На правах рукописи

Трунин Антон Маратович

РЕЛЯТИВИСТСКИЕ ЭФФЕКТЫ В ПРОЦЕССАХ ПАРНОГО РОЖДЕНИЯ ТЯЖЕЛЫХ АДРОНОВ ПРИ ВЫСОКИХ ЭНЕРГИЯХ

01.04.02 — Теоретическая физика

$ABTOPE\Phi EPAT$

диссертации на соискание учёной степени кандидата физико–математических наук

Дубна 2014

Работа выполнена в ФГБОУ ВПО «Самарский государственный аэрокосмический университет имени академика С.П. Королёва (национальный исследовательский университет)» на кафедре физики

Научный руководитель:

доктор физико–математических наук Мартыненко Алексей Петрович

Официальные оппоненты:

Галкин Владимир Олегович, доктор физико–математических наук, ведущий научный сотрудник (Вычислительный центр РАН, Москва)

Лиходед Анатолий Константинович, доктор физико–математических наук, главный научный сотрудник (Институт физики высоких энергий, Протвино)

Ведущая организация:

Институт ядерных исследований РАН, Москва

Защита состоится «24» сентября 2014 г. в 17⁰⁰ на заседании диссертационного совета Д 720.001.01 в Лаборатории теоретической физики имени Н.Н. Боголюбова Объединенного института ядерных исследований (141980, г. Дубна, Московская обл., ул. Жолио-Кюри, д. 6)

С диссертацией можно ознакомиться в библиотеке и на сайте ОИЯИ (http://wwwinfo.jinr.ru/announce_disser.htm)

Автореферат разослан «_____» ____ 2014 г.

Ученый секретарь диссертационного совета доктор физико–математических наук А.Б. Арбузов

ОБЩАЯ ХАРАКТЕРИСТИКА РАБОТЫ

Актуальность темы исследования. Изучение процессов образования тяжелых адронов на современных ускорителях высоких энергий обеспечивает непосредственную проверку существующей теории сильных взаимодействий — квантовой хромодинамики (КХД). Рассмотрение потоков сильновзаимодействующих частиц, образующихся в подобных процессах, дает возможность исследовать вопрос о справедливости основных положений теории и ее следствий, касающихся статических свойств и деталей взаимодействия кварков и глюонов. В последние годы одно из наиболее плодотворных направлений, реализующих указанную проверку, оказалось связано с «ренессансом» физики чармония, что повлекло за собой интенсивный рост как экспериментальной, так и теоретической активности в этой области. Наряду с открытием чармониеподобных состояний, не полностью укладывающихся в традиционную интерпретацию связанной пары кварка и антикварка ($c\bar{c}$), существенные успехи достигнуты в измерении сечений рождения дваждытяжелых мезонов, что, в свою очередь, служит мотивирующим фактором для разработки новых методов описания связанных состояний тяжелых кварков.

Механизм образования тяжелого кваркония представляет хорошо известную задачу квантовой теории поля. В настоящее время теоретические исследования в указанном направлении базируются, в целом, на основе нерелятивистской квантовой хромодинамики (НРКХД) [1], реализующей принципы эффективной теории поля, и кварковых моделей [2]. Тяжелый кварконий характеризуется наличием нескольких хорошо разделенных физических масштабов $(M_Q v^2)^2 \ll (M_Q v)^2 \ll M_Q^2$, причем $M_Q \gg \Lambda_{\rm KXД}$ и $M_Q v^2 \sim \Lambda_{\rm KXД}$, где M_Q обозначает массу тяжелого кварка, а v — его относительную скорость в мезоне. Таким образом, в рамках обоих подходов процесс рождения рассматривается в две стадии. В ходе первой стадии образование одной или нескольких кварк-антикварковых пар связано с масштабом коротких расстояний порядка 1/M_O, что дает основания для применения теории возмущений к описанию фундаментальных взаимодействий кварков и глюонов. Вторая стадия включает последующую эволюцию кварков Q и антикварков \bar{Q} в физические состояния чармония, проходящую на масштабах характерного размера мезона $1/(M_Q v)$ и требующую непертурбативного описания. Подобное описание обеспечивается матричными элементами операторов в НРКХД или волновыми функциями связанных состояний в кварковых моделях. Матричные элементы НРКХД принципиально могут быть получены в расчетах на решетках, тогда как на практике они, чаще всего, извлекаются из сравнения предсказаний теории с данными эксперимента. Кроме того, цвето-синглетный класс матричных элементов допускает определение на основе волновых функций в потенциальных моделях. Вычисления в кварковых моделях основываются на том или ином виде оператора взаимодействия составляющих частиц, зачастую включающего большое число феноменологических параметров и свободных постоянных. Неоднозначность выбора данных констант, совместно с многообразием самих моделей и относительной сложностью использования части из них для расчета наблюдаемых величин, составляет недостатки данного подхода. В определенной степени, микроскопическая картина кварк-глюонных взаимодействий, присущая кварковым моделям, заменяется глобальным набором матричных элементов в НРКХД. Оба подхода дополняют друг друга, и отыскание соответствия между параметрами кварковых моделей и НРКХД, в свою очередь, может способствовать прояснению аспектов цветовой динамики кварков и глюонов.

Важность релятивистского рассмотрения рождения чармония, принимающего во внимание относительное движение кварка и антикварка, составляющих мезон, является непосредственным итогом попыток интерпретации экспериментальных данных коллабораций Belle и BaBar [3] в рамках лидирующего нерелятивистского порядка НРКХД. Теоретические оценки сечения парного рождения мезонов J/ψ и η_c в электронпозитронной аннигиляции оказались на порядок заниженными по сравнению с данными эксперимента, что стало отправной точкой для серии исследований, включающих как расчет релятивистских поправок, так и вычисление вкладов следующего порядка по константе сильного взаимодействия, совместная комбинация которых, в конечном итоге, существенно сократила разногласия теории и эксперимента. При этом наряду с подходами кварковых моделей [4] и НРКХД [5], релятивистские эффекты также учитывались в методе светового конуса (РАСК) [6], успешно доказавшем свою применимость к расчетам эксклюзивных сечений. Значимый вывод, который следует извлечь из описанной ситуации, состоит в необходимости последовательного учета релятивизма при рассмотрении процессов рождения тяжелого кваркония с целью получения надежных теоретических предсказаний. Так, недавние измерения коллаборацией LHCb сечения $\sigma(pp \rightarrow 2J/\psi + X)$ [7] естественным образом предполагают постановку задачи об описании данной реакции в рамках одного из развитых релятивистских формализмов. Необходимо отметить, что релятивистские эффекты существенны при описании не только парного, но и одиночного рождения тяжелого кваркония, хотя при этом и не исключены ситуации, когда соответствующие поправки к инклюзивным процессам оказываются пренебрежимо малы.

Из вышеизложенного следует, что актуальность работы определяется высокой экспериментальной и теоретической активностью в области современной физики тяжелых адронов. Чармоний и другие связанные состояния тяжелых кварков в первом приближении могут рассматриваться как нерелятивистские системы, однако подобное приближение зачастую оказывается недостаточным для получения надежных теоретических предсказаний. Расчет сечений рождения тяжелых адронов в существующих и перспективных экспериментах в общем случае должен вестись в рамках релятивистской теории, позволяющей учитывать относительное движение составляющих кварков и антикварков как в жесткой части процесса рассеяния, так и при формировании связанного состояния.

Целью диссертации является исследование роли релятивистских эффектов в процессах парного рождения чармония в электрон– позитронной аннигиляции и протон–протонном взаимодействии, выделение и анализ основных источников релятивистских поправок, получение теоретических предсказаний и интерпретация имеющихся экспериментальных данных, а также обобщение сформулированных методов расчета на случаи рождения дваждытяжелых барионов в рассматриваемых процессах.

Научная новизна и практическая ценность. Основные результаты диссертации являются оригинальными и получены впервые. В квазипотенциальном подходе получены релятивистские амплитуды парного рождения P-волнового чармония в электрон–позитронной аннигиляции и определены соответствующие поправки к сечениям. В рамках релятивистской кварковой модели, основанной на обобщенном КХД потенциале Брейта, дополненном членами конфайнмента с учетом скалярного и векторного обменов, вычислены волновые функции связанных состояний тяжелых кварков, рассчитан спектр масс чармония и дикварков. Впервые рассмотрены релятивистские поправки к амплитудам и сечениям парного рождения дикварков в e^+e^- аннигиляции.

Впервые получены аналитические выражения для релятивистских амплитуд и сечений парного рождения *S*-волнового чармония и дикварков в протон–протонном взаимодействии. Кроме того, получен первый нерелятивистский результат для парного рождения дикварков в *pp* взаимодействии. Для каждой из рассмотренных реакций дано описание основных источников релятивистских поправок, указана их роль и вклад в модификацию сечения.

Полученные результаты использованы для интерпретации экспериментальных данных по рождению пары J/ψ мезонов на Большом адронном коллайдере, представленных коллаборацией LHCb. В случае парного рождения *P*-волнового чармония установлено соответствие с экспериментальными результатами коллаборации Belle, говорящими о малой значимости сигналов от указанных процессов.

Изложенные способы расчета и аналитические результаты могут быть использованы для описания широкого круга процессов парного рождения тяжелых адронов в электрон–позитронной аннигиляции и протон– протонном взаимодействии, включая возбужденные состояния чармония, *D*-волновой чармоний, *B_c* мезоны и их орбитальные возбуждения, боттомоний и др.

На защиту выдвигаются следующие основные результаты:

- 1. Построены релятивистские амплитуды парного рождения *P*волнового чармония и *S*-волновых дикварков в электрон– позитронной аннигиляции и определены соответствующие поправки к сечениям. Показано отсутствие противоречий с результатами Belle. Получена оценка на выход пар барионов с двумя тяжелыми кварками при светимостях современных *B* фабрик.
- Вычислены релятивистские поправки к сечениям рождения пар *J*/ψ и η_c на Большом адронном коллайдере. Полученные результа- ты использованы для интерпретации экспериментальных данных коллаборации LHCb.
- Получены нерелятивистские сечения парного рождения дваждытяжелых дикварков в протон–протонном взаимодействии и релятивистские поправки к ним. Исследованы различные источники релятивистских поправок и выявлена роль каждого источника в изменении величин сечений.

Все выносимые на защиту результаты получены лично автором.

Достоверность полученных результатов определяется использованием строгих математических методов, высокой степенью автоматизации расчетов с применением современных компьютерных систем символьных вычислений, совпадением предельных нерелятивистских аналитических выражений с ранее опубликованными и хорошо известными результатами, полученными в альтернативных подходах, а также согласием с существующими экспериментальными данными.

Апробация работы проводилась на следующих научных конференциях и семинарах:

- XX международное рабочее совещание по физике высоких энергий и квантовой теории поля QFTHEP'2011 (г. Сочи, 2011 г.),
- Сессия-конференция секции ядерной физики ОФН РАН «Физика фундаментальных взаимодействий» (г. Москва, 2011 г.),
- Международная молодежная научная конференция «Математическая физика и ее приложения» (в рамках федеральной целевой программы «Научные и научно-педагогические кадры инновационной России» на 2009–2013 годы, г. Пятигорск, 2012 г.),
- 5th Helmholtz International Summer School–Workshop "Calculations for Modern and Future Colliders" (г. Дубна, 2012 г.),
- Международная сессия-конференция секции ядерной физики ОФН РАН «Физика фундаментальных взаимодействий» (г. Москва, 2012 г.),
- Helmholtz International Summer School "Physics of Heavy Quarks and Hadrons" (г. Дубна, 2013 г.),
- Международная сессия-конференция секции ядерной физики ОФН РАН (г. Протвино, 2013 г.),
- Семинар «Физика адронов» Лаборатории теоретической физики ОИЯИ (г. Дубна, 31.01.2014 г.).

Публикации. По материалам диссертации опубликовано 7 работ, в том числе 5 в ведущих рецензируемых научных журналах и изданиях, определенных Высшей аттестационной комиссией.

Структура и объем диссертации. Диссертация состоит из введения, трех глав, заключения, списка цитируемой литературы и приложений. Общий объем работы 107 страниц, включая 12 таблиц и 10 рисунков. Список литературы содержит 125 наименований.

ОСНОВНОЕ СОДЕРЖАНИЕ РАБОТЫ

Во введении приведен краткий обзор современных подходов к описанию тяжелого кваркония, указаны основные экспериментальные и теоретические исследования, мотивирующие изучение релятивистских поправок, обоснована актуальность темы диссертации.

Первая глава посвящена релятивистским поправкам к сечениям парного рождения тяжелых адронов в электрон–позитронной аннигиляции. В разделе 1.1 представлен детальный вывод амплитуды рождения пары *P*-волнового чармония h_c и χ_{cJ} , J = 0, 1, 2, при этом особое внимание уделено закону преобразования волновых функций связанных состояний из системы покоя мезонов к системам отсчета, движущимся с полными импульсами *P* и *Q* конечных состояний чармония. Итоговый результат указанного преобразования задается выражениями

$$\bar{\Psi}_{P,p} = \frac{\bar{\Psi}_{h_c}^{0}(\mathbf{p})}{\left[\frac{\epsilon(\mathbf{p})+m}{m}\frac{\epsilon(\mathbf{p})+m}{2m}\right]} \left[\frac{\hat{v}_{1}-1}{2} + \hat{v}_{1}\frac{\mathbf{p}^{2}}{2m(\epsilon(\mathbf{p})+m)} - \frac{\hat{p}}{2m}\right] \times \\
\times \gamma_{5}(1+\hat{v}_{1}) \left[\frac{\hat{v}_{1}+1}{2} + \hat{v}_{1}\frac{\mathbf{p}^{2}}{2m(\epsilon(\mathbf{p})+m)} + \frac{\hat{p}}{2m}\right], \\
\bar{\Psi}_{Q,q} = \frac{\bar{\Psi}_{\chi_{cJ}}^{0}(\mathbf{q})}{\left[\frac{\epsilon(\mathbf{q})+m}{m}\frac{\epsilon(\mathbf{q})+m}{2m}\right]} \left[\frac{\hat{v}_{2}-1}{2} + \hat{v}_{2}\frac{\mathbf{q}^{2}}{2m(\epsilon(\mathbf{q})+m)} + \frac{\hat{q}}{2m}\right] \times \\
\times \hat{\epsilon}_{Q}^{*}(S_{z})(1+\hat{v}_{2}) \left[\frac{\hat{v}_{2}+1}{2} + \hat{v}_{2}\frac{\mathbf{q}^{2}}{2m(\epsilon(\mathbf{q})+m)} - \frac{\hat{q}}{2m}\right],$$
(1)

где введены обозначения $v_1 = P/M_{h_c}, v_2 = Q/M_{\chi_{cJ}}, M$ — масса чармония, m — масса c-кварка, $\epsilon(p) = \sqrt{m^2 + p^2}, \epsilon_Q(S_z)$ — вектор поляризации χ_{cJ} . Запись \hat{v} означает свертку компонент четырехвектора с матрицами Дирака: $\hat{v} = v_{\alpha}\gamma^{\alpha} = v \cdot \gamma$. В лидирующем порядке по константе сильного взаимодействия α_s амплитуда процесса принимает вид

$$\mathcal{M}(p_{-}, p_{+}; P, Q) = \frac{32\pi^{2}\alpha\alpha_{s}\sqrt{M_{h_{c}}M_{\chi_{cJ}}}}{9s}\bar{v}(p_{+})\gamma^{\beta}u(p_{-})\times \\ \times \int \frac{d\mathbf{p}}{(2\pi)^{3}} \int \frac{d\mathbf{q}}{(2\pi)^{3}} \mathrm{Tr}\left\{\bar{\Psi}_{P,p}\Gamma_{1}^{\beta\omega}\bar{\Psi}_{Q,q}\gamma_{\omega} + \bar{\Psi}_{Q,q}\Gamma_{2}^{\beta\omega}\bar{\Psi}_{P,p}\gamma_{\omega}\right\},$$

$$\Gamma_{1}^{\beta\omega} = D_{\mu}{}^{\omega}(p_{2}+q_{2}) \left[\gamma^{\beta}\frac{m-\hat{l}+\hat{p}_{1}}{(l-p_{1})^{2}-m^{2}}\gamma^{\mu} + \gamma^{\mu}\frac{m+\hat{l}-\hat{q}_{1}}{(l-q_{1})^{2}-m^{2}}\gamma^{\beta}\right],$$

$$\Gamma_{2}^{\beta\omega} = D_{\mu}{}^{\omega}(p_{1}+q_{1}) \left[\gamma^{\beta}\frac{m-\hat{l}+\hat{q}_{2}}{(l-q_{2})^{2}-m^{2}}\gamma^{\mu} + \gamma^{\mu}\frac{m+\hat{l}-\hat{p}_{2}}{(l-p_{2})^{2}-m^{2}}\gamma^{\beta}\right].$$

$$(2)$$

Здесь $l = p_{-} + p_{+} = P + Q$, $s = l^{2}$ — квадрат энергии в системе центра инерции и $D_{\mu\nu}(k)$ — пропагатор глюона, в дальнейших расчетах используемый в фейнмановской калибровке. Полный P(Q) и относительный p(q) четырехимпульсы составляющих кварков связаны соотношениями:

$$p_{1,2} = \frac{1}{2}P \pm p, \quad (pP) = 0; \qquad q_{1,2} = \frac{1}{2}Q \pm q, \quad (qQ) = 0,$$
 (3)

где относительные импульсы $p = L_P(0, \mathbf{p})$ и $q = L_Q(0, \mathbf{q})$ определяются с помощью преобразований Лорентца четырехвекторов $(0, \mathbf{p})$ и $(0, \mathbf{q})$ к системам отсчета, движущимся с полными импульсами P и Q. Интегрирование в (1) ведется по относительным 3-импульсам кварков и антикварков в мезонах.

Разложение пропагаторов кварков и глюонов в (2) по малым импульсам кварков $|\mathbf{p}|/\sqrt{s}$ и $|\mathbf{q}|/\sqrt{s}$, проводимое до второго относительного порядка включительно, совместно с последующим угловым интегрированием позволяет установить тензорную стуктуру амплитуды, имеющую вид комбинаций $v_{1,2}$, вектора поляризации h_c и вектора или тензора полного углового момента χ_{cJ} . При этом зависимость подынтегрального выражения для амплитуды от относительных импульсов может быть полностью описана набором функций $c_{ij}(p,q)$:

$$c_{ij}(p,q) = \left(\frac{m-\epsilon(p)}{m+\epsilon(p)}\right)^{i} \left(\frac{m-\epsilon(q)}{m+\epsilon(q)}\right)^{j},$$

$$i = 0\dots 2, \quad j = 0\dots 2.$$
(4)

В разделе 1.2 рассматривается релятивистская кварковая модель для чармония и дваждытяжелых дикварков, основанная на КХД– обобщении потенциала Брейта, дополненном членами конфайнмента с учетом скалярного и векторного обмена. Волновые функции связанных состояний могут быть получены путем численного решения уравнения Шредингера, содержащего оператор кинетической энергии в «рационализованном» виде:

$$2\sqrt{\mathbf{p}^2 + m^2} - 2m \approx \frac{\mathbf{p}^2}{2\tilde{\mu}} + \frac{m^2}{\tilde{m}} - 2m,$$

$$\tilde{m} = \frac{E}{2} = \frac{1}{2}\sqrt{\mathbf{p}_{eff}^2 + m^2}, \qquad \tilde{\mu} = \frac{\tilde{m} \cdot \tilde{m}}{\tilde{m} + \tilde{m}} = \frac{\tilde{m}}{2}.$$
(5)

Основные параметры потенциала принимают типичные значения для рассматриваемого класса кварковых моделей, а дополнительные константы, такие как доля векторного обмена f_V и параметр \mathbf{p}_{eff}^2 , эффективно учитывающий релятивистские эффекты в кинетическом слагаемом, выбираются из соображений оптимального согласия с данными

Таблица 1 — Релятивистские и нерелятивистские сечения процесса $e^+e^- \rightarrow h_c + \chi_{cJ}$ при энергии $\sqrt{s} = 10.6 \ \Gamma \ni B$

0 /000	, 1 1 V		
Пара	$\sigma^{\mathrm{HPKX}\mathcal{A}}$ [8], $\phi \delta$	$\sigma^{ m NR}, \phi$ б	$\sigma^{ m rel},~\phi \delta$
$h_c + \chi_{c0}$	0.053 ± 0.019	0.135	0.076 ± 0.038
$h_c + \chi_{c1}$	0.258 ± 0.064	0.601	0.096 ± 0.048
$h_c + \chi_{c2}$	0.017 ± 0.002	0.035	0.0024 ± 0.0013

эксперимента. Результаты численного расчета для спектра масс *S*- и *P*волнового чармония воссоздают экспериментальные значения с ошибкой менее 1%. Массы дваждытяжелых дикварков находятся в соответствии с вычислениями в альтернативных подходах.

Полученные волновые функции применяются **в разделе 1.3** для расчета сечений парного рождения мезонов h_c и χ_{cJ} в e^+e^- аннигиляции. Выражения для сечений содержат общий множитель $|\tilde{R}'_{h_c}(0)|^2 |\tilde{R}'_{\chi_{cJ}}(0)|^2$, где параметр $\tilde{R}'(0)$ определяется как

$$\tilde{R}'(0) = \frac{1}{3}\sqrt{\frac{2}{\pi}} \int_0^\infty \frac{\epsilon(p) + m}{2\epsilon(p)} R(p) p^3 dp \tag{6}$$

и представляет собой обобщение первой производной радиальной волновой функции в начале координат $R'(0) = 1/3\sqrt{2/\pi} \int R(p)p^3 dp$, которая входит в нерелятивистское выражение для сечения. Дополнительно, сечения зависят от непертурбативных параметров $J_{1,2}$, определяющих релятивистские поправки:

$$J_{1,2} = \int_0^m p^3 R(p) \frac{\epsilon(p) + m}{2\epsilon(p)} \left(\frac{m - \epsilon(p)}{m + \epsilon(p)}\right)^{1,2} dp.$$
(7)

Численные результаты для сечений рождения пары мезонов h_c и χ_{cJ} в e^+e^- аннигиляции, соответствующие энергии $\sqrt{s} = 10.6 \ \Gamma \Rightarrow B$ экспериментов Belle и BABAR [3], представлены в Таблице 1. Погрешность расчета оценивается в 50% (55% для χ_{c2}) и связана как с точностью нахождения волновых функций, так и с отброшенными релятивистскими слагаемыми высших порядков при разложении пропагаторов в амплитуде. Полученные результаты показывают, что релятивистские эффекты значимым образом понижают сечения рождения пары *P*-волнового чармония. Невысокие величины полученных сечений вполне согласуются с тем фактом, что ни одна из рассматриваемых реакций по настоящее время не была измерена экспериментально. При этом нерелятивистское предсказание даже для наименее подавленного процесса $e^+e^- \rightarrow h_c + \chi_{c1}$ составляет всего 0.6 $\phi \delta$, что более чем на порядок меньше измеренных сечений рождения пар $J/\psi + \eta_c$ и $J/\psi + \chi_{c0}$. Малая значимость сигналов, отвечающих *P*-волновой паре, отмечена и в последующих исследованиях Belle [9].

Развитые методы применены в разделе 1.4 для описания парного рождения дваждытяжелых барионов в e^+e^- аннигиляции, оценки для сечений рождения которых могут быть получены на основе расчета сечений рождения дваждытяжелых дикварков: компактных пар кварккварка или антикварк-антикварка в антисимметричном цветовом состоянии, которые после своего образования могут с высокой вероятностью присоединить легкий кварк и адронизоваться в наблюдаемые барионы. Рассматривается рождение пар S-S, S-AV и AV-AV скалярных (S) и аксиально-векторных (AV) дикварков (bc) и $(\bar{b}\bar{c})$, а также пары AV - AVдикварков (cc) и (\overline{cc}). Установлено, что релятивистские поправки понижают сечение практически в четыре раза, за исключением случая рождения пары скалярных дикварков, падение для которого составляет около 50%. При светимости B фабрик в $\mathcal{L} = 10^{34} \ cm^{-2}c^{-1}$, оценка на выход пар дваждытяжелых барионов (ccq) составляет около 30 событий в год, что более чем на порядок меньше значения в 10³ событий, приведенного в работе [10]. Согласие двух результатов наступает после принятия во внимание множителя 1/8, опущенного в [10], а также установленного фактора релятивистских поправок $K \approx 0.25$.

Во второй главе диссертации рассматриваются сечения парного рождения S-волнового чармония в протон–протонном взаимодействии и релятивистские поправки к ним. Коллаборация LHCb представила следующий результат экспериментального измерения сечения парного рождения J/ψ на Большом адронном коллайдере (LHC) при энергии $\sqrt{S} = 7 \ T_{2B}$ [7]:

$$\sigma_{2 < y_{1/4b} < 4.5}^{\text{LHCb}} = 5.1 \pm 1.0 \pm 1.1 \ \text{h}6,\tag{8}$$

отвечающий условиям $2 < y_{J/\psi} < 4.5$ для быстрот каждого из образовавшихся чармониев, но, фактически, без ограничений на величину их поперечного импульса ($P_T < 10 \ \Gamma \ni B$). При энергиях LHC основной вклад в рассматриваемое сечение определяется процессами глюонного слияния $gg \rightarrow 2J/\psi$. Далее, в рамках механизма однопартонного рассеяния, искомое сечение может быть определено после интегрирования по соответствующим функциям партонного распределения:

$$d\sigma[pp \to 2J/\psi + X] = \int d\sigma[gg \to 2J/\psi] f_{g/p}(x_1,\mu) f_{g/p}(x_2,\mu) \, dx_1 \, dx_2.$$
(9)

В квазипотенциальном подходе амплитуда глюонного подпроцесса имеет вид свертки пертурбативной амплитуды образования пар кварков и антикварков $\mathcal{T}(p_1, p_2; q_1, q_2)$ и квазипотенциальных волновых функций:

$$\mathcal{M}(k_1, k_2, P, Q) = \int \frac{d\mathbf{p}}{(2\pi)^3} \int \frac{d\mathbf{q}}{(2\pi)^3} \bar{\Psi}(p, P) \bar{\Psi}(q, Q) \otimes \mathcal{T}(p_1, p_2; q_1, q_2).$$
(10)

Закон преобразования волновых функций чармония в (10) задается соотношениями, аналогичными (1), с точностью до проекционных операторов на заданное спиновое состояние мезонов J/ψ или η_c . В лидирующем порядке по α_s амплитуда рождения пары J/ψ определяется 31 цветосинглетной диаграммой глюонного слияния, тогда как в случае пары η_c существуют еще 8 дополнительных диаграмм. Разложение пропагаторов кварков и глюонов проводится следующим образом:

$$\frac{1}{(p_1+q_1)^2} = \frac{4}{s} - \frac{16}{s^2} \left[(p+q)^2 + pQ + qP \right] + \cdots,$$

$$\frac{1}{(k_2-q_2)^2 - m^2} = \frac{2}{t-M^2} - \frac{4}{(t-M^2)^2} \left[q^2 + 2qk_2 \right] + \cdots,$$
(11)

где $s = (k_1 + k_2)^2 = (P + Q)^2$ и $t = (P - k_1)^2 = (Q - k_2)^2$ — переменные Мандельстама для глюонного подпроцесса $gg \rightarrow 2J/\psi$, кинематические ограничения на величины которых позволяют получить оценки $2p^2/M^2$ и $2q^2/M^2$ на параметры разложения в (11). Векторы $k_{1,2}$ обозначают импульсы начальных глюонов. В подынтегральном выражении амплитуды (10) сохраняются слагаемые вплоть до второго порядка по импульсам p и q, тогда как нормировочные факторы волновых функций в (1), содержащие энергию кварков, учитываются точно, что обеспечивает сходимость итоговых угловых интегралов. В общем случае, сечение рождения пары мезонов J/ψ или η_c представляется в виде

$$\frac{d\sigma}{dt}[gg \to 2J/\psi(\eta_c)](s,t) = \frac{\pi M^2 \alpha_s^4}{9216 s^2} |\tilde{R}(0)|^4 \sum_{i=0}^3 \omega_i F^{(i)}(s,t).$$
(12)

1 0

Функции $F^{(0)}(s,t)$ в (12) описывают вклад лидирующего порядка по скорости тяжелого кварка, тогда как слагаемые $F^{(i>0)}(s,t)$ связаны с релятивистскими поправками p^2 и q^2 к амплитуде, происходящими из разложений (11) и закона преобразования волновых функций (1). Влияние релятивизма на форму волновой функции чармония проявляется посредством ряда непертурбативных параметров в составе (12):

$$I_{0} = \int_{0}^{\infty} \frac{\epsilon(p) + m}{2\epsilon(p)} R(p) p^{2} dp, \quad I_{1,2} = \int_{0}^{m} p^{2} R(p) \frac{\epsilon(p) + m}{2\epsilon(p)} \left(\frac{m - \epsilon(p)}{m + \epsilon(p)}\right)^{1/2} dp,$$
$$\tilde{R}(0) = \sqrt{\frac{2}{\pi}} I_{0}, \qquad \omega_{0} = 1, \quad \omega_{1} = \frac{I_{1}}{I_{0}}, \quad \omega_{2} = \frac{I_{2}}{I_{0}}, \quad \omega_{3} = \omega_{1}^{2}.$$
(13)

Релятивистский результат для сечения парного рождения J/ψ в pp взаимодействии, дополненный вкладами двойного партонного рассеяния [11], а также процесса $pp \to J/\psi\psi' + X \to 2J/\psi + Y$, составляет

$$\sigma_{2 < y_{P,Q} < 4.5}^{\text{pen.} + \psi' \to J/\psi \pi \pi + \text{DPS}} = 4.2 \pm 1.3 \ \text{hb}, \tag{14}$$

что находится в хорошем согласии с экспериментальным значением (8). Аналогичные вычисления, проведенные в пренебрежении релятивистскими эффектами, приводят к несколько завышенным оценкам в 8–9 *нб*.

Соотношения (9) и (12) использованы для численного расчета сечений рождения пар J/ψ и η_c при энергиях pp столкновений $\sqrt{S} = 7$ и 14 TэB. Установлено, что релятивистские поправки приводят к падению на 60%, или более чем в два раза, как полного, так и ограниченного по быстротам сечения J/ψ . В случае же пары мезонов η_c , полное сечение также уменьшается на 60%, вместе с тем падение для интервала 2 < y < 4.5оказывается равным только 15%.

В третьей главе проводится расчет сечений парного рождения дваждытяжелых дикварков (cc) и (bc) в протон–протонных столкновениях, величины которых представляют верхние границы для сечений рождения соответствующих барионов, просуммированных по возможным ароматам легкого кварка и спиновым состояниям конечных частиц. Основные этапы вычисления соответствуют аналогичным стадиям расчета для ранее рассмотренной задачи парного рождения чармония в *pp* взаимодействии. При этом амплитуда в случае дикварков характеризуется наличием несовпадающих цветовых факторов у отдельных ее частей, что связано с относительно большим общим числом диаграмм с различающейся цветовой структурой.

Численные значения сечений рождения пары скалярных (S) и аксиально-векторных (AV) дикварков в протон-протонном взаимодействии, отвечающие энергиям pp столкновений $\sqrt{S} = 7$ и 14 $T \ni B$, представлены в Таблице 2. Интегрирование дифференциального сечения основного подпроцесса глюонного слияния, аналогично (9), проводилось с двумя наборами функций партонного распределения CTEQ5L и CTEQ6L1 [12]. Релятивистские результаты, приведенные в Таблице 2, соответствуют учету сразу нескольких источников поправок к сечению. Изменение формы волновой функции за счет поправок второго порядка по скорости тяжелого кварка в потенциале взаимодействия ответственно за более чем трехкратное понижение изначального нерелятивистского сечения. Эффекты связанности частиц, определяемые принятием во внимание ненулевых энергий связи дикварков $W = M - m_c - m_b \neq 0$, также уменьшают сечение. Использование численных значений масс дикварков

Энергия \sqrt{S}	Пара дикварков	CTEQ5L		CTEQ6L1	
		$\sigma_{\text{нерел.}}$	$\sigma_{ m peл.}$	$\sigma_{\text{нерел.}}$	$\sigma_{\rm peл.}$
	$SD_{bc} + S\bar{D}_{\bar{b}\bar{c}}$	0.063	0.018	0.057	0.016
$\sqrt{S} = 7 T \Im B$	$AVD_{bc} + AV\bar{D}_{\bar{b}\bar{c}}$	0.25	0.053	0.23	0.049
	$AVD_{cc} + AV\bar{D}_{\bar{c}\bar{c}}$	1.39	0.28	1.07	0.22
	$SD_{bc} + S\bar{D}_{\bar{b}\bar{c}}$	0.14	0.039	0.12	0.034
$\sqrt{S} = 14 \ T \ni B$	$AVD_{bc} + AV\bar{D}_{\bar{b}\bar{c}}$	0.55	0.12	0.48	0.10
	$AVD_{cc} + AV\bar{D}_{\bar{c}\bar{c}}$	2.51	0.51	1.94	0.40

Таблица 2 — Сечения парного рождения дикварков $pp \to \mathcal{D}\bar{\mathcal{D}} + X$ ($\mathcal{H}\delta$)

 $M_{SD_{bc}} = 6.517 \ \Gamma
ightarrow B, \ M_{AVD_{bc}} = 6.526 \ \Gamma
ightarrow B$ и $M_{AVD_{cc}} = 3.224 \ \Gamma
ightarrow B$, определенных в рассматриваемой релятивистской кварковой модели, приводит к результатам, заниженным на 20-30% по сравнению с соответствующими величинами, полученными в приближении нулевой энергии связи $M_{D_{bc}} \to M_0 = m_c + m_b, \, M_{D_{cc}} \to M_c = 2m_c.$ Учет ненулевого относительного импульса кварков и антикварков в амплитуде рождения, с последующим сохранением слагаемых второго относительного порядка по р и q, повышает сечение, однако сопутствующий положительный эффект оказывается равным 10-20%, что недостаточно для компенсации существенных отрицательных вкладов из других источников. В совокупности, рассматриваемые эффекты определяют практически пятикратное падение сечения. Итоговая погрешность проведенного расчета определяется точностью нахождения волновых функций связанных состояний, а также отброшенными при разложении амплитуды слагаемыми порядка четвертой степени относительного импульса p^4 и выше. Общая неопределенность релятивистских сечений, представленных в Таблице 2, составляет 48%, что также включает поправку в 15% на разброс в значениях функций партонного распределения.

В заключении сформулированы основные результаты диссертационной работы.

Приложения. Диссертация содержит три приложения, в которых приведены вспомогательные коэффициенты и функции, определяющие релятивистские поправки к рассмотренным процессам парного рождения.

СПИСОК ЛИТЕРАТУРЫ

- G.T. Bodwin, E. Braaten, G.P. Lepage, Phys. Rev. D 51, 1125 (1995); Erratum-ibid. 55, 5853 (1997).
- [2] А.А. Быков, И.М. Дремин, А.В. Леонидов, Успехи физических наук 143, 3 (1984).
- [3] K. Abe *et al.* (Belle Collaboration), Phys. Rev. D **70**, 071102 (2004);
 B. Aubert *et al.* (BABAR Collaboration), Phys. Rev. D **72**, 031101 (2005).
- [4] D. Ebert, A.P. Martynenko, Phys. Rev. D 74, 054008 (2006);
 D. Ebert, R.N. Faustov, V.O. Galkin, A.P. Martynenko, Phys. Lett. B 672, 264 (2009).
- [5] Z.-G. He, Y. Fan, K.-T. Chao, Phys. Rev. D 75, 074011 (2007);
 G.T. Bodwin, J. Lee, C. Yu, Phys. Rev. D 77, 094018 (2008).
- [6] J.P. Ma, Z.G. Si, Phys. Rev. D 70, 074007 (2004); A.E. Bondar,
 V.L. Chernyak, Phys. Lett. B 612, 215 (2005); V.V. Braguta,
 A.K. Likhoded, A.V. Luchinsky, Phys. Rev. D 72, 074019 (2005);
 V.V. Braguta, Phys. Rev. D 79, 074018 (2009).
- [7] R. Aaij *et al.* (LHCb Collaboration), Phys. Lett. B **707**, 52 (2012).
- [8] E. Braaten, J. Lee. Phys. Rev. D 67, 054007 (2003); Erratum-ibid. 72, 099901(E) (2005).
- [9] P. Pakhlov *et al.* (Belle Collaboration), Phys. Rev. D **79**, 071101 (2009).
- [10] V.V. Braguta, V.V. Kiselev, A.E. Chalov, Phys. At. Nucl. 65, 1537 (2002).
- [11] S. Baranov, A. Snigirev, N. Zotov, Phys. Lett. B **705**, 116 (2011);
 A. Novoselov, arXiv:1106.2184; A.V. Berezhnoy, A.K. Likhoded,
 A.V. Luchinsky, A.A. Novoselov, Phys. Rev. D **86**, 034017 (2012).
- [12] H.L. Lai *et al.*, Eur. Phys. J. C **12**, 375 (2000); J. Pumplin *et al.*,
 J. High Energy Phys. **0207**, 012 (2002).

СПИСОК ОСНОВНЫХ ПУБЛИКАЦИЙ ПО ТЕМЕ ДИССЕРТАЦИИ

- 1. A.P. Martynenko, A.M. Trunin. Relativistic description of the double P-wave charmonium production in e^+e^- annihilation// Proceedings of Science, QFTHEP2011, 051 (2011).
- A.P. Martynenko, A.M. Trunin. Relativistic corrections to double charmonium production in high energy proton-proton interaction// Physical Review D 86, 094003 (2012).
- 3. A.P. Martynenko, A.M. Trunin. Relativistic corrections to η_c -pair production in high energy proton-proton collisions// Physics Letters B **723**, 132–139 (2013).
- 4. А.П. Мартыненко, А.М. Трунин. Релятивистское описание парного рождения J/ψ мезонов на LHC// Ядерная физика **76**, доп. номер, 155–159 (2013).
- 5. A.P. Martynenko, A.M. Trunin. Relativistic corrections to the pair double heavy diquark production in e^+e^- annihilation// Physical Review D 89, 014004 (2014).
- 6. A.P. Martynenko, A.M. Trunin. Double *P*-wave charmonium production in e^+e^- annihilation// Ядерная физика 77, 821–829 (2014).
- 7. A.P. Martynenko, A.M. Trunin. Pair double heavy diquark production in high energy proton–proton collisions, arXiv:1405.0969 (2014).