ОБЪЕДИНЕННЫЙ ИНСТИТУТ ЯДЕРНЫХ ИССЛЕДОВАНИЙ ЛАБОРАТОРИЯ ТЕОРЕТИЧЕСКОЙ ФИЗИКИ им. Н. Н. БОГОЛЮБОВА

На правах рукописи

Быстрицкий Юрий Михайлович

Радиационные эффекты первого и второго порядков в рамках Стандартной модели для современных экспериментальных программ

Специальность 1.3.3 — «Теоретическая физика»

Автореферат диссертации на соискание учёной степени доктора физико-математических наук Работа выполнена в Лаборатории теоретической физики им. Н. Н. Боголюбова Объединенного института ядерных исследований.

Научный консультант: вед. науч. сотр. Лаборатории физики высоких энергий им. В.И. Векслера и А.М. Балдина ОИЯИ, профессор кафедры общей физики Гомельского государственного университета им. Ф. Скорины, доктор физ.-мат. наук Зыкунов Владимир Александрович

С электронной версией диссертации можно ознакомиться на официальном сайте Объединенного института ядерных исследований в информационно- телекоммуникационной сети «Интернет» по адресу: https://dissertations.jinr.ru/. Там же будет указана дата защиты.

С печатной версией диссертации можно ознакомиться в Научнотехнической библиотеке ОИЯИ (г. Дубна, Московская область, ул. Жолио-Кюри, д. 6).

Исполняющий обязанности технического секретаря диссертационного совета доктор физ.-мат. наук

Общая характеристика работы

Актуальность темы.

Современная физика элементарных частиц во многом полагается на экспериментальный поиск новых явлений и эффектов. Особое значение в последнее время имеют прецизионные эксперименты, изучающие наиболее простые и базовые процессы рассеяния частиц с очень высокой точностью. При этом для адекватной интерпретации результатов эксперимента и для высокоточного извлечения параметров модели необходим систематический и надежный учет эффектов высших порядков теории возмущений. Одним из важнейших таких эффектов являются радиационные поправки, которые могут (иногда значительно) искажать полученные экспериментальные сечения процессов.

В качестве примера такого высокоточного измерения можно привести измерение аномального магнитного момента мюона. В настоящее время наблюдается отклонение экспериментального значения величины от ее теоретического предсказания и значение радиационных поправок исключительно важно и оценивается на уровне точности шести порядков теории возмущений.

Другим местом, где радиационные эффекты важны, является измерение параметров Стандартной модели, которые необходимо знать с высокой точностью, поскольку они входят в теоретические предсказания для многих процессов. Например, коллаборация MOLLER в Jefferson Lab (США) планирует изучать меллеровское рассеяние электронов с точностью, обеспечивающей неопределенность измерения синуса угла Вайнберга на уровне $\Delta(\sin^2 \theta_W) = \pm 0.00028$ [1]. Оценка электрослабых радиационных поправок на уровне одной петли в этом случае явно недостаточна и требуется вычисление этих радиационных эффектов на уровне двух петель.

Коллаборация Belle II [2] на ускорительном комплексе SuperKEKB (Япония) ведет высокоточное изучение *B*-физики и нацелена на поиск темной материи. При этом важно с хорошей точностью понимать процессы, которые идут на фоне целевых процессов (то есть процессов, изучение которых является целью данного эксперимента). Таким процессом можно назвать аннигиляцию электронов и позитронов с рождением лептонных пар. Они же важны и для измерения светимости ускорительного комплекса, а также являются основными нормирующими процессами для изучаемых каналов распадов *B*-мезонов.

В будущем планируется к постройке ускоритель ILC/CLIC/FCC [3; 4], который также будет посвящен изучению физики бозонов Хиггса и поиску новой физики на высоком экспериментальном уровне. Оценка эффектов радиационных поправок для подобных ускорителей высокой энергии также необходима и ведется несколькими теоретическими группами в мире.

Необходимо также понимать, что радиационные эффекты высших порядков теории возмущений не только сопутствуют целевым процессам, но и могут давать определяющий вклад в амплитуду отдельных процессов. Например, коллаборация BES III на ускорительном комплексе BEPC (Китай) много лет проводит измерения рождений различных чармониев и наблюдает нетривиальную форму пика для этих резонансных состояний [5]. Такую же характерную форму наблюдал эксперимент SND на ускорительном комплексе VEPP-2M (Новосибирск) для рождения $\phi(1020)$ мезона [6], который является резонансным состоянием $s\bar{s}$ -пары. Одним из объяснений этого нетривиального поведения является механизм распада кваркония в конечные адроны через многоглюонные промежуточные состояния, которые приводят к большой относительной фазе и могут искажать форму брейт–вигнеровского пика.

Давно проводящиеся измерения электромагнитных формфакторов протона нуждаются в учете электромагнитных поправок первого, а иногда и высших порядков теории возмущений. Например, планируемый эксперимент PANDA на ускорительном комплексе FAIR/GSI (Германия), который будет нацелен на измерение формфакторов протона во времениподобной области в процессе аннигиляции протон–антипротонной пары в пару лептонов, также сильно зависит от правильного учета радиационных поправок.

Диссертация представляет результаты вычисления радиационных эффектов для всех приведенных выше экспериментов и в ряде случаев обеспечивает экспериментальные группы компьютерными кодами для их оценки.

Степень разработанности темы. Вычисление радиационных поправок в рамках однопетлевого приближения находится на очень высоком уровне проработанности. Фактически методика точного вычисления однопетлевых интегралов была предложена еще в работах [7; 8], которая позднее была реализована в виде компьютерных кодов, например, в библиотеке LoopTools. Вычисления радиационных поправок в рамках чистой электродинамики для ряда базовых процессов с участием лептонов проводились еще в 1970-х годах группой CALKUL [9], а электрослабые поправки вычислялись в 1970-1990-х годах, например, группой Denner и Hollik [10—12] или группой Д.Ю. Бардина [13].

Фактически в настоящее время вычисление однопетлевых вкладов реализовано в виде нескольких программных пакетов, которые автоматизируют вычисления. Примерами таких пакетов можно назвать систему FeynArts/FormCalc и программный комплекс SANC.

Выход за однопетлевое приближение может производиться, например, с использованием метода структурных функций [14], который позволяет учитывать высшие порядки теории возмущений в лидирующем логарифмическом приближении. Существуют Монте-Карло генераторы, использующие метод структурных функций для генерации событий целевого процесса с учетом излучения дополнительных фотонов вдоль импульсов заряженных частиц. Существует также ряд вычислений электромагнитных радиационных поправок на уровне двух петель [15]. Однако в настоящее время не существует универсальных методов вычисления двух- и многопетлевых интегралов, которые бы работали для всех классов диаграмм. Наиболее глубоко разработаны методы вычисления петлевых интегралов для безмассовых частиц и для многопетлевых интегралов с топологией массового оператора, то есть перехода $1 \to 1$.

Целью данной работы является обеспечение современных и планируемых экспериментальных программ низких и высоких энергий реалистичными оценками радиационных поправок в рамках Стандартной модели, которые включают в себя аналитические выражения для программных комплексов, позволяющих моделировать физические процессы с учетом этих радиационных поправок.

Для достижения поставленной цели необходимо было решить следующие **задачи**:

- 1. Произвести детальный расчет электрослабых радиационных поправок в процессе Баба-рассеяния на однопетлевом уровне (включая виртуальные поправки и поправки на излучение реального фотона) для эксперимента Belle II и планируемых экспериментов на ILC.
- 2. Применить вышеуказанный расчет для случая рождения $\mu^+\mu^-$ -пары (для эксперимента Belle II) и для случая аннигиляции $p\bar{p}$ -пары с учетом электромагнитной структуры протона (для эксперимента PANDA на FAIR (GSI)).
- Проанализировать классы двухпетлевых диаграмм для виртуальных электрослабых радиационных поправок к поляризационному меллеровскому рассеянию требуемых для прецизионной оценки поляризационной асимметрии в условиях эксперимента MOLLER.
- 4. Рассчитать двойные бокс-диаграммы с обменом тремя калибровочными бозонами (γ, Z и W), и диаграммы со сложными двухпетлевыми вершинами.
- 5. Оценить двухпетлевой трехглюонный механизм распада чармония в процессе аннигиляции электрон-позитронной пары. Показать, что этот механизм является доминирующим и что он ответственен за большую относительную фазу, наблюдаемую на эксперименте BES III.

Научная новизна:

- 1. Впервые был произведен полный расчет однопетлевых радиационных поправок в рамках Стандартной модели к Баба-рассеянию и процессу $e^+e^- \rightarrow \mu^+\mu^-$ с учетом условий эксперимента Belle II.
- 2. Впервые проведен согласованный расчет электромагнитных радиационных поправок к процессу $p\bar{p} \rightarrow e^+e^-$ в условиях эксперимента PANDA и его результаты положены в основу Монте-Карло генератора для моделирования физических событий.
- Впервые рассчитаны двухпетлевые бокс-диаграммы и диаграммы с двухпетлевыми вершинами для меллеровского рассеяния в рамках асимптотического метода получения компактных аналитических выражений.
- 4. Впервые рассмотрен трехглюонный механизм распада чармония $\psi(3770)$ и показано, что он ответственен за генерацию большой относительной фазы, которая наблюдается на эксперименте BES III.

Практическая значимость данной работы вытекает из того факта, что все вычисления ориентированы на конкретные задачи, реализующиеся на экспериментальных установках, работающих (Belle II, BES III) или строящихся/планируемых (PANDA, MOLLER, ILC) в мире. Результаты вычислений проверены и подготовлены в явном виде и могут быть использованы для построения программ моделирования физических событий с учетом радиационных поправок. В одном случае (процесс $p\bar{p} \rightarrow e^+e^-$) это уже сделано: программный комплекс для генерации соответствующих событий написан, протестирован и используется коллаборацией PANDA.

Исследование трехглюонного механизма распада чармония $\psi(3770)$ показало, что для окончательной проверки этого механизма необходимо провести измерение сечения процесса $e^+e^- \rightarrow p\bar{p}$ не только на самой массе чармония, но и выше, и ниже по энергии. На основании этого на рабочей встрече коллаборации BES III было сделано предложение провести такое измерение. В настоящее время возможность такого измерения обсуждается.

Методология и методы исследования. Основой вычислений в диссертации является аналитический подход, позволяющий проводить исследование полученных выражений методами математического анализа. Для оценки интегральных характеристик наблюдаемых величин применялось аналитическое интегрирование, но в случае излучения жесткого реального фотона применялись хорошо известные методы адаптивного численного интегрирования VEGAS. Экспериментальные данные, использованные в работе, обрабатывались известными методами математической статистики. Это позволило не только надежно зафиксировать значения параметров модели, но и показать, что полученные предсказания хорошо согласуются с данными эксперимента.

Основные положения, выносимые на защиту:

- 1. Вычислены электрослабые радиационные поправки на уровне одной петли в процессе Баба-рассеяния, включающие дополнительный обмен виртуальным калибровочным бозоном и излучение реального фотона произвольной энергии. Вычисления проведены в условиях постановки эксперимента Belle II и ILC.
- 2. Вычислены электрослабые радиационные поправки на уровне одной петли для процесса $e^+e^- \rightarrow \mu^+\mu^-$ в условиях постановки эксперимента Belle II. Были оценены вклады с дополнительным обменом виртуальным калибровочным бозоном и излучение мягкого реального фотона.
- 3. Оценены однопетлевые электромагнитные радиационные поправки к сечению реакции $p\bar{p} \rightarrow e^+e^-$ для планируемого эксперимента PANDA (FAIR/GSI). Аналитические выражения для поправленного сечения реакции были использованы для построения компьютерной программы, которая позволяет моделировать физические события на установке PANDA с учетом радиационных поправок.

- 4. Вычислены двухпетлевые вклады в электрослабые радиационные поправки к процессу меллеровского рассеяния в условиях постановки эксперимента MOLLER. Вычисление содержит двойные бокс-диаграммы, однопетлевые бокс-диаграммы со сложными вершинами и вставками собственных энергий в пропагаторы фермионов и бозонов, а также диаграммы с двухпетлевыми вершинами.
- 5. Разработан трехглюонный механизм распада векторного чармония $\psi(3770)$ в пару конечных барионов (протон–антипротон и пару Л-гиперонов) в реакции электрон–позитронной аннигиляции. Установлено, что этот механизм является доминирующим и в этом случае и приводит к возникновению большой относительной фазы по отношению к электромагнитному фоновому каналу реакции, что подтверждается сравнением с данными коллаборации BES III.

Достоверность полученных результатов обеспечивается использованием проверенных методов квантовой теории поля, математического анализа и компьютерной алгебры. Для большей части радиационных поправок была получена аналитическая форма выражений, позволяющая анализировать и корректно численно их оценивать. На всех допустимых промежуточных этапах проводится проверка полученных выражений на соблюдение важных физических требований: сохранение калибровочной инвариантности выражений, сокращение инфракрасной расходимости, независимость конечного интегрального результата от значений вспомогательных параметров. Причем сокращение инфракрасной расходимости и независимость от вспомогательных параметров проводится двумя способами: аналитическим, с использованием асимптотических компактных выражений, и численно, с использованием интегрирования на вычислительных машинах. Полученные величины радиационных поправок сравниваются с результатами других авторов, которые вычисляли поправки к рассматриваемым процессам в других условиях. Сверка также проводится с результатами счета с использованием систем автоматического вычисления FeynArts/FormCalc. Проверка модели трехглюонного обмена проводилась на независимом наборе данных коллаборации BES III для процесса $e^+e^- \rightarrow \Lambda \bar{\Lambda}$, тогда как фиксация параметров модели была проведена на данных для процесса $e^+e^- \rightarrow p\bar{p}$.

Апробация работы. Основные результаты работы докладывались автором на международных и российских конференциях:

- 1. International workshop «Scattering and annihilation electromagnetic processes» (ECT*, Trento, Italy, February 18–22, 2013).
- 2. Рабочее совещание «Radiative corrections in annihilation and scattering experiments» (GDR-PH-QCD, IPN Orsay, France, October 7–8, 2013).
- 3. XV International Advanced Research Workshop «High Energy Spin Physics» (DSPIN-13) (ОИЯИ, Дубна, Россия, 8–12 октября, 2013)
- 4. Школа–семинар эксперимента ПАНДА (ОИЯИ ЛЯП, Дубна, 22-23 октября, 2013).

- 5. Рабочее совещание «Recent highlights in hadron structure» (GDR-PH-QCD, IPN Orsay, France, October 7, 2014).
- 6. 6th International Workshop «Calculations for Modern and Future Colliders» (CALC-2015) (ОИЯИ, Дубна, Россия, 20–30 июля, 2015).
- XIII Международная школа-конференция «Актуальные проблемы физики микромира» (ГГУ им. Ф.Скорины, Гомель, Беларусь, 27 июля 7 августа, 2015).
- 8. 17th International Workshop on Advanced Computing and Analysis Techniques in Physics Research (ACAT 2016) (Universidad Técnica Federico Santa María, Valparaiso, Chile, January 18-22, 2016).
- 9. Atlantic Canada Subatomic Theory Workshop (Acadia University, Acadia, Canada, August 31, 2016).
- V Международная научная конференция «Проблемы взаимодействия излучения с веществом» (Посвящается Б. В. Бокутю) (ГГУ им. Ф.Скорины, Гомель, Беларусь, 14–16 ноября, 2018).
- 11. Международная Боголюбовская конференция «Проблемы теоретической и математической физики» (ОИЯИ, Дубна, Россия, 9–13 сентября, 2019).
- VII International Conference «Models in Quantum Field Theory» (MQFT-2022) (Международный математический институт им. Леонарда Эйлера, 10 октября, 2022)
- 13. 6th International Conference on Particle Physics and Astrophysics (ICPPA2022) (МИФИ, Москва, 1 декабря, 2022)
- 14. Рабочее совещание по научной программе BES III (ОИЯИ ЛЯП, Дубна, 18 января, 2023).
- XV Международная школа-конференция «Актуальные проблемы физики микромира» (ИЯП БГУ, Минск, Беларусь, 27 августа – 3 сентября, 2023).

Дичный вклад. Основные результаты диссертации получены автором и опубликованы в работах [A1—A14]. Постановка некоторых задач и анализ результатов расчетов выполнялась совместно с проф. Э.А. Кураевым (Объединенный институт ядерных исследований), д.ф.-м.н. В.А. Зыкуновым (Объединенный институт ядерных исследований, Гомельский государственный университет им. Ф. Скорины), др. Egle Tomasi-Gustafsson (Service de Physique Nucléaire, Institut de Recherche sur les lois Fondamentales de l'Univers, г. Сакле, Франция), др. Ping Wang (Institute of High Energy Physics, г. Пекин, Китай). Одна работа [A13] написана автором единолично. В остальных работах (кроме [A13; A14]) все аналитические и численные вычисления проводились автором параллельно с соавторами: д.ф.-м.н. В.А. Зыкуновым, др. А.Г. Алексеевым и др. С.Г. Баркановой (Memorial University, Newfoundland, Канада). На всех этапах работы полученные численные результаты автора сравнивались с результатами соавторов. В работах [A13; A14] все аналитические и численные

расчеты проведены автором единолично. В работах [A8; A10; A11] автор разработал программу для пакетов автоматического вычисления FeynArts/FormCalc, используемую для сравнения с вычислениями асимптотическим методом.

Публикации. Основные результаты по теме диссертации изложены в 14 печатных изданиях, 13 из которых изданы в журналах, рекомендованных ВАК, 12—в периодических научных журналах, индексируемых Web of Science и Scopus.

Связь работы с крупными научными программами (проектами) и темами. Диссертационная работа выполнена в рамках Проблемно-тематического плана научно-исследовательских работ и международного сотрудничества Объединенного института ядерных исследований, тема 01-3-1135-2019/2023 «Фундаментальные взаимодействия полей и частиц».

Тематика диссертации также соответствует п. 1.3.3.1 «Физика элементарных частиц и фундаментальных взаимодействий» Программы фундаментальных научных исследований в Российской Федерации на долгосрочный период (2021— 2030 годы), утвержденной распоряжением Правительства Российской Федерации № 3684-р от 31 декабря 2020 г.

Содержание работы

Во **введении** приводится исторический обзор научной литературы по состоянию изучаемой проблемы в настоящее время, обосновывается актуальность исследований, ставится цель исследования, формируются задачи и излагается научная новизна представляемой работы.

Первая глава посвящена вычислению однопетлевых радиационных поправок к процессу Баба-рассеяния

$$e^{-}(p_1) + e^{+}(p_2) \to e^{-}(p_3) + e^{+}(p_4)$$
 (1)

в рамках Стандартной модели. Вычислялись поправки к сечению процесса *d*σ, а также к поляризационной асимметрии *A*_{LR}, которая определяется следующим образом:

$$A_{LR} = \frac{d\sigma_{L0} - d\sigma_{R0}}{d\sigma_{L0} + d\sigma_{R0}},\tag{2}$$

через сечения рассеяния левополяризованного (правополяризованного) электрона на неполяризованном позитроне σ_{L0} (σ_{R0}). Рассматривалась также интегральная асимметрия $A_{LR\Sigma}$, которая строится аналогично (2):

$$A_{LR\Sigma} = \frac{\Sigma_L - \Sigma_R}{\Sigma_L + \Sigma_R},\tag{3}$$

Рис. 1 — Диаграммы Фейнмана для процесса Баба-рассеяния в борновском приближении. Волнистая линия соответствует обмену фотоном или *Z*-бозоном.

но из сечений, проинтегрированных по углу вылета электрона θ_{13} в пределах $a < \theta_{13} < \pi - a$:

$$\Sigma_L = \int_{-\cos a}^{\cos a} \frac{d\sigma_{L0}}{dC_{13}} \cdot dC_{13}, \qquad \Sigma_R = \int_{-\cos a}^{\cos a} \frac{d\sigma_{R0}}{dC_{13}} \cdot dC_{13}, \qquad (4)$$

где $C_{13} \equiv \cos \theta_{13}$. Также вычислялись поправки к асимметрии рассеяния впередназад A_{FB} .

Радиационные поправки считались в виде относительных поправок δ^C_+ :

$$\delta_{\pm}^{C} = \frac{d\sigma_{L0}^{C} \pm d\sigma_{R0}^{C}}{d\sigma_{L0}^{0} \pm d\sigma_{R0}^{0}},\tag{5}$$

где индекс C задает типа вклада. Эти поправки обладают свойством аддитивности: $\delta^{C_1+C_2}_{\pm} = \delta^{C_1}_{\pm} + \delta^{C_2}_{\pm}$ и, следовательно, крайне удобны для анализа влияния радиационных поправок на наблюдаемые величины: величина δ^C_{\pm} дает соответствующий C вклад в неполяризованное сечение

$$\sigma_{00}^C = \delta_+^C \cdot \sigma_{00}^0, \tag{6}$$

а вместе они формируют поправку к поляризационной асимметрии:

$$\delta_A^C = \frac{A_{LR}^C - A_{LR}^0}{A_{LR}^0} = \frac{\delta_-^C - \delta_+^C}{1 + \delta_+^C}.$$
(7)

Асимметрия с учетом поправок тогда имеет вид:

$$A_{LR}^{\rm NLO} = (1 + \delta_A^{\rm NLO}) A_{LR}^0 = \frac{1 + \delta_-^{\rm NLO}}{1 + \delta_+^{\rm NLO}} A_{LR}^0.$$
(8)

Сечение процесса (1) в борновском приближении описывается диаграммами на рисунке 1 и записывается в следующем виде:

$$\frac{d\sigma^0}{dC_{13}} = \frac{\pi\alpha^2}{2s} \sum_{r,r'} \sum_{a,b=\gamma,Z} \Pi^{ab}_{rr'} S^{aab}_{rr'},$$
(9)

Рис. 2 — Диаграммы вкладов бозонных собственных энергий (C = BSE).

Рис. 3 — Диаграммы вкладов вершинных поправок (C = ver).

где суммирование идет по различным каналам реакции $\{rr'\} = \{tt, ts, st, ss\} = \{1, 2, 3, 4\}$, величина $S^{aab}_{rr'}$ содержит следы γ -матриц, а пропагаторы бозонов $D_a(q) = (q^2 - m_a^2 + im_a\Gamma_a)^{-1}$, где $a = \gamma, Z$, встречаются в следующих комбинациях

$$\Pi_{rr'}^{ab} \equiv D_a(q_r) D_b^*(q_{r'}).$$
(10)

Виртуальные радиационные поправки содержат вклады собственных энергий промежуточных бозонов, поправки к вершинам, а также двухбозонные обмены (боксы) и были рассмотрены в работах [A10; A11]. Диаграммы, соответствующие вкладам бозонных собственных энергий, приведены рисунке 2 и дают следующий вклад в сечение:

$$\frac{d\sigma^{\text{BSE}}}{dC_{13}} = \frac{\pi\alpha^2}{s} \sum_{rr'} \sum_{a,b,c=\gamma,Z} \Pi^{abc}_{rr'} S^{abc}_{rr'},\tag{11}$$

где

$$\Pi_{rr'}^{abc} \equiv -D_a(q_r) \, \hat{\Sigma}_T^{ab}(r) \, D_b(q_r) \, D_c^*(q_{r'}), \tag{12}$$

а $\hat{\Sigma}_T^{ab}(r)$ — это перенормированная поперечная часть вклада диаграмм собственных энергий фотона, Z-бозона и γZ -смешивания [16].

Диаграммы для вершинных поправок представлены на рисунке 3 и дают следующий вид для сечения:

$$\frac{d\sigma^{\text{ver}}}{dC_{13}} = \frac{\pi\alpha^2}{s} \sum_{rr'} \sum_{a,b=\gamma,Z} \Pi^{ab}_{rr'} \left(S^{F_aab}_{rr'} + S^{aF_ab}_{rr'} \right), \tag{13}$$

Рис. 4 — Зависимость от \sqrt{s} поправок δ_+ (а) и поправок δ_- (б) к дифференциальному сечению Баба-рассеяния от суммарного вклада BSE и ver как функции \sqrt{s} при фиксированных углах вылета электрона: $\theta_{13} = 30^\circ$ (тонкая линия), $\theta_{13} = 90^\circ$ (средняя линия), $\theta_{13} = 150^\circ$ (толстая линия).

Рис. 5 — Диаграммы двухбозонных вкладов (*C* = box). Волнистые линии соответствуют обмену фотоном или калибровочным бозоном (*Z* или *W*).

Величины $S_{rr'}^{F_aab}$ и $S_{rr'}^{aF_ab}$ получаются из борновских величин $S_{rr'}^{aab}$ заменой точечной вершины Стандартной модели на однопетлевую поправку к вершине [12].

На рисунке 4 приведены суммарные поправки от вкладов бозонных собственных энергий (BSE) из (11) и модифицированных вершин (ver) из (13) как функции от полной энергии реакции \sqrt{s} . На графике для величины δ_+ точками обозначены результаты вычислений, проведенных с помощью пакетов автоматизированного счета FeynArts/FormCalc [17]. Видно отличное совпадение двух вычислений. Двухбозонные обмены (боксы) приведены на рисунке 5 и дают следующий вид для вклада в сечение:

$$\frac{d\sigma_{\text{box}}}{dC_{13}} = \frac{1}{2^4 \pi s} \operatorname{Re} \sum_{c=\gamma, Z} \mathcal{M}_{\text{box}} \left(\mathcal{M}_0^c \right)^+,$$
(14)

где \mathcal{M}_0^c – борновская амплитуда с обменом $c = \gamma, Z$ бозоном, а $\mathcal{M}_{\rm box}$ – амплитуда двухбозонного обмена. Вычисление и численная оценка проводились в работе [A10] в двух энергетических режимах: в режиме низких энергий (low energy, LE), когда выполняется условие $\sqrt{s} \ll m_Z$, и в режиме высоких энергий (high energy, HE), когда $\sqrt{s} \gg m_Z$. В обоих случаях были получены аналитические компактные асимптотические выражения, удобные для оценки вклада поправок в различные наблюдаемые величины. Получение оценок в первом режиме (LE) было нацелено на применение в эксперименте Belle II, тогда как второй режим (HE) пригоден для планируемого измерения Баба-рассения на ILC. Результирующие выражения для двухбозонных вкладов выражены в компактном виде через логарифмы:

$$L_s \equiv \ln \frac{s}{m_e^2}, \qquad L_t \equiv \ln \frac{-t}{m_e^2}, \qquad L_u \equiv \ln \frac{-u}{m_e^2}, \qquad L_\lambda \equiv \ln \frac{\lambda^2}{m_e^2}, \qquad (15)$$

(здесь λ – есть фиктивная масса фотона, которая используется для регуляризации инфракрасной расходимости). Например, для вклада $\gamma\gamma$ -бокса, соответствующего интерференции диаграммы на рисунке 5в с борновской амплитудой \mathcal{M}_r^c , в ультрарелятивистском приближении имеем:

$$\mathcal{M}_{s,D}^{\gamma\gamma} \left(\mathcal{M}_{t}^{c}\right)^{+} = \frac{8\pi\alpha^{3}}{s} D_{c}^{*}(q_{t}) P_{3}x_{3},$$

$$\mathcal{M}_{s,D}^{\gamma\gamma} \left(\mathcal{M}_{s}^{c}\right)^{+} = \frac{8\pi\alpha^{3}}{s} D_{c}^{*}(q_{s}) \left(P_{3}x_{3} + P_{5}y_{3}\right),$$

$$x_{3} = \left(L_{t} - L_{s}\right) \left(T_{+} \left(L_{s} - L_{t}\right) + 2su\right) + 2u^{2} \left(L_{t} \left(L_{t} - 2L_{\lambda}\right) - \frac{\pi^{2}}{3}\right),$$

$$y_{3} = 2t^{2} \left(L_{s}^{2} - 2L_{t} \left(L_{s} - L_{\lambda}\right) + \frac{\pi^{2}}{3}\right),$$

где были использованы следующие комбинации: $P_3 \equiv P_1^- g_+^{\gamma\gamma c} - P_2^- f_+^{\gamma\gamma c}$, $P_4 = P_2^+ f_-^{\gamma\gamma c}$, $P_5 = P_2^- f_-^{\gamma\gamma c}$, и такие обозначения: $T_{\pm} = t^2 \pm u^2$, $T_0 = s^2 + u^2$, $S_1 = s^2 + u^2$, $S_2 = t^2 + u^2$. Величины $f_{\pm}^{abc} = g_V^{ac} g_V^{bc} \pm g_A^{ac} g_A^{bc}$ и $g_{\pm}^{abc} = g_V^{ac} g_A^{bc} \pm g_A^{ac} g_V^{bc}$ содержат векторные и аксиально–векторные константы связи, а $P_1^\pm = \lambda_1 \pm \lambda_2$ и $P_2^\pm = 1 \pm \lambda_1 \lambda_2$ содержат степени поляризации начальных лептонов $\lambda_{1,2}$.

На рисунке 6 приведены поправки от боксов с обменами двумя фотонами $\delta_{\pm}^{\gamma\gamma}$ из (14) как функции от полной энергии реакции \sqrt{s} . На графике для величины δ_{+} также приведены точки от вычислений, проведенных с помощью пакетов автоматизированного счета FeynArts/FormCalc [17]. Видно, что полученные

Рис. 6 — Зависимость от \sqrt{s} относительных поправок $\delta^{\gamma\gamma}_+$ (а) и $\delta^{\gamma\gamma}_-$ (б) к сечению Баба-рассеяния. Обозначения такие же как и на рисунке 4.

в диссертации компактные аналитические выражения (кривые на графике) хорошо воспроизводят результат автоматизированного счета (точки) вне области *Z*-бозонного резонанса.

На рисунках 7 и 8 приведены поправки от слабых боксов $\delta_{\pm}^{\gamma Z}$, δ_{\pm}^{ZZ} и δ_{\pm}^{WW} , содержащих обмен одним или двумя калибровочными бозонами как функции от полной энергии реакции \sqrt{s} . Также приведено сравнение в автоматическим вычислением с помощью FeynArts/FormCalc [17]. Видно, что согласие асимптотического вычисления с точным не очень хорошее при малых энергиях, однако величина этих вкладов мала и не оказывает значительного влияния на конечный результат.

В работе [А12] был вычислен вклад излучения реального фотона, как мягкого, так и жесткого. Диаграммы этого процесса приведены на рисунке 9.

Рис. 8 — Зависимость от \sqrt{s} относительных поправок δ_{\pm}^{ZZ} и δ_{\pm}^{WW} к сечению Баба-рассеяния. Обозначения такие же как и на рисунке 4.

Рис. 9 — Диаграммы излучения дополнительного реального фотона в Бабарассеянии.

Таблица 1 — Сечение (в пб) жесткого тормозного излучения в рассеянии Баба при энергии реакции $\sqrt{s} = 500$ ГэВ. Нижний предел энергии фотона выбираем равным $\Delta E = 1$ ГэВ Сравнение с результатами групп SANC и WHIZARD [18].

	00	LL	RR	LR	RL
SANC	15.137(2)	11.454(3)	11.455(3)	20.489(5)	17.149(4)
WHIZARD	15.138(2)	11.461(2)	11.457(2)	20.488(3)	17.147(3)
расчет с 10 ⁶	15.10 ± 0.03	11.49 ± 0.03	11.42 ± 0.03	20.46 ± 0.04	17.09 ± 0.03
расчет с 10 ⁸	15.16 ± 0.02	11.44 ± 0.02	11.44 ± 0.02	20.47 ± 0.03	17.06 ± 0.02

Сечение этого процесса имеет вид:

$$\frac{d\sigma_R}{dC_{13}} = \frac{\alpha^3}{4\pi s} \int_{\Delta E}^{\omega_{\text{max}}} \omega \, d\omega \int_{-1}^{1} dC_{k1} \int_{0}^{2\pi} d\phi_k \frac{|\mathbf{p}_3|}{E_4 \, |f'(E_3)|} \sum |R|^2 \,, \tag{16}$$

где $f'(E_3)$ — производная от аргумента δ -функции по энергии, которая появляется при интегрировании по энергии конечного электрона E_3 . Величина $|R|^2$ содержит квадрат матричного элемента процесса с излучением дополнительного фотона, ω – есть энергия испущенного фотона, которая изменяется в пределах от минимального значения ΔE до максимального ω_{max} . C_{1k} есть косинус угла между направлением вылета фотона и направлением пучка электронов θ_{1k} , ϕ_k – азимутальный угол ориентации импульса фотона в выбранной системе отсчета.

В таблице 1 приведено сравнение вычисления жесткого вклада с результатами групп SANC и WHIZARD [18] как в неполяризованном случае (00), так и в поляризованном случаях (LL, RR, LR, RL). Видно, что было получено полное согласие.

Вторая глава содержит расчет однопетлевых радиационных поправок к двум процессам, которые в определенном смысле расширяют задачу первой главы. Первый процесс, $e^+e^- \rightarrow \mu^+\mu^-$ (планируемый также к изучению на Belle II) отличается от Баба-рассеяния тем, что в нем присутствуют две разные массы, масса электрона m_e и масса мюона m_{μ} . С одной стороны это усложняет расчет (поскольку теперь есть два масштаба энергии вместо одного), с другой же упрощает, так как в этой реакции уже нет *t*-канальных диаграмм, которые были в случае рассеяния Баба. Были вычислены виртуальные радиационные поправки к зарядовым асимметриям, включающие модификации вершин, пропагаторов промежуточных бозонов и двухбозонные обмены $\gamma\gamma$, γZ , ZZ и WW [A8].

На рисунке 10 приведено численное сравнение полученных аналитических выражений (прерывистая кривая) для полной NLO поправки с результатами автоматизированного вычисления (сплошная кривая), проведенного с помощью программных пакетов FeynArts/FormCalc [17]. Видно, что если опустить область, где важную роль играют эффекты возбуждения калибровочных бозонов ($\sqrt{s} \sim m_Z$), используемый низкоэнергетический ($\sqrt{s} \ll m_Z$) асимптотический метод, разработанный в работе [19], работает очень хорошо и даже позволяет продлить кривую на низкие энергии (см. левое плечо правого графика на

Рис. 10 — Полные относительные поправки в NLO-приближении к процессу $e^+e^- \to \mu^+\mu^-$ при $\theta=90^\circ.$

рисунке 10), в те области, где численная оценка результатов автоматического вычисления становится неустойчивой. Область же высоких энергий ($\sqrt{s} \gg m_Z$) позволяет использовать другой асимптотический метод, развитый в работе [20], который также дает компактные аналитические выражения и приводит к хорошему согласию с точным вычислением.

Второй процесс, рассмотренный в этой главе — это процесс $p\bar{p} \rightarrow e^+e^-$, который будет измеряться на установке PANDA на ускорительном комплексе FAIR/GSI. Для него также были вычислены виртуальные радиационные поправки при энергии PANDA, кроме того был посчитан вклад излучения жесткого реального фотона [A9]. Особенностью этого процесса по отношению к рассеянию Баба из первой главы состоит в том, что здесь уже в реакции участвует частица со сложной электромагнитной структурой (протон) и этот факт сильно влияет на ход вычислений радиационных поправок. В процессе вычислений было показано, что для сохранения калибровочной инвариантности результата необходимо проводить вычисление самой поправки в приближении точечного протона и в дальнейшем применять ее к борновскому сечению, учитывающему структуру протона.

В результате вычислений были получены выражения, на основе которых был реализован Монте-Карло генератор событий для моделирования процесса $p\bar{p} \rightarrow e^+e^-(\gamma)$. Примеры смоделированных распределений событий приведены на рисунке 11 в условиях кинематики PANDA: инвариантная масса системе $s=5.08~\Gamma$ эВ 2 (импульс антипротона с лабораторной системе $p=1.5~\Gamma$ эВ/c), реальный фотон испускается с энергией ω от $\lambda=10^{-5}\sqrt{s}/2$ и до $\omega_{\rm max}=0.3\sqrt{s}/2$. Было сгенерированно 10^7 событий.

Третья глава в основном посвящена вычислению ряда двухпетлевых вкладов в радиационные поправки к меллеровскому рассеянию. Этот процесс будет изучаться коллаборацией MOLLER [21] в JLab, а также будет предметом

Рис. 11 — Результаты Монте-Карло моделирования пятимерного сечения излучения жесткого фотона в системе центра масс для процесса $p\bar{p} \rightarrow e^+e^-(\gamma)$ в кинематике PANDA как функция от: (а) угла вылета электрона $\cos \theta$, (d) энергии фотона ω , (e) инвариантной массы конечной электрон-позитронной пары $M_{e^+e^-}$ и (f) суммы полярных углов вылета электрона и позитрона. Красная кривая указывает события от излучения фотона из начального протонного состояния (ISR), зеленая кривая — излучение от конечного электронного состояния (FSR), синяя кривая — интерференция (INT) и черная кривая — это полный вклад от излучения жесткого фотона.

особого внимания на ускорителе ILC. Планируемая точность измерения такова, что однопетлевой уровень радиационных поправок уже недостаточен для адекватного описания теоретического предсказания. И хотя однопетлевые поправки были посчитаны в работе [A1], необходимо оценить также радиационные поправки на двухпетлевом уровне [A2]. Эти поправки содержат несколько типов вкладов, которые были посчитаны в ряде работ. В работе [A3] были рассмотрены двойные боксы с обменом тремя фотонами и/или калибровочными бозонами Z и W. Приведем примеры диаграмм этого типа вкладов. На рисунке 12 приведены типичные диаграммы с обменом тремя бозонами. Кроме того, к этому типу диаграмм относятся классы «декорированных» боксов первого типа (примеры показаны на рисунках. 13а и 136), второго типа (примеры на рисунках 13в и

Рис. 12 — Примеры диаграмм двойных боксов в меллеровском рассеянии.

Рис. 13 — Примеры диаграмм «декорированных» боксов в меллеровском рассеянии.

Рис. 14 — Диаграммы с духовыми полями в меллеровском рассеянии.

13г) и третьего типа (примеры на рисунках 13д и 13е). Все вклады от приведенных типов диаграмм были посчитаны и оценены для кинематических условия установки MOLLER.

Для обеспечения калибровочной инвариантности расчета также были вычислены вклады диаграмм, содержащие вклады духовых полей. Соответствующие диаграммы приведены на рисунке 14.

В работе [A6] были рассмотрены однопетлевые боксы с однопетлевыми вставками в вершины и в промежуточные пропагаторы. Диаграммы Фейнмана для этих типов вкладов приведены на рисунке 15.

Рис. 16 — Примеры диаграмм с двухпетлевыми вершинами.

В работе [A7] были рассмотрены вклады от двухпетлевых вершин. Примеры таких диаграмм приведены на рисунке **16**.

Собирая все полученные вклады радиационных поправок в наблюдаемую асимметрию A_{LR} получаем следующую общую структуру:

$$A_{LR} = -\bar{A}_0 \frac{s}{m_Z^2} \left\{ a_V \left[R_B^Z + \frac{\alpha}{\pi} R_{(1)}^Z + \left(\frac{\alpha}{\pi}\right)^2 R_{(2)}^Z + \cdots \right] + \left[\frac{\alpha}{\pi} R_{(1)}^W + \left(\frac{\alpha}{\pi}\right)^2 R_{(2)}^W + \cdots \right] + \left(\frac{\alpha}{\pi}\right)^2 R^{gh} + \cdots \right\}, \quad (17)$$

где A_0 есть кинематический фактор вида:

$$A_0 = \frac{y(1-y)}{1+y^4 + (1-y)^4}, \qquad y \equiv \frac{-t}{s} = \frac{1-\cos\theta_{13}}{2},$$
(18)

(более подробно см. Раздел 3.1 диссертации), а величина:

$$a_V = 1 - 4\sin^2\theta_W,\tag{19}$$

содержит синус угла Вайнберга θ_W , который будет измеряться коллаборацией MOLLER с прецизионной точностью. Величина R_B^Z в (17) есть борновский вклад в асимметрию, который равен:

$$R_B^Z = \frac{1}{2c_W^2 s_W^2} \approx \frac{8}{3} = 2.66.$$
 (20)

Численные оценки в этой главе проводятся в центральной кинематической точке для эксперимента MOLLER, которая задается следующими условиями:

$$E_{\rm lab} = 11 \,\Gamma \mathfrak{sB}, \qquad \theta_{13} = 90^\circ, \tag{21}$$

$$t = u = -\frac{s}{2} = -m_e E_{\text{lab}} \approx -0.00562 \ \Gamma \mathfrak{g} B^2.$$
 (22)

Величины $R_{(1)}^{Z,W}$ в (17) задают вклады от радиационных поправок в однопетлевом приближении, которые были кратко рассмотрены в Разделе 3.1 диссертации. Вычисление этих поправок для условий эксперимента MOLLER было проведено в работе [22]:

$$R_{(1)}^Z = 0.94 \ln \frac{m_Z^4}{tu} - 0.62, \tag{23}$$

$$R_{(1)}^W = -33.43. \tag{24}$$

Там же были получены значения для однопетлевой относительной поправки к сечению процесса δ_+ и относительной поправки к асимметрии δ_A :

$$\delta_{+}^{\text{NLO}} = -0.1144, \qquad \delta_{A}^{\text{NLO}} = -0.6932,$$
 (25)

также была оценена основная часть двухпетлевых вкладов в поправку к сечению δ_+ , которая содержит результат сокращений инфракрасной расходимости. Учет этих вкладов приводит к следующему промежуточному результату:

$$\delta_{+}^{\text{NLO}+\text{NNLO(IR)}} = -0.1226, \qquad \delta_{A}^{\text{NLO}+\text{NNLO(IR)}} = -0.6274.$$
 (26)

Важно отметить, что приведенные относительные поправки дают основной вклад от двухпетлевых поправок к сечению δ_+ и также довольно сильно меняют относительную поправку к асимметрии δ_A . Оставшиеся двухпетлевые вклады в сечение дают пренебрежимый вклад в режиме LE. Однако дают довольно значительный вклад в поправку к асимметрии δ_A . Именно оценке этих вкладов в двухпетлевую поправку к асимметрии и была посвящена третья глава диссертации.

Первый тип инфракрасно конечных двухпетлевых вкладов (двойные и «декорированные» боксы, духи) был оценен в работе [A3] и выражается через величины $R_{(2)}^{Z,W}$:

$$R_{(2)}^{Z} = -2.24L_{Z} + 33.5,$$

$$R_{(2)}^{W} = 20.40L_{W} + 77.71,$$

$$R^{gh} = 1.41(L_{W} - L_{s}) + 7.61.$$
(27)

Здесь величина R^{gh} содержит вклады от диаграм с духовыми полями в промежуточном состоянии. Переводя этот результат на язык относительных поправок, получаем общий эффект всех боксовских поправок на уровне двух петель:

$$\delta_A^{\text{double box}} \approx -0.0101.$$
 (28)

Рис. 17 — Диаграммы Фейнмана дающие вклад в асимметрию рассеяния впередназад в процессе $e^+e^-\to p\bar{p}$ при $\theta=90^\circ.$

Другой тип двухпетлевых вкладов (однопетлевые вставки в боксы) вычислялся в работе [А6] и дает:

$$\delta_A^{\text{one-loop ins.}} \approx -0.0039.$$
 (29)

Оценка двухпетлевых вершин была проведена в работе [А7] и приводит к довольно малому вкладу в относительную поправку:

$$\delta_A^{\text{two-loop ver.}(Z)} \approx -0.0000267, \tag{30}$$

$$\delta_A^{\text{two-loop ver.(W)}} \approx -0.0033677.$$
 (31)

Поскольку по построению двухпетлевая относительная поправка к асимметрии δ_A в режиме LE аддитивна, мы можем просуммировать все рассчитанные инфракрасно-конечные двухпетлевые вклады и получить полный результат:

$$\delta_A^{\text{NLO}+\text{NNLO}} = -0.6447,\tag{32}$$

(ср. с (26)). Основной вклад в это значение дается декорированными боксами, приведенными на рисунке 13в. Остальные боксовские вклады меньше и частично компенсируют друг друга. Можно видеть, что полученная относительная поправка на уровне ожидаемой экспериментальной ошибки эксперимента MOLLER: комбинированная статистическая и систематическая неопределенность планируемая на эксперименте MOLLER будет порядка $\delta_A^{exp} \sim \pm 2\%$. Однако в силу того, что успех проекта MOLLER так сильно зависит от его точности, двухпетлевые поправки будут исключительно важны при обработке и интерпретации его результатов.

В **четвертой главе** были рассмотрены процессы аннигиляции электронпозитронной пары в пару барионов ($p\bar{p}$ и $\Lambda\bar{\Lambda}$) вблизи энергии рождения промежуточных чармониев. Эти процессы в последнее время интенсивно изучаются коллаборацией BES III [5; 23—25]. Сначала в работе [А5] были рассмотрены процессы $e^+e^- \to p\bar{p}$ и $p\bar{p} \to e^+e^-$ с возбуждением промежуточного тензорного чармония $\chi_{c2}(3556)$ (см. диаграммы на рисунке 17). Было показано, что этот чармоний может давать вклад в асимметрию рассеяния вперед–назад:

$$\mathcal{A}_{\chi} = \frac{d\sigma(c) - d\sigma(-c)}{d\sigma(c) + d\sigma(-c)} = \mathcal{A}_0 D = (4.88 \pm 0.18) \cdot 10^{-4},$$
(33)

где $c \equiv \cos \theta$ косинус угла вылета протона относительно направления пучка электронов, величина \mathcal{A}_0 задает общую величину эффекта:

$$\mathcal{A}_0 = \frac{5\alpha_s}{864\pi} (M^2 g_\gamma g_g) \ln \frac{M_{\chi_2}^2}{m_e^2} = (1.95 \pm 0.07) \cdot 10^{-5}.$$
 (34)

Здесь g_{γ} вершина распада $\chi_2 \to 2\gamma$, а g_g вершина распада $\chi_2 \to 2g$. Величина D задает угловую зависимость:

$$D = \frac{yH_{odd} + G_{odd}}{y^2 + 1} \frac{1}{2 - \beta^2(1 - c^2)}, \qquad y = \frac{s - M_{\chi_2}^2}{M_{\chi_2}\Gamma_{\chi_2}},$$
(35)

где H_{odd} и G_{odd} есть реальная и мнимая части амплитуды распада чармония $\chi_{c2}(3556)$ на протон–антипротонную пару. Величина вклада в асимметрию от чармония $\chi_{c2}(3556)$ из (33) сравнима с вкладом от обмена Z-бозоном:

$$\mathcal{A}_Z = (8.776 \pm 0.008) \times 10^{-4}.$$
(36)

(Численные оценки сделаны на массе чармония: $\sqrt{s} = M_{\chi_2}$). Однако его измерение сопряжено с большими трудностями в связи с тем, что основной вклад в асимметрию идет от чисто электродинамических источников: интерференция излучения из начальных и конечных частиц, которая была оценена в работах [26; 27].

Важно заметить, что вклад чармония дает большую относительную фазу по отношению к борновскому, чисто электродинамическому вкладу. Это приводит к искажению формы брейт–вигнеровского пика, наблюдаемого в окрестности энергии возбуждения чармония. Этот факт решено было проверить для другого чармония. В качестве такового был выбран векторный чармоний $\psi(3770)$, для которого появились хорошие данные коллаборации BES III [5]. Описание этих данных было проведено в работах [A4; A13], в которых было показано, что механизм перехода чармония $\psi(3770)$ в протон–антипротонную пару через промежуточную *D*-мезонную петлю (см. рисунке 18а), который кажется естественным для этого чармония, совершенно неадекватен. Тогда как предложенный в работе [A4] и детально проработанный в работе [A13] трехглюонный механизм (см. рисунке 186) хорошо описывает поведение экспериментальных данных вблизи чармония.

Сравнить вклады обоих механизмов в процессе $e^+e^- \to p\bar{p}$ с данными можно на рисунке 19а. Видно, что D-мезонный механизм мал и совершенно не

Рис. 18 — Два механизма, дающие вклад в процесс $e^+e^-\to p\bar{p}$ вблизи чармония $\psi(3770).$

Рис. 19 — Сравнение с данными коллаборации BES III в области возбуждения чармония $\psi(3770)$: процесс $e^+e^- \to p\bar{p}$ (левый график, данные из работы [5]), процесс $e^+e^- \to \Lambda\bar{\Lambda}$ (правый график, данные из работы [23]).

ухватывает энергетическое поведение данных вблизи чармония. Трехглюонный же механизм хорошо описывает общую тенденцию в окрестности чармония и генерирует большую относительную фазу по отношению к электродинамическому фону. Попадание полной (сплошной) кривой в экспериментальную точку чармония $\sqrt{s} = 3770$ МэВ обусловлено тем, что модельная кривая подгонялась с помощью одного параметра C_{ψ} . Этот параметр входит в формфактор $G_{\psi}(s)$ вида:

$$|G_{\psi}(s)| = \frac{C_{\psi}}{s^2 \ln^2(s/\Lambda^2)},$$
(37)

который описывает формирование конечной протон–антипротонной пары из трех кварк–антикварковых пар. Для этого параметра было получено следующее значение:

$$C_{\psi} = (45 \pm 9) \ \Gamma \mathfrak{s} \mathfrak{B}^4, \tag{38}$$

при $\Lambda = 300$ МэВ.

Для проверки адекватности построенной модели в работе [A14] было проведено вычисление сечения процесса $e^+e^- \rightarrow \Lambda\bar{\Lambda}$ с учетом тех же двух механизмов, приведенных на рисунке 18. Параметры модели были зафиксированы на значениях, полученных в процессе рассмотрения реакции $e^+e^- \rightarrow p\bar{p}$. Сравнение с экспериментальными данными BES III из работы [23] можно видеть на рисунке 196. Видно, что кривая, при всем своем нетривиальном поведении, довольно хорошо попадает в точку чармония $\sqrt{s} = 3770$ МэВ. В этом случае также предсказывается большая относительная фаза. К сожалению качество экспериментальных данных ниже и выше чармония не позволяют с уверенностью подтвердить характер поведения кривой. Но тот факт, что для ряда чармониев наблюдается нетривиальное пиковое поведение, указывает на то, что большая относительная фаза является характерным свойством этого типа реакций.

В заключении приводятся основные результаты работы:

- 1. Вычислены радиационные поправки в рамках Стандартной модели к Баба-рассеянию на однопетлевом уровне. Получены компактные аналитические выражения для всех вкладов в асимптотическом пределе малых (LE, $\sqrt{s} \ll m_Z$) и больших энергий (HE, $\sqrt{s} \gg m_Z$). Первый предел применим для относительно низкоэнергетических экспериментов типа Belle II. Второй же будет работать на планирующемся электрон–позитронном коллайдере ILC/CLIC/FCC. Получены численные оценки для этих поправок в обоих случаях, они проиллюстрированы на графиках.
- 2. Вычислены поправки в рамках Стандартной модели к процессам $e^+e^- \rightarrow \mu^+\mu^-$ и $p\bar{p} \rightarrow e^+e^-$. Получены численные оценки. Для второго процесса построен программный код Монте-Карло генератора для генерирования событий. Приведены распределения сгенерированных событий по разным кинематическим переменным.

- 3. Проведен расчет инфракрасно-конечной части двухпетлевых поправок к меллеровскому рассеянию. Оценено их влияние на асимметрию и проведено сравнение величины указанного вклада с величиной однопетлевых поправок и части двухпетлевых поправок, посчитанных ранее. Показано, что посчитанный вклад находится на заметном уровне учитывая точность планируемого эксперимента MOLLER и его учет важен для адекватного извлечения параметра Стандартной модели, $\sin^2 \theta_W$, из данных.
- 4. Построен трехглюонный механизм распада чармония $\psi(3770)$ в два бариона, который приводит к генерации большой относительной фазы. Сравнение с экспериментом показало, что подобное поведение сечения наблюдается в данных коллаборации BES III.

В качестве путей развития этой работы в будущем можно думать в направлении создания программных комплексов Монте-Карло генераторов для ряда экспериментов (Belle II, ILC/CLIC/FCC), которые бы, при использовании полученных в диссертации результатов, могли генерировать события рассмотренных процессов с учетом радиационных поправок. Это позволит повысить точность оценки систематической ошибки при извлечении различных параметров Стандартной модели из экспериментальных данных.

Результаты главы 4 позволяют расширить рассмотрение процессов с участием чармониев в направлении других конечных состояний распада чармония $\psi(3770)$, а также других чармониевых состояний. Представляется интересным также применить построенный трехглюонный механизм распада к распаду боттомониев или состояний $s\bar{s}$. Если большая относительная фаза будет наблюдаться во всех этих случаях, то можно будет говорить о важном новом эффекте запаздывания для *s*- и *c*-кварков.

Публикации автора по теме диссертации

- A1. One-loop chiral amplitudes of Møller scattering process [Текст] / А. Ahmadov [и др.] // Eur. Phys. J. C. 2012. Т. 72. С. 1977.
- A2. Parity violating Møller scattering asymmetry up to the two-loop level [Текст] / A. Aleksejevs [и др.]. 2012. arXiv: 1202.0378 [hep-ph].
- A3. Double-box contributions to Møller scattering in the standard model [Текст] / A. G. Aleksejevs [и др.] // Eur. Phys. J. C. 2012. Т. 72. С. 2249.
- A4. About the creation of proton-antiproton pair at electron-positron collider in the energy range of $\psi(3770)$ mass [Tekct] / A. Ahmadov [μ др.] // Nucl. Phys. B. 2014. T. 888. C. 271-283.
- A5. On the measurement of $\chi_2({}^3P_2)$ quarkonium state in the processes $e^+ + e^- \rightarrow \bar{p} + p$ and $\bar{p} + p \rightarrow e^+ + e^-$ [Tekcr] / E. A. Kuraev [μ др.] // Nucl. Phys. A. 2013. T. 920. C. 45–57.

- A6. NNLO Electroweak corrections for polarized Møller scattering: One-loop insertions to boxes [Текст] / А. G. Aleksejevs [и др.] // Письма в ЭЧАЯ. 2015. Т. 12, № 5. С. 999—1018.
- А7. Two-loop electroweak vertex corrections for polarized Møller scattering [Текст] / А. G. Aleksejevs [и др.] // Письма в ЭЧАЯ. — 2016. — Т. 13, № 3. — С. 497—508.
- A8. Low and high energy asymptotic behavior of electroweak corrections in polarized e⁺e⁻ → µ⁺µ⁻ process [Текст] / А. G. Aleksejevs [и др.] // Can. J. Phys. 2018. Т. 96, № 4. С. 445–453.
- A9. Radiative corrections in proton-antiproton annihilation to electron-positron and their application to the PANDA experiment: Radiative corrections to $\bar{p}p \rightarrow e^+e^-$ [Tekct] / Y. M. Bystritskiy [μ др.] // Eur. Phys. J. A. 2020. T. 56, N $_{\rm 2}$ 2. C. 58.
- А10. Приложение асимптотических методов к расчёту электрослабых поправок в поляризационном Баба-рассеянии [Текст] / А. Г. Алексеев [и др.] // Ядерная физика. 2020. Т. 83, № 2. С. 159—185.
- A11. One-Loop electroweak radiative corrections to Bhabha scattering in the Belle II experiment [Текст] / А. G. Aleksejevs [и др.] // ЭЧАЯ. 2020. Т. 51, № 4. С. 645—650.
- А12. Электрослабые поправки с учетом жесткого тормозного изучения в поляризационном Баба-рассеянии [Текст] / А. Г. Алексеев [и др.] // Ядерная физика. 2020. Т. 83, № 3. С. 246—262.
- A13. Bystritskiy, Y. M. The cross section of the process $e^+e^- \rightarrow p\bar{p}$ in the vicinity of charmonium $\psi(3770)$ including three-gluon and *D*-meson loop contributions [Tekct] / Y. M. Bystritskiy // Phys. Rev. D. 2021. T. 103, No 11. C. 116029.
- A14. Bystritskiy, Y. M. Cross section of the process $e^+e^- \rightarrow \Lambda \overline{\Lambda}$ in the vicinity of charmonium $\psi(3770)$ including three-gluon and *D*-meson loop contributions [Tekct] / Y. M. Bystritskiy, A. I. Ahmadov // Phys. Rev. D. 2022. T. 105, Nº 11. C. 116012.

Список литературы

- 1. The MOLLER experiment: An ultra-precise measurement of the weak mixing angle using Møller scattering [Текст] / J. Benesch [и др.]. 2014. Нояб. arXiv: 1411.4088 [nucl-ex].
- 2. Belle II Technical Design Report [Текст] / Т. Abe [и др.]. 2010. Нояб. arXiv: 1011.0352 [physics.ins-det].

- Heusch, C. A. Electron electron collisions at the international linear collider [Текст] / С. А. Heusch // Int. J. Mod. Phys. A. — 2003. — Т. 18. — С. 2733—2737.
- Heusch, C. A. The International Linear Collider in its electron–electron version [Текст] / С. А. Heusch // Int. J. Mod. Phys. A. — 2005. — Т. 20. — С. 7289—7293.
- 5. Study of $e^+e^- \rightarrow p\bar{p}$ in the vicinity of $\psi(3770)$ [Текст] / М. Ablikim [и др.] // Phys. Lett. B. 2014. Т. 735. С. 101—107.
- 6. Measurements of the parameters of the $\phi(1020)$ resonance through studies of the processes $e^+e^- \rightarrow K^+K^-$, K_SK_L , and $\pi^+\pi^-\pi^0$ [Текст] / M. N. Achasov [и др.] // Phys. Rev. D. 2001. Т. 63. С. 072002.
- *'t Hooft, G.* Scalar one loop integrals [Teкct] / G. 't Hooft, M. J. G. Veltman // Nucl. Phys. – 1979. – T. B153. – C. 365–401.
- 8. *Passarino*, *G*. One loop corrections for e^+e^- annihilation into $\mu^+\mu^-$ in the Weinberg model [Tekct] / G. Passarino, M. J. G. Veltman // Nucl. Phys. 1979. T. B160. C. 151.
- 9. *Berends, F. A.* Hard photon corrections for the process $e^+e^- \rightarrow \mu^{\pm}\mu^{\mp}$ [Tekct] / F. A. Berends, K. J. F. Gaemer, R. Gastmans // Nucl. Phys. B. 1973. T. 57. C. 381–400.
- 10. *Bohm*, *M*. Radiative corrections to polarized e^-e^+ annihilation in the Standard electroweak model [Tekcr] / M. Bohm, W. Hollik // Nucl. Phys. B. 1982. T. 204. C. 45—77.
- Bohm, M. Model dependence of the electromagnetic corrections to lepton pair production in electron–positron collisions [Текст] / M. Bohm, W. Hollik // Z. Phys. C. – 1984. – T. 23. – C. 31.
- 12. *Hollik, W. F. L.* Radiative corrections in the Standard Model and their role for precision tests of the electroweak theory [Текст] / W. F. L. Hollik // Fortsch. Phys. 1990. Т. 38. С. 165—260.
- 13. *Bardin*, *D*. Y. The Standard model in the making: Precision study of the electroweak interactions [Текст] / D. Y. Bardin, G. Passarino. USA : Oxford University Press, 1999.
- 14. *Кураев, Э. А.* О радиационных поправках к e^+e^- аннигиляции в одиночный фотон при высоких энергиях [Текст] / Э. А. Кураев, В. С. Фадин // Ядерная физика. 1985. Т. 41. С. 733—742.
- 15. *Penin, A. A.* Two-loop photonic corrections to massive Bhabha scattering [Текст] / А. А. Penin // Nucl. Phys. B. 2006. Т. 734. С. 185—202.
- Bohm, M. On the one loop renormalization of the electroweak Standard Model and its application to leptonic processes [Текст] / M. Bohm, H. Spiesberger, W. Hollik // Fortsch. Phys. — 1986. — Т. 34. — С. 687—751.

- 17. *Hahn, T.* Generating Feynman diagrams and amplitudes with FeynArts 3 [Текст] / Т. Hahn // Comput. Phys. Commun. 2001. Т. 140. С. 418—431.
- 18. One-loop electroweak radiative corrections to polarized Bhabha scattering [Текст] / D. Bardin [идр.] // Phys. Rev. D. 2018. Т. 98, № 1. С. 013001.
- Зыкунов, В. А. Пертурбативные расчеты в физике высоких энергий [Текст] / В. А. Зыкунов. — Гомель : ГГУ им. Ф. Скорины, 2020.
- 20. *Zykunov*, V. A. Weak radiative corrections to Drell-Yan process for large invariant mass of di-lepton pair [Текст] / V. A. Zykunov // Phys. Rev. D. 2007. Т. 75. С. 073019.
- 21. *Oers, W. T. H. van.* The MOLLER experiment at Jefferson Lab: Search for physics beyond the Standard model [Текст] / W. T. H. van Oers // AIP Conf. Proc. 2010. Т. 1261, № 1. С. 179—184.
- 22. Оценка двухпетлевых радиационных эффектов в эксперименте MOLLER [Текст] / А. Г. Алексеев [и др.] // Ядерная физика. 2013. Т. 76. С. 942—954.
- 23. Measurement of the cross section for $e^+e^- \rightarrow \Lambda \overline{\Lambda}$ and evidence of the decay $\psi(3770) \rightarrow \Lambda \overline{\Lambda}$ [Tekct] / M. Ablikim [H др.] // Phys. Rev. D. 2021. T. 104, № 9. C. L091104.
- 24. Study of $e^+e^- \rightarrow \Omega^-\overline{\Omega}^+$ at center-of-mass energies from 3.49 to 3.67 ГэВ [Текст] / M. Ablikim [и др.] // Phys. Rev. D. 2023. Т. 107, № 5. С. 052003.
- 25. First simultaneous measurement of Ξ₀ and Ξ₀ asymmetry parameters in ψ(3686) decay [Текст] / M. Ablikim [и др.] // Phys. Rev. D. — 2023. — T. 108, № 1. — C. L011101.
- 26. *Kuraev*, *E*. A. QED distributions for hard photon emission in $e^+e^- \rightarrow \mu^+\mu^-\gamma$ [Tekct] / E. A. Kuraev, G. V. Meledin // Nucl. Phys. B. 1977. T. 122. C. 485—492.
- 27. Radiative proton–antiproton annihilation to a lepton pair [Текст] / A. I. Ahmadov [и др.] // Phys. Rev. D. 2010. Т. 82. С. 094016.

Быстрицкий Юрий Михайлович

Радиационные эффекты первого и второго порядков в рамках Стандартной модели для современных экспериментальных программ

Автореф. дис. на соискание ученой степени докт. физ.-мат. наук

Подписано в печать ____.___. Заказ № _____ Формат 60×90/16. Усл. печ. л. 1. Тираж 100 экз. Типография _____