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The present paper is dedicated to the memory of Matey Mateev, a remarkable
scientist and man, and a very dear friend of mine. On July 25, 2010 he and
his wife Rumyana were tragically killed in a car accident near Sofia. Eternal
memory for both of them . . .

For the first time I met Mag (under this name Matey was known to his rela-
tives and friends) in 1966 in Yalta, where an International School on Theoret-
ical Physics was held. A year later I was invited to ICTP, Trieste, where Mag
had already been staying for several months. For about half a year we had in-
tensively worked together on a three-dimensional formulation of a relativistic
two-particle problem in quantum field theory (QFT). Since then, our scientific
and friendly contacts had not been interrupted until his passing away.

In 1971, Mag, Rumyana and their son Dragomir came to Dubna and as it turned
out for a pretty long time: until 1980. Mag organically fit into the scientific life of
the Laboratory of Theoretical Physics, JINR and quickly gained credibility and
respect of his colleagues. In 1980, he brilliantly defended the Doctor of Science
dissertation that was devoted to the problem of construction of QFT contain-
ing a hypothetical universal parameter, the fundamental length. In the papers
underlying the dissertation one could clearly see the author’s adherence to the
geometric scenario of the development and deepening of QFT. He believed that
the theory based on the geometric principle had a real chance to be a logically
consistent scheme. The Einstein heuristic formula

“Experiment = Geometry + Physics”

time and again appeared in our discussions, and Mag was convinced that this
formula was true. In fact, our joined papers [1, 2] on the formulation of the
local QFT based on the de-Sitterian geometry of the momentum 4-space were
written on Mag’s initiative. These publications served as an impetus to a cycle
of works [3–10]. In the present paper, I would like to resume some results and
conclusions of papers [1–10] and thus pay tribute to Mag Mateev.
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1. For decades we have witnessed the impressive success of the Standard Model
(SM) in explaining properties and regularities observed in experiments with el-
ementary particles. The mathematical basis of the SM is the local Lagrangian
QFT. The very concept of an elementary particle assumes that it does not have a
composite structure. In agreement with the contemporary experimental data any
fundamental particle of the SM does not manifest a structure like this, up to dis-
tances of the order of 10−16 − 10−17 cm. The adequate mathematical images of
point-like particles are the local quantized fields - boson and fermion. Particles
are the quanta of the corresponding fields. In the framework of the SM these are
leptons, quarks, vector bosons and the Higgs scalar, all characterized by certain
values of mass, spin, electric charge, colour, isotopic spin, hypercharge, etc.

Intuitively it is clear that an elementary particle should carry small enough por-
tions of different “charges” and “spins”. In the theory this is guaranteed by
assigning the local fields to the lowest representations of the corresponding com-
pact groups.

As for the mass of the particle m, this quantity is the Casimir operator of the
noncompact Poincaré group, and in the unitary representations of this group
used in QFT they may have arbitrary values in the interval 0 ≤ m < ∞. In
the SM one observes a great variety in mass values. For example, the t-quark is
more than 300 000 times heavier than the electron. In this situation the question
naturally arises: up to what values of mass one may apply the concept of a
local quantum field?

The free Klein-Gordon equation for the one component real scalar field ϕ(x)
has always the form

(� +m2)ϕ(x) = 0. (1)

Hence, after standard Fourier transform

ϕ(x) =
1

(2π)3/2

∫
e−ipμx

μ

ϕ(p) d 4p (pμxμ = p0x0 − p.x), (2)

we find the equation of motion in the Minkowski momentum 4-space:

(m2 − p2)ϕ(p) = 0, p2 = p2
0 − p2. (3)

From a geometric point of view m is the radius of the “mass shell” hyperboloid

m2 = p2
0 − p2, (4)

where the field ϕ(p) is defined, and in the Minkowski momentum space one may
embed hyperboloids of type (4) of an arbitrary radius.

Formally, the contemporary QFT remains a logically perfect scheme and its
mathematical structure does not change at all up to arbitrarily large values of
masses of quanta. Maybe this pathological property is the Achilles heel of
this theory?! The key idea of the approach developed in [1-10] is the following
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radical hypothesis: the mass spectrum of elementary particles, i.e., the ob-
jects described by local quantum fields, has to be cut off at a certain value
M

m ≤ M , (5)

This statement has to be accepted as a new fundamental principle of Nature
which similarly to the relativistic and quantum postulates should underlie QFT.
The new universal physical constant M is not only the maximal value of particle
mass but also plays the role of a new high-energy scale. We shall call this param-
eter the fundamental mass. It is worth emphasizing that here, due to (5), the
Compton wave length of a particle λC = �/mc cannot be smaller than the “fun-
damental length” l = �/Mc. According to [11], the parameter λC characterizes
the dimensions of the region of space in which a relativistic particle of mass m
can be localized. Therefore, the fundamental length l introduces into the the-
ory a universal bound on the accuracy of the localization in space of elementary
particles.

2. Let us go back to the free one-component real scalar field we considered above
(see(1)-(4)). We suppose that its massm satisfies the condition (5). How should
one modify the equations of motion in order that the existence of the bound
(5) should become as evident as it is the limitation v ≤ c in the special theory
of relativity? In the latter case, everything is explained in a simple way: the
relativization of the 3-dimensional velocity space is equivalent to a transition in
this space from Euclidean to Lobachevsky geometry realized on the upper sheet
of the 4-dimensional hyperboloid (4). Let us act in a similar way and substitute
the 4-dimensional Minkowski momentum space, which is used in the standard
QFT, to (anti)de Sitter momentum space realized on the 5-hyperboloid

p2
0 − p2 + p2

5 = M2. (6)

We suppose that in the p-representation our scalar field is defined just on the
surface (6), i.e., it is a function of five variables (p0, p, p5), which are connected
by relation (6)

δ(p2
0 − p2 + p2

5 −M2)ϕ(p0, p, p5). (7)

Here the energy p0 and the 3-momentum p preserve their usual meaning and the
mass shell relation (4) is satisfied as well. Therefore, for the field considered
ϕ(p0, p, p5) the condition (5) is always fulfilled.

Clearly, in Eq. (7) the specification of a single function ϕ(p0, p, p5) of five
variables (pμ, p5) is equivalent to the definition of two independent functions
ϕ1(p) and ϕ2(p) of the 4-momentum pμ

ϕ(p0, p, p5) ≡ ϕ(p, p5) =
(
ϕ(p, p5)
ϕ(p,−p5)

)
=
(
ϕ1(p)
ϕ2(p)

)
,

|p5| =
√
M2 − p2.

(8)
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The appearance of the new discrete degree of freedom p 5/|p5| and the associ-
ated doubling of the number of field variables is an important feature of the new
approach. It must be taken into account in the search for the equation of mo-
tion for the free field in the de Sitter momentum space. Due to the mass shell
relation (4), the Klein–Gordon equation (3) should also be satisfied by the field
ϕ(p0, p, p5) :

(m2 − p2
0 + p2)ϕ(p0, p, p5) = 0. (9)

From our point of view this relation is unsatisfactory for two reasons:

1. It does not reflect the bounded mass condition (5).

2. It cannot be used to determine the dependence of the field on the new
quantum number p5/|p5| in order to distinguish between the components
ϕ1(p) and ϕ2(p).

Here we notice that because of (6) Eq. (9) can be written as:

(p5 +M cosμ)(p5 −M cosμ)ϕ(p, p5) = 0, cosμ =

√
1 − m2

M2
. (10)

Now following the Dirac trick we postulate the equation of motion under ques-
tion in the form:

2M(p5 −M cosμ)ϕ(p, p5) = 0. (11)

Clearly, Eq. (11) has none of the enumerated defects of the standard Klein-
Gordon equation (9). However, Eq. (9) is still satisfied by the field ϕ(p, p 5).

From Eqs. (11) and (8) it follows that

2M(|p5| −M cosμ)ϕ1(p) = 0,
2M(|p5| +M cosμ)ϕ2(p) = 0,

(12)

and we obtain:

ϕ1(p) = δ(p2 −m2)ϕ̃1(p)
ϕ2(p) = 0

(13)

Therefore, the free field ϕ(p, p5) defined in the (anti) de Sitter momentum space
(6) describes the same free scalar particles of mass m as the field ϕ(p) in the
Minkowski p-space, with the only difference that now we necessarily havem ≤
M . The two-component structure (8) of the new field does not manifest itself on
the mass shell, owing to (13). However, it will play an important role when the
fields interact, i.e., off the mass shell.

Now we face the problem of constructing the action corresponding to Eq. (11)
and transforming it to the configuration representation.
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In the following, we shall use the Euclidean formulation of the theory which
appears as an analytical continuation to purely imaginary energies:

p0 → ip4. (14)

In this case, instead of the (anti) de Sitter p-space (6), we shall work with de
Sitter p-space

−p2
n + p2

5 = M2, n = 1, 2, 3, 4. (15)

Obviously,
p5 = ±

√
M2 + p2. (16)

If one uses Eq. (15), the Euclidean Klein–Gordon operator m 2 + p2 may be
written, similarly to (10), in the following factorized form:

m2 + p2 = (p5 +M cosμ)(p5 −M cosμ). (17)

Clearly, the nonnegative functional

S0(M) = πM

∫
d4p

|p5|
[
ϕ+

1 (p)2M(|p5| −M cosμ)ϕ1(p)

+ ϕ+
2 (p)2M(|p5| +M cosμ)ϕ2(p)

]
, (18)

ϕ1,2(p) ≡ ϕ(p,±|p5|), (19)

plays the role of the action integral for the free field ϕ(p, p5). The action may
be written also as a 5-integral

S0(M) = 2πM
∫
ε(p5)δ(pLpL −M2)d5p

×
[
ϕ+(p, p5)2M(p5 −M cosμ)ϕ(p, p5)

]
, (20)

L = 1, 2, 3, 4, 5,

where
ε(p5) =

p5

|p5|
. (21)

The Fourier transform and the configuration representation have a special role
in this approach. First, we note that in the basic equation (15), which defines the
de Sitter p-space, all the components of the 5-momentum enter on equal footing.
Therefore, the expression δ(pLpL −M2)ϕ(p, p5), which now replaces (7), may
be Fourier transformed in the following way:

2M
(2π)3/2

∫
e−ipKx

K

δ(pLpL −M2)ϕ(p, p5)d5 p = ϕ(x, x5), (22)

K,L = 1, 2, 3, 4, 5.
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This function obviously satisfies the following differential equation in the 5-
dimensional configuration space:

(
∂2

∂x2
5

− � +M2

)
ϕ(x, x5) = 0. (23)

Integration over p5 in (22) gives

ϕ(x, x5) =
M

(2π)3/2

∫
eipnx

n d4p

|p5|
[
e−i|p5|x

5
ϕ1(p) + ei|p5|x

5
ϕ2(p)

]
,

(24)
ϕ+(x, x5) = ϕ(x,−x5),

from which we get

i

M

∂ϕ(x, x5)
∂x5

=
1

(2π)3/2

∫
eipnx

n

d4p
[
e−i|p5|x

5
ϕ1(p) − ei|p5|x

5
ϕ2(p)

]
, (25)

The four dimensional integrals (24) and (25) transform the fields ϕ 1(p) and
ϕ2(p) to the configuration representation. The inverse transforms have the form:

ϕ1(p)=
−i

2M(2π)5/2

∫
e−ipnx

n

d4x
[
ϕ(x, x5)

∂ei|p5|x
5

∂x5
− ei|p5|x

5 ∂ϕ(x, x5)
∂x5

]
,

(26)

ϕ2(p)=
i

2M(2π)5/2

∫
e−ipnx

n

d4x
[
ϕ(x, x5)

∂e−i|p5|x
5

∂x5
− e−i|p5|x

5 ∂ϕ(x, x5)
∂x5

]
.

We note that the independent field variables

ϕ(x, 0) ≡ ϕ(x) =
M

(2π)3/2

∫
eipnx

n

d4 p
ϕ1(p) + ϕ2(p)

|p5|
(27)

and

i

M

∂ϕ(x, 0)
∂x5

≡ χ(x) =
1

(2π)3/2

∫
eipnx

n

d4p [ϕ1(p) − ϕ2(p)] (28)

can be treated as initial Cauchy data on the surface x5 = 0 for the hyperbolic-
type equation (23).

Now substituting Eq. (26) into the action (18), we obtain

S0(M) =
1
2

∫
d4 x

[∣∣∣
∂ϕ(x, x5)
∂xn

∣∣∣
2

+m2|ϕ(x, x5)|2

+
∣∣∣i
∂ϕ(x, x5)
∂x5

−M cosμϕ(x, x5)
∣∣∣
2]

≡
∫
L0(x, x5)d4 x. (29)
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It is easily verified that due to Eq. (23) the action (29) is independent of x 5:

∂S0(M)
∂x5

= 0. (30)

Therefore, the variable x5 can be arbitrarily fixed and S0(M) can be viewed as
a functional of the corresponding initial Cauchy data for Eq. (23). For example,
for x5 = 0 we have

S0(M) =
1
2

∫
d4 x

[(∂ϕ(x)
∂xn

)2

+m2(ϕ(x))2

+M2 (χ(x) − cosμϕ(x))2
]
≡
∫
L0(x,M)d4 x. (31)

Thus, we have shown that in the developed approach the property of locality of
the theory does not disappear, moreover it becomes even deeper, as it is extended
to dependence on the extra fifth dimension x5.

It is clear that the dependence of the action (31) on the two functional arguments
ϕ(x) and χ(x) is a direct consequence of the fact that in momentum space the

field has a doublet structure

(
ϕ1(p)
ϕ2(p)

)
due to two possible signs of p5. However,

the Lagrangian L0(x,M) does not contain a kinetic term corresponding to the
field χ(x). Therefore, this variable is just auxiliary. In advance let us point
out that the special role of the 5-dimensional configuration space in the new
formalism is determined by the fact that the gauge symmetry transformations
are now localized in it.

Let us discuss the question about the conditions for the transition of the new
scheme into the standard Euclidean QFT (the so called “correspondence prin-
ciple”). The Euclidean momentum 4-space is the “flat limit” of the de Sitter
p-space (15) and may be associated with the approximation

|pn| �M,

p5 
M.
(32)

In configuration space we have, respectively,

ϕ(x, x5) 
 e−iMx5ϕ(x),
χ(x) 
 ϕ(x).

(33)

In the next approximation,

ϕ(x) − χ(x) 
 �ϕ(x)
2M2

. (34)
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Taking into account (10), (31) and (34) one may conclude that in the “flat limit”
(formally when M → ∞) the Lagrangian L0(x,M) from (31) coincides with
its Euclidean counterpart.

3. Let us briefly consider the new version of the free Maxwell field theory based
on the de Sitter p-space (15). The electromagnetic potential, similarly to the
5-momentum, now becomes a 5-vector

AL(p, p5) = {Al(p, p5), A5(p, p5)} = {A†
l (−p, p5),−A†

5(−p, p5)}
l = 1, 2, 3, 4. (35)

Its 5-dimensional Fourier transform looks like

AL(x, x5) =
2M

(2π)3/2

∫
e−ipNx

N

δ(pKpK −M2)AL(p, p5)d5 p,

K,L,N = 1, 2, 3, 4, 5.
(36)

It is evident that (36) satisfies Eq. (23):

(
∂2

∂x2
5

− � +M2

)
AL(x, x5) = 0. (37)

The action is given by the integrals (compare with (20) and (29))

S0(M) =2πM
∫
ε(p5)δ(pLpL −M2)d 5p 2M(p5 −M)

×
∣∣∣An(p, p5) −

pnA5(p, p5)
p5 −M

∣∣∣
2

=
∫
d4xL0(x, x5)

=
1
4

∫
d4xF ∗

KL(x, x5)FKL(x, x5)

+
1
2

∫
d4x

∣∣∣
∂(eiMx5AL(x, x5))

∂xL
− 2iMeiMx5A5(x, x5)

∣∣∣
2

,

n = 1, 2, 3, 4; K,L = 1, 2, 3, 4, 5,

(38)

where the “field strength 5-tensor”

FKL(x, x5) =
∂(eiMx5AK(x, x5))

∂xL
− ∂(eiMx5AL(x, x5))

∂xK
(39)

is introduced. This quantity is obviously expressed in terms of the commutator
of the 5-dimensional covariant derivatives

DL =
∂

∂xL
− iqeiMx5AL(x, x5), (40)
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where q is the electric charge. It is easy to verify that the integral (38) is invariant
under gauge transformations of the 5-potential AL(x, x5)

eiMx5AL(x, x5) → eiMx5AL(x, x5) −
∂(eiMx5λ(x, x5))

∂xL
(41)

with the condition
(
∂2

∂x2
5

− � +M2

)
λ(x, x5) = 0, λ†(x, x5) = λ(x,−x5). (42)

Let us emphasize that the solution of Eq. (42) is defined by the initial data

λ(x, 0) ≡ λ(x) = λ†(x),
i

M

∂λ(x, 0)
∂x5

≡ μ(x) = μ†(x).
(43)

The action (38), due to (37), similarly to its scalar analogue (29), does not de-
pend on the coordinate x5. For that reason it may be considered as a functional
of the Cauchy data for Eq. (37)

AL(x, 0) = AL(x),
i

M

∂AL(x, 0)
∂x5

≡ XL(x). (44)

According to (41),(43) and (44) the gauge transformations of these functions are
the following:

Al(x) → Al(x) −
∂λ(x)
∂xl

A5(x) → A5(x) − iM(λ(x) − μ(x))

Xl(x) → Xl(x) −
∂μ(x)
∂xl

(45)

X5(x) → X5(x) + iM(λ(x) − μ(x)) − i

M
�λ(x)

l = 1, 2, 3, 4.

Let us emphasize that in the gauge

A5(x) = 0 (46)

the transformations (45) shrink up to a standard gauge group parameterized by
the function λ(x).

If one considers the charged scalar particles in our formalism, the corresponding
action integral takes the form(cf(3.1))

S0(M)=
∫
d4x

[∣∣∣
∂ϕ(x)
∂xn

∣∣∣
2

+m2|ϕ(x)|2 +M2|χ(x) − cosμϕ(x)|2
]
, (47)
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where ϕ(x) and χ(x) are complex functions.

It is easy to realize that the Abelian gauge group (45) has the following repre-
sentation in the charged scalar field basis:

ϕ→ eiqλ(x)ϕ(x)

χ(x) → eiqλ(x) [i(μ(x) − λ(x))ϕ(x) + χ(x)]
(48)

(q is the electric charge). The technique developed allows one to formulate in
our terms a unique prescription for construction of the action integral for the
Euclidean scalar electrodynamics consistent with the requirements of locality,
gauge invariance, and the de Sitter structure of the momentum space:

1. In the action integral (47) for the complex scalar field it is necessary to

replace the simple derivatives (including
∂

∂x5
in χ(x) =

i

M

∂

∂x5
ϕ(x, 0))

by the covariant ones (see (40)).

2. Add to the obtained expression the action integral of the electromagnetic
field (38) putting x5 = 0 in it.

The total action integral remains invariant under simultaneous transforma-
tions (45) and (48).

4. As far as the new QFT is elaborated on the basis of the de Sitter momentum
space (15), it is natural to suppose that in the developed approach the fermion
fields ψα(p, p5) have to be de Sitter spinors, i.e., to transform under the four-
dimensional representation of the group SO(4, 1). Further on, we shall use the
following γ - matrix basis (γ4 = iγ0):

γL = (γ1, γ2, γ3, γ4, γ5),
{
γL, γM

}
= 2gLM ,

gLM =

⎛

⎜⎜⎜⎜⎝

−1 0 0 0 0
0 −1 0 0 0
0 0 −1 0 0
0 0 0 −1 0
0 0 0 0 1

⎞

⎟⎟⎟⎟⎠
.

(49)

In the ordinary formalism the free Euclidean Dirac operator

D(p) = m+ pnγ
n; n = 1, 2, 3, 4 (50)

appears as a result of factorization of the Euclidean K.-G.wave operator

p2
n +m2 = (m+ pnγ

n)(m− pnγ
n). (51)
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Now instead of (51) we obtain the following factorization formula:

2M(p5 −M cosμ) =
[
2M sin

μ

2
+ pnγ

n + (p5 −M)γ5
]

×
[
2M sin

μ

2
− pnγ

n − (p5 −M)γ5
]

(52)

and, correspondingly, instead of (50) the new expression for the Dirac operator

D(p,M) = pnγ
n + (p5 −M)γ5 + 2M sin

μ

2
. (53)

It is easy to check that in the “flat approximation”

|pn| �M, m�M, p5 
M

both expressions (53) and (50) coincide. The operator (53) allows us to develop
the local spinor field formalism in configuration space that can be considered as
a generalization of the Euclidean Dirac theory along our lines. But the amusing
point is that the new KG-operator 2M(p5 −M cosμ) has one more decomposi-
tion into matrix factors

2M(p5 −M cosμ) =
[
pnγ

n + γ5(p5 +M) + 2M cos
μ

2

]

×
[
pnγ

n + γ5(p5 +M) − 2M cos
μ

2

]
. (54)

Therefore, if our approach is considered to be realistic, it may be assumed that in
Nature there exists some exotic fermion field associated with the wave operator

Dexotic(p,M) = pnγ
n + γ5(p5 +M) + 2M cos

μ

2
(55)

In contrast to D(p,M) = pnγ
n + (p5 − M)γ5 + 2M sin μ

2 the operator
Dexotic(p,M) does not have a limit whenM → ∞, that justifies the name cho-
sen for the field considered. The polarization properties of the exotic fermion
field differ sharply from the standard ones. It is tempting to think that the
quanta of the exotic fermion field have a relation to the structure of the
“dark matter”.

Using the matrix basis (γ1, γ2, γ3, γ4, γ5) one may represent (15) as

(M + pLγ
L)(M − pKγ

K) = M2 − pKp
K = 0, K, L = 1, 2, 3, 4, 5.

For spinor field ψ(p, p5), which is defined on the de Sitter surface (15), the
matrix operators

1
2M

(M + pKγ
K) ≡ ΠR(p, p5),

1
2M

(M − pKγ
K) ≡ ΠL(p, p5)

(56)
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are projection operators. In other words,

Π2
R = ΠR, Π2

L = ΠL,

ΠRΠL = ΠLΠR = 0,
ΠR + ΠL = 1.

(57)

So in the de Sitter momentum space the fermion field ψ(p, p5) can be repre-
sented as a sum of two fields

ψ(p, p5) = ψR(p, p5) + ψL(p, p5),
ψR(p, p5) = ΠRψ(p, p5),
ψL(p, p5) = ΠLψ(p, p5)

(58)

which obey the following 5-dimensional Dirac equations:

(M − pKγ
K)ψR(p, p5) = 0,

(M + pKγ
K)ψL(p, p5) = 0.

(59)

Obviously, decomposition (58) is de Sitter invariant. It is easy to verify that in
the “flat approximation” |pn| �M, p5 
M one has

ΠR,L =
1 ± γ5

2
. (60)

This is the reason that we can consider the fields ψR(p, p5) and ψL(p, p5) as

“chiral” components in our approach. The new chirality operator pLγ
L

M , simi-
larly to its “flat counterpart”, has eigenvalues equal to ±1 but depends on the
energy and momentum. It is well known that the chiral fermions are the basic
spinor field variables in the SM. The new geometrical nature of these quanti-
ties has to manifest itself at high energies E ≥ M . In configuration space the
5-dimensional Dirac equations (59) take the form

[
M − i

∂

∂xK
γK

]
ψR(x, x5) = 0,

[
M + i

∂

∂xK
γK

]
ψL(x, x5) = 0;

K = 1, 2, 3, 4, 5.

(61)

Introducing the corresponding initial conditions at x 5 = 0

ψR(x, 0) ≡ ψ(R)(x),
ψL(x, 0) ≡ ψ(L)(x),

one obtains the local fields which can undergo chiral gauge transformations. The
new geometric concept of chirality allows us to think that the parity violation in
weak interactions discovered more than 50 years ago was a manifestation of the
de Sitter nature of the momentum 4-space.
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5. It was demonstrated that there exists a local field formalism respecting the
gauge invariance principle and being consistent with our main hypothesis m ≤
M .

A nontrivial generalization of the Standard Model based on our geometric ap-
proach, in particular, on a new concept of chirality, is now being worked out.
Unfortunately, already without Mag . . .

In conclusion, I will demonstrate just one fragment of the new SM version con-
cerning the Higgs boson. It is clear that for description of this particle in our
framework, one needs two SUL(2)-doublets of complex scalar fields ϕ(x) and
χ(x):

ϕ(x) =
(
ϕ1(x)
ϕ2(x)

)
, χ(x) =

(
χ1(x)
χ2(x)

)
(62)

which are defined in the Euclidean 4-dimensional x-space.

Let us consider in this space the following Lagrangian:

LHIGGS(ϕ, χ) =
(∂ϕ(x)
∂xn

)†(∂ϕ(x)
∂xn

)
+M2(ϕ(x) − χ(x))†(ϕ(x) − χ(x))

+
λ2

2

{[ϕ†(x)ϕ(x) + χ†(x)χ(x)
2

− v2
]
− v2(ϕ(x) − χ(x))†(ϕ(x) − χ(x))

}

≡
(∂ϕ(x)
∂xn

)†(∂ϕ(x)
∂xn

)
+ U(ϕ(x), χ(x)), (63)

where

M2 >
λ2v2

2
. (64)

The potential U(ϕ(x), χ(x)) admits an infinite set of degenerate ground states
with minimum energy satisfying the following condition (cf. [12], p. 16):

|ϕ2(x)| = |χ2(x)| = v
2 .

The standard procedure based on the fixation of the ground state leads to the
spontaneous breakdown of the SU(2)L

⊗
U(1)Y - symmetry. As a result, we

obtain the following expression for the Higgs boson mass:

mH =
√

2λv

√
1 − λ2v2

2M2
(65)

(see (64)). From (65) one easily finds

1 − m2
H

M2
=
(

1 − λ2v2

M2

)2

≥ 0. (66)

So our main principle (5) is not violated. In the “flat limit” M → ∞ relation
(65) gives us the familiar formula:

mH =
√

2λv. (67)
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