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General description of the work

Relevance of the topic

Transition metal oxides (TMOs) form probably one of the most interesting classes of solids,
exhibiting a wide variety of structures and properties. The unique electrical and magnetic properties
of TMOs have attracted the interest of theoretical physicists and technology developers for their
applicability. Recently, experiments have provided observable evidence of many exotic phenomena
occurring in TMOs, such as charge density waves (CDW) (e.g. K0.3MoO3), charge ordering (e.g.
Fe3O4), and defect ordering (e.g. Ca2Mn2O5, Ca2Fe2O5). TMOs can range from ferromagnetic
(e.g. CrO2, La0.5Sr0.5MnO3) to antiferromagnetic (AFM) (e.g. NiO, LaCrO3). Many oxide
compounds have switchable orientation states such as ferroelectric (e.g. BaTiO3, KNbO3) and
ferroelastic [e.g. Gd2(MoO4)3]. Some TMOs have metallic properties (e.g. RuO2, ReO3, LaNiO3),
while others have highly insulating properties (e.g. BaTiO3). Several oxides exhibit co-existence
of metallic and non-metallic properties (e.g. Lu2Rh2O7). Among them, the phenomenon of high-
temperature superconductivity (HTSC) in cuprates is one of the issues of interest to solid-state
physicists.

The unusual properties of TMOs are clearly due to the unique nature of the outer d or f
electrons. The d electrons are localized, their wavefunctions are restricted in a small space around
the atom. They are distributed inside a sphere with small radius, this makes the chance of electrons
meeting each other higher than other bands, the on-site Coulomb interaction (CI) is thus larger.
Therefore, many TMOs belong to strongly correlated materials which have incompletely filled
d- or f-electron shells with narrow energy bands. In these materials, transition metal can easily
combine with oxygen to form covalent bond. It gives all s electrons and some d electrons to oxygen,
there are only d or f electrons remaining in its outer shell. If TMOs contain the alkaline or rare
earth elements, they can provide additional electrons to oxygen. Depending on atomic radius,
they can distort the lattice structure. Therefore, the basic electronic structures of TMOs origin
from transition metal d bands as frontier bands, oxygen p bands the second most energetic bands
staying at the Fermi level, other bands have less significant impact to the electronic properties of
these materials.

The theoretical understanding of the properties of various TMO materials is one of major
challenges to the modern condensed matter theory. The behavior of electrons and spinons in these
materials cannot be effectively described by traditional one-electron theories, it requires more
modern methods to treat these strongly correlated systems which are the reason for the very
rich physical properties in TMOs and represented by complicated phase diagrams. Many theories
have been proposed to describe corelation electrons in TMOs, among them the dynamical mean
field theory (DMFT) is a numerical method that has proved to be very effective. In addition,
the Hubbard model is a simple, but very useful model for the general description of corelated
materials. In the limit of strong correlations, the Hubbard model can be reduced to the t − J

model with the intersite Coulomb repulsion V , the so called t− J − V model, which turns out to
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be an effective model for cuprate HTSC. Therefore understanding of physical properties of highly
correlated systems and study microscopic models of strong correlations are the actual tasks.

Purpose and objectives of the thesis

The goal of the dissertation is the theoretical study of several properties of TMOs based
on models of strongly correlated electron systems: the metal-insulator transition (MIT) in the
ionic Hubbard model (IHM), static and dynamic charge fluctuations (CFs) and HSTC within the
microscopic t− J − V model.

To achieve these goals, the following tasks have been formulated and studied:

1. Obtaining the phase diagram of the half-filled IHM with the on-site Coulomb repulsion U
and the ionic energy ∆ by mean of the coherent potential approximation (CPA). When the
system is in the metallic phase a dependence of the dc conductivity on the model parameters
is calculated.

2. Calculation of the static charge susceptibility (SCS) and the dynamic charge susceptibility
(DCS) in strongly correlated electronic systems within the two-dimensional t−J −V model.
The spectral density and the spectrum of charge excitations as functions of doping and
other model parameters are obtained with the use of the equation of motion method for the
relaxation functions in terms of the Hubbard operators (HOs).

3. Application of the extended t− J − V model where the intersite Coulomb repulsion and the
electron-phonon interaction (EPI) are taken into account to investigate electronic spectrum
and superconductivity in cuprate HTSC. The Dyson equation for the normal and anomalous
(pair) Green functions (GFs) is used in the special form where the self-energy is taken in
the self-consistent Born approximation (SCBA). Superconducting Tc dependence on EPI and
spin-fluctuation interaction is studied.

Scientific novelty

Phase diagram in IHM was studied by using CPA. The equaions of local GFs of sub-lattices
were derrived, the solutions were then found by developing numerical calculations. The obtained
results partially contribute to the debates about the phase diagrams of related materials. They
are in good agreement with the results of previous publications.

CDWs have been studied in the t− J −V model, where compared to the original t− J model,
the intersite CI between electrons has been introduced. Using the memory function method, SCS
and DCS were calculated. Numerical methods are developed to show the dependence of the above
quantities on the parameters of the model.

Electronic spectrum and superconductivity have been studied in frame work of the extended
t − J − V model. Using the projection method we obtain the Dyson equation for the GF. The
normal and superconducting states are considered. A numerical program is used to show the
dependence of the spectral function and the self-energy on the model parameters. The obtained
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results are in good agreement with the previous theoretical and experimental results and can be
used as a reference for further studies on superconductivity.

The main results of the thesis submitted for defense:

1. The phase diagram was investigated using CPA in the half-filled ionic Hubbard model (IHM).
The metallic phase was proved to be sandwiched between the band insulator (BI) phase and the
Mott insulator (MI) one. The maximum value of the temperature dependent conductivity σmax(T )

as a function of on-site Coulomb repulsion U occurs near to U ≈ 2∆ and σmax(T ) decreases with
increasing T .

2. The behavior of static and dynamic charge susceptibility have been considered in the
framework of the t − J − V model with the Green function (GF) technique. It is shown that
with increasing the intersite Coulomb repulsion V , the static charge susceptibility χ(q) grows
without limit (i.e. 1/χ(q) vanishes), and charge density waves arise in the system either along the
diagonal of the unit cell or along the edge of the unit cell.

3. Within the t− J − V model, the damping of dynamic charge fluctuations derived from the
calculated imaginary part of the memory function and the GF technique was analyzed for a large
range of doping δ, 0 < δ ≤ 0.3. The behavior was obtained to change from a broad spectrum of
overdamped charge fluctuations at δ ≈ 0.1 to the Fermi-like behavior for δ > 0.1.

4. The extended t − J − V model with the electron-phonon interaction was applied to study
electronic spectrum and superconductivity for strongly correlated electron system. The Dyson
equation for the normal and anomalous GFs was derived in term of Hubbard operators and the
self-energy was obtained in the self-consistent Born approximation.

5. Within the approach defined in the point 4 and applied for normal electronic properties,
the calculated GFs revealed a transition from well defined quasiparticle electron excitations to
overdamped broad excitations. The sharp Fermi surface in the mean-field approximation in the
form of hole pockets at low doping is accompanied by the transformation to arc Fermi surface.

6. The statement on the dominance of the kinematic interaction in the spin fluctuation mechanism
of superconducting pairing, earlier obtained in t−J model, was reexamined in the framework of the
extended t− J − V model including electron-phonon coupling ∼ g. The statement was confirmed
in a wide range of physically significant parameters V and g.

Approbation of the thesis

The results of the dissertation were presented personally by the author at the seminars of
the Laboratory of Theoretical Physics (BLTP), JINR as well as at conferences:

1. The XXII International Scientific Conference of Young Scientists and Specialists (AYSS-2018),
23-27 April 2018), JINR, Dubna, Russia.

2. Meeting of the Programme Advisory Committee for Condensed Matter Physics, 14–15 June
2018, Dubna, Rusia.

3. XXII Scientific School of Young Scientists and Specialists of JINR (LIPNYA 2018), 20-22 July
2018, Dubna, Russia.
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4. XXII Training Course in the Physics of Strongly Correlated Systems, 1-12 October, 2018,
Vietri sul Mare (Salerno), Italy.

5. The XXIII International Scientific Conference of Young Scientists and Specialists (AYSS-
2019), 15-19 April 2019, JINR, Dubna, Russia.

6. Autumn School on Correlated Electrons: Topology, Entanglement, and Strong Correlations,
21-25 September 2020, Forschungszentrum Jülich — Online-Edition.

7. The XXIV International Scientific Conference of Young Scientists and Specialists (AYSS-
2020), 9-13 November 2020, Dunba, Russia.

List of publications

The results of the study are published in the following four articles in peer-reviewed journals
included in the list:

1. Nguen Dan Tung, Hoang Anh Tuan, Conductivity in the half-filled ionic Hubbard model
Communications in Physics, Vol. 24, No. 3S2, pp. 34-38. (2014).

2. Dan Tung Nguen, N. M. Plakida, Static charge susceptibility in the t-J-V model, Theoretical
and Mathematical Physics, 194, 127-141 (2018).

3. Nguen Dan Tung, N. M. Plakida, Charge dynamics in strongly-correlated electronic systems,
International Journal of Modern Physics B,32, No. 29 1850327 (22 pages), (2018).

4. Nguen Dan Tung, A. Vladimirov, N. M. Plakida, Electronic spectrum and superconductivity
in the extended t-J-V model, Physica C:587, 1353900 (1-16), (2021).

Personal contribution of the author

The content of the dissertation and the provisions submitted for defense, reflect the personal
contribution of the author. The author took an active part in all stages of the work. His contribution
was decisive in carrying out the analytical and numerical calculations, the development of algorithms,
as well as the preparation and writing of articles with the supervisor. All results submitted for
defense were obtained personally by the author.

Confidence level

The reliability of the results obtained is based on the use of widely recognized and proven
theoretical methods, such as CPA, memory function, projection method, etc., which have been
used to study strongly correlated systems previously. The similarity of the obtained results with
the results of previous studies is a good reason for their reliability.

The structure and amount of the thesis

The dissertation consists of introduction, 3 chapters, conclusion, bibliography and 7 appendices.
The general volume of the dissertation is 84 pages, including 53 figuress and 1 table. The bibliography
includes 198 titles on 10 pages.
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Content of the work

In Introduction we demonstrate the relevance of the disertation, determine the main purpose
and objectives of the research, argue about the novelty and practical significance of the work, and
the reliability. Results are approved at conferences, scientific seminars, lists of publications. The
brief description of the disertation structure is given.

In the First Chapter we discuss on MIT in the IHM on a bipartite lattice (sub-lattices A
and B) which has the Hamiltonian:

H = −t
∑

i∈A,j∈B,σ

[c+iσcjσ + c+jσciσ] + U
∑
i

niσniσ + εA
∑
i∈A

ni + εB
∑
j∈B

nj − µ
∑
i

ni, (1)

where ciσ(c+iσ) annihilates (creates) an electron with spin σ at site i, niσ = c+iσciσ and ni =
∑

σ niσ

is the electron number operator at site i. U is the on-site Coulomb repulsion, t is the nearest
neighbor hopping parameter, εA = ∆ and εB = −∆ are the ionic energies. The chemical potential
µA = µB = µ is chosen so that the average occupancy equal 1 (half-filling), as a result µ = U/2.

Using alloy approach, we can rewrite the Hamiltonian (1) as the one-particle Hamiltonian with
disorder:

H = −t
∑
<ij>σ

[a+iσbjσ + b+jσaiσ] +
∑
i∈A,σ

EA,σa
+
iσaiσ +

∑
j∈B,σ

EB,σb
+
jσbjσ, (2)

where

Eα,σ =

εα − U/2, with probability 1− nα,σ

εα + U/2, with probability nα,σ,
(3)

here α = A,B, and nα,σ is the average occupation of electrons with spin σ in α sub-lattice.
Introduce retarded anticommutator GFs Gil

Aσ(t − t′) = ⟨⟨aiσ(t); a†jσ(t′)⟩⟩ and Gji
BAσ(t − t′) =

⟨⟨bjσ(t); a†iσ(t′)⟩⟩, writing down equations of motion for the GFs, using semi-density of state (DOS)
function ρ0(ε) = 2/(πW 2)

√
W − ε2, we obtain

GAσ(ω) =
2

W 2
b

(
1−

√
1− W 2

ab

)
, (4)

and similar for GBσ(ω) where a = ω−ΣAσ(ω) and b = ω−ΣBσ(ω), Σα(ω) is the self-energy of the
α sub-lattice, W is half-width of the band to be set as the energy unit. The CPA demands that the
scattering matrix at site l, Tl(ω) =

Vl(ω)
1−Vl(ω)G(ω)

vanishes on average, where Vl(ω) = Eασ − Σασ(ω)

is perturbation potential at site l. This yields

1

16
G2

α(ω)Gα(ω) +
1

2
(εα − ω)Gα(ω)Gα(ω) +

[
(εα − ω)2 − U2

4

]
Gα(ω)

+
1

4
Gα(ω) + εα − ω − U

2
(nα − 1) = 0. (5)
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Fig. 1: DOS ρ(ω) and ρB(ω) with ∆ = 0.1, U = 1.4.
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Fig. 2: Conductivity as a function of U for T = 0 and different values of ∆.
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Equation (5) must be solved with nA + nB = 2, where nα = −2/π
∫ 0

∞ ImGα(ω)dω. The
solution can be used to determine the local one-particle DOS ρα(ω) = (−1/π)ImGα(ω), the
staggered charge density nB − nA and the charge gap as functions of the model parameters U , ∆
and temperature T .

Figure 1 shows DOS ρB(ω) and the average DOS ρ(ω) = 1
2
[ρA(ω) + ρB(ω)] as functions of

energy with ∆ = 0.1 and U = 1.4. For fixed ∆ there is a gap between the two bands for small U ,
the material is considered to be in the BI state. As U increases, it affects the displacement of the
energy bands, at U = 0.85 there is overlap of two energy bands into a single region, the material
becomes metal (ρ(0) > 0). Keep increasing U the material becomes MI, two more energy bands
appear and there is a gap between the regions.

The conductivity corresponding to the metallic phase with three values of ∆ is plotted in Fig.
2. It is interesting to note that for intermediate and large ∆ the largest conductivity occurs near
the special value U = 2∆ as one might expect from the atomic limit case. Similar behavior of the
conductivity in the half-filled IHM was also found in determinant quantum Monte Carlo (DQMC)
studies [1,2]. In addition, the largest conductivity σmax(∆) decreases with increasing ∆. The main
results of this chapter are published in Ref.1 from the List of publications above.

In the Second Chapter we consider the t−J−V model where in addition to the conventional
hopping t and exchange interaction J terms the intersite Coulomb repulsion V is taken into
account. It is convenient to use the HO technique [3, 4] and to write the model as follow (see.,
e.g., [5]):

H = Ht +HJ +Hc = −
∑
i ̸=j,σ

tijX
σ0
i X0σ

j − µ
∑
iσ

Xσσ
i

+
1

4

∑
i ̸=j,σ

Jij
(
Xσσ̄

i X σ̄σ
j −Xσσ

i X σ̄σ̄
j

)
+

1

2

∑
i ̸=j

Vi,jNiNj, (6)

where the HOs Xαβ
i = |iα⟩⟨iβ| describe the transitions from the state |i, β⟩ to the state |i, α⟩ on the

lattice site i for the three electronic states with spin σ/2, σ = ±1 (σ̄ = −σ) : the unoccupied state
(α, β = 0) and two singly occupied states (α, β = σ). Here tij = tδj,i+a1 + t′δj,i+a2 + t′′δj,i+a3 where
t, t′, t′′ are the hopping parameters between the first a1 = ±ax,±ay , second a2 = ±(ax ± ay),
and third a3 = ±2ax,±2ay neighbors, respectively (ax = ay - are the two-dimensional lattice
constants). Jij = Jδj,i+a1 is the exchange interaction for the nearest neighbors. The intersite CI
Vij = V1δj,i+a1 + V2δj,i+a2 where V1 and the V2 are CI between the first and the second neighbors,
respectively. The number and spin operators in HO representation read

Ni =
∑
σ

Xσσ
i , (7)

Sσ
i = Xσσ̄

i , Sz
i = (σ/2) (Xσσ

i −X σ̄σ̄
i ). (8)

The chemical potential µ in (6) is determined from the equation for the average number of
electrons:

n = 1− δ = ⟨Ni⟩, (9)
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where δ is hole doping, ⟨. . .⟩ is the statistical average with the Hamiltonian (6).
The HOs satisfy the completeness condition

X00
i +Xσσ

i +X σ̄σ̄
i = 1 , (10)

which rigorously preserves the constraint of no double occupancy of any quantum state |i, α⟩
on each lattice site i. From the multiplication rules for HOs Xαβ

i Xγδ
i = δβγX

αδ
i follow the

commutation relations: [
Xαβ

i Xγδ
j

]
±
= δij

(
δβγX

αδ
i ± δδαX

γβ
i

)
, (11)

where the upper sign refers to Fermi-type operators such as X0σ
i , while the lower sign refers to

Bose-type operators such as the number (7) or the spin (8) operators.
To study the dynamic charge fluctuations (DCF), we consider the two-time retarded GF [6]

χq(t− t′) = −⟨⟨Nq(t)|Nq(t
′)⟩⟩ = iθ(t− t′)⟨[Nq(t), N−q(t

′)]⟩, (12)

Nq =
1√
N

∑
i

Ni exp(−iq ri), (13)

where [A,B] = AB − BA, Nq(t) = eiHtNqe
−iHt (we take ℏ = 1) and θ(t − t′) is the Heaviside

function. The DCS χq(ω) is given by the Fourier transform of the GF (12)

χq(ω) = −⟨⟨Nq|N−q⟩⟩ω = i

∫ ∞

0

dteiωt⟨[Nq(t), N−q]⟩. (14)

To calculate GF (12) we consider the density-density relaxation function

Φq(t− t′) ≡ ((Nq(t)|N−q(t
′))) = −iθ(t− t′)(Nq(t), N−q(t

′)), (15)

where

(A(t), B) =

∫ β

0

dλ < A(t− iλ)B >, (16)

is Kubo-Mori scalar product, β = 1
kBT

. The Fourier transform of the density-density relaxation
function is given by

Φq(ω) = ((Nq|N−q))ω = −i

∫ ∞

0

dteiωt(Nq(t), N−q). (17)

The DCS χq(ω) is related to SCS χq and the relaxation function Φq(ω) by the equation

χq(ω) = χq − ωΦq(ω). (18)

Using the equation of motion method for the time-dependent relaxation function (15), we can
write the relaxation function (17) in the form

Φq(ω) = χq
ω − ωMq(ω)/mq

ω2 − Ω2
q − ωMq(ω)/mq

, (19)
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where correlation function mq and the charge excitation energy Ω2
q are given by

mq = (iṄq | − iṄ−q) = ⟨ [iṄq, N−q] ⟩

=
4

N

∑
q′

[ t(q′)− t(q′ − q)]⟨Xσ0
q′ X0σ

q′ ⟩, (20)

Ω2
q =

mq

χq

=
(−N̈q, N−q)

(Nq, N−q)
=
∑
q′

[t(q′)− t(q− q′)]

×
(
t(q′)− 1

2
J(q) + 2V (q)

)
⟨Xσ0

q′ X0σ
q′ ⟩. (21)

The memory function Mq(ω) is given by the irreduccible part of the force-force relaxation function

Mq(ω) = ((Fq|F−q))
irr
ω , (22)

where the force Fq = (d/dt)jq = N̈q = −[[Nq, H], H].
Therefore the DCS (14) can be written in the following form

χq(ω) = χq − ωΦq(ω) =
mq

Ω2
q + ωMq(ω)/mq − ω2

. (23)

The spectral density of CFs is determined by the relation:

Iq(ω) = Imχq(ω + iε) =
mq 2ωΓq(ω)

[Ω2
q + 2ω∆q(ω)− ω2]2 + [2ωΓq(ω)]2

, (24)

where we introduce the imaginary and real parts of the memory function:

Γq(ω) = −(1/2mq)ImMq(ω + iε), ∆q(ω) = (1/2mq)ReMq(ω + iε). (25)

The CF correlation function ⟨NqN−q⟩ in the mean-field approximation (MFA) is given by

⟨Nq N−q⟩ =
∫ ∞

−∞

dω

exp(ω/T )− 1

1

π
Imχ(q, ω + iϵ) =

mq

2Ωq

coth
Ωq

2T
. (26)

The spectrum of the charge excitations Ω2
q along the main directions in the Brillouin zone (BZ)

Γ(0, 0) → X(π, 0) → M(π, π) → Γ(0, 0) is shown in Fig. 3 for hole dopings δ = 0.1 and δ = 0.3

with the standard model parameters V1 = 0.3 and V2 = 0.2 and the temperature T = 0.02 ∼ 90 K.
At the center of the BZ Γ (0, 0) the excitation energy tends to zero, Ω2

q ∝ q2. At the boundary
of the BZ at the point M (π, π) the maximum is observed, and its intensity increases when hole
doping decreases. The dispersion of the spectrum depends on the model parameters. It weakly
depends on the exchange interaction J but shows a strong variation with the CI parameters V1

and V2.
Fig. 4 shows the dependence of χ−1

q on the parameter V1 at a fixed V2 = 0.2. As the parameter
V1 increases, the maximum of the SCS (minimum of χ−1

q ) shifts from the point X (π, 0) to the point
M (π, π). At V1 ≳ 0.5 the inverse charge susceptibility becomes negative near this point, which
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Γ X M Γ

0
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Ω
q2

Fig. 3: Spectrum of charge excitations Ω2
q along the main directions in the BZ: Γ(0, 0) → X(π, 0) →

M(π, π) → Γ(0, 0) for δ = 0.3 (blue, solid line), δ = 0.1 (black, dashed line).
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Fig. 4: Inverse SCS χ−1
q for δ = 0.3 at V2 = 0.2 depending on the parameter V1: V1 = 0.3 (blue,

solid line), V1 = 0.6 (brown, dotted line), V1 = 0.9 (black, dashed line).
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Fig. 5: Γ(q,Ωq) at temperature T = 0.02 for δ = 0.3 (blue, solid line), δ = 0.2 (brown, dotted
line), δ = 0.1 (black, dashed line).
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indicates instability of the uniform charge distribution and formation of the CDW. Therefore,
depending on the CI parameters V1 and V2, which have different symmetries, CDWs can arise
either along the direction Γ(0, 0) → M(π, π) as V1 increases, or along Γ(0, 0) → X(π, 0) as V2

increase.

Fig. 5 demonstrate the damping at the charge excitation energy Γ(q, ω = Ωq). The largest
damping occurs at X(π, 0) and M(π, π) points of the BZ. The damping is greatly increased at low
hole doping as shown for δ = 0.1 where electron correlations are strong. In that case the damping
Γ(q, ω) becomes of the order of the charge excitation energy Ωq that results in a broad spectrum
of the spectral density I(q, ω). For larger hole doping, in particular at δ = 0.3, the damping is
much weaker, Γ(q, ω) ∼ 0.5, and a sharp peak in I(q, ω) emerges at high energy of the order
of the charge excitation energy Ωq = 1 − 1.5. Similar maximum in CFs was found in the QMC
simulation for the Hubbard model in Ref [7] [see Fig. 4.2(b)].

(0,0) (qx,qy) (π /2,π /2)

0

2

4

6

8

10

I(
q

,ω
)

Fig. 6: Spectral density I((qx, qy = qx), ω = 0.05) along the direction Γ(0, 0) → M(π, π) at
temperature T = 0.02 for δ = 0.3 (blue, solid line), δ = 0.2 (brown, dotted line), δ = 0.1

(black, dashed line).

The dispersions of low-energy charge excitation for ω = 0.05 ≈ 20 meV are shown in Fig.
6 along the directions Γ(0, 0) → M(π, π). We observe a maximum in excitations at small wave-
vectors which are found at low doping and sharper and more intensive at smaller doping. The
intensity of excitations along Γ(0, 0) → X(π, 0) is higher in comparison with the diagonal direction
Γ(0, 0) → M(π, π) due to weaker CI in the latter case V2 < V1. In experiments for various cuprates,
the charge density mudulation is observed, along the Cu−O bonds which is explained by a stronger
coupling along the bonds. The main results of this chapter are published in Refs.2,3 from the List
of publications above.

In the Third Chapter we consider electronic spectrum and superconducting pairing in the
extended t− J − V model on a square lattice. To study strong electron correlations in the singly
occupied subband of the t–J model one has to use the projected electron operators, as ã†iσ = a†iσ(1−
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Niσ̄). Here a†iσ is a creation electron operator on the lattice site i with spin σ/2, σ = ±1 (σ̄ = −σ)

and Niσ̄ = ã†iσ̄ãiσ̄ is the number operator. The t–J model in the conventional notation reads [8]:

H = −
∑
i ̸=j,σ

tij ã
+
iσãjσ +

1

2

∑
i ̸=j

Jij

(
SiSj −

1

4
NiNj

)
+Hc,ep, (27)

where Sα
i = (1/2)

∑
s,s′ ã

+
isσ

α
s,s′ ãis′ are spin-1/2 operators, σα

s,s′ is the Pauli matrix. Here tij is the
hopping parameter between i and j lattice sites and Jij is the AFM exchange interaction. The
intersite CI Vij for electrons and EPI gij are taken into account by the Hamiltonian:

Hc,ep =
1

2

∑
i ̸=j

VijNiNj +
∑
i,j

gijNi uj, (28)

where uj describe atomic displacements on the lattice site j for phonon modes.
The unconventional commutation relations for the projected electron operators result in the

kinematical interaction. For instance, if we consider commutation relation for the projected electron
creation ã†jσ and annihilation ãiσ operators,

ãiσã
†
jσ + ã†jσãiσ = δij(1−Niσ/2 + σSz

i ), (29)

we observe that they are Fermi operators on different lattice sites but on the same lattice site they
describe the kinematical interaction of electrons with charge Niσ and spin Sα

i fluctuations. This
kinematical interaction was considered in calculation of the self-energy at first in Ref. [9] and later
in Ref. [10].

It is convenient to describe the projected electron operators by the HOs, as, e.g., ã+iσ = Xσ0
i .

Using the HOs, we write the Hamiltonian (27) in the form

H = −
∑
i ̸=j,σ

tijX
σ0
i X0σ

j − µ
∑
iσ

Xσσ
i

+
1

4

∑
i ̸=j,σ

Jij
(
Xσσ̄

i X σ̄σ
j −Xσσ

i X σ̄σ̄
j

)
+Hc,ep, (30)

where we introduced the chemical potential µ. To discuss the electronic spectrum and superconducting
pairing within the model we consider the retarded two-time GF [6]:

Ĝij,σ(t− t′) = −iθ(t− t′)⟨ {Ψiσ(t),Ψ
+
jσ(t

′) } ⟩

≡ ⟨⟨Ψiσ(t) |Ψ+
jσ(t

′)⟩⟩, (31)

where {A,B} = AB +BA and we introduced HOs in the Nambu notation:

Ψiσ =

(
X0σ

i

X σ̄0
i

)
, Ψ+

iσ =
(
Xσ0

i X0σ̄
i

)
. (32)

Introducing the Fourier representation in (k, ω)-space for the GF (31)

Ĝijσ(t− t′) =
1

2π

∫ ∞

−∞
dte−iω(t−t′)Ĝijσ(ω), (33)

Ĝijσ(ω) =
1

N

∑
k

exp[k(ri − rj)] Ĝσ(k, ω), (34)
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Fig. 7: Dispersion of the electron spectrum
for δ = 0.05 (red, dash-dotted line), δ = 0.1

(black, dashed line), δ = 0.2 (brown, dotted
line), δ = 0.3 (blue, solid line).
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Fig. 8: Fermi surface (FS) in the quarter of the
BZ for δ = 0.05 (red, dash-dotted line), δ = 0.1

(black, dashed line), δ = 0.2 (brown, dotted line),
δ = 0.3 (blue, solid line).

we represent it as the matrix

Ĝσ(k, ω) =

(
Gσ(k, ω) Fσ(k, ω)

F †
σ(k, ω) −Gσ̄(−k,−ω)

)
, (35)

where Gσ(k, ω) and Fσ(k, ω) are the normal and anomalous parts of the GF (31).
By differentiating the GF (31) over the times t and t′ we can obtain the Dyson equation in the

exact form
Ĝijσ(ω) = Ĝ0

ijσ(ω) +
∑
kl

Ĝ0
ikσ(ω) Q

−1 Σ̂klσ(ω) Ĝljσ(ω), (36)

where Q = 1− n/2. Here the zero–order GF in generalized MFA (GMFA) has the form:

Ĝ0
σ(k, ω) = Q

ωτ̂0 + ε(k)τ̂3 +∆σ(k)τ̂1
ω2 − E2(k)

, (37)

where τ̂0, τ̂1, τ̂3 are the Pauli matrices and E2(k) = ε2(k) + ∆2
σ(k) is the energy of quasiparticle

(QP) excitations in the superconducting state. The self–energy operator Σ̂klσ(ω) is given by the
proper part of the scattering matrix that has no parts connected by the single zero-order GF:

Σ̂ijσ(ω) = ⟨⟨Ẑ(irr)
iσ | Ẑ(irr)+

jσ ⟩⟩properω Q−1 =

(
Mijσ(ω) Φijσ(ω)

Φ†
ijσ(ω) −Mijσ(ω)

)
. (38)

The functions Mijσ(ω) and Φijσ(ω) denote the respective normal and anomalous (pair) components
of the self-energy operator. Therefore, for the single–electron GF (35) we obtain an exact representation:

Ĝσ(k, ω) = Q{ωτ̂0 − Êσ(k)− Σ̂σ(k, ω)}−1. (39)

The normal state GF in the GMFA is given by the GF (39)

G0(k, ω) = ⟨⟨X0σ
k |Xσ0

k ⟩⟩ω =
Q

ω − ε(k)
. (40)

Here the electronic energy is determined by the relation:

ε(k) = −4t αγ(k)− 4t′ βγ′(k)− 4t′′ βγ′′(k) + ω(c)(k)− µ, (41)

ω(c)(k) =
1

N

∑
q

V (k− q)N(q), (42)
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Fig. 9: Spectral density A(k, ω) for δ = 0.1. Fig. 10: Energy dispersion for δ = 0.1.

where γ(k) = (1/2)(cos kx + cos ky), γ′(k) = cos kx cos ky, γ′′(k) = (1/2)(cos 2kx + cos 2ky) and
the hopping parameters are given by t′ = 0.1t, t′′ = 0.2t. We take t = 0.4 eV as the energy unit.

The hopping parameters are renormalized by the short-range AFM correlations given by the
parameters:

α = Q
(
1 + C1/Q

2
)
, β = Q

(
1 + C2/Q

2
)
, (43)

which depend on the spin correlation functions for the first and the next neighbors:

C1 = ⟨SiSi±ax/ay⟩ =
1

N

∑
q

γ(q)Cq,

C2 = ⟨SiSi±ax±ay⟩ =
1

N

∑
q

γ′(q)Cq. (44)

For the spin correlation function Cq = ⟨SqS−q⟩ we take the model:

Cq =
CQ

1 + ξ2[1 + γ(q)]
, (45)

where the parameter CQ is defined from the normalization condition ⟨SiSi⟩ = (3/4)n = (1/N)
∑

q Cq.
This renormalization of the spectrum results in the well defined electronic spectrum shown in

Fig.7 which changes with hole doping since the AFM correlation functions (44) strongly depends
on the electron concentration. The corresponding FS ε(kF) = 0 is also transforms with doping
from the four hole pockets form at low doping to the large FS as shown in Fig.8. By taking into
account the self-energy contribution in the GF (39) instead of the well defined in the GMFA
electronic spectrum in Fig.7 we observe a diffuse spectral density. At the same time, the FS in
Fig.8 in the form of closed pockets for low doping transforms to open arcs representing the parts
of the FS close to (π/2, π/2) point of the BZ which do not shift considerably with doping. This
transformation is observed in angle-resolved photoemission spectroscopy (ARPES) experiments
[11–13].
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Fig. 11: Energy dispersion for δ = 0.3.

The self-energy (38) is determined by the many-particle GFs where the normal and anomalous
(pairs) components are given by:

Mijσ(ω) = (1/Q) ⟨⟨[X0σ
i , H]|[H,Xσ0

j ]⟩⟩ω, (46)

Φijσ(ω) = (1/Q) ⟨⟨[X0σ
i , H]|[X0σ̄

j , H]⟩⟩ω. (47)

Using the the spectral representation we represent them in terms of the time-dependent correlation
functions which are calculated in the SCBA where propagation of Fermionic and Bosonic excitation
on different lattice sites is assumed to be independent:

⟨Xσ′0
m B+

jσσ′|X0σ′

l (t)Biσσ′(t)⟩ = ⟨Xσ′0
m X0σ′

l (t)⟩⟨B+
jσσ′Biσσ′(t)⟩ , (48)

⟨X σ̄′0
m Bjσ̄σ̄′|Xσ′0

l (t)Biσσ′(t)⟩ = ⟨X σ̄′0
m Xσ′0

l (t)⟩ ⟨Bjσ̄σ̄′Biσσ′(t)⟩ . (49)

Calculation of the corresponding single-particle correlation functions in these equations results in
the self-energy

M(k, ω) =
1

N

∑
q

+∞∫
−∞

dz

πQ
K(+)(ω, z,k,q)[−Im]G(q, z), (50)

Φσ(k, ω) =
1

N

∑
q

+∞∫
−∞

dz

πQ
K(−)(ω, z,k,q)[−Im]Fσ(q, z). (51)

The kernel of the integral equations is defined as

K(±)(ω, z,k,q) =

+∞∫
−∞

dΩ

2π

tanh(z/2T ) + coth(Ω/2T )
ω − z − Ω

×
{
|t(q)|2Imχsf (k− q,Ω)± |gep(k− q)|2Imχph(k− q,Ω)

±
[
|V (k− q)|2 + |t(q)|2/4

]
Imχcf (k− q,Ω)

}
≡

+∞∫
−∞

dΩ

2π

tanh(z/2T ) + coth(Ω/2T )
ω − z − Ω

λ(±)(k,q,Ω). (52)
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Fig. 12: Imaginary part of the spin-
fluctuation self-energy −(1/π)ImMsf (k, ω)

for δ = 0.1.

(0,0) kx (π,0)

k
y

(0,π) (π,π)

Fig. 13: Spectral density A(k, 0) in the
quarter of the BZ for δ = 0.05.

The spectral densities of bosonic excitations are determined by the dynamic susceptibility for spin
(sf), number (charge) (cf), and lattice (phonon) (ph) fluctuations

χsf (q, ω) = −⟨⟨Sq|S−q⟩⟩ω, (53)

χcf (q, ω) = −⟨⟨δNq|δN−q⟩⟩ω, (54)

χph(q, ω) = −⟨⟨uq|u−q⟩⟩ω. (55)

Let us consider the electronic spectrum in the normal state which is determined by normal
state GF in Eq. (39)

G(k, ω) = ⟨⟨X0σ
k |Xσ0

k ⟩⟩ = Q

ω − ε(k)−M(k, ω)
. (56)

The normal state self-energy is given by Eqs. (50), (52). The spectral density of electronic excitations
is determined by

A(k, ω) = − 1

πQ
ImG(k, ω + iϵ) =

−M ′′(k, ω)/π

[ω − ε(k)−M ′(k, ω)]2 + [M ′′(k, ω)]2
. (57)

Here we introduce the real, M ′(k, ω), and imaginary, M ′′(k, ω), parts of the self-energy: M(k, ω+

iϵ) = M ′(k, ω) + iM ′′(k, ω). The renormalization parameter for the electronic energy close to the
FS, ω → 0, reads:

Zk(0) = 1− [∂M ′(k, ω)/∂ω]ω=0 ≡ 1 + λ(k), (58)

where λ(k) is the coupling parameter.
The self-energy and the spectral density are calculated by iteration. The results of the 10-

th order of iterations for the spectral density for the electron interaction with spin-fluctuations
Asf (k, ω) (57) and the energy dispersion ε̃(k) along the main directions in the BZ, Γ (0, 0) →
X (π, 0) → M (π, π) → Γ (0, 0), are presented in Figs. 9 – 11.

At low doping the spectral density shows a large incoherent background, in particular close
to the (π, π)-point of the BZ, as shown in Figs. 9, 10 for δ = 0.1. With increasing doping the
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Fig. 14: (Color online) Solution of the gap
equation (59) in the WCA, Z = 1, for
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c (black, dash-dotted ed line), T sf
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dashed line), and T sf+ep

c (red, solid line).
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Fig. 15: (Color online) Solution of the gap
equation (59) in the SCA for T ep

c (black,
dash-dotted line), T sf

c (blue, dashed line),
and T sf+ep

c (red, solid line). The green
dotted line show T sf+ep

c with zero CI,
V (k− q) = 0.

spin-fluctuation interaction becomes weak and the incoherent background decreases, as shown in
Fig. 11 for δ = 0.3. The spectrum of excitations in Fig. 11 is close to that one in the GMFA shown
in Fig. 7. However, at low doping where the self-energy renormalization is strong the spectrum
in the GMFA is quite different from those shown in Fig 10. In particular, a large intensity of
excitations at the (π, π)-point of the BZ appears at much lower energy than in the GMFA due
to a shift of the excitation energy caused by the real part of the self-energy. Therefore, we can
conclude that the self-energy effects are very important in studies of the QP excitations in the t-J
model.

The QP damping determined by the imaginary part of the self-energy (50) Γ(k, ω) =

− (1/π)ImMsf (k, ω) due to spin-fluctuation interaction is plotted in Fig. 12 at doping δ = 0.1.
For a larger doping, δ = 0.3, the intensity of the QP damping decreases and the large FS emerges
as in the GMFA.

The results of spectral density close to the FS Asf (k, ω = 0) (57) which determines the FS are
presented in Figs. 13 for low doping. It reveals the arc-type form which transforms to the large
FS for high doping as in the GMFA. This FS transformation from the arc-type at low doping to
the large FS at high doping is observed in ARPES experiments (see, e.g., Refs. [11–14]. Similar
results were obtained using the cluster perturbation theory (CPT) for the t-J model in Ref. [15]
and for the Hubbard model in Ref. [16].

Let us consider the superconducting state. The gap equation close to the FS, ϕσ(k) = ϕσ (k, ω = 0),
is given by the equation:

ϕσ(k) =
1

N

∑
q

+∞∫
−∞

dz

π

[V (k− q)− J(k− q)

exp(z/T ) + 1
+K(−)(0, z,k,q)

]
×[−Im]

ϕσ(q)

Z2
q(0) [(z + iϵ)2 − ε̃2(q, z)]

. (59)
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Fig. 16: (Color online) Wave-vector dependence of the superconducting gap at the FS ϕ(q).

The first contribution in this equation given by the AFM exchange interaction J(k− q) is due
to the GMFA and gives quite high Tc ∼ 100 K as proposed by Anderson [8] and considered later
in many publications. However, if we take into account the intersite CI V (k− q) which is of the
same order in cuprates as J(k− q), we obtain very low Tc ∼ 10−3 K . Therefore, the Anderson
theory cannot explain high-Tc in cuprates. Only consideration of spin fluctuation contribution can
results in high-Tc as discussed below.

Solution of the gap equation (59) in the weak-coupling approximation (WCA), Z(q) = 1, for
Tc as a function of doping is presented in Fig. 14. Solution of the gap equation (59) for Tc in
the strong-coupling approximation (SCA) for Z(q) is shown in Fig. 15. To simplify the numerical
calculation we approximated the function Z(q) by its average over q values: Z = 2.5 − 4δ. The
superconducting Tc in the SCA in Fig. 15 is an order of magnitude smaller than in the WCA in
Fig. 14 due to suppression of the QP weight given by 1/Z(q). We note that the effect of CI, shown
by the green dotted line, only weakly decreases the Tc both in the WCA and SCA.

Comparison of Tc in the WCA in Fig. 14 and in the SCA in Fig. 15 shows that in both
approximations the contribution from the EPI is noticeably smaller than those induced by the spin-
fluctuation interaction. We can explain this as follow: While in summation over q contributions to
the normal self-energy come from all symmetry components of interactions, in the gap equation
contributions are restricted only to the B1g symmetry component of interactions determined by
the symmetry of the d-wave gap ϕσ(q). In particular, a strong momentum-independent EPI gives
no contribution to the gap equation but results in a large contribution to the normal self-energy
and the parameter Z(q) in the gap equation that suppresses Tc (see also Ref. [17]). Therefore,
the EPI can be quite strong and gives observable polaronic effects but has a small d-wave partial
harmonic and plays only a secondary role in the d-wave pairing. This results in the weak isotope
effect on Tc in the optimally doped cuprates. The same holds for the intersite CI since only d-wave
partial harmonic gives a contribution to the gap equation as shown in Figs. 14 and 15. This
explains why the strong single-site CI cannot destroy the superconductivity (see Refs. [5, 18]).

The wave-vector dependence of the superconducting gap at the FS ϕ(q) at δ = 0.2 is presented
in Fig. 16 in the BZ. We see that the maximum values of the gap are shifted in comparison
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with the model d-wave gap function ϕ(0)(q) = ϕ(0)(cos kx − cos ky) from the BZ boundary at
(0,±π), (±π, 0) points. Similar behavior was found in Ref. [19] in the t–J∗ model with hopping
parameters between distant lattice sites. The main results of this chapter are published in Ref.4
from the List of publications above.

Conclusion The main results of the dissertation are given below:
1. We have studied the metal-insulator transition in the half-filled ionic Hubbard model using

CPA. For a fixed and finite ∆ two transitions from BI via metal to MI are found by changing value
of Coulomb repulsion U . The calculation of temperature dependent conductivity demonstrated
that for intermediate and large ∆ the largest conductivity occurs near the special value U = 2∆ at
all temperature. For a fixed ∆ the region of finite conductivity [Uc1, Uc2] expands and its maximum
decreases with increasing T . Our results are in good agreement with the ones obtained by the
DQMC simulation. The calculation presented here can be extended to the optical conductivity.

2. We have considered behavior of the static χq and dynamics χq(ω) charge susceptibility in a
system of electrons with strong correlations in the framework of the t-J-V model. We have shown
that for a sufficiently strong intersite Coulomb repulsion, χq increases without limit (χ−1

q vanishes),
and CDWs arise in the system either along the diagonal of the unit cell (near the point M (π, π) of
the BZ) or along the edge of the unit cell (near the point X (π, 0) of the BZ). The dependence on
other model parameters including the AFM exchange interaction J , is weaker. Taking into account
the damping of CFs described by the imaginary part of the memory function we have found out
that at low hole doping, e.g., for δ = 0.1 due to strong correlations only a broad spectrum of
overdamped CFs is observed. At large hole doping, the Fermi-like type behavior emerges and
well-defined high-energy charge excitations appear close to M(π, π) and X(π, 0) points of the BZ.
The dispersion of low-energy excitations demonstrates a maximum at small wave vectors with the
higher intensity in comparison with experiments at high doping but with a weaker intensity at
small doping in comparison with experiments.

3. A detailed study of the electronic spectrum and superconductivity for strongly correlated
electronic systems within the microscopic theory for the extend t− J model is presented. Besides
the conventional AFM exchange interaction J , the EPI and the intersite Coulomb repulsion are
taken into account. The projection technique was employed to obtain the exact Dyson equation
for the normal and anomalous (pairs) GF’s in terms of Hubbard operators. The self-energy given
by many-particle GF’s was calculated in the SCBA in the second order of interaction. The most
important contribution is induced by the kinematical interaction for the HOs. It results in strong
coupling of electrons with spin fluctuations of the order of hopping parameter t(q) much larger
than the exchange interaction J(q). Therefore, we suggest that the spin-fluctuation pairing is the
mechanism high-Tc in cuprates.
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