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In this paper we introduce the concept counterpart of rapidity and define energy and momentum of
the relativistic particle as functions of the counterpart of rapidity. Formulae of the relativistic mechanics
defined in such a way are regular near the zero-mass and speed of light state. This representation admits
to attain a correct limit of the formulae of the relativistic mechanics, including the Dirac equation, at
zero-mass point and explains violation of the parity at this state. On the other hand, the representation
for energy–momentum can be realized as a mapping from the massless state onto the massive one which
looks like a “q deformation”. Hypothesis on quantization of the energy–momentum and the velocity near
the light speed is suggested. The group of transformations using the counterpart of rapidity as a parameter
of transformation is constructed.

1. INTRODUCTION

In the present paper we elaborate new expres-
sions for the energy, momentum, and velocity of a
relativistic particle regular at the point m = 0, v =
= c. The formulae for the energy–momentum are
presented as functions of some hyperbolic angle χ
dual to the rapidity ψ, which forms a counterpart of
the rapidity.

In one-dimensional case the hyperbolic angles χ
and ψ are reciprocal quantities. However, in general,
the rapidity and its counterpart physically and geo-
metrically are quite different each from an other. The
rapidity, ψ, is equal to zero at the rest state, v = 0,
and goes to infinity when the velocity tends to v = c,
whereas its counterpart, the hyperbolic angle χ, is
equal to zero at the point v = c and becomes infinity
at the rest state, v = 0. Another important property
of the counterpart of rapidity is its dependence of the
proper mass: χ = mc/π0. The quantity cπ0 is inter-
preted as an energy of the massless state. Thus, the
formulae for energy–momentum can be realized as a
mapping from an energy of the massless state onto
the energy of a particle with mass. These formulae
look like as formulae of “q deformation”. An analysis
of this observation prompts to introduce a hypothesis
on quantization of the velocity near the speed of light.

In a similar manner as translations of the rapidity
form a part of the Lorentz group of transformations,
translations of the counter-rapidity form some group
of transformations.

*E-mail: iamaleev@servidor.unam.mx

Usefulness of the present theory we demonstrate
exploring the Dirac equation at the limit m = 0.
The representation for the energy–momentum via
counter-rapidity allows to reach a correct limit at m =
= 0 explicitly displaying violation of the parity in the
Dirac equation at this limit.

2. REPRESENTATIONS
OF ENERGY–MOMENTUM AS FUNCTIONS

OF RAPIDITY AND ITS COUNTERPART
2.1. Elements of Relativistic Dynamics of Charged

Particle
Consider a motion of the relativistic particle with

charge e in the external electromagnetic fields E and
B. The relativistic equations of motion with respect
to the proper time τ are given by the Lorentz-force
equations:

dp
dτ

=
e

mc
Ep0 +

e

m
[p× B], (1)

dp0

dτ
=

e

mc
(E · p),

dr
dτ

=
p
m

,
dt

dτ
=

p0

mc
. (2)

These equations imply the first integral of motion, the
“mass-shell” equation:

p2
0 − (p · p)2 = M2c2. (3)

In the case of stationary potential field, i.e. when eE =
= −∇V (r), the equations imply the other constant of
motion, the energy of the relativistic particle

E = cp0 + V (r). (4)
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If the external electromagnetic field strengths are
given in the covariant form, Fμν , μ, ν = 0, 1, 2, 3, then
Eqs. (1), (2) are written in the form of Minkowski
force equations [1]:

d

dτ
uμ =

e

mc
Fμ

νu
ν , uμ =

dxμ

dτ
. (5)

Correspondence with nonrelativistic equations gives
an interpretation of the constant of motion M2 as a
squared mass of the particle, so that M2 = m2. For
the massless particle M2 = 0 [2]. It is important to
emphasize that the relativistic dynamics of charged
particle is formed by the pair of energies [3]:

q1 := cp0 − mc2, q2 := cp0 + mc2. (6)

In the nonrelativistic limit the former is transformed
into kinetic energy of the Newtonian particle

cp0 − mc2 → p2

2m
. (7)

Next, we shall restrict ourselves by considering only
length of the momentum p = |p|. For that purpose let
us use the project of the Lorentz-force equation (1) on
the direction of motion, that is

dp

dψ
= p0,

dp0

dψ
= p, (8)

dψ

dτ
=

e

mc
E, E = (n · E), n =

p
p

.

From the first two equations of (8) by taking into
account (3), we find

p0 = mc cosh(ψ), p = mc sinh(ψ), (9)

where ψ = 0 corresponds to the rest state with p = 0,
p0 = mc. Velocity with respect to coordinate time is
defined by

v

c
=

p

p0
= tanh(ψ). (10)

The same expression is used for the mapping
between rapidity ψ and velocity v in the Lorentz
kinematics [4].

2.2. Hyperbolic Angle Dual to Rapidity

Conventionally formulae (9) are considered as
formulae of parametrization of the mass-shell equa-
tion (3). In this context notice, however, that this is
not unique form of parametrization. In fact, we can
satisfy (3) by taking

p0 = mc coth (χ), p =
mc

sinh (χ)
.

The parametrization as an objective does not give
any interpretation of the parameter, however. Now,

let us consider the procedure of parametrization from
another point of view.

Consider the quantities q2, q1 as solutions of a
quadratic equation

X2 − 2p0X + p2 = 0, (11)

where

2p0 = q1 + q2, p2 = q1q2, 2mc = q2 − q1. (12)

Notice, this quadratic equation is another form
of the mass-shell equation (3). In fact, transla-
tion of X by X = mc + p0 leads to (3). According
to Hamilton–Cayley theorem general solution of
Eq. (11) can be represented by the following matrix

E :=

⎛
⎝0 −p2

1 2p0

⎞
⎠ , (13)

eigenvalues of which are roots of polynomial equa-
tion (11). This matrix generates some evolution along
parameter φ [3, 5, 6]. Write the Euler formula for
exponential function of the matrix Eφ

exp(Eφ) = g0(φ; p0, p
2) + Eg1(φ; p0, p

2). (14)

In terms of the eigenvalues this equation is decoupled
into a pair of equations

exp(q1φ) = g0(φ; p0, p
2) + q1g1(φ; p0, p

2), (15)

exp(q2φ) = g0(φ; p0, p
2) + q2g1(φ; p0, p

2).

Theorem [7].
The following equation holds true

q2

q1
= exp(2mcφ0), (16)

where 2mc = q2 − q1.
Proof:

exp(2mcφ) = (17)

=
exp(q2φ)
exp(q1φ)

=
g1q2 + g0

g1q1 + g0
=

q2 − U

q1 − U
,

where

U = −g0

g1
.

Notice, simultaneous translation of the eigenvalues
by qi = qi + U , i = 1, 2 remains unchanged the dif-
ference between them 2mc = q2 − q1, or, in other
words, it remains the mass unchanged. Hence, this
translation induces a corresponding translation of the
hyperbolic argument:

exp(2mc(φ + δ(U))) =
q2

q1
= exp(2mcφ0). (18)

Inversely, translation of φ0 by φ = φ0 + δ has to
remain 2m unchanged because m does not depend

ЯДЕРНАЯ ФИЗИКА том 74 № 12 2011



NEW REPRESENTATION FOR ENERGY–MOMENTUM 1815

on φ, whereas q1, q2 will undergo some translation
simultaneously by q2 = q2 + Δ, q1 = q1 + Δ.

End of proof.
Thus, we got some interrelation between the

fraction and the hyperbolic exponential function, or
between simultaneous translation of two quantities of
the fraction and the hyperbolic rotation. Write (18) as
follows

p0 + mc

p0 − mc
= exp(2mcφ), (19)

where the mass m is a constant of the evolution with
respect to parameter φ, whereas p0, p depend of φ and
this dependence is given by hyperbolic trigonometry

p0 = mc coth(mcφ), p =
mc

sinh(mcφ)
. (20)

It is interesting to apply the present theorem to the
following fraction

p0 + p

p0 − p
=

c + v

c − v
, (21)

where p and p0 are variables of the evolution. Let
p > 0, then (21) we have to re-write as follows

p0 + p

p0 − p
=

p0

p + 1
p0

p − 1
.

On making use of the theorem we come to the
following equality

p0

p + 1
p0

p − 1
= exp(2ψ). (22)

From (22) by taking into account (3) we get

p0 = mc cosh(ψ), (23)

p = mc sinh(ψ),
v

c
= tanh(ψ),

which is nothing else but Eqs. (9), (10).
We possess now with two different representa-

tions for the energy and momentum via hyperbolic
trigonometry:

(I) p0 = mc cosh(ψ), p = mc sinh(ψ);

(II) p0 = mc coth(mcφ), p =
mc

sinh(mcφ)
.

An essential feature of the latter is its regularity at
the point m = 0, v = c. At this point the hyperbolic
argument is equal to the energy–momentum of a
massless particle:

p(m = 0) = p0(m = 0) =
1
φ

= π0. (24)

Thus, the value cπ0 is the energy of the relativis-
tic system at the point m = 0, v = c. We should
emphasize some difference between two hyperbolic

angles. At the rest, ψ = 0, but φ = ∞, and vice versa,
when v = c, φ = 0 but ψ = ∞. The particle with m >
> 0 is not able to attain the state of speed of light,
conversely, the particle possessing π0 > 0 cannot fall
to the rest state. In the rest state the energy is equal
to the proper inertial mass (in energy units) and, in
the same manner, in the state of the light speed the
energy is equal to π0. Thus, the kinetic energy of the
relativistic particle is governed, besides the inertial
mass m, with some internal energy we denoted by π0.
The massive particle moving with velocity less than
light velocity possesses both parameters, m and π0.
The parameter π0 is, in some sense, counterpart of the
inertial mass which determines the value of the kinetic
energy of the motion. This quantity corresponds to the
energy of the particle in its massless state [8].

Let v be the velocity of a particle with respect to
coordinate time. This velocity is essentially less than
the light velocity, v < c. Besides v let us introduce
some complementary velocity v̄ obeying the equation

v2 + v̄2 = c2. (25)

Now let us express v̄ via the parameter (χ = mcφ).
We get

v̄2 = c2 − v2 = c2

(
1 − p2

p2
0

)
= c2 tanh2(χ). (26)

Substitute (23) and (26) into (25), this gives

c2 tanh2(ψ) + c2 tanh2(ξ) = c2. (27)

Notice that v̄ is expressed via hyperbolic angle (χ) in a
manner quite similar as v is expressed via rapidity (ψ).
Interrelation between χ and ψ can be also expressed
by the following formulae of reciprocity

exp(ψ) = coth
(χ

2

)
, exp(χ) = coth

(
ψ

2

)
. (28)

Hence, complementary velocity v̄ and counterpart of
rapidity χ are reciprocal with velocity v and rapidity ψ.

3. DIRAC EQUATION NEAR ZERO-MASS
POINT

The right- and left-two-component spinors under
Lorentz-boost transformations are transformed as
follows [9]

ξR(P ) =
p0 + mc + (σ · p)√

2m(p0 + mc)
ξR(0), (29)

ξL(P ) =
p0 + mc − (σ · p)√

2m(p0 + mc)
ξL(0),

where ξR(0), ξL(0) mean “right” and “left” spinors,
correspondingly, at the rest state. When a particle
stays at rest, it is impossible to define its spin is

ЯДЕРНАЯ ФИЗИКА том 74 № 12 2011



1816 YAMALEEV

“right”, or is “left”. Hence, ξR(0) = ξL(0). From (29)
it follows

mcξR(P ) = (p0 + (σ · p))ξL(P ),
mcξL(P ) = (p0 − (σ · p))ξR(P ).

These two equations can be written in a matrix form⎛
⎝ −mc p0 + (σ · p)

p0 − (σ · p) −mc

⎞
⎠

⎛
⎝ξR

ξL

⎞
⎠ = 0. (30)

This is Dirac equation for the massive particle with
spin one-half in chiral (or spinor, or Weyl) rep-
resentation. The corresponding system of differential
equations is⎛

⎝ −mc2 i�∂t − i�cσ · ∇

i�∂t + i�cσ · ∇ −mc2

⎞
⎠ ×

×

⎛
⎝ξR

ξL

⎞
⎠ =

⎛
⎝0

0

⎞
⎠ .

ξR and ξL respectively correspond to the irreducible
representations (1/2, 0) and (0, 1/2) of the Lie al-
gebra SU(2) ⊗ SU(2), which is isomorphic to the
Lie algebra of the proper Lorentz group. Under
parity (x → −x), ξR and ξL transform into each
other. So the four-component spinor Ψ(chiral) is
an irreducible representation of the Lorentz algebra

extended by parity. Also

(
ξR

0

)
and

(
0

ξL

)
are eigen-

states of the matrix γ5 := iγ0γ1γ2γ3 with eigenvalues
+1 and −1, respectively. In the Weyl representation,

γ5(chiral) =

⎛
⎝1 0

0 −1

⎞
⎠ .

For massless particles, the equations for the two-
component spinors ξR and ξL decouple, and plane-
wave solutions satisfy

λ̂ξR = ξR, λ̂ξL = −ξL,

where λ̂ is the helicity operator. These equations
are called the Weyl equations and historically served
as principal wave equations for “right” and “left”
neutrino, respectively. Both equations correspond to
the massless particles and the systems of these
equations are inter-related with operation of parity.
Thus, violation of symmetry of parity does not follow
from the original equations, violation of parity in this
approach is an additional hypothesis. Now, let us ex-
plore the limit m = 0 of the Dirac equation on making

use of the representation of energy–momentum via
counter-rapidity.

In order to give a main idea, firstly, let us con-
centrate our attention on Eq. (30) written in one-
dimensional space:

mcξR(P ) = (p0 + p)ξL(P ), (31)

mcξL(P ) = (p0 − p)ξR(P );

here ξR, ξL are some scalar quantities. Now tend the
mass parameter to zero. We get

0 = (p0 + p)ξL(P ), 0 = (p0 − p)ξR(P ). (32)

From this system we obtain ξL(P ) = 0, because at
the state m = 0, p0 = p �= 0. The second equation
is reduced to identity. This formal consideration of
the present equations is not valid, of course, firstly,
because we did not explore dependence of the quanti-
ties ξR, ξL of the mass parameter. In this context, the
formulae (29) also are useless for us, because at the
point m = 0 we do not possess more with the concept
of “rest state”.

To Eqs. (31) we come easily making use of (19),
(20). Let us start from formulae (20) for the compo-
nents of momentum as functions of the parameter φ.
We have

exp(2mcφ) =
p0 + mc

p0 − mc
,

p0 = mc coth(mcφ), p =
mc

sinh(mcφ)
,

which can be re-written as follows:
(p0 + mc) exp(−mcφ/2) = p exp(mcφ/2), (33)

(p0 − mc) exp(mcφ/2) = p exp(−mcφ/2).

This system can be cast into matrical form⎛
⎝p0 + mc p

p p0 − mc

⎞
⎠

⎛
⎝exp(−mcφ/2)

exp(mcφ/2)

⎞
⎠ = 0. (34)

Another equivalent form of these equations is given
by the following system⎛

⎝ −mc p0 + p

p0 − p −mc

⎞
⎠

⎛
⎝cosh(mcφ/2)

sinh(mcφ/2)

⎞
⎠ = 0. (35)

These equations are invariant with respect to trans-
formation of parity.

Compare Eq. (35) with Eq. (31), both written in
one-dimensional form. The difference is that the state
vector in (35) has an explicit form with respect to
the mass parameter m. Evidently, Eqs. (35) have a
correct behavior when m → 0.

Write now Eqs. (35) in the following form:

(p0 + p) = mc coth
(

mcφ

2

)
, (36)
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(p0 − p) = mc tanh
(

mcφ

2

)
.

These equations are written in one-dimensional form,
where p means a projection on the direction of motion:

p = (n · p), (n · p)2 = p2.

Within the formalism of quantum mechanics of parti-
cle with spin one-half we write

pξ(P ) = (σ · p)ξ(P ), (σ · p)2ξ(P ) = p2ξ(P ),

where σ = (σx, σy, σz) are the Pauli sigma matrices,
ξ(P ) –– two-component Pauli spinors. On the basis
of algebraic system (36) we postulate the following
system of quantum equations for two-component
spinors ςL, ςR:

(p0 + (σ · p))ςL(m,φ) = (37a)

= mc coth
(

1
2
mcφ

)
ςR(m,φ),

(p0 − (σ · p))ςR(m,φ) = (37b)

= mc tanh
(

1
2
mcφ

)
ςL(m,φ).

Equations (37a), (37b) possess correct limit at
the point m = 0. It should be emphasized, in Dirac
equation (31) one cannot put m = 0 directly because
the Dirac equations are written for the particles
which admit a rest position. In particularly, this
possibility was used in order to establish the equa-
tion ξR(0) = ξL(0) [9]. Moreover, in Eqs. (33) one
cannot put m = 0, too. Unlike this case, Eqs. (37a),
(37b) admit regular behavior at the limit m = 0. In
that formulation in the massless state ςL(0, 1/π0) =
= ςR(0, 1/π0) = ς0. Thus, when in Eqs. (37) we tend
the mass m to zero, Eq. (37a) becomes

(p0 + (σ · p))ς0 = 2π0ς0, (38)

whereas Eq. (37b) is reduced to identity. From this
observation we come to the following conclusions:

At the point m = 0 four-component spinor
is reduced to two-component spinor, which de-
scribes a motion of only one particle with m = 0.
This particle is identified with the “left” neutrino.

The counterpart of rapidity is related with the
mass of the “left” neutrino which is experimentally
observed [10]. Since the equations are reduced to
one two-component spinor field, there is no sense to
speak about the “right” neutrino. The symmetry of
parity at the limit m = 0 is, obviously, violated.

4. MAPPING FROM THE MASSLESS STATE
ONTO THE MASSIVE ONE
AS A q DEFORMATION

At the beginning of the previous section we have
noted that φ = 1/π0, where the quantity π0 can be
interpreted as an energy of the massless state. In this
notation formulae for the energy–momentum (20) are
written as follows

p =
mc

sinh(mc
π0

)
, p0 = mc coth

(
mc

π0

)
. (39)

These formulae can be considered as a mapping from
one kind of the energy onto the other, or, from the
massless state onto the state with finite mass. In other
words, the quantity π0 is not a fixed value.

Now let us make some modification of formulae
(39). For that purpose introduce some parameter in
units of mass and label this parameter by κ. Define a
dimensionless variable α by

α =
κc

π0
, π0 =

κc

α
. (40)

α runs from α = 0 (which corresponds to velocity
v = c) till α = ∞ (which corresponds to the rest state
with v = 0).

Re-write formulae for the energy–momentum (39)
in these variables

p =
mc

sinh(m
κ α)

, p0 = mccoth
(m

κ
α
)
. (41)

For velocity we get
v

c
=

1
cosh(m

κ α)
. (42)

This formula can be considered as some mapping
between dimensionless parameters v/c and α. Let us
examine physical meaning of the new parameter κ.

Here it is useful to notice that the formula for the
momentum admits the following integral representa-
tion

κ

p
=

sinh(m
κ α)

m
κ

=

α/2∫

−α/2

exp
(
2
m

κ
x
)

dx. (43)

In [2] it has been shown that κ−1 geometrically can
be interpreted as a curvature of a hyperbolic space.
In this space the length of the circle with radius m is
defined by formulae [11]:

L(α = 1) := 2πκ sinh
(m

κ

)
.

Correspondingly, the length of the circle with radius
mα is equal to

L(α) = 2πκ sinh
(m

κ
α
)

. (44)
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Taking into account this correspondence let us per-
form the following modifications in the formulae for
energy–momentum

mc

p
= sinh

(m

κ
α
)
→ cκ

p
=

sinh(m
κ α)

sinh(m
κ )

. (45)

p0

mc
= coth

(m

κ
α
)
→ p0

cκ
= sinh

(m

κ

)
coth

(m

κ
α
)

.

(46)

Now remember the formula of q deformation of an
integer quantity N :

(N)q :=
qN − q−N

q − q−1
. (47)

From this point of view the fraction in (45) is q de-
formation of α with parameter of deformation q =
= exp(m/κ). In notation of (47) Eq. (45) can be
written as follows

cκ

p
= (α)q, q = exp

(m

κ

)
. (48)

Notice, (α = 1)q = 1 for any q. Therefore

p(m �= 0, α = 1) = κc, for any m > 0.

On the other hand, if m = 0 and q = 1, then from (48)
it follows

p(m = 0) = π0 =
cκ

α
. (49)

Hence at the point α = 1, momenta of the particles
with different masses, including the massless particle,
are equal to cκ:

p(m �= 0, α = 1) = p(m = 0, α = 1) = (50)

= π0(α = 1) = cκ.

In fact, these formulae imply existence of a point on
the axis of momentum where the momenta of the
massive and massless particles are equal. Notice,
however, the velocity of the particle at this point is not
equal to the light velocity. At this point the energy and
the velocity are given by

cp0(α = 1) = c2κ cosh
(m

κ

)
, (51)

v =
c

cosh(m
κ )

.

Thus, the point α = 1 is a peculiar point of the
relativistic dynamics where the constant κ now has
to be understood as an universal constant.

The procedure of q deformation is usually used
in order to extend formulae obtained for integer
number to the field of real numbers. Seemingly, α is
represented by integer numbers. Here, let us give an
additional argumentation to this hypothesis. For that

purpose remember integral representation (43). Now,
instead of the fraction in (43) we deal with the fraction

cκ

p
=

sinh(m
κ α)

sinh(m
κ )

. (52)

It is interesting to observe, for the fraction in (52)
we shall put an equivalent sum instead of the in-
tegral because now we assumed that α is an inte-
ger number. Let J be a half-integer number with
J = 0, 1/2, 1, 3/2, 2, ..., and α = 2J + 1 = 1, 2, 3, ...
Then the following equation holds true

cκ

p
=

sinh(m
κ (2J + 1))

sinh(m
κ )

=
J∑

n=−J

exp
(
n

m

κ

)
. (53)

This equality prompts us to introduce a hypothesis
on quantization of α. Experimentally the quantization
can be observed near the light velocity where the
velocity of the massive particle brings nearer the light
velocity spasmodically according to law

v =
c

cosh(m
κ (2J + 1))

. (54)

5. COVARIANT FORM
OF THE COUNTER-RAPIDITY

AND ITS GROUP OF TRANSFORMATION

In the Lorentz group of transformations the ra-
pidity performs a role of parameter of transformation
corresponding to the Lorentz-boosts. In this form the
rapidity is presented as a vector with three compo-
nents. In this section we shall construct the group
which uses the counter-rapidity as a parameter of
transformation.

Firstly, let us consider transformation for four-
velocity {u0, u1, u2, u3} in the plane (u0, u1) with
respect to translation of hyperbolic angle χ: χ′ = χ +
+ δ. Introduce the following variables

V0 = cosh δ, V =
c

sinh δ
.

Then, by using hyperbolic trigonometry we get

u′
0 = c coth(χ + δ) =

u0V0 + c2

u0 + V0
,

u′
1 =

c

sinh(χ + δ)
= u1V

1
u0 + V0

.

The purpose of this section is to generalize this trans-
formation to the case of four-vectors. Let us start
with evolution equations for momenta {p0, p1, p2 =
= 0, p3 = 0} with respect to rapidity

dp

dφ
= −pp0,

dp0

dφ
= −p2. (55)

ЯДЕРНАЯ ФИЗИКА том 74 № 12 2011



NEW REPRESENTATION FOR ENERGY–MOMENTUM 1819

When the other coordinates of the momentum are not
trivial, these equations are extended as follows

dp
dφ

= −pp0,
dp0

dφ
= −(p · p). (56)

However, it is easily seen that this equation is not
Lorentz-covariant equation.

In order to extend this equation to the Lorentz-
covariant equation we have to suppose that our
parameter of transformation, the hyperbolic angle
φ, is only one of the components of some four-
component vector ξν , ν = 0, 1, 2, 3. With respect to
these parameters the evolution of four-vector xμ, μ =
= 0, 1, 2, 3, is governed by the following equations

∂xν

∂ξμ
= ρ2ηνμ − xνxμ, ρ2 = (xμxμ), (57)

where ηνμ = diag(1,−1,−1,−1) is the Minkowski
metric. From these equations we return to Eqs. (56)
by taking x0 = p0, x1 = p, x2 = x3 = 0, ξ0 = φ, ξ1 =
= ξ2 = ξ3 = 0. From this point of view, evolution
Eqs. (56) are zeroth component of the general form
of equations written in the following form

∂pν

∂ξμ
= (mc)2ηνμ − pνpμ.

The generators of transformation with respect to pa-
rameters ξν , ν = 0, 1, 2, 3, are defined by derivatives

Gν =
∂

∂ξν
, ν = 0, 1, 2, 3. (58)

Express these generators in terms of space–time
coordinates xμ as follows

Gν =
∂xμ

∂ξν

∂

∂xμ
= ρ2 ∂

∂xν
− (59)

− xν

(
xμ ∂

∂xμ

)
, ν, μ = 0, 1, 2, 3.

Now let us construct commutation relations con-
taining the generators Gμ, μ = 0, 1, 2, 3, as elements
of the group which we are seeking. Let us denomi-
nate this group by “Γ group”. First of all, calculate
commutators between G generators. They are

[Gμ, Gν ] = ρ2 Mμν , Mμν = xμ∂ν − xν∂μ. (60)

Thus, in surplus Γ group contains elements of the
Lorentz group Mμν and the factor ρ2 which is also the
element of the Γ group. The length is invariant under
the action of G generator and the generators of the
Lorentz group,

[Gμ, ρ2] = 0, [ρ2,Mμν ] = 0. (61)

The operator Gμ is a sum of two operators, namely,
the differential operator in Minkowski space ∂μ and

generator of dilatation D = (xμ∂μ): Gμ = ρ2∂μ −
− xμD. By taking into account [Mμν ,D] = 0 and
[ρ2,Mμν ] = 0, we get

[Mμν , Gλ] = ηνλGμ − ημλGν . (62)

The generators of the Lorentz group obey ordinary
commutation relations

[Mμν ,Mλη] = (ημλMνη − ηνλMμη + (63)

+ ημηMλν − ηνηMλμ).

The Γ group possesses two Casimir operators:

C1 = G2, (64)

C2 = MμνMμνG2/2 − MμλMμλGμGν .

The Γ group can be extended by introducing the
dilation operator D = (xμ∂μ). In this case we must
add two additional commutators

[D,Gμ] = Gμ, [D, ρ2] = 2ρ2.

This extension is similar to the extension of Poincaré
group to the Weyl group in adding the dilation
operator [12].

It is worth to note an analogy between elements
of special conformal group Kμ, μ = 0, 1, 2, 3, and
the generators of Γ group. A representation of the
special conformal elements via differential operators
in Minkowski space is given by

Kμ = ρ2∂μ − 2xμD.

Thus, this operator differs from the operator Gμ only
by factor 2 at the second term.

Also, let us emphasize similarity of the generator
Gμ to the generator of translation on the surface with
constant curvature [13]. In fact, if the factor ρ2 =
= const, the operator G is transformed into the oper-
ator of translation along hyperbolic surface imbedded
into four-dimensional Minkowski space.

It is important that the commutation relations
of the Γ group can be realized by the set of finite-
dimensional matrices formed by Dirac gamma-
matrices. These matrices satisfy anti-commutation
relations

{γμ, γν} = γμγν + γνγμ = 2ημν · 1,
where ημν = diag(1,−1,−1,−1) [14].

In terms of the γ matrices we can construct the
following commutation relations

[γμ, γν ] = Σμν , (65)

[ΣμνΣλη] =
= (ημλΣνη − ηνλΣμη + ημηΣλν − ηνηΣλμ),

[Σμν , γλ] = ηνλγμ − ημλγν .
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With the spin matrices Σμν one may organize
finite-dimensional nonunitary representation of the
Lorentz group. In this context the set of matrices
γμ, Σμν will realize nonunitary finite-dimensional
representation of the Γ group. Notice that only com-
pact groups admit finite nontrivial unitary represen-
tations [12].

6. CONCLUSIONS

In order to complete our knowledge it is indis-
pensable to make observations of the physical objects
from different systems of references. Up to now, the
relativistic physics dealt only with observers installed
upon inertial systems of references with velocities less
than light velocity. This velocity can be expressed via
some hyperbolic angle, the rapidity, with undefined
physical sense of the latter and with formulae for the
energy and momentum singular at the point of zero
mass and speed of light. In this paper, we suggested
to go in opposite direction: from the light speed
to the rest state. For that purpose we introduced
complementary velocity, which in the light-speed
state equals zero, and the rapidity related with this
velocity. An important feature of the rapidity, we have
introduced, is the following: the hyperbolic angle to
this rapidity is proportional to the mass of the particle.
This fact provides regularity of the representation at
the zero-mass point. Two definitions of the rapidity
(the new and the old one) are reciprocal to each other,
but this is true only in one-dimensional (with respect
to space coordinates) case. In general, in covariant
formulation, the counterpart of rapidity (new) is quite
distinct from the (old) rapidity. In the Lorentz group
of transformations three components of the boosts
correspond to the rapidity, whereas in group of trans-
formations with respect to the counterpart of rapidity
the parameter of transformation is represented by
four-vector. Noteworthy, the finite-dimensional rep-
resentation of the generators of this group is given by
Dirac’s gamma-matrices.

The counterpart of rapidity is proportional to the
mass of particle and inverse value of some energy,
which has been interpreted as an energy of the
massless state. The latter does not depend on the
mass of the particle, thus this is some universal value.
The formulae in (39) are reflection of the universal
energy onto the energy of the particle with certain
mass.
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