shadow» the peaks of other elements, thus lowering the detection 
limits. 
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Fast neutrons were used to determine concentrations of Ni from the 58Ni .(n, p) 58co 
reaction. It works well for INAA. But, on the other hand, density of fast neutrons on both 
channels of the IBR-2 reactor leads to the interference effect when the concentration of AI, 

Na, Mn, and Cr, is affected by the 31P (n, a) 28 AI, 28Si (n, p) 28 AI, 27 AI (n, a) 24Na, 
54Fe (n, a) 51Cr and reactions 56Fe (n, p) 5~n. respectively. 

Aluminium determination from the 27 AI (n, y) 28 AI reaction is essentially influenced by 

the interfering reaction in moss. Up to 50-60% of 27 AI (n, y) 28 AI is produced by 31p and 
28Si. Thus, the real concentrations of AI given in Table 2 have a higher percentage of 
errors, because the concentration of P was not determined. In all other cases mentioned 
above, contribution of interfering reactions is insignificant: for Na it is 1 %; for Mn, 0,1 %; 
and 0,5% for Cr. 

Data on confidence intervals for trace elements and REE are given in Tables 4 and 5. 
Element concentrations with their confidence intervals in moss and pine needles normalized 
to DK-1 values are shown in Fig.2. Data on lichens are _listed in Tab!~ 3. 

Table 4. Elements concentrations and confidence interval, J.l 

Tver region (Dubna) Kola Peninsula 
Element 

Moss, ppm J..L,% Pine needles, .ppm J..L,% Pine needles, ppm J..L, 

Na 1190 36 56 53 

Mg 1780 31 1370 25 

AI 517 35 193 24 

Cl 1050 23 376 18 

K 9160 18 4300 18 

Ca 7800 40 6050 16 3180 25 

Sc 0.066 60 O.Q18 68 0.11 30 

v 1.52 55 

Cr 1.26 26 0.46 28 

Mn 290 43 340 44 

Fe 306 39 57 76 132 25 

Co 0.46 33 0.17 47 0.73 19 

Ni 1.6 26 2.0 60 85 34 

Cu 12.4 30 6.3 35 

Zn 39.3 31 35 34 31.6 27 

As 0.25 73 3.1 35 0.72 52 

Se 0.14 40 3.9 57 0.083 24 

Br 3.1 30 1.8 42 4.7 21 

Rb 66.1 32 24.7 48 33 16 

Sr 27.0 30 11.4 40 11.7 64 
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Tver region (Dubna) 
Element 

Moss, ppm J..L,% Pine needles, ppm 

Zr 5.3 

Mo 0.44 57 

Ag 3.5E-2 20 1.9E-2 

Cd 0.28 115 

Sn 

Sb 0.16 28 0.04 

I 1.50 41 

Cs 0.22 37 4.4E-2 

Ba 15 .3 38 0.54 

Hf 9.0 53 0.23 

Ta 6.3E-3 54 1.2E-3 

w 1.9 44 0.96 

Au 10.2E-3 70 1.9E-3 · 

Th 7.9E-2 66 9.4E-3 

u 0.052 85 

J! = S~l, I- student's factor for significance level 0.05 , 
n · 

SD - standard deviation. n - number of samples 

Kola Peninsula 

J..L,% Pine needles, ppm J..L, 

1.14 42 

34 0.0072 19 

0.067 21 

2.37 19 

60 0.047 26 

. 53 0.22 55 

61 1.8 31 

92 0.034 90 

71 5.3E-4 49 

80 0.46 50 

47 1.2E-3 8 

21 S.IE-3 II 

6.8E-3 54 

---

Table 5. Concentrations of REE (ppm) and confidence interval, Jl 

Tver region Kola Peninsula 
Element 

Moss, ppm J..L,% Pine needles J..L,% Pine needles J..L,% 

La 0.41 55 O.o31 58 0.023 30 

Ce 1.00 100 1.02 100 0.21 II 

Nd - - - - 0.6 17 

Sm 0.042 52 0.0048 32 0.0104 14 

Eu 0.0036 51 0.024 48 0.007 53 

Gd 0.11 100 1.3 66 0.13 15 

Tb 0.015 27 - - 0.0029 41 

Tm 0.028 28 - - 0.011 34 

Yb 0.024 50 0.013 64 .. 0.0043 47 

Lu - - - - 0.00046 41 
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Conclusion 

Potentialities of the use of resonance neutrons for monitoring atmospheric deposition 
of heavy metals, including REE and a set of nonmetallic elements are demonstrated. 

Data obtained for pine needles from Tver region and the Kola Peninsula are similar 
within the confidence intervals and are not very large. Confidence intervals for pine needles 
from the Kola Peninsula are lower, but samples from Tver region in the vicinity of Dubna 
were collected from the significantly smaller squares, along the perimeter of an area of 
3000 sq.km. 

Concentration values for pine needles for many elements are lower than those for moss 
samples. Concentrations of REE and some other elements in investigated pine needles are 
lower than those in DK- 1. That is why to determine these concentrations we also used · 
Gd-coated channel Ch.3. 

In conclusion, authors express their deep gratitude to Prof. E.Steinnes for providing us 
with the reference material DK-1 for our investigations, and to Mrs. L.P.Strelkova for help 
in the preparation of this manuscript. 
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TO THE THEORY OF NEUTRINO OSCILLATION 

Kh.M.Beshtoev 

The example of K 0
-, K0-meson oscillations is utilized in showing that v,, v11, v, 

oscillations must proceed via two stages. First v •' v 11, v t -eigenstates of the weak interactions 
are created. Then, owing to the presence of lepton number violating interactions, these neutrino 
states are converted into superpositions of vI' v 2, v 3 -eigenstates of interactions violating the 
lepton numbers. Further, neutrino oscillations will occur in accordance with the standard 
scheme. 

The investigation has been performed at the Laboratory of Particle P ysics, JINR. 

K Teopuu oc~HJIJIJI~HH ueifrpuuo 

X.M.Eemmoes 

Ha npHMepe K 0-, K0-ocuHJJJIJIUHH nmc:a:JaHo, 'ITO v,-, v11-, v,-ocuHJIJIUHH lf.!IYT 'lepe3 )I.Be 
CTa)I.HH. CnepBa polKJlaJOTCJI V,-, v11-, v,-HeHTpHHO - co6CTBeHHble COCTOJIHHJI CJia6oro 

B3aHMO)I.eHCTBHJI. 3aTeM, eCJIH npHCYTCTBYeT B3aHMO)I.eHCTBHe, HapywaJOwee JlenTOHHble 'IHCJia, 
3TH HeHTpHHHble COCTOJIHHJI npespawaJOTCJI B cynepn03HUHH V 1-, V 2-, V 3 -HeHTpHHO - COOCT-

BeHHble coCTOJIHHJI B3aHMOJI.eHCTBHJI, HapywaJOwero JlenTOHHbie 'IHCJia. Aanee OCUHJJJIJIUHJI 
HeHTpHHO 6yJI.eT npoHCXOJI.HTb COrnaCHO CTaHJI.apTHOH CXeMe. 

Pa6oTa BMnOJIHeHa B Jla6opaTOpHH csepxBMCOKHX 3Heprnfl OIUIH. 

1. Introduction 

In the old theory of neutrino oscillations [1], constructed by analogy with the theory of 

K 0
, K. 0 oscillation, it is supposed that mass eigenstates are v1, v

2
, v3 neutrino states, but 

not physical neutrino states v , v , v and that the neutrinos v , v , v are created as 
e ~ t e . ~ t 

superpositions of v 1' v 2, v 3 states. This means that the v e' v ~· v t neutrinos have no definite 

mass, i.e., their masses may vary depending on the vl' v2, v3 admixture in the ve, v~, vt 

states (naturally, in this case the momentum of the neutrinos is not conserved) Probably, 

this picture is incorrect one. This can be illustrated taking advantage of the K 0
, K. 0 

oscillations which have been well studied. 
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2. K 0
, K0 Oscillations 

1) The K 0, K0 mesons, which consist of the s, s, d, d quarks, are created in the strong 

interactions (the typical times of strong interactions are t
51

r = 10-23 s.) and are, accordingly, 

eigenstates of these interactions, i.e., the mass matrix of the K 0
, K0 mesons is diagonal. 

2) If we take into account the weak interaction (typical times of weak interactions are 

t _ .. :: w-8 s.) which violates strangeness, then the mass matrix of K 0-mesons will become we ..... 

nondiagonal. If we diagonalize this matrix, then we will come to the K 1°, K2° states, which 

are eigenstates of the weak interaction [2] . 

So we can see that, if K 0 mesons are created in strong interactions, then K 0
, K0 

mesons are produced, and if K 0 mesons are created in weak interactions then K1°, K~ 
mesons are created. In these cases no oscillations of K 0 mesons will occur. 

3) Now let us give a phenomenological description of K 0
, K0 meson creation and 

oscillat-ion processes. We will consider the creation of K 0, K0 mesons as a quasistationary 
process with a ,typical time t

51
r" Within this typical time, -tstr' weak interactions will violate 

strangeness and result in the mass matrix of the K 0 mesons becoming nondiagonal. The 
probability for this process to occur in t = 1ttstr is: 

w t = ru = ( 
1 

- exp (-c ) L 
( str) ( ( t))-1-exp --

tstr 

• tstr = 1t __ = 1t 10-15 

tweak 
(l) 

where (• - exp (- t t ) ) - is the decay probability of the quasistationary state during 
str. weak 

tht:: time-t. 

The mass matrix of the K 0 mesons will become nondiagonal in t = 1t 10-23 s with a 

probability of W = 1t 10-15
. And then the K1°, K2° mesons- eigenstates of weak interactions 

will be created. So we can see that in this case mainly~. K0 mesons will be produced, but 

not the K1°, K2° mesons. 

Then, when the K 0, K 0 mesons, that were created in strong interactions, pass through 

vacuum, the mass matrix of the K 0 mesons will become nondiagonal, owing to the presence 

of weak interactions violating strangeness. Diagonalizing it, we get K
1
°, K

2
°-meson states 

which are eigenstates of weak interactions. Obviously, the K 0
, K0 mesons are, then, 

converted into superpositions of K
1
°, K~ mesons [2]. 
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(2) 

Then, oscillations of the K 0
, K0 mesons will take place on a backg!ound of K1°, K2° decays. 

The length of these oscillations is [3]: 

(3) 

pKo is the momentum of K 0
. 

The main question which arises now is: which type of oscillations - real (implying 
actual transitions between the particle) or virtual ( implying virtual transitions between 

particle without transition to mass shells) takes place between th K0
, K0 mesons? Since 

the masses of K 0 and K. 0 mesons are equal, oscillations between these mesons are real. But, 

if the masses of K 0 and K. 0 mesons were not equal, then the osci llations would be virtual 
[4] . 

3. v-Oscillations 

We can now pass to the analysis of neutrino oscillations, taking advantage of the 

example of K 0, K. 0-meson oscillations. 
1) The physical states of the v , v , v neutrinos are eigenstates of the weak interaction 

e J.L t 

and, naturally, the mass matrix of v , v , v neutrinos is diagonal. All the available 
e J.L t 

experimental results indicate that the lepton numbers l , l , l are well conserved, i.e., the 
t! Jl t 

standard weak interactions do not violate the lepton numbers. 
2) Then, to violate the lepton numbers, it is necessary to introduce an interaction 

violating these numbers . It is equivalent to indroducing nondiagonal mass terms in the mass 
matrix of v e' v J.L' v -r · Diagonalizing this matrix we go to the v 1, v 2, v 3 neutrino states. 

Exactly like the case of K 0 mesons creating in strong interactions, when mainly K 0
, K. 0 

mesons are produced, in the considered case v e' v J.L' v t' but not 
1
, v 

2
, v 

3
, neutrino states 

are mainly created in the weak interactions (this is so, because the contribution of the lepton 
numbers violating interactions in this process is too small). 

3) Then, when the v , v , v neutrinos pass through vacuum, they will be converted into 
e J.L t 

superpositions of the v 
1
, v 

2
, v 

3 
owing to presence of the interactions violating the lepton 

numbers of neutrinos and will be left on their mass shells. And, then, oscillations of the 
v , v , v neutrinos will take place according to the standard scheme [1] . Whether these 

e J.L t 

oscillations are real or virtual will be determined by the masses of the physical neutrinos 



38 Beshtoev Kh.M. To the Theory of Neutrino Oscillation 

v , v , v . i) If the masses of the v , v , v neutrinos are equal, then real oscillation of the 
ell't ell't 

neutrinos will take place. ii) If the masses of the v , v , v are not equal, then virtual 
e ll 't 

oscillation of the neutrinos will take place. To make these oscillations real, these neutrinos 
must participate in the quasielastic interactions, in order to undergo transition to the mass 

shell of the other appropriate neutrinos by analogue with y - p0 transition in the vector 
meson dominance model. In case ii), enhancement of neutrino oscillations will take place 
if the neutrinos pass through a bulk of matter [5]. 
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COUPLED QUADRUPOLE AND MONOPOLE 
VmRA TIONS OF LARGE AMPLITUDE 

E.B.Balbutsev, I. V.Molodtsova, P.Schuck* 

The set of nonlinear dynamical equations for quadrupole and monopole moments of nuclei 
is derived from the equation for Wigner function f (r, p, t) with the help of the method of 

Wigner function moments. These equations are solved numerically for 208Pb. The giant 
quadrupole and monopole resonances arc reproduced very well. The corresponding 
multiphonon states are predicted. 

The investigation has been performed at the Bogoliubov.Laboratory f Theoretical Physics, 
JINR. 

CBJ133HHJ.Ie KBa.ZJ;pynoJIJ.HJ.Ie u MouonoJIJ.HJ.Ie 

KOJie6aHHJI 60JIJ.WOH 3MDJIHyY,ZJ;hl 

E.E.Ea.Jlb6yqeB, H.B.MoJI.ooqoBa, ll.illyK 

113 ypaBHeHHll .l1llll «<>YHKLIHH Bnrnepa j (r, p, t) C OOMOlllbiO MCTO.!la MOMCHTOB «<>YHKLIHH 
Bnrncpa BbiBC.!lCHa CHCTCMa HCllHHeHHhiX .!lHHaMH'ICCKHX ypaBHCHHH .l1llll KBa.!lpynOJibHOfO H 

MOHOOOJlbHOfO MOMCHTOB ll.!lpa. nOJIY'ICHHbiC ypaBHCHHll peWCHbl 'IHCJIC HO .l1llll 208Pb. Xopo­
WO BOCOpoJ13BO.!lliTCll 3HCp!1iH !liraHTCKHX KBa.!lpyOOJibHOfO H MOHOOOJlbHOfO pe30HaHCOB. 
npe.!lCKa3aHhl COOTBeTCTBYIOlllHC MYJIIoTH«<>oHOHHhiC pe30HaHCbl. 

Pa6oTa BbiOOJIHeHa B Jla6opaTopHH TCOpeTH'ICCKoii «Pn3HKH HM. H.H.IioronJ06osa OH51H. 

1. Introduction 

Large amplitude motion is very interesting and complicated field of nuclear physics. 
There are not so much methods and models treating this problem ([1], [2], [3] and refer-· 
ences therein), so every new result here is valuable. 

In this paper we use the method of Wigner function moments in the frame of TDHF 
theory with the simple Hamiltonian to derive the set of nonlinear dynamical equations for 
the quadrupole and monopole moments of nucleus. This model is attractive, because it 
allows one to write exact equations, which can be solved exactly. And what is more, it can 
be generalized to become rather realistic. 

*ISN, Grenoble, France 
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2. Equations of motion 

2.1. DescriJ!tion of the Model. Our model is based on the equation for a one-body 
density matrix p = p(rl' r2, t) in the TDHF theory: 

~- 1\ 1\ 
C3t - [H, p] . 

We transform it into the eq1,1ation for Wigner function [4] 

j{ ) __ 1_ I -ip·slh < !. _!. )ds· r, p, t -
3 

e p r + 
2

• r 
2

• t . 
• (21th) 

~=~sin { f! (VH · vf- VH · V/)} H f 
dt h 2 r P P r W ' 

(1) 

(2) 

where upper index of nabla shows the function which this operator acts on, Hw is the 

Wigner transform of the Hamiltonian: 

H.J..r. p) =I e-ip·slh(r + ~IH1 r- ~)ds. 

If the Hamiltonian is the sum of the kinetic energy and the local potential V(r), its Wigner 
2 

transform is just the classical version of the same Hamiltonian: Hw = f,;;- + V(r). Then 

equation (2) becomes: 

~.J.. + -p . v; = - sm - v . v '! . ;.)/" 1 2. (h v 1} 
dtm h 2r P 

(3) 

Our model potential is the harmonic oscillator with the quadrupole-quadrupole residual 

interaction: V(r, t) = ~mol? + A.q(t)Q(r), where Q(r) = xi + x~ - 2x;, q(t) = trQp = 

=I drdpQ(r)f(r, p, t) . Only the first term of the sin-operator survives in this case and we 

have: 
3 3 

~ + 1. ~ Ef... _ ~ av 1t_ = 0 dt m kP; dX. k dX . dp . ' 
i=J I i=l I I 

(4) 

with 

av 2 
dx. = [mro + 2A.q(t)(0;1 + 0;2 - 2o;3)]x; . (5) 

l 
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2.2. Wigner Function Moments. Now we apply the method of Wigner function 
moments [5] to derive the closed system of the dynamical equations for cartesian tensors of 
a second rank. Integrating equation (4) over the phase space {r,p } with the weights 
X?J , p

1
x1 , p !'} we get: 

J an(r, t) J a(n(r, t)us<r. t)) -
XX . ~ dr + XX . a dr - 0 

I } ot I } X 
(6) 

s 

J a J av 1 J a m x . :\ (n(r, t)u .(r, t))dr + n(r, t)x. -a dr +- x . ~A . (r, t)dr = 0 , 
} ot I } X . ffl } OX Sl 

I S 

(7) 

~ fA .. (r, t)dr + m J n(r, t) [ u.(r, t) aav ] dr + _!_ j aa A .. (r, t)dr = o . 
ot I} I X . m X SIJ 

1 ij s 

(8) 

where [ ... ]ij means that the quantity into brackets is symmetrized with respect to idexes i 

and j([a .b.] .. = a.b. + ab.) and the summation over repeated indexes is assumed. Here we 
I J I) I J J I 

have introduced the notations: n(r, t) = J j(r, p, t)dp, mn(r, t)u;(r, t) = J p/(r. p, t)dp, 

A . .k(r, t) = jp.D .. . . p Hr, p, t)dp. By definition n(r, t) is the nucleon density, u(r, t) is the 
IJ .. r 1 It' 

mean velocity of nucleons, A .. (r, tY2m is the kinetic energy tensor (or pressure tensor). 
I} 

Integrating by parts the last terms in (6)-(8) and introducing the notations l;}t) = 

= J xx.n(r, t)dr for an inertia tensor and n .. (t) = J A .. (r, t)dr for an integral kinetic energy 
I } I} I} 

tensor we have: 

d
d J .. (t) - [ J x .n(r, t)u .(r, t)dr] .. = 0 , t I) } I I) 

(9) 

d J J av 1 m -d X . n(r, t)u .(r, t)dr + x.n(r, t) :\ dr-- ll .. (t) = 0, 
t 1 I 1 oX. m I] 

(10) 
I 

d
d n .. (t) + m J n(r, t) [u .(r, t) aav J dr = 0. 
t I} I Xj ij 

(11) 

The last integral of the equation (8) with the third rank tensor A .. has disappeared due 
SIJ 

to the evident boundary condition A .{r, t) ~ 0 at r ~ ""• which follows from the bound­
SIJ 

ary condition for the Wigner function f(r, p, t) ~ 0 at r ~ "" . As a result we are left with 
the closed system of equations for second rank tensors. 

The equations (9) and (11) are evidently symmetrical with respect to indexes i, j and 
the equation (10) has not the definite symmetry. We can construct easily the symmetrical 
and antisymmetrical equations by combinations of the equation (10) with different indexes: 

d J J av 2 m -d [ x.n(r, t)u.(r, t)dr] .. + [ x.n(r, t) :\ dr] .. - - n .. (t) = 0, 
t } I I} } dX . I) m I} 

(12) 
I 
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d J J { av av} m -d n(r, t){ x .u .(r, t) -x.u .(r, t)}dr =- n(r. t) x . -a - x . -a dr. 
( 1 I I 1 1 :X. I X. 

(13) 
I 1 

The integral on the left-hand side of the equation (13) is the angular momentum of the 
nucleus. When V(r, t) is a self-consistent potential, the right-hand side of this equation is 
equal to zero and the equation expresses the angular momentum conservation law. For our 
model potential 

av av 
x . -a - x . -a = 2A.q(r)x.x.(B.1 - a.1 + a.2 - ai2 - 2a.3 + 2a.3). 
1 X. I :X . 1 I I 1 I 1 I 1 

I 1 

This expression is different from zero for j = 3, i = I, 2 or i = 3J = 1, 2 and proportional 

to x 1x3 or x2x3. The corresponding integral J n(r, t)x1x3dr is equal to zero, because our 

potential does not destroy the triplanar symmetry of the nucleon distribution n(r, t). 
Therefore our model conserves the angular momentum. 

The non-trivial information is contained in the symmetrical equation (12). We 
transform it using the equation (9) and the expression (5) for the potential derivative: 

; 2 2 
m dr l;}t) + 21;}1) {mro +A.q(t) (B;1+ Bj 1+ B;2+ Bj2- 2B;3- 2Bj3)}- m ll!i(t) = o. (14) 

By definition Q(t) = 111 (t) + J22(t) - 2133(t), hence this equation is nonlinear in Jij . As is 

seen from its structure we can write the set of coupled dynamical equations for the tensors 

111 + 122 and 133: 

.. .. 2 2 
m(JII + 122) + 2(}11 + 122) {mro + 2A.(lll + 122- 2133)}- m (llll + ll22) = O, (15) 

.. 2 2 
m133 + 2133 {mro -' 4A (JII + 122- 2133)}- m ll33 = O, (16) 

where dot means the time derivative and we don't write out the time dependence of tensors 
for simplicity. To be closed, this system must be supplemented with the dynamical 
equations for the tensors ll 11 + ll22 and n33. They are easily obtained from the equation 

(11 ): 

d 2 J -d ll .. (t) + 2m{ mro + 2/...q(t) (B.1 + B.2 - 2B.3)} n(r, t)u.(r, t)x .dr = 0. 
( II . I I I I I 

(17) 

Using here equation (9) we have: 

. . . . 2 
(llll + ll22) + m(JII + }22) {mro + 2A.(JII + }22- 2133)} = O, (lS) 

. . 2 
ll33 + mJ33 {mro - 4A.(JII + 122- 2133)} = O. (19) 

As one sees from the structure of the equations (15 )-(19), it will be more convenient to 
rewrite them in terms of new variables: the component of the quadrupole moment 
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Q20 = 111 + 122 - 2133, the mean square radius Q
00 

= 111 + 122 + 133 and the irreducible 
3 

tensors n20 = n11 + n22 - 2ll33 and noo = L n ss' Taking the simple combinations of the 
s=1 

equations (15), (16) and (18), (19) we get finally : 

2.. 2 2 2 
m Q

00 
+ 2m ro Q00 + 4mA.Q20 - 2ll00 = 0, 

(20) 

Third equation of this system gives the integral of motit>n: 

2 2 'l/\2 
noo + m (1) Qoo + m~20 = const. (21) 

3. Analysis of the Equations of Motion 

3.1. Stationary Solution. Investigating the stationary solution of the system (20) we can 
do some conclusion about the equilibrium shape of nuclei. By definition the variables of 
the stationary solution (or equilibrium state) don't depend on the time. Supposing the time 
derivatives in (20) equal to zero one gets two relations 

2 2 'I 2 m ro Q00 + 2m.r..Q20 - n 00 = 0, 

m2ro2Q20 + 2mA.Q20(2Qoo - Q20) - n20 = 0. (22) 

We shall call them equations of equilibrium. The second relation is of a special importrance 
- it says that it is impossible to have a static quadrupole deformation (Q20 :F. 0) without a 

Fermi surface deformation (ll20 :F. 0) and vice versa [6]. Formally one can find non-trivial 

solution for Q20 having n20 = 0: 

However it turns out, that for the self-consistent force constant [1, 7] 

-mro2 

A. = Anohr = 4A <,}-> 

the expression (23) is equal to zero (we remind that Q
00 

=A <r~) . 

(23) 

(24) 
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3.2. Small Amplitude Approximation. Let us consider the system (20) in the small 
amplitude approximation. Taking the variations Q')J:p) = QM(O) + &QM(t), n)..0(t) = 
= llAO(O) + &llAO(t) and neglecting the terms quadratic in &, one obtains two independent 

systems: the system for quadrupole tensors •. 
2 .. 2 2 

m &Q20 +(2m ro + 8mAQ00(0)) 8(220 - 2&020 = 0, 

. 2 2 . 
&n2o + m ro 8Q2o = 0, (25) 

and the system for monopole tensors, 
2 .. 2 2 

m 8(200 + 2m ro &Q00 - 2&n00 = 0, 

. 2 2 . 
&n00 + m ro &Q00 = o. (26) 

We consider the spherical nuclei in this paper, so we put everywhere Q20(0) = 0. Supposing 

the time dependence eiOt for all variables one can find easily the next eigenfrequencies: 

for the monopole vibrations and 

n - 2ro o-

...j 2 2X n2 = 2 ro + -;;Q00(0) 

(27) 

(28) 

for the quadrupole vibrations. Using in (28) the expression (24) for the force constant one 
obtains the well-known [ 1, 7] result for the quadrupole eigenfrequency 

n2 = ffro. (29) 

The energies £
0 

= hn0 and £
2 

= ~ are in qualitative agreement with experimental values 

of the energies of the monopole and quadrupole giant resonances (for hro = 41A-113 MeV). 
So, in the small amplitude approximation our model gives only two levels, which can 

be interpreted as giant o+ and 2+ resonances. This is true also for the calculations with 
realistic interactions [8] . 

3.3. Numerical Solution and Fourier Analysis. Principally another situation is observed 
in general case, when the system (20) is solved without any approximations. We solve it 
numerically with the help of Runge-Kutta procedure. The solutions depend strongly on the 
initial conditions (i .e.). 

They can be chosen in two ways. In the first case one takes the equilibrium values (i.e. 
satisfying eqs. (22)) ~or the ~oments Q)..0(0), llAO(O) and some definite (nonzero) values 

for their derivatives QM(O), ll)..O(O). From the physical point of view that means that one 

pushes the nucleus and forces it to deviate from the state of equilibrium. In another case 
one takes some nonequilibrium values for QM(O), llM(O) and zero values for their 

derivatives. In such a way one deviates the nucleus from the equilibrium «by hand» and it 
begins to vibrate due to the restoring force. 
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It is evident, .that bot~ variants are equivalent: for any set of the initial values of 
QAO(O), 01..0(0), QI..O(O), 01..0(0) from the first variant one can always find the 

corresponding set in the second variant to get the equivalent final results. 
In this paper the first variant is used. We take Q20(0) = 0 20(0) = 0 because we deal 

with spherical nuclei. The evident approximation is used for the monopole momentum: 

Q
00

(0) = ~ ~o-4 . where R
0 

= l.18A 113
. The initial value 0 00(0) is fi xed by the first equation 

. . 
of the system (22). The initial values for the time derivatives Q

00
(0) and Q

20
(0) are 

arbitrary. Wf! have p~rformed the calculations for two values of the force constant A and for 
six sets of Q

00
(0), Q

20
(0): 1) 6100, 10000, 2) 5000, 15000, 3) 5 00, 18000, 4) 6100, 10, 

5) 10, 10000, 6) 10, 10 (all the values are in MeV · fm2
) . The time-dependence of the 

function Q20(t) for the first variant of i.e. with A = Aaohr is demonstrated by the figure. As 

one can see, it oscillates quite irregularly. The maximal period of oscillations, when the 

c~rve begins to repeat itself, is t 2 = 457.4 Me v-1
-( t = tl h). The pictures for other 

functions and other variants of i.e. are more or less similar. Having the periods of 
oscillation one can perform the Fourier analysis of the curves and represent all the functions 
by series 

1000 

500 

Qzo o 

-500 

-1000 

1 

Fig. The time-dependence (t = tl h) of the quadrupole moment for A.= Aaohr and the initial 

conditions Q00(0) = 6100, Q20(0) = 104 
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. . 4 
Table 1. Fourier coeftlcients and energies for Q00(0) = 6100, Q20(0) = 10 

i hoo; , MeV Ooo Q20 

b; a; b; a. 
I 

0 0.00 0.000 69.547 0.000 -346.892 

I 1.14 3Q-2M -2.729 -0.735 9.464 2.550 

2 1.90 5M-7Q 0.000 0.000 0.003 0.004 

3 2.28 6Q-4M 0.006 -0.010 -0.038 0.065 

4 3.04 3M-4Q -0.086 0.035 0.407 -0.167 

5 3.42 9Q-6M 0.000 0.000 -0.001 -0.002 

6 4.18 M-Q -0.641 -5.152 26.682 213.580 

7 5.32 2Q-M 16.475 2.312 -46.538 -6.508 

8 6 .07 6M-8Q 0.000 0.000 0.001 0.001 

9 6.46 5Q-3M -0.005 0.012 0.015 -0.035 

10 7.21 4M-5Q 0.029 -0.016 -0.172 0.097 

II 8.35 2M-2Q 0.818 3.234 -8.459 -33.331 

12 9.49 Q -37.702 -0.585 1008.723 14.817 

13 10.63· 4Q-2M· 0.342 -1.194 0.865 -3.034 

14 11.39 5M-6Q 0.001 0.001 -0.029 0.021 

15 11.77 7Q-4M 0.008 0.005 0.014 0.008 

16 12.53 3M-3Q -0.703 -1.803 -0.983 -2.512 

17 13.67 M 461.418 -50.204 53.062 -5.838 

18 14.81 3Q-M 2.606 -16.684 -0.640 4.139 

19 15.95 6Q-3M -0.020 -0.008 0.014 0.006 

20 16.70 4M-4Q -0.006 -0.011 0.029 0.053 

21 17.84 2M-Q 1.833 -0.433 -7.259 1.729 

22 18.98 2Q -1.073 34.542 0.703 -23.925 

23 20.12 5Q-2M 0.179 0.054 -0.128 -O.o38 

24 22.02 3M-2Q 0.238 -0.088 0.347 -0.130 
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i hoo;,MeV Oro Q10 

b; a; b; a; 

25 23.16 Q+M 0.199 2.142 1.069 11.233 

26 24.30 4Q-M -0.140 -0.024 0.628 0.107 

27 25.44 7Q-3M 0.000 0.000 0.001 -0.002 

28 26.20 4M-3Q -0.005 0.002 0.029 -0.015 

29 27.34 2M -0.041 -0.187 0.145 0.651 

30 28.48 3Q 0.453 0.021 -1.055 -0.046 

31 29.62 6Q-2M 0.001 -0.004 -0.003 0.009 

32 31.51 3M-Q 0.001 +0.002 -0.012 -0.035 

33 32.65 2Q+M -0.130 0.010 0.191 -0.015 

34 33.79 5Q-M -0.001 0.009 0.003 -0.017 

35 36.83 2M+Q -0.015 0.000 -0.025 0.005 

36 37.97 4Q 0.001 0.000 -0.002 0.027 

37 41.00 3M 0.001 0.000 -0.003 0.001 

Table 2. Fourier coefficients and energies for Q00(0) = 5000, Q20(0) = 15000 

i hoo;, MeV Qoo Q10 

b; a; b; a; 

0 0.000 0.000 159.3703 0.0000 -629.2916 

1 0.632 7M-10Q -0.0016 -0.0003 0.0095 0.0026 

2 1.155 3Q-2M -6.2262 -6.8901 26.2050 29.0060 

3 1.787 5M-7Q -0.0027 0.0012 0.1114 -0.0543 

4 2.310 6Q-4M 0.0315 0.0031 -0.5563 -0.0557 

5 2.942 3M-4Q -0.1478 0.3773 -0.1133 0.2919 

6 3.466 9Q-6M 0.0043 -0.0034 -0.0185 0.0163 

7 4.097 M-Q -4.8411 -12.7965 108.3201 286.6512 

8 4.621 12Q-8M -0.0003 0.0003 -0.0001 -0.0034 
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i hro;, MeV aoo Q20 

b; a; b; a; 

9 5.253 2Q-M 32.5877 16.7307 -81.0800 -41.6762 

10 5.884 6M-8Q --{).0018 0.0025 --{).0098 0.0084 

II 6.408 5Q-3M 0.3342 --{).0889 -1.0585 0.2804 

12 7.040 4M-5Q 0.0040 --{).3266 --{).0159 1.2394 

13 7.563 8Q-5M --{).0116 0.0185 0.0522 --{).0833 

14 8.195 2M-2Q 7.9911 9.0500 -56.5284 --{)4.1159 

15 8.827 9M-12Q 0.0006 --{).0001 --{).0027 0.0020 

16 9.350 Q -96.8501 -10.9563 1496.3934 170.5650 

17 9.982 7M-9Q --{).0001 --{).00 II --{).0107 0.0273 

18 10.505 4Q-2M 5.0277 -3.6061 18.3302 -13.1196 

19 11.137 5M--«) --{).0197 --{).0539 0.0514 0.1395 

20 11 .660 7Q-4M 0.0037 --{).0177 --{).0295 0.1365 

21 12.292 3M-3Q -3.6049 -1.9033 -8.5572 -4.5308 

22 12.815 IOQ-6M 0.0111 0.0193 0.0057 0.0081 

23 12.924 IOM-13Q --{).0004 0.0006 0.0008 0.0002 

24 13.44J M 399.0070 -101.4652 102.3071 -25.8836 

25 13.970 13Q-8M 0.0020 0.0014 --{).0008 0.0001 

26 14.079 8M-IOQ --{).0006 --{).0044 --{).0005 0.0005 

27 14.602 3Q-M 31.9651 -48.0564 -5.7075 8.5558 

28 15.234 6M- 7Q 0.0095 0.0097 0.0014 0.0020 

29 15.757 6Q-3M --{).1036 --{).6973 0.0584 0.3970 

30 16.389 4M-4Q --{).2989 --{).0378 0.2749 0.0349 

31 16.913 9Q-5M 0.0110 0.0084 --{).0079 --{).0062 

32 17.545 2M-Q 7.1178 -4.9824 11.3260 7.9007 

33 18.700 2Q - 18.0739 78.8608 12.3700 -53.5567 

34 19.332 7M-8Q --{).0015 --{).0001 0.0006 0.0003 
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i hoo;, MeV aoo Q20 

b; a; b; a; 

35 19.855 5Q-2M 0.9875 1.7677 -{).6990 -1.2564 

36 20.487 5M-5Q -{).0634 0.0156 0.0196 -{).0047 

37 21.010 8Q-4M 0.0044 0.0016 -{).0024 -{).0008 

38 21.642 3M-2Q 0.6798 -{).9969 0.2118 -{).3093 

39 22.165 11Q-6M -{).0008 0.0004 -{).0001 0.0001 

40 22.797 Q+M 0.8979 6.5434 1.6030 11.8635 

41 23.952 4Q-M -{).3578 -{).3010 2.4021 2.0305 

42 24.584 6M-6Q -{).0010 0.0007 -{).0020 0.0013 

43 25.107 7Q-3M -{).0283 0.0010 0.0851 -{).0028 

44 25.739 4M-3Q -{).0036 0.0150 0.0306 -{).1253 

45 26.894 2M -{).2367 -{).4352 0.7693 1.4230 

. . 
Table 3. Fourier coemcients and energies for Q00(0) = 5000,Q20(0) = 18000 

i hoo;, MeV C2oo Q20 

b; a ; b; a; 

0 0.000 0.000 248.004 0.000 -966.077 

I 0.283 9M-l3Q -{).010 0.005 0.061 -{).033 

2 0.952 3Q-2M -8.682 - 21.535 42.528 105.465 

3 1.236 7M-IOQ 0.001 0.000 0.084 -{).124 

4 1.905 6Q-4M -{).553 -{).574 0.865 0.897 

5 2.189 5M-7Q -{).062 0.229 0.310 -1.147 

6 2.858 9Q-6M 0.116 0.052 -{).788 -{).357 

7 3.141 3M-4Q 0.045 0.389 1.234 10.593 

8 3.811 12Q-8M 0.010 0.001 -{).061 -{).015 

9 4.094 M-Q -12.323 - 22.605 183.778 336.847 

10 4.378 IOM-14Q -{).000 0.002 0.025 -{).020 
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i hoo;, MeV Oro Q20 

b; a; b; a; 

II 4.764 15Q-IOM -0.001 0.002 0.014 -0.002 

12 5.047 2Q-M 43.929 36.141 -87.113 -71.611 

13 5.330 8M-IIQ -0.003 0.007 0.005 0.000 

14 5.717 18Q-12M -0.000 -0.001 0.001 0.003 

15 6.000 5Q-3M 4.043 1.273 -14.550 -4.574 

16 6.283 6M-8Q -0.024 -0.100 0.162 0.671 

17 6.953 8Q-5M -0.201 0.015 1.112 -0.084 

18 7.236 4M-5Q -1.187 - 1.679 3.013 4.258 

19 7.906 IIQ-7M -0.032 0.012 0.132 -0.048 

20 8.189 2M-2Q 33.679 21.708 -190.830 -122.828 

21 8.472 IIM-15Q 0.001 -0.001 -0.017 0.017 

22 8.859 14Q-9M -0.014 0.014 0.033 -0.058 

23 9.142 Q - 170.626 -32.693 1783.589 340.434 

24 9.425 9M-12Q 0.000 -0.007 0.021 0.031 

25 10.095 4Q-2M 13.165 -2.585 102.969 -20.304 

26 10.378 7M- 9Q. -0.033 -0.037 0.257 0.294 

27 11.048 7Q-4M 1.595 -1.038 2.371 -1.547 

28 11.331 5M-6Q -0.579 -0.284 -1.120 -0.547 

29 12.000 IOQ-6M -0.112 0.161 -0.197 0.284 

30 12.284 3M-3Q -7.164 -0.526 -24.352 -1.766 

31 12.953 13Q-8M -0.024 0.090 -0.015 0.033 

32 13.237 M 361.277 -115.654 154.458 -49.621 

33 13.520 IOM- 13Q -0.032 -0.039 -0.002 -0.009 

34 14.189 3Q-M 112.204 -93.180 -3.016 2.511 

35 14.473 8M-IOQ -0.003 0.006 0.007 -+{).002 

36 15.142 6Q-3M 4.595 -8.523 -1.928 3.586 
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i hro;, MeV Qoo Q20 

b; a; b; a ; 

37 15.426 6M-7Q 0.216 -0.006 0.034 -0.002 

38 16.095 9Q-5M 0.005 -0.057 -0.004 0.047 

39 16.378 4M-4Q -3.315 1.504 1.591 -0.724 

40 17.331 2M-Q 23.410 -24.538 -21.116 22.195 

41 18.001 15Q-9M 0.006 0.014 -0.006 -0.005 

42 18.284 2Q -46.772 117.573 30.189 -76.202 

43 19.237 5Q-2M 0.056 12.158 -0.052 -8.678 

44 19.520 7M-8Q -0.054 0.031 0.024 -0.014 

45 20.190 8Q-4M 0.237 0.580 -0.167 -0.407 

The results of such calculations are demonstrated in Tables 1, 2, 3, where the 
eigenfrequencies hco. and the corresponding coefficients a. and b. of the functions Q

20 
and 

I I I 

Q00 are 'shown for three variants of i.e. and A. = ~ohr' Let us analyse in detail the first table. 

As one can see there are about 40 eigenfrequencies having the diapason of the amplitudes 

a., b. from 10-3 to 103, the dozen of them having this diapason from 10° to 103. All these 
I I . 

frequencies correspond to transitions between various levels Ev of the nucleus, i.e., they can 

be represented as differences hco
11
v = E

11 
- Ev. So, it is necessary to perform some 

combinatorial analysis to find the eigenvalues Ev. Of course the e ergies of GQR and GMR 

can be recognized immediately without any combinatorics. They are very close to that of 
calculated in the small amplitude approximation: E

2
(hco

12
) became 9.49 MeV ihstead of 

9.78 MeV and E0(hco17) became 13.67 MeV instead of 13.84 MeV. So, we confirmed the 

well-known fact, that giant resonances are described very well in the small amplitude 
approximation. 

It is very interesting to discover the multiphonon states. One can find two- three- and 
four-phonon states, corresponding to GQR. Their energies are hco

22 
= 2 · E

2 
= 18.98 MeV, 

hco30 = 3 · E2 = 28.48 MeV and hco
36 

= 4 · E
2 

= 37.97 MeV. There are two- and three­

phonon states corresponding to GMR. Their energies are hco
29 

= 2 · E
0 

= 27.34 MeV and 

hco37 = 3 · E0 = 41 MeV. There is one two-phonon state consisting of the quadrupole and 

monopole phonons (its energy is hco
25 

= E
2 

+ E
0 

= 23.16 MeV). There are two three­

phonon states consisting of: two quadrupole plus one monopole phonons 
hco33 = 2 · E2 + E0 = 32.65 MeV and two monopole plus one quadrupole phonons 

hco35 = E2 + 2 · E
0 

= 36.83 MeV. 
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It is not so difficult to show, that all the rest hCJ.>; are just the differences of these (and 

more high lying) multiphonon states. The results of the combinatorial analysis are shown 
in the third columns of the tables. 

The calculations with the 1.. = ~ Aaohr show that the results are rather sensitive to the 

force constant. For example, the energies of GQR and GMR are increased by 1.2 MeV and 
0.06 MeV, respectively, their strengths decreasing about 15%. The strengths of 
multiphonon states are decreased about 2 times and more. The comparison of the results 
of calculations with different i.e. shows that strengths of all the states are very sensitive to 
i.e ., what is evident. Not so evident is the noticeable dependence of energies on i.e. We 
interpret it as the manifestation of the dynamical deformation of the nucleus. This 
deformation is rather large and depends on i.e: Analy~ing tables 1-3 one can notice the next 
rule: the more (the less) the initial values of Q00 or Q

20 
are chosen, the more (the less) the 

resulting amplitudes are obtained and the more of new frequencies appear. 

The limit of maximum possible amplitudes is achieved at Q
20

(0)=: 20000. The 

calculations show that the maximum positive value of Q
20 

is -1980 and the maximum 

negative value is -2480. Which value of the deformation parameter ~ these amplitudes 
correspond to? To answer this question we derive the formula for the ~-dependence of 
Q

20 
in the approximation of the sharp edge of a nucleus. By definition 

21t 1t R(9.$) 

Q20(~) = n0(~) J dcjl J sin e de J (x~ + x;- 2x;)?dr. (30) 
0 0 0 

Here R(8, cjl) = R0(1 + ~Y20(8,cjl)), x~ .+ .S -~ = -4-vr r2Y20(8,cjl) and the density n0(~) 
is defined as 

I 1

-1 
21t 1t R(9,$) 

n0(~) =A J d cjl J sin 8 d 8 J r2dr 
0 0 0 

Performing the simple but tedious calculations we get: 

_/rr ..5{ 4-~ 2 15 3 
Q2o(~) = -4 '45no(~)f'o ~ + 7 '4tit ~ + l47t ~ + 

+ I 00 -v 5 ~4 + 25 · 53 ~5 ) , 
77 ( 47t)3 77 . 13( 47t)2 

no(~) = 3 A3 { 47t + 3~2 + :?:_ -{r ~3 }-1. 
R

0 
7 47t 

(31) 
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With the help of these formulae we find, that the vibrations with the maximum 
amplitude correspond to the change of~ from -0.29 to --0.29. So, the shape _of the nucleus 
changes during the vibrations from oblate to prolate. Further increasing of Q20(0) leads to 

the instability: the amplitudes begin to grow infinitely. It is necessary to stress that due to 
the lack of the full self-consistency of our Hamiltonian this value of maximum ~ must be 
considered as the lower bound for~ . By the way, the amplitu es presented on the figure 

max 

correspond to IE 0.13. 

The limit of small amplitudes is practically achieved for the ixth variant of i.e., where 
only GQR and GMR have the noticeable amplitudes and their energies are equal exactly to 
..fi hro and 2hro. 

3.4. Hydrodynamical Limit. There is one more interesting s lution of the system (20). 
It is the so-called «hydrodynamicallimit». The Fermi liquid diff rs from the classic one by 
the existence of the Fermi surface deformation. So, if to suppose 0 20 = 0, the system (20) 

(without the last equation) will describe pure hydrodynamics. Its solution in the small 
amplitude approximation is very well known: E

2 
= 0; i.e., there is'no GQR in the classic 

~ydrodynamics: However the exact solution gives the nonzero value: E2 = O?S MeV for 

~20(0) = 3, Q00(0) = 6100. This solution exists for initial cond~tions Q20(0) < 3.5, 

Q00(0) > 6000 and changes not very much in these limits. Including 0
20 

gradually one can 

observe the evolution of this solution. With this aim we multiplied 0 20 in the third equation 

of the system (20) by a constant factor a. When a is changed gradually from 0 to 1, E2 
grows gradually from 0.28 MeV at a= 0 to the usual value oft e GQR energy at a= 1. 

3.5. Excitations Probabilities. The excitations probabilities can be calculated with the 
help of the classical formula for the intensity of the quadrupole radiation [9]: 

1 - 2 
Int = --5 L D .. , (32) 

180c . . 'J 
IJ 

where D . . = e7/ A( 31 . . - 8 . . "' J } Due to the axial symmetry of the Hamiltonian 
IJ IJ IJ "'- SS 

s 
2 

D11 = D22, D33 = -2D11 and Dij = 0 for i :F. j . Hence ~ D;J = %Di3 =% ( e:) Q;0• 

IJ 

Putting into (32) the Fourier expansion for Q
20 

and averaging over the greatest period of 

oscillations we get: 

2 b2 
- ( eZ f 1 "' 6 aa + a L -lnt = - -- "'- ro = I t . 

A 120c5 a 2 a 
a a 

(33) 

Dividing Inta by hroa we obtain the radiation probability W a· Taking into account the 

relation between Wa and the reduced probability [10] we find: 
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Z f 5 f a2 + b2 B (El) = ( ~ _ (a2 + b2) = ( ~ 125 a a B 
a A 641t a a A 144 R4 W' 

(34) 

where Bw is Weisskopf unit. 

Using here the values of aa and ba from Table 1 we can calculate the B(El)-factors for 

GQR and multiphonon states: 

B(El, GQR) = 51.5BW' 

B(El, 2 x GQR) :: 6 · l0-4B(El, GQR) = 0.03Bw . 

The excitation probability of the two-phonon GQR is approximately three orders of 
magnitude less than that of the usual one-phonon GQR. The B(£2)-factor for the three­
phonon state is six orders of magnitude less than that of the GQR. 

4 . One-Dimensional Model 

To reach more deep understanding of rather unusual properties of our model (the de­
pendence of eigenfrequences on initial conditions, the lack of an anharmonicity of a 
spectrum in spute of an anharmonic potential) we will consider here exactly soluble one­
dimensional model of a harmonic oscillator with a monopole-monopole residual interaction. 
Its solution was found by Reinhardt and Schulz [11] in a rather complicated way. With the 
help of our method the solution becomes elementary. 

The average field of the model (in the notations of [ 11]) is 

V(x, t) = ~ mro~i = K(< x2 >- x~)(i- x} A), (35) 

where in correspondence with our notations ro
0 

= ro, < x2 > = 111(t), ~ = 1
11

(0). 

Following the rules described in section 2.1 one can derive the system of equations 

.. 2 2 
mJ + 2J[mro + 2K(1- 1JJ - m ll = 0, 

Ii + m.i'[mro2 + 21C(1- 1
0

)] = 0 (36) 

with 1 = 1 11 (t), 1
0 

= 1 11 (0), n = ll11 . The second equation of this system gives the integral 

of motion 

ll + m2ro2 1 + mKi - 2m1CJ
0
1 = const. (37) 
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The value of const can be fixed by the conditions of equilibrium. In the state of equilibrium 
J = J

0 
n = n

0 
and one has from (36) and (37): 

2 2 
2mro Jo- m no= 0, 

no + m2ro2 J 0 - mK.l~ = const. (38) 

Combining these two equations one finds: 

2 2 2 2 const = 2m ro J
0 

- mKJ
0

. (39) 

Using (37), (39) and introducing new variable y = J- J
0 

one reduces the system (36) to the 

single equation 

.. 2 
y + ay + by = 0, . (40) 

with a = 4( ro2 + : J0 ) , b = 6 : . This equation is integrated trivially to give 

( !i.f=-?:..by3 -ai-c 
dt 3 1' 

(41) 

where c1 is a constant of integration, which is determined by initial conditions. Having in 

mind, that y(O) = 0, one finds c
1 
=- (}1(0))2

. The solution of the equation (41) can be 

expressed in terms of the Jacobian elliptic function [12] : 

y(t) = 113 + ( 112 - 113 ) sn2 (rot). (42) 

ro - ~ Here 05 = -x VK(11 1 - 113), K = K -- 11 . are the roots of the polynomial 
o mro2' r 

(43) 

The function sn(~) is a periodical one with a period A~= 4K, K eing the complete elliptic 
integral of a first kind: 

K = J1fl2 d~ 
o ~1- k sin~ ' 

(44) 

.2 ll2- ll3 
where " = . Hence, the period of the function y(t) will be proportional to ,1 -,3 
At= 

4
: and the corresponding frequency will be proportional to n = !~ = ~: . This 

expression demonstrates very well the dependence of eigenfreque cies on initial conditions, 
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because it is evident that the roots of the polynomial (43) depend on c1, which in its turn 

depends on y(O). The absence of any anharmonicity can be understood studying the 
trigonometrical expansion of the Jacobian function [ I3]: 

2 
00 n-1/2 -

- - __?!. 't" q . (2 I ) C01t snoot- kK ~ 2n-l sm n- 2K t. 
n=l I - q 

Here q = exp (-1tK'/K), K' = K(k'), k' = ~B This expansion contains only 

frequencies proportional to odd numbers of the basic frequency 0 = : . It is evident, that 

sn2 will contain frequencies nO with even n only. So, the Fourier expansion of the function 
y(t) will contain only one basic frequency 2n and its satellites 40, 60 and so on. In the 
case of our two-dimensional problem of a coupled dynamics of monopole and quadrupole 
moments it is natural to expect the two basic frequencies 0 1 ~ and their satellites. Due 

to coupling there must be a lot of linear combinations of these frequencies: n10 1 ± n2~. 

As we have seen, such picture really takes place. 

Let us compare our solution with that of Reinhardt and Schulz [II]. They have studied 
the collective 'variable r(t) which is connected with our variable y(t) by the relation 

y = ~(? - 1) (formula (3.28) of [ 11 ]). Their dynamical equation for r(t) reads (formulae 

(3.17), (3.29)): 

2 

r- (1)3 + oo2[r + 2iC(? - r)] = 0. 
r 

Multiplying (45) by ;. one easily transforms it into 

- -+-+oo -+lC --r =0 d { ~2 002 i r2 _ ( r 4 2 ) ] } 
dt 2 2r2 2 2 ' 

demonstrating the existence of the integral of motion 

? + (1)2 [ :2 + ? + iC (? - 1)2 J = c2 • 

(45) 

(46) 

(47) 

which expresses the energy conservation. This integral allows one to prove the equivalence 

of the equations (40) and (45). Really, putting~= x~(r2 - I) andy= 2x~(rr + ?) into (40) 

and eliminating the term proportional to ~2 with the help of the relation (47) one gets: 

rr- ool :2 + ,.2 + iC(? - I)
2

] + c 2 + ~(?- I)+ %x~(r2 - I)2 = 0. (48) 
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This equation becomes equivalent to equation (45) if to take c
2 
= 2ol. With such value of 

c
2 

our integral of motion ( 4 7) will coincide with that of Reinhardt and Schulz only in the 

case when EHF = E
0 

(formula (3.30)). By the way, this requirement follows naturally from 

their condition of self-consistence (see the bottom of section 3.2 in their paper [11]). 

5 . Conclusion 

Let us enumerate the main results of this paper. The set of nonlinear dynamical 
equations for quadrupole Q20 and monopole Q00 moments of nuclei is derived from the 

TDHF equation with the help of the method of Wigner function moments. Due to the 
simplicity of the used Hamiltonian all the derivations are performed exactly, without any 

approximations. These equations are solved numerically for 208pb. It is found, that the 
functions Q20(t) and Q

00
(t) oscillate irregularly. Their Fourier analysis yields a lot of 

eigenfrequencies, which correspond to various differences of the energy levels. 
Combinatorial analysis allows one to find the giant quadrupole and monopole resonances 
and several multiphonon states constructed of these two resonances. It is shown that the 
reduced probability of the excitation of the two-phonon giant quadrupole resonance is three 
orders of magnitude less than that of the one-phonon GQR. 

The theory can be modified to take into account spin degrees of freedom. In this case 
it will be possible to study a large amplitude motion with the rather realistic Nilsson 
potential. The extension to the description of excitations of higher multipolarities is 
straightforward. 
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TEST OF THE ELLIS-JAFFE SUM RULE USING 
PARAMETRIZATION OF THE MEASURED 
LEPTON-PROTON ASYMMETRY 

A.P.Nagaitsev*, V.G.Krivokhijine*, l.A.Savin, G.I.Smirnov 

It is shown that the values of the first moment of gf(x) calculated from simultaneous fits 

of the SMC and E143 data on the asymmetries A~(x) are below the Ellis-Jaffe prediction by 

more than 7cr. 
The investigation has been performed at the Laboratory of Particle Physics, JINR. 

:UpoaepKa npaBHJI8 CYMM 3JIJIHCa-.IJ:JKaclJclJe C HCDOJib30B8HHeM 

napaMeTpHlanuu ,!(3HHbiX DO JienTOH·DpOTOHHOH 3 CHMMeTpHH 

A.ll.HazauqeB u op. 
noK33aHO, 'ITO BeJIH'IHHbl nepBOfO MOMeHTa OT gf(x), Bbi'IHCJieHHble H3 OAHOBpeMeHHOH 

annpoKCHMaiiHH SMC u E 143 ,!laHHbiX no acHMMeTpHH A~(x), uaxo,llliTCll HHJKe npe.!lCK33aHHii 

npauHJia CYMM 3Muca-.UJKa!j><jJe 60Jiee '!eM ua 7cr. 
Pa6oTa Bblnonueua B Jla6oparopuu cuepxBbiCOKHX 3Heprnii OIUIH . 

!.Introduction 

It has been found from the measurements of the spin-dependent structure function 

gf(x) of the proton by the SMC [1] and E143 [2] that the value rf. which is the first 

moment of gf(x), is below the Ellis-Jaffe sum rule prediction. We quote in detaial the 

results of Refs. [1], [2], because they are important for our discussion. 

1.1. SMC. The result for the first moment of gf(x) at (Q 2) = 10 GeV2 is 

I rr = J gf(x)dx = 0.136 ± 0.011 (stat.)± 0.011 (syst.). 
0 

*Granted by Russian Fund of Federal Research 

(1) 



60 Nagaitsev A.P. et a/. Test of the Ellis-Jaffe Sum 

The integral over the measured x range is 

0.7 

J g f<x)t:U = 0.131 ± 0.011 ± 0.011. 
0.003 

The values of integrals over unmeasured x regions are 

0.003 I 

J gf(x)dx = 0.004 ± 0.002, J gf(x)dx = 0.001 ± 0.001. 
0 0.7 

The corresponding Ellis-Jaffe prediction corrected for QCD effects [3] is: 

rr = 0.176 ± 0.006. 

(2) 

(3) 

(4) 

SMC has evaluated gf (x) from virtual photon-proton asymmetry Af(x, Q 2) averaged 

over Q 2 in each bin using the relation: . 
2 p Q2) 2 

Af(x, Q ) F2 (x, ::A P(x)Ff(x, Q ). p( ) - 2 I 
gl x = 2x (1 + R(x, Q )) 

(5) 

A f<x.Q 2) is assumed to be independent of Q 2
. The unpolarized structure functions 

Ff(x, Q 2) and R(x, Q 2) were taken from parametrizations [4] and [5], respectively, for the 

average (Q 2) = 10 G~V2 in the SMC kinematic region. The virtual photon-proton 

asymmetry A j is related to the measured muon-proton asymmetry A P: 

(J t.l. - (J ii 
A P = ~.,...--=....,.=-

aiJ.+aii • 

A2 
AP=--nAP 

I D 'lf'2' 

(6) 

(7) 

where a t.l.( a ii) is the cross section for the longitudinally polarized muons scattering on 
protons polarized opposite (along) to the muon momentum, D and 11 are the kinematic 

factors. SMC has shown in the separate experiment [6] that asymmetry Af arising from the 

interference between virtual photons with transverse and longitudinal polarizations is 
compatible with zero within statistical errors. In addition, since coefficient 11 in the SMC 

kinematic region is small, product 11Af can be neglected in Eq.(7). So, with this assumption 

asymmetry A r is directly proportional to the measured A P: 
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AP 
A

p __ 

1 = D . 

1.2. El43. The result for the first moment of gl{(x) at (Q 2) = 3 is 

rf = 0.127 ± 0.004(stat.) ± 0.010(syst.). 

The integral over the measured range is 

0.8 

J gl{(x) dx = 0.120 ± 0.004 ± 0.008. 
0.029 

The values of integrals over unmeasured x regions are 

0.029 

J gl{(x) dx = 0.006 ± 0.006, 
0 

1 

J gl{(x) dx = 0.001 ± 0.001. . . 
0.8 

The corresponding Ellis-Jaffe prediction corrected for QCD effects [3] is: 

rr =0.160±0.006. 

61 

(8) 

(9) 

(10) 

(11) 

(12) 

E 143 has evaluated t{ from the measurements of A II and A 1. asymmetries for the scattering 

of the longitudinally polarized electrons on the target polarized parallel and transverse to 
the beam direction: 

t{ -1 
FP = D (All +tan (9/ 2) A 1.)' (13) 

1 
where 0 is the electron scattering angle. This ratio is related to the virtual photon-proton 

asymmetry A f: 

AP= gl{ --( ~ 
1 FP FP' 

1 1 

(14) 

and with the same level of confidence as for SMC, we can neglect p roduct it'! Ff and 

obtain the same approximate relation as Eq.(5): 

(15) 

Calculating rf from gl{l Ff1 in E143 it was assumed that the last ratio is independent of 

Q 2. Such an assumption was justified by observing good agreement between SLAC and 

SMC data taken at different Q 2. 
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The two experiments obtained rj. which is below the Ellis-Jaffe sum rule prediction 

by more than two standard deviations. These discrepancies could be caused by some 
physics effects not taken into account by the Ellis-Jaffe model or due to imperfection of the 
data and their analysis. Since in terms of standard deviations the difference between the 
data and theory is not significant, it is worth-while to examine possible experimental 

problems. One of them is a «nonsmoothness» in x behaviour of Af present in both 

experiments and which is difficult to explain by statistical errors. It might be produced by 
possible incorrectable point-to-point systematic fluctuations. On the other hand, both 

experiments did not take into account the theoretical prediction Aj(x = 1) = 1 while 

extrapolating the data to the unmeasured region 0.7 < x ~ 1. These two observations 

motivated our study of the changes in the rr when the latter is calculated with the 

constraint Aj(l) = 1 and with smooth input Aj(x). Such an approach has been used in paper 

[10] for discussions of the Bjorken sum rule tests. 

2. Calcu!ation o f r j 

We calculate the first moment oft: as follows : 

1) The x-dependence of Af is parametrized by function Af(x) (the form of the function 

will be discussed later) with some free parameters. As long as values Aj(x, Q 2) and 

t:l Ff measured in SMC and E143 are independent of Q2, we can fit the data from two 

experiments simultane<?usly. . 

2) This function N is used for calculations of g
1
(x) and its integral: 

- f. F{(x, Q 2) - f. P 2 
t:<x)=A(x, PI'P2) 2 =A(x, PI'P2)F1 (x,Q ), 

2x(l + R(x, Q )) 
(16) 

where we have used for F {(x, Q 2) the NMC parametrization [ 4] and the SLAC 

parametrization [5] for R(x," Q 2) at given Q 2• Then 

I 1 

rj = f t: dx = f Af(x, PI' P2, .. )Fj(x) dx, (17) 
0 0 

where P1, P2, ... are parameters obtained from fit of the measured Aj(x). The error of the 

integral from Eq.(l7) is ·calculated using errors of the parameters taken from the fits (see 
Section 4). 
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3. Parametrization of Af 

3.1. The Choice of Functions for Fitting. We have suggested that the form of the 
parametrization functions should be the simplest one with the minimal number of 

parameters. These functions must meet two requirements: Aj(O) = 0 and Aj(1) = 1 taken 

from theoretical predictions [7, 8]. Two functions have been chosen out of many: 

p2 p 
A{(x) =2 · (x+x \ (18) 

(19) 

where P 
1
, P 

2 
are free parameters. 

3.2. The Test of Agreement between SMC and El43 Data. T test the consistency of the 

SMC data on Af and the E143 data on t:_l Ff, we have performed fits with functions from 

Table 1. Separate fits of the SMC and E143 data using functions from Eqs.(18), (19) 

The form of function Experiment pl llPl p2 llP2 x21d.of 

A{Cx) SMC 0.551 0.084 0.988 0.158 0.58 

E143 0.625 0.038 1.100 0.054 1.43 

~(x) SMC 0.665 0.082 0.888 0.172 0.58 

E143 0.747 0.032 1.043 0.060 1.38 

Table 2. Test of the systematic shift between the SMC and E143 data 

The value of P2 Function X21d.of pl t:.Pl p2 llP2 

a) P2 is free for E143 A{(x) 1.167 0.599 0.031 1.068 0.046 

and 
P2= 1 for SMC ~(x) 1.123 0.732 0.025 1.016 0.043 

b) P2 is free fro SMC A{(x) 1.227 0.560 .016 1.004 0.087 

and 
P2 = 1 for E143 ~(x) 1.126 0.725 .012 1.005 0.087 
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Eqs.(I8), (19) for each experiment separately taking into account only statistical errors. 
From the results of the fi ts which are shown in Table I we conclude that the data are 
consistent because the values of parameters P1 and P

2 
are the same within the errors. 

Table I also shows that within the errors P 
2 

= I to be expected if the theoretical 

prediction A j( I) = I is valid. So, we can use P 2 = I unless there is a systematic shift be­

tween the SMC and EI43 data. It was checked by fitting the data simultaneously for two 
cases according to different assumptions on P2: 

1) P
2 

=I for the SMC data and free for the EI43 data; 

2) P2 is free for the SMC data and P2 =I for the EI43 data. 

Table 2 shows that within the errors P 
2 
= I as expected if there is no systematic shift 

between the data, which justifies the use P 
2 

= l for further fits. 

3.3. The Results of Fitting. The experimental points for fits were taken either with 
statistical errors only or with statistical and systematic errors combined. 

Table 3 and Figures l , 2 show the results of the fits of the SMC and El43 data taken 
either separately or simultaneously (SMC+EI43) by Eqs.(l8), (19) assuming that P

2 
= 1. 

The fonn 
of function 

a) ~(.r) 

b)~(.r) 

c) ~(.r) 

a) ~(.r) 

b) ~(.r) 

c) ~(.r) 

Table 3. Separate and simultaneous fits of the data on A 1 taken with: 

a) the statistical errors only; 
b) statistical and ~matic errors combined linearly; 

c) statistical and systematic errors combined in quadratures 

SMC E143 SMC+E143 

pl M\ ··itd.of pl t:.Pl x21d.of pl t:.Pl 

0.556 0.044 0.524 0.561 0.016 1.509 0.560 0.015 

0 .562 0.067 0.252 0.569 0.025 0.673 0.568 0.024 

0.559 0 .050 0.431 0.569 0.016 1.197 0.565 0.018 

0.712 0 .036 0.560 0.726 0.012 1.344 0.725 0.011 

0,717 0.054 0.270 0.730 0.019 0.596 0.728 0.018 

0.715 0.041 0.460 0.728 0.014 ro59 0.727 0.013 

x2
/ d.of 

1.192 

0.537 

0.950 

1.092 

0.537 

0.866 
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1 X 1 X 

Fig.l. The approximations of lepton-proton asymmetry measured by the SMC and E143. The 
statistical errors are taken only 

One can see that both fits yield consistent results for the free parameter P
1 

when the 

same function is used. From ·l values we can conclude that the data from both experiments 

are very well parametrized using the simplest functions with one free parameter. We cannot 

make the choice between the two functions because values x21 d.o.f. are rather good in both 

cases. They are however worce for the El43 data indicating the presence of some 

systematic point-to-point fluctuations. For example, the points at x = 0.039, 0.079, 0.370, 

0.416 and 0.666 (marked as dark points in Figs. lc and ld) give respectively 3.2, 5.9, 3.6, 

5.6 and 3.2 units to x2 of the total 34.95 for 26 degrees of freed m. These contributions are 

largely reduced if the systematic errors (compare x21 d.of i Table 3) are taken into 

account. 
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Fig.2. The approximations of proton asymmetry for the (SMC+EI43) data. The statistical errors 
are taken only . The fits c) and d) were performed using functions with two free parameters 

4 . The First Moment of i; 

The functions with parameters of Table 3 were used to calculate integrals from 
Eq.(l7). For the SMC and El43 data the structure functions F2 and R have been taken at 

Q2 = 10 and 3 GeV2
, respectively. The integral rf for (SMC+El43) data has been 

calculated using the parameters of the simultaneous fit (column (SMC+El43), Table 3) and 

structure functions F2 and R at Q 2 = 5 GeV2
. Uncertainties of the integrals were calculated 
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Table 4. The values of in~egrals rf for the SMC data on A 1 ((Q 2) = 10 GeV 2
) taken with: 

a) statistical errors only; 
b)statistical and systematic errors combined in quadratures 

The form of N r P 0.7 0.003 1 
1 J i;(x) dx J i;(x) dx J i;(x) dx function 

0.003 0 . 0.7 

a) ~(x) 0.142±Q.013 0.130±0.010 0.01 0±0.003 0.0010±0.0004 

b) ~(x) 0.141±0.015 0.129±0.011 0.010±0.004 0.0020±0.0004 

a) ~(x) 0.139±0.012 0.131±0.010 0.006±0.002 0.0020±0.0004 

b) ~(x) 0.138±0.013 0.130±0.011 0.006±0.002 0.0020±0.0004 

Table 5. The values of integrals r f for the El43 data on A 1 ( (Q 2) = 3 Ge V 2) taken with: 

a) statistical errors only; 
b)statistical and systematic errors combined in quadratures 

The form of N rP 0.8 0.029 1 
1 J i;(x) dx J t;(x) dx J i;(x) dx function 

0.029 0 0.8 

a) ~(x) 0.129±0.04 0.106±0.002 0.022±{).002 0.0010±0.0004 

b) ~(x) 0.127±0.004 0.105±0.002 0.021±0.002 0.0010±0.0004 

a) ~(x) 0.125±0.003 0.107±0.002 0.01 6±0.001 0.0020±0.0004 

b) ~(x) 0.124±0.003 0.107±0.002 0.01 6±0.001 0.0010±0.0004 

Table 6. The values of integrals rf for the SMC+E143 data on A 1 (Q 2 = 5 GeV 2
) taken with: 

a) statistical errors only; 
b)statistical and systematic errors combined in quadratures 

The form of N rP 0.8 0.003 1 
1 J i;(x) dx J t;(x) dx J t;(x) dx function 

0.003 0 0.8 

a) ~(x) 0.133±0.004 0.124±0.003 0.008±0.001 0.0010±0.0004 

b) ~(x) 0.132±0.004 0.124±0.003 0.007±0.001 0.0010±0.0003 

a) ~(x) 0.128±0.003 0.123±0.003 0.040±0.003 0.0010±0.0003 

b) ~(x) 0.128±0.004 0.123±0.003 0.004±0.001 0.0010±0.0003 
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rt 
0.22 

0 - theoretical predictions for r,' 
e - the values of r,' calculated with A'1 

0.2 1- • - the values of r,p calculated with A'2 
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< 0 2 > = 1 0 GeV2 

9 

,. 
l 

SMC 

Fig.3. The comparison between theoretical predictions for rf and values obtained with the 

proposed method and errors 6-rf estimated from statistical and systematic errors of the data 

combined in quadratures 

by shifting average value of the parameter P 1 by +/- one standard deviation: (P 1 - M' 1) 

and (P1 + M 1). The results of calculations are presented in Tables 4-6. As it is seen from 

Tables 4 and 5, the integrals over the entire region calculated by us coincide within the 

errors with those from publications [ 1, 2]. 

We have also calculated the integrals for the measured and unmeasured x range to 

compare our results with those from Refs. [1, 2] (see Eqs.(2), (3) and Eqs. (10), (11)). The 

integrals over the measured x range for the SMC data calculated by us and in Ref. [1] are 
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the same, but extrapolation to x=O is understimated in Ref. l1]. For the E143 data the 
integrals over the measured region are overstimated in Ref. [2] while the extrapolation to 
x = 0 is largely underestimated. The results for the E143 measured region have smaller 
errors than those in paper [2] due to obvious reasons related to substitution of the 
experimental points by a smooth parametrization and additional constraints at x = 0 and 
x= 1. We have also computed r 1 from the SMC and E143 d ta at a common value of 

Q
2 

= 5 GeV 
2 

by fitting simultaneously reevaluated values of g 1(x). Reevaluation of g1(x) has 

been done in the same way as in [9]. The results are to be compared with the Ellis-Jaffe 
prediction for r 

1 
at 5 Ge V 

2
, which is 0.171 ± 0.006 (see Figure 3 ). The comparison be-

tween theoretical predictions on rf and the values obtained wit the proposed method are 

also presented in Figure 3. 

5. Discussion 

1. It is shown that lepton-proton asymmetry from the SMC and E143 data fitted either 
separately or simultaneously can be parametrized using the simplest functions with one free 
parameter only. The SMC and E143 data are in agreement with the theoretical predictions 

Af(x = 0) = 0, Af(x = 1) = 1. These constrains can be used in data parametrization. 

2. The method to calculate rj from Eq.(lO) using parametrization of asymmetry 

Af(x) is a natural generalization of the i;(x) calculati ns from Eq.(5), when 

parametrizations Ff(x, Q 2) and R(x, Q 2) are used instead of experimental values. The 

values of J i;(x) dx calculated with this method for the entire x range are in agreement with 

the published ones: 

SMS data 
E143 data 

rP 
I 

published value 
0.136 ± 0.016 
0.127±0.011 

rf 
this paper 

0.141 ±0.015 
0.127 ± 0.004 

where the statistical and systematic errors are combined in quadratures. 

3. The use of the parametrization of the measured asymmetries with physics constraints 
at x = 0 and x = 1 can be helpful in revealing unaccounted systematic errors in the data. For 
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example, the comparison of J i;(x) dx over the measured x range with that of Ref. [2] 

(El43) indicates that the last one is largely overestimated: 

El43[2] This paper 
0.8 

J i;(x) dx 0.120 ± 0.009 0.105 ± 0.003 0 

0.029 

We explain larger value of the integral from Ref. [2] by pretty large fluctuations of some 
data pionts at intermediate x. Due to the same reason the unconstrained fit (free P 2) of the 

El43 data yields Aj(x = 1) > 1 (see Figs. 2c, 2d). 

4. The parametrization of the asymmetries with the constraints at the boundaries 
provides a law for the extrapolations to the unmeasured low x and high x regions. This law 
is suggested by the data themselves, which we consider as more justified than making 
assumptions similar to those of Refs. [ 1, 2]. We find, for example, that El43 underestimates 
the low x contribution to the integral: 

El43 paper This paper 
0.029 

J i;<x) dx 0.006 ± 0.004 0.021 ± 0.003. 
0.0 

This difference can serve as an argument to perform better measurements in the low x range 
for the proper choice of the parametrization. 

5. The rj calculated from the parametrized asymmetries with the constraints at the 

boundaries have smaller errors than those of Refs. [2, 9]. This indicates overestimation of 
possible systematic errors in these papers which devaluates the results of the measurements 
when compared to the Ellis-Jaffe predictions. 

The proposed method allows one to demonstrate, that the conclusion of Ref. [2] that 

rj is more than two standard deviations velow the Ellis-Jaffe sum rule predictions is 

dominated by systematic errors. The values of the first moment of i; calculated by the 

proposed method from SMC and El43 data are also smaller than theoretical predictions, but 

the significance of deviation from them is now larger. For example, the integrals rf 
calculated from the fits of the SMC, El43 and (SMC+El43) data on Af (taken with 

statistical and systematic errors combuned in quadratures) are below the Ellis-Jaffe 
predictions by 2.5, 10 and 9o, respectively. These results can be considered as a clear proof 
of the violation of the Ellis-Jaffe sum rule. 
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6. The value of rf depends only slightly on the .4{,2 parametrization and the present 

accuracy of the data does not permit one to choose between them. 

7. Concerning the shortcomings of the method it should be emphasized that the 

calculation of the errors for r r can be improved using a more sophisticated procedure for 

the treatment of experimental errors and their correlations. But we believe that this proce­
dure will not change substantially the above conclusions. Our belief is based on the com­
parison of the P 

1 
and M' 

1 
values given in Table 3. For the Table 3 (line b) results we have 

taken each experimental point with the error equal to the linear sum of the statistical and 
systematic errors, i.e., the upper limit of the possible error; u ing P 1 and M'1 from these 

fits for the estimations of the r r and M' r we have found that difference between the 

SMC+E143 data and the Ellis-Jaffe prediction will be 7.5cr instead of 9cr obtained in case 
of more common treatment of errors. 
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