ОБЪЕДИНЕННЫЙ ИНСТИТУТ ЯДЕРНЫХ ИССЛЕДОВАНИЙ

ЛАБОРАТОРИЯ ФИЗИКИ ВЫСОКИХ ЭНЕРГИЙ ИМ. В.И.ВЕКСЛЕРА И А.М. БАЛДИНА

Ha npabax pykonucu

Терехин Аркадий Аркадьевич

Исследование дифференциального сечения реакции dp - упругого рассеяния при энергиях 1 - 2 ГэВ

01.04.16 - физика атомного ядра и элементарных частиц

ΑΒΤΟΡΕΦΕΡΑΤ

диссертации на соискание учёной степени кандидата физико-математических наук

Дубна – 2020

Работа выполнена в Лаборатории Физики Высоких Энергий им. В.И. Векслера и А.М. Балдина

Объединенного института ядерных исследований

Научный руководитель

Ладыгин Владимир Петрович, доктор физико-математических наук, Лаборатория физики высоких энергий им. В.И. Векслера и А.М. Балдина, начальник сектора №2 НЭОСФМС

Официальные оппоненты

Мочалов, Василий Вадимович, доктор физико-математических наук, ведущий научный сотрудник Отделения экспериментальной физики ФГБУ ГНЦ ИФВЭ НИЦ «Курчатовский институт»

Львов Анатолий Иосифович, кандидат физико-математических наук, заведующий отделом ядерных исследований Физического института имени П. Н. Лебедева РАН

С электронной версией диссертации можно ознакомиться на официальном сайте Объединенного института ядерных исследований в информационно-телекоммуникационной сети «Интернет» по адресу: http://lib.jinr.ru C печатной версией диссертации можно ознакомиться в Научно-технической библиотеке ОИЯИ (г. Дубна, Московская область, ул. Жолио-Кюри, д. 6).

Ученый секретарь диссертационного совета кандидат физико-математических наук

Общая характеристика работы

Актуальность темы.

Согласно современным научным представлениям об элементарных частицах нуклоны рассматриваются как сложные объекты, состоящие из кварков, взаимодействие между которыми осуществляется глюонами. Мезонные степени свободы проявляются в ядерных процессах на относительно больших межнуклонных расстояниях. При описании нуклон-нуклонных (NN)взаимодействий используются феноменологические потенциалы, основанные на обмене мезонами. Такие потенциалы (CD-Bonn, Nijmegen, AV18, Paris) воспроизводят данные при энергиях до 350 МэВ. Однако, даже при энергиях свыше 100 МэВ при описании дифференциального сечения Nd – рассеяния были выявлены расхождения результатов трехнуклонных расчетов при использовании только парных NN - сил с экспериментальными данными. Включение в расчеты релятивистских эффектов и стандартных 3N сил (Таксон-Мельнбурская, Урбанская-IX, Фуджита-Миязавы) позволяет улучшить согласие теории с экспериментом [1]. Тем не менее, с ростом энергии расхождения увеличиваются. Другим подходом в теоретических исследованиях ядерных сил при низких энергиях является подход эффективной киральной теории, основанной на КХД [2]. NN – потенциал, построенный в рамках этой модели, также как и феноменологические потенциалы, в целом, правильно описывает фазовые сдвиги NN – рассеяния вплоть до 300 МэВ.

Развитие вышеуказанных подходов позволяет приблизиться к пониманию того, каким образом происходит переход от КХД к адронной физике, от глюонного обмена между кварками к мезонному обмену между нуклонами.

С увеличением энергии начинают вступать в силу релятивистские эффекты, которые могут оказывать значительное влияние на различные наблюдаемые. Поэтому учет релятивистских эффектов необходим для описания свойств сильного взаимодействия и структуры легких ядер. Также при больших переданных импульсах начинают играть роль ненуклонные степени свободы, которые проявляются как $\Delta\Delta$, NN^* , N^*N^* , 6q и др.

Для случая высоких энергий и больших поперечных импульсов уста-

новлены правила кваркового счёта (ПКС), определяющие характер энергетической зависимости дифференциального сечения произвольной бинарной реакции рассеяния на большие углы. Анализ экспериментальных данных по сечению $dp \rightarrow pd$ и $dd \rightarrow^3 Hen$ реакций показал, что область, соответствующая ПКС, начинается при энергиях $E_d \sim 500$ МэВ.

Дейтрон, как простейшее ядро, имеющее спин J = 1, четность P: $J^p = 1^+$, и изоспин I = 0, представляет особый интерес по ряду причин. Он является наиболее простой ядерной системой, которая может быть исследована экспериментально и теоретически с высокой точностью. Изучение структуры дейтрона может дать информацию о роли различных эффектов в ядрах, таких как вклады Δ -изобар, кварковых степеней свободы.

К настоящему времени накоплен значительный экспериментальный материал о дейтроне, полученный с помощью лептонных и адронных пробников. В тоже время, структура дейтрона до сих пор остается до конца не изученной. Одним из самых простых типов взаимодействия с участием дейтрона является dp (pd) - упругое рассеяние. Эта реакция на протяжении многих лет является предметом теоретических и экспериментальных исследований. Для описания экспериментальных данных при энергиях до $300 \text{ МэВ/нуклон используются различные модели двухнуклонного (2N) и$ трехнуклонного (3N) взаимодействий с использованием парных и трехнуклонных потенциалов. Как для дифференциального сечения, так и для поляризационных наблюдаемых установлена общая закономерность, а именно: вычисления с учетом только 2N - сил дают существенные расхождения с экспериментом, особенно при больших углах рассеяния. Включение в расчеты 3N - сил или Δ -изобары обеспечивает лучшее согласие с данными. Однако, с увеличением энергии все расчеты расходятся с полученными данными. Это указывает на отсутствие правильного описания спиновой части современных моделей 3N сил и на необходимость дополнительных, более сложных расчетов.

Для описания *dp* - упругого рассеяния при энергиях свыше 400 МэВ/нуклон используются подходы, основанные на дифракционной теорией многократного рассеяния Глаубера–Ситенко. Изучение различных на-

4

блюдаемых при таких энергиях поможет понять механизмы проявления фундаментальных степеней свободы на расстояниях, сравнимыми с размерами нуклона. Для этой цели необходимо наличие богатого экспериментального материала в диапазоне энергий, для которого возможно применение развивающихся теоретических подходов.

Целью данной работы является получение новых данных по дифференциальному сечению и векторной анализирующей способности $A_y dp$ упругого рассеяния в диапазоне энергий 500 – 1000 МэВ/нуклон и их сравнение с существующими экспериментальными данными, а также с предсказаниями различных теоретических моделей.

Для достижения поставленной цели необходимо было решить следующие задачи:

- 1. Подготовка и проведение измерений.
- Разработка процедуры выделения полезных событий на основе процедуры CH₂ - C – вычитания, используя амплитудную и временную информацию со сцинтилляционных детекторов.
- 3. Получение угловых зависимостей по дифференциальному сечению при энергиях 500, 650, 700, 750, 900 и 1000 МэВ/нуклон.
- 4. Получение угловой зависимости для анализирующей способности A_y при энергии 1000 МэВ/нуклон.
- 5. Проведение сравнительного анализа полученных результатов с данными других экспериментов и с предсказаниями теории.

Личный вклад автора состоит в активном участии в подготовке и проведении измерений на Нуклотроне, анализе экспериментальных данных, вычислении угловых зависимостей исследуемых наблюдаемых, а также личной апробации исследования: подготовка публикаций, участие в конференциях, написание тезисов докладов.

Положения, выносимые на защиту:

Результаты по измерению угловых зависимостей для дифференциального сечения dp - упругого рассеяния при шести значениях энергий: 500, 650, 700, 750, 900 и 1000 МэВ/нуклон, полученные на Станции внутренних мишеней Нуклотрона в 2012 – 2015 гг, а также результаты

по дифференциальному сечению и векторной анализирующей способности A_y при энергии 1000 МэВ/нуклон, полученных в экспериментах по изучению дейтрон-протонного взаимодействия на выведенных пучках Синхрофазотрона с использованием водородной пузырьковой камеры.

- 2. Результаты сравнения полученных угловых зависимостей с данными других экспериментов, выполненных в лабораториях NASA (Radiation Effects Laborotory, Lewis Research Center), Лос-Аламос центре (LAMPF), Брукхейвенской Национальной Лаборатории (BNL) при близких значениях энергий, а так же с теоретическими вычислениями, выполненными в рамках релятивистской теории многократного рассеяния.
- 3. Анализ энергетических зависимостей дифференциального сечения при фиксированных углах рассеяния в с.ц.м. и их сравнение с предсказаниями правил кваркового счета.

Научная новизна. В результате обработки данных, полученных на Станции внутренних мишеней Нуклотрона впервые получены угловые зависимости по дифференциальному сечению *dp* - упругого рассеяния для энергий 500, 700, 750 и 900 МэВ/нуклон.

Научно - практическая значимость. Полученные данные по угловым зависимостям дифференциального сечения и векторной анализирующей способности A_y существенно пополняют экспериментальную базу данных в области энергий и углов, где развитие теоретических моделей является наиболее актуальным. Сравнение с предсказаниями теории дает новую информацию для описания трехнуклонных систем в диапазоне энергий 500 – 1000 МэВ/нуклон. Этот результат является первым этапом систематических поляризационных измерений на Станции внутренних мишеней Нуклотрона.

Основные результаты опубликованы в [A1] – [A23].

Апробация работы. Основные результаты работы докладывались на: XIV международном семинаре по физике спина при высоких энергий DSPIN (Дубна, 2011), научной сессии-конференции секции ЯФ ОФН РАН "Физика фундаментальных взаимодействий" (Москва, ИТЭФ, 2011), международных конференциях HS2013,2015 (Словакия), RNP2012,2014 (Словакия), международных Балдинских семинарах по физике высоких энергий (ОИЯИ, 2012, 2014, 2016, 2018), 69-й международной конференции «Ядро-2019» (Дубна, 2019), международной сессии-конференции СЯФ ОФН РАН (2016), постерной сессии ПКК (ОИЯИ, 2011, 2015, 2016), конференции молодых ученых и специалистов ОМУС (ОИЯИ, 2010, 2011, 2013).

Объем и структура работы. Диссертация состоит из введения, пяти глав, заключения, и двух приложений. Полный объем работы составляет 132 страницы, включая список литературы из 227 наименований.

Содержание работы

Во введении обосновывается актуальность исследований, проводимых в рамках данной диссертационной работы, приводится обзор научной литературы по изучаемой проблеме, формулируется цель, ставятся задачи работы, сформулированы научная новизна и практическая значимость представляемой работы, также приведено содержание работы по главам.

<u>В первой главе</u> описывается постановка эксперимента на станции внутренних мишеней Нуклотрона. Глава состоит из пяти подразделов, в которых описывается экспериментальная установка, используемые детекторы, системы сбора данных, а также процедура набора статистики.

Станция внутренних мишеней Нуклотрона представляет собой систему смены мишеней, помещенную в сферическую камеру взаимодействия, из которой откачан воздух. Система смены мишеней состоит из колеса со ступицей и обода, между которыми размещены шесть различных мишеней. В течение набора данных использовалась специально разработанная система управления мишенью (ITS CDAQ - system), позволяющая подобрать траекторию движения мишени в соответствии с циклом магнитного поля таким образом, чтобы достичь максимального взаимодействия с пучком.

Пучок дейтронов из источника "Дуоплазмотрон" ускорялся линейным ускорителем ЛУ-20 до энергии 5 МэВ/нуклон и затем инжектировался в

кольцо Нуклотрона. По достижении пучком необходимой энергии в него вводились полиэтиленовая (CH_2) или углеродная $({}^{12}C)$ мишени. Продукты взаимодействия пучка с мишенью детектировались сцинтилляционными детекторами, расположенными в плоскости ионопровода. Набор дополнительных мониторных счетчиков был расположен в вертикальной плоскости относительно оси пучка. Упруго рассеянные дейтроны и протоны регистрировались двумя парами детекторов, размещенных зеркальным образом относительно оси ионопровода, образуя, тем самым, два плеча, регистрирующих рассеяние влево и вправо для одного и того же угла в с.ц.м. Помимо этих детекторов использовались два счетчика для регистрации протонов реакции *pp* - квази-упругого рассеяния (*PP* - детекторы). Дейтронные и протонные счетчики перемещались в угловом диапазоне $heta_{lab}=19^\circ$ - $50^\circ~(heta_{c.m.}=70^\circ$ -120°). PP - счетчики были установлены под углом, соответствующему pp квази упругому рассеянию $\theta_{c.m.} = 90^{\circ}$ и оставались неподвижными на протяжении всего эксперимента. Они использовались в качестве относительных мониторов светимости. В основном наборе использовались сцинтилляционные счетчики на базе фотоумножителей Hamamatsu H7416MOD.

Для сбора и записи данных использовалась магистрально-модульная система стандарта VME (VersaModule Eurocard). Эта система позволяет осуществлять контроль запуска записи данных, а также просмотр загрузок каналов в режиме online. В состав VME-системы входят 16-ти канальные модули TQDC-16, триггерный модуль TTCM-V2.0, и контроллер FVME-V1.0.

Во второй главе описывается процедура выделения полезных событий, основанная на анализе амплитудных и временных спектров со сцинтилляционных детекторов и процедуры $CH_2 - C$ вычитания.

Для получения дифференциального сечения dp-упругого рассеяния необходимо выделение полезного сигнала из общего количества событий. Данные об энергетических потерях записываются в виде амплитуд сигналов с дейтронного и протонного счетчиков. По корреляции этих сигналов можно выделить область упругого взаимодействия дейтрона с протоном. На рис. 1 и 2 представлены корреляции энергетических потерь и разность времени пролета ΔT_{d-p} для пары кинематически сопряженных детекторов

8

при рассеянии на CH_2 - мишени для энергий 650 МэВ/н. Штриховой линией обозначен графический критерий выделения области, внутри которой сосредоточены события dp - упругого рассеяния. Тот же самый критерий использовался для данных, полученных на углеродной мишени. Пунктирными вертикальными линиями обозначены временные границы для отбора dp - упругих событий.

В процедуре $CH_2 - C$ вычитания коэффициент нормировки k определялся как отношение интегралов амплитудных распределений, набранных на полиэтилене и углероде в области, где количество полезных событий пренебрежительно мало (на рис. 3 А область нормировки ограничена вертикальными линиями).

Рис. 1. Корреляция энергетических потерь дейтронов и протонов при энергии 500 МэВ/нуклон для угла рассеяния 70° в с.ц.м. Штриховая линия - графический критерий для выделения событий *dp*упругого рассеяния.

Рис. 2. Разница времени ΔT_{d-p} между появлением сигналов с D - и P - детекторов при энергии 500 МэВ/нуклон для угла рассеяния 70° в с.ц.м., полученная с применением критерия на корреляцию амплитуд для CH_2 мишени.

На рис. 3 Б продемонстрирован результат вычитания. Область упругих *dp*-событий обозначена на рис. 3 Б штриховыми линиями. Данная процедура была выполнена для каждого значения угла рассеяния $\theta_{c.m.}$.

<u>Третья глава</u> посвящена получению угловых зависимостей дифференциального сечения дейтрон-протонного упругого рассеяния. Глава состоит из пяти разделов. В первом оцениваются вклады различных экспериментальных погрешностей на точность выставления детекторов. Во втором

Рис. 3. Гистограммы распределения событий, демонстрирующие процедуру $CH_2 - C$ вычитания для $\theta_{c.m.} = 75^{\circ}$ при энергии 500 МэВ/нуклон. А — амплитудные CH_2 - и нормированный C - спектры представлены непрерывной и пунктирной гистограммами, соответственно. Вертикальными непрерывными линиями обозначены границы интервала нормировки. В — результат вычитания, вертикальными пунктирными линиями обозначены границы области dp-упругих событий.

разделе дается общее выражение для вычисления дифференциального сечения и описывается моделирование входящих в это выражение значений эффективного телесного угла и якобиана перехода от лаб. системы к с.ц.м.

В третьем разделе приводится процедура вычисления дифференциального сечения при энергии 1000 МэВ/нуклон. Результаты были получены путем нормировки на мировые данные при $\theta_{c.m.} = 70.7^{\circ}$. Статистическая ошибка связана с вычитанием углеродного фона. Систематическая ошибка определяется нормировкой и процедурой $CH_2 - C$ вычитания.

В четвертом разделе приводится процедура вычисления дифференциального сечения для энергий 650 и 700 МэВ/нуклон. Сначала вычислялся нормировочный коэффициент для 650 МэВ/нуклон путем нормировки на данные при 641 МэВ/нуклон. Для 700 МэВ/нуклон в этот коэффициент вводилась поправка, определяемая из отношения дифференциальных сечений реакции *pp* - упругого рассеяния для 650 и 700 МэВ в диапазоне телесного угла *PP*-детектора. Статистическая погрешность дифференциального сечения складывается из неопределенностей количества упругих *dp* - событий и *PP* - мониторных событий. Систематическая погрешность сечения определяется процедурой $CH_2 - C$ - вычитания, неопределенностями якобиана перехода, телесного угла дейтронного детектора и коэффициента нормировки.

В пятом разделе приводится процедура вычисления дифференциального сечения для энергий 500, 750 и 900 МэВ/нуклон. Нормировочные коэффициенты для этих энергий вычислялись, используя экспериментальные результаты при 641 МэВ/нуклон и данные при 700 МэВ/нуклон, полученные ранее на Нуклотроне.

<u>Четвертая глава</u> содержит анализ данных, полученных на пучках Синхрофазотрона с использованием 100-см водородной камеры. Дается описание процедуры получения дифференциального сечения и векторной анализирующей способности.

Набор данных осуществлялся в серии экспериментов на 100-см водородной камере, экспонированной в выведенном пучке дейтронов Синхрофазотрона. Источник поляризованных дейтронов "Полярис" обеспечивал дейтроны с теоретическими значениями векторной и тензорной поляризаций: $(P_z, P_{zz}) = (+2/3, 0), (-2/3, 0)$ — поляризованные моды и (0, 0) — неполяризованная мода.

Для получения результатов использовались распределения событий по углу рассеяния $\theta_{c.m.}$ и по азимутальному углу φ . Оценка значения векторной поляризации пучка дейтронов производилась с использованием данных для событий реакции развала дейтрона $dp \longrightarrow ppn$. Значение тензорной поляризации пучка было оценено равным нулю. Интегрированная светимость \mathcal{L} эксперимента вычислялась как величина, обратная значению микробарн - эквивалента, который, в свою очередь, вычислялся, используя полное сечение для dp-взаимодействий.

В **пятой главе** полученные результаты сравниваются с данными других экспериментов, а также с предсказаниями теории многократного рассеяния. Также проводится сравнение полученных энергетических зависимостей при фиксированных значениях угла рассеяния в с.ц.м. с существующими экспериментальными данными и предсказаниями правил кваркового счета.

11

Глава состоит из четырех разделов. В первом описывается релятивистская модель многократного рассеяния. Вычисления проводились в системе Брейта с использованием нерелятивистской CD-Боннской ДВФ. В общем случае амплитуда реакции определяется как сумма четырех слагаемых, которым соответствуют однонуклонный обмен (ONE), однократное рассеяние (SS), двукратное рассеяние (DS) и возбуждение Δ -изобары в промежуточном состоянии. Однонуклонный обмен дает вклад только при углах, больших 90° в с.ц.м., поэтому в описании данных при 1000 МэВ/нуклон этот механизм не был включен в рассмотрение. Таким образом, амплитуда реакции рассчитывалась как сумма двух вкладов. Также для этой энергии не был включен в рассмотрение механизм возбуждения Δ - изобары. Для энергий 500 — 900 МэВ/нуклон дифференциальное сечение вычислялось для трех случаев: включая диаграммы только однонуклонного обмена и однократного рассеяния (ONE + SS), с добавлением вклада двукратного рассеяния (ONE + SS + DS) и полные расчеты с учетом вклада от возбуждения Δ изобары $(ONE + SS + DS + \Delta).$

Во втором разделе приводятся результаты по измерению дифференциального сечения и векторной анализирующей способности A_u при энергии 1000 МэВ/нуклон. На рис. 4 и 5 представлены данные, полученные из экспериментов на выведенном пучке Синхрофазотрона (обозначены сплошными символами). Открытыми символами на рис. 4 обозначены данные, полученные на Брукхейвенском космотроне (BNL) [3], на рис. 5 - данные Аргоннской национальной лаборатории (ANL) [4]. Полученные два набора данных согласуются в пределах достигнутой точности в области, где они перекрываются. Пунктирными и сплошными линиями обозначены расчеты без учета и с учетом вклада DS соответственно. Как видно, включение в расчеты вклада двукратного рассеяния, с одной стороны, уменьшает значение сечения в диапазоне настоящих измерений и, с другой стороны, обеспечивает неплохое согласие с экспериментальными результатами до $\sim 60^\circ$ в с.ц.м.. В случае с анализирующей способностью A_u механизм однократного рассеяния не воспроизводит экспериментальные данные при углах рассеяния $\theta_{c.m.}$ больше, чем 25°. Вычисления с учетом двукратного рассеяния дают лучшее

Рис. 4. Угловая зависимость дифференциального сечения для *dp*-упругого рассеяния при энергии 1000 МэВ/нуклон. Сплошными квадратами показаны результаты данной работы. Открытыми треугольниками — данные BNL [3]. Описание линий находится в тексте.

Рис. 5. Векторная анализирующая способность A_y как функция от угла рассеяния $\theta_{c.m.}$. Сплошными квадратами показаны результаты данной работы. Треугольниками — данные, полученные а ANL [4]. Описание линий находится в тексте.

согласие с экспериментальными данными в этой угловой области.

На рис. 6 представлены данные, полученные на Нуклотроне, для дифференциального сечения при 1000 МэВ/нуклон в сравнении с другими экспериментальными результатами при той же энергии и с теоретическими предсказаниями. Новые данные показаны сплошными квадратами. Полученные ранее данные для передних углов показаны сплошными кружками. Открытыми треугольниками обозначены данные BNL. Пунктирной и сплошной линиями обозначены результаты расчетов без учета и с учетом вклада DS, соответственно. Видно, что новые результаты при $\theta_{c.m.} \leq 90^{\circ}$ находятся в разумном согласии с другими данными в пределах достигнутой точности.

В третьем разделе приводятся результаты по измерению дифференциального сечения *dp*-упругого рассеяния для энергий 500 — 900 МэВ/нуклон (рис. 7 - 11). Сплошными квадратами обозначены результаты, полученные на Нуклотроне. Экспериментальные данные при 425 [5], 470 [6] и 580 [7] МэВ/нуклон обозначены ромбами, кружками и треугольниками соответственно. Результаты экспериментов при энергиях 641.3, 792.7 [8] и 800 [9] МэВ/нуклон обозначены открытыми ромбами, треугольниками и кружка-

Рис. 6. Дифференциальное сечение *dp*-упругого рассеяния при 1000 МэВ/нуклон. Квадраты — данные, полученные на Нуклотроне, кружки — данные, полученные на Синхрофазотроне, треугольники — данные BNL [3]. Описание линий находится в тексте.

ми соответственно. Дифференциальное сечение вычислялось для трех случаев: включая диаграммы только однонуклонного обмена и однократного рассеяния (ONE + SS), с добавлением вклада двукратного рассеяния (ONE + SS + DS) и полные расчеты с учетом вклада от возбуждения Δ -изобары ($ONE + SS + DS + DS + \Delta$). На рисунках вычисления ONE + SS, ONE + SS + DS и $ONE + SS + DS + \Delta$ обозначены прерывистой, штриховой и сплошной линиями соответственно.

Рис. 7. Дифференциальное сечение *dp*упругого рассеяния при 500 МэВ/нуклон. Сплошные квадраты — данные, полученные на Нуклотроне, ромбы, кружки и треугольники — данные при 425 [5], 470 [6] и 580 [7] МэВ/нуклон соответственно.

Рис. 8. Дифференциальное сечение упругого *dp*-рассеяния при 650 МэВ/нуклон. Квадраты — результаты измерений на Нуклотроне, ромбы — данные при 641.3 МэВ/нуклон [8].

Рис. 9. Дифференциальное сечение *dp*упругого рассеяния при 700 МэВ/нуклон. Квадраты — результаты измерений на Нуклотроне, ромбы, треугольники и кружки — данные для 641.3, 792.7 [8] и 800 [9] МэВ/нуклон соответственно.

Рис. 10. Дифференциальное сечение упругого *dp*-рассеяния при 750 МэВ/нуклон. Квадраты — результаты измерений на Нуклотроне, ромбы и треугольники — данные для 641.3 и 792.7 [8] МэВ/нуклон соответственно.

Рис. 11. Дифференциальное сечение *dp*-упругого рассеяния при 900 МэВ/нуклон. Квадраты — данные, полученные на Нуклотроне. Треугольники и звезды — данные при 792.7 [8] и 1000 [3] МэВ/нуклон соответственно.

Из рис. 7 — 11 видно, что при всех значениях энергий данные на Нуклотроне в пределах достигнутой точности находятся в хорошем согласии с поведением других экспериментальных данных [3] – [9] при близких энергиях. Из сравнения теории с экспериментом видно, что расчеты с включением только вкладов ONE + SS воспроизводят результаты эксперимента только при относительно небольших углах рассеяния. Учет вкладов DS и Δ -изобары позволяет приблизиться к описанию поведения сечения. Наи-

лучшее согласие теории с экспериментом наблюдается при 500 МэВ/нуклон. Расхождение между экспериментальными данными и предсказаниями теории увеличиваются с ростом энергии.

В четвертом разделе приводятся энергетические зависимости дифференциального сечения dp-упругого рассеяния для шести фиксированных углов рассеяния в с.ц.м. ($\theta_{c.m.} \approx 75^{\circ}, 82^{\circ}, 95^{\circ}, 100^{\circ}, 106^{\circ}, 111^{\circ}$,) в диапазоне кинетической энергии в лаб. системе 0.47 - 1 ГэВ/нуклон, соответствующего диапазону полной энергии $\sqrt{s} = 3.1 - 3.42$ ГэВ. Результаты сравниваются с расчетами правил кваркового счета (ПКС), которые предсказывают зависимость дифференциального сечения для бинарных реакций как $1/s^{2n_q-2}$, где n_q - полное количество фундаментальных конституентов, входящих в реакцию (для dp-упругого рассеяния $n_q = 9$).

Рис. 12. Дифференциальное сечение упругого *dp*-рассеяния для угла рассеяния $\theta_{c.m.} \approx 95^{\circ}$. Сплошные символы - данные, полученные на Нуклотроне, открытые символы - результаты других экспериментов. Описание линий приводится в тексте.

Рис. 13. Дифференциальное сечение упругого *dp*-рассеяния для угла рассеяния $\theta_{c.m.} \approx 106^{\circ}$. Обозначения такие, как на рис. 12.

Сплошными символами представлены данные, полученные на Нуклотроне. Результаты других экспериментов показаны открытыми символами. Сплошной и прерывистой линиями обозначены результаты аппроксимации всех экспериментальных данных зависимостями ~ s^{-n} и ~ s^{-16} соответственно. Результаты, полученные на Нуклотроне находятся в хорошем согласии с экспериментальными данными, полученными ранее. Наилучшее согласие экспериментов с предсказаниями ПКС достигается при $\theta_{c.m.}$ 95°. Наличие расхождений при других углах указывает на необходимость проведения новых более точных измерений. В <u>заключении</u> приведены основные результаты работы, которые заключаются в следующем:

- Получены новые систематические данные для дифференциального сечения и векторной анализирующей способности A_y реакции dpупругого рассеяния при энергиях 500 – 1000 МэВ/нуклон. Основная часть новых результатов получена в области углов рассеяния 70° < θ_{c.m.} < 120°, что соответствует области больших переданных импульсов, где наиболее существенны расхождения экспериментальных результатов с предсказаниями теории. Угловые зависимости, полученные на Нуклотроне, находятся в хорошем согласии с данными других экспериментов. Таким образом, новые результаты существенно пополняют базу экспериментальных данных в области энергий и углов, где развитие теоретических моделей является наиболее актуальным.
- 2. В результате сравнения полученных угловых зависимостей с теоретическими вычислениями выявлена важность учета вкладов двукратного рассеяния и возбуждения ∆-изобары для описания экспериментальных данных. Наилучшее согласие теории с экспериментом наблюдается при 500 МэВ/нуклон. Расхождение между экспериментальными данными и предсказаниями теории увеличиваются с ростом энергии.
- 3. Установлено соответствие энергетических зависимостей дифференциального сечения dp-упругого рассеяния для шести фиксированных углов рассеяния в с.ц.м. с поведением данных других экспериментов, а также с предсказаниями ПКС. Данные соответствуют диапазону кинетической энергии в лаб. системе 0.5 — 1 ГэВ/нуклон. Наилучшее согласие достигается в области углов, близких к 90° в с.ц.м. Однако, имеющиеся расхождения между результатами экспериментов и предсказаниями ПКС при других углах свидетельствуют о необходимости новых систематических измерений в области больших углов рассеяния.

В **приложениях** приведены кинематические расчеты углов рассеяния в лаб. системе и в с.ц.м., а также дается определение векторной анализирующей способности.

Публикации автора по теме диссертации

- A1. Terekhin A. A. et al. The differential cross section in deuteron proton elastic scattering at 500, 750 and 900 MeV/nucleon. // Eur. Phys. J. A. 2019. V.55. P.129.
- A2. Glagolev V. V. et al. Measurement of the differential cross-section and deuteron vector analyzing power in dp-elastic scattering at 2.0-GeV. // Eur. Phys. J. A. - 2012. - V.48. - P.182.
- A3. Terekhin A. A. et al. Differential Cross Section for Elastic Deuteron–Proton Scattering at the Energy of 700 MeV per Nucleon. // Phys.Atom.Nucl. - 2017. - 80 no.6. - P. 1061-1072.
- A4. Terekhin A. A. et al. Study of the dp-elastic scattering at 2 GeV. // Phys. Part. Nucl. Lett. -2015. V.12.(5). P.1076-1085.
- А5. Терехин А. А. и др. Дифференциальное сечение и векторная анализирующая способность реакции упругого dp – рассеяния при энергии 2 ГэВ // Научные ведомости БелГУ, серия физико-математическая. — 2010. — Вып.21. — С.114-121.
- Аб. Терехин А. А. и др. Годоскоп сцинтилляционных счетчиков для экспериментов на выведенном пучке Нуклотрона ОИЯИ, Научные ведомости БелГУ, серия «Математика. Физика». 2012. №11(130). Вып.27. С.207-213.
- А7. Терехин А. А. и др. Годоскоп сцинтилляционных счетчиков для экспериментов по исследованию структуры легких ядер на Нуклотроне-М // Известия Тульского государственного университета, серия: Естественные науки. 2011. Вып.3. С.151-160.
- A8. Piyadin S. M. et al. First extraction of the 3.42-A-GeV ¹²C beam for studies of baryonic matter at nuclotron, Phys.Part.Nucl.Lett. - 2012. -V.9. - P.589-592.
- А9. Терехин А. А. и др. Развитие время-пролетной системы для экспериментов по исследованию структуры легких ядер на Нуклотроне-М. // Научные ведомости БелГУ,серия физико-математическая. — 2009. — Вып.1. — С.124-131.

- A10. Terekhin A. A. et al. The differential cross section for dp-elastic scattering at 500-900 MeV/n and large transverse momenta, EPJ Web Conf. 204 (2019) 10010.
- А11. Терехин А.А. и др. Дифференциальное сечение и векторная анализирующая способность реакции упругого dp – рассеяния при энергии 2 ГэВ. // XV конференция молодых ученых и специалистов, Дубна, ОИЯИ, (Февраль,14-19, 2011). С.172-175.
- A12. Terekhin A. A. et al. Measurement of differential cross section and vector analyzing power in d-p elastic scattering at 2.0 GeV. // Proceedings of the "XIV Workshop on High Energy Spin Physics Dubna, Russia, September 20-24. 2011. P.357-360.
- A13. Terekhin A. A. et al. Analyzing power and cross section of dp-elastic scattering at 2.0 GeV. // The proceedings of the international Workshop "Hadron Structure and QCD". 2012. P.296.
- A14. Terekhin A. A. et al. The measurements of the differential cross section in dp-elastic scattering at the energies between 500 and 1000 MeV/nucleon.
 // Proceedings of the International Workshop Relativistic Nuclear Physics: from Hundreds of MeV to TeV. 2014. P.113-118.
- A15. Ladygin V. P. et. al. Few-body Studies at Nuclotron-JINR. // Few Body Syst. 2014. V.55.no.8-10. P.709-712.
- A16. Terekhin A. A. et al. The differential cross section in the dp-elastic scattering at the energies from 500 to 1000 MeV/nucleon. // Proceedings of the XXII International Baldin Seminar on High Energy Physics Problems, PoS(Baldin ISHEPP XXII)099. (2015).
- A17. Terekhin A. A. et al. The study of dp-elastic scattering at the energies from 500 to 1000 MeV/nucleon. // Proceedings of The 9th joint International HADRON STRUCTURE '15 Conference, Int. J. Mod. Phys. Conf. Ser. 2015. V.39. 1560096
- A18. Terekhin A. A. et al. Study of dp-elastic scattering at energies 650, 750 and 1000 MeV/nucleon. // Proceedings of the HADRON STRUCTURE '13 Conference, Nuclear Physics B (Proceedings Supplements) 2013. V.245C. P.185-187.

- A19. Terekhin A. A. et al. The differential cross section for the dp-elastic scattering at 500 to 900 MeV/nucleon. // Proceedings of the XXIII International Baldin Seminar on High Energy Physics Problems, EPJ Web.Conf. 2017. 138. 03012.
- A20. Janek M. et. al. Investigation of the dp Breakup and dp Elastic Reactions at Intermediate Energies at Nuclotron. // Few Body Syst. 2017. 58 no.2. 40.
- А21. Терехин А. А. и др. Время-пролетная система для экспериментов по исследованию структуры легких ядер на Нуклотроне-М. // XIV конференция молодых ученых и специалистов, Дубна, ОИЯИ, (Февраль, 1-6, 2010). С.159-162.
- A22. Terekhin A. A. et al. Preparation of experiments to study light nuclei structure at Nuclotron. // PoS Baldin-ISHEPP-XXI 2012. 005. P.6.
- A23. Terekhin A. A. et al. Experiments to study of the dense baryonic matter at Nuclotron. // Proceedings of the International Workshop - Relativistic Nuclear Physics: from Hundreds of MeV to TeV. 2012. P.106.

Список цитируемой литературы

- W. Glockle, H. Witala, D. Huber, H. Kamada and J. Golak. // Phys.Rept. - 1996. - V.274. -P.107.
- N. Kalantar-Nayestanaki, E. Epelbaum, J.G. Messchendorp and A. Nogga. // Rept.Prog.Phys. -2012. - V.75. - 016301.
- 3. Bennet G. W. et al. // Phys. Rev. Lett. 1967. V19. P.387.
- 4. Haji-Saied M. et al. // Phys. Rev. C. 1987. V.36. P.2010.
- 5. Both N. E. et al. // Phys. Rev. D. 1971. V4. P.1261.
- 6. Alder J. C. // Phys. Rev. C. 1972. V6. P.2010.
- 7. Vincent J. S. // Phys. Rev. Lett. 1970. V24.5. P.236.
- 8. Gulmez E. et al. // Phys. Rev. C. 1991. V5. P.2067.
- 9. Winkelmann E. et al. // Phys. Rev. C. 1980. V21. P.2535.