ОБЪЕДИНЕННЫЙ ИНСТИТУТ ЯДЕРНЫХ ИССЛЕДОВАНИЙ Лаборатория теоретической физики им. Н.Н. Боголюбова

На правах рукописи

Безбах Анна Николаевна

Влияние структуры тяжелых ядер на их образование и распад

Специальность: 01.04.16 Физика атомного ядра и элементарных частиц

Диссертация на соискание ученой степени кандидата физико-математических наук

Научные руководители: доктор физ.-мат. наук Антоненко Николай Викторович, доктор физ.-мат. наук Адамян Гурген Григорьевич

Дубна 2014

Содержание

Введен	ие	3
Глава 1	1. Анализ свойств сверхтяжелых элементов с $Z \geqslant 105$	18
1.1.	Двухцентровая оболочечная модель и ее модификация	18
1.2.	Энергия связи ядра	23
1.3.	Вычисленные свойства сверхтяжелых ядер	24
1.4.	Сечения испарительных остатков	31
1.5.	Выводы	38
Глава 2	2. <i>а</i> -распадные цепочки ядер, содержащие сверхтяжелые	
элем	иенты Fl, Lv, 117 и 120	40
2.1.	Цепочки <i>а</i> -распада, содержащие изотопы Fl	40
2.2.	117 элемент	45
2.3.	120 элемент	50
2.4.	Выводы	55
Глава З	3. Плотность ядерных состояний	58
3.1.	Вычисление внутренней плотности уровней	58
3.2.	Сравнение рассчитанных плотностей уровней с экспериментом .	61
3.3.	Внутренняя плотность уровней в сверхтяжелых ядрах	62
3.4.	Параметр плотности уровней	64
3.5.	Зависимость параметра плотности от величины оболочечной по-	
	правки	67
3.6.	Выводы	70
Заключ	чение	72
Прилоз	кение 1	74

Приложение	2	 •	•		•		•	•	•	•	•		•	•	•	•	, .	•		•	•	83
Приложение	3	 •	•			 •	•	•			•					•				•		84
Литература .		 •					•		•							•		•				86

Введение

Получение как новых элементов, так и новых изотопов уже известных ядер является важной задачей современной ядерной физики. В природе встречаются лишь 94 элемента химической таблицы Д.И. Менделеева, причем часть из них присутствует в природе лишь в крайне малом количестве. Ограниченное число элементов и изотопов в природе связано со стабильностью атомных ядер. Изменение соотношения протонов и нейтронов в ядре ведет к спонтанному изменению его состава или внутреннего строения путем испускания легких частиц и/или кластеров, т.е. ведет к его радиоактивному распаду [1]. Увеличение же числа нуклонов в конечном итоге приводит к спонтанному делению ядра с испусканием двух тяжелых фрагментов и нескольких нейтронов. Поскольку энергия связи E_c ядра зависит от числа нейтронов N (протонов Z), его обогащение нейтронами (протонами) ведет к уменьшению E_c и достижению нулевой энергии связи нейтрона (протона) при определенном критическом числе нейтронов (протонов), которое определяет предел существования нейтронно-избыточных (протонно-избыточных) ядер.

Ядра с $Z \ge 104$ принято называть сверхтяжелыми. Эти ядра получают в реакциях полного слияния. Проблема синтеза сверхтяжелых элементов тесно связана с положением новых магических чисел для протонов и нейтронов. Ядра с известными магическими числами для протонов и нейтронов 2, 8, 20, 28, 50, 82, 126 обладают повышенной стабильностью. Существует надежда обнаружить еще неизвестные магические ядра. В рамках оболочечной модели магические числа соответствуют заполненным оболочкам. В случае, если они существуют при N > 150 и Z > 101, то должны наблюдаться сверхтяжелые ядра, имеющие большие периоды полураспада, и должны существовать острова стабильности около магических ядер. В работе [2] на основе расчетов, выполненных с использованием потенциала Саксона – Вудса и с учетом спин-орбитального взаимодействия, было показано, что повышение стабильности следует ожидать для магического ядра с Z = 114. В этих расчетах следующая после Z = 82заполненная протонная оболочка соответствует Z = 114. Замкнутые оболочки могут существенно увеличить высоту барьера деления и соответственно увеличить время жизни ядра. Таким образом, в области сверхтяжелых ядер около Z = 114 и N = 184 был предсказан новый остров стабильности [2].

В обзоре [3] было показано, что сверхтяжелые ядра, которые могут быть синтезированы в реакциях полного слияния, будут распадаться, в основном, путем эмиссии α -частиц, что важно для экспериментального исследования таких ядер, т.к. облегчает их идентификацию. Все новые трансменделеевые элементы с Z от 102 до 106 были синтезированы в реакциях полного слияния ионов ¹³C, ¹⁵N, ¹⁸O, ²²Ne с актинидами при энергиях столкновения около кулоновского барьера [4–13]. Составное ядро в таких реакциях имеет энергию возбуждения 40-50 МэВ и переходит в основное состояние, главным образом, за счет испарения 4-5 нейтронов.

С 1996 года начался новый этап в исследовании сверхтяжелых ядер с повышением эффективности регистрации и усовершенствованием экспериментальных методик и ускорительной техники. Используя в реакции ⁵⁸Fe,^{62,64}Ni,⁷⁰Zn + ²⁰⁸Pb и ⁵⁴Cr,⁵⁸Fe,⁶⁴Ni,⁷⁰Zn + ²⁰⁹Bi холодного слияния [5] с эмиссией одного нейтрона, удалось синтезировать новые химические элементы с Z = 107 - 113[10, 12, 14]. Малость сечения образования 113 элемента показало бесперспективность использования реакций холодного слияния для получения ядер с Z > 112[14]. Данные эксперименты по холодному слиянию были проведены в GSI (Дармштадт) и RIKEN (Токио).

При слиянии ядер ⁴⁸Ca с актинидами, ⁴⁸Ca + ²³⁸U,²³⁷Np,^{242,244}Pu,²⁴³Am, ^{245,248}Cm,²⁴⁹Bk,²⁴⁹Cf, впервые в ЛЯР ОИЯИ были синтезированы ядра элементов 113 – 118 и получены прямые экспериментальные доказательства существования сверхтяжелых элементов, обладающих повышенной устойчивостью по отношению к α -распаду и спонтанному делению [13–19]. Четные по Z сверхтяжелые ядра Z = 114, 116, 118 были получены в реакциях слияния ⁴⁸Ca + ^{242,244}Pu,^{245,248}Cm,²⁴⁹Cf. Восемь изотопов элементов 114 и 116 с N = 172 - 177и изотоп ²⁹⁴118 элемента идентифицированы посредством измерения энергии и времени их α -распада $T_{\alpha} \leq T_{SF}$, где $T_{\alpha,SF}$ – периоды полураспада α -распада и спонтанного деления. Распадные цепочки последовательных испусканий α -частиц заканчивались спонтанным делением четно-четных или четно-нечетных дочерних ядер с Z = 114, 112 или 110 ($T_{\alpha} > T_{SF}$). Изотопы ^{287–289}115 и ^{293,294}117 были получены в реакциях ⁴⁸Ca + ²⁴³Am,²⁴⁹Bk. Были обнаружены длинные α -распадные цепочки, заканчивающиеся спонтанным делением изотопов Db. Измеренные характеристики распада показали сильный рост устойчивости для тяжелых изотопов с $Z \geq 111$, подтверждая существование острова повышенной стабильности сверхтяжелых ядер. Дубненские результаты по синтезу сверхтяжелых ядер с Z = 112 - 117 подтвердились в последующих экспериментах в GSI (Дармштадт) и LBNL (Беркли) [20–28].

В моделях релятивистского и нерелятивистского среднего поля предсказываются сильные оболочечные эффекты при Z = 120 - 126. В этом случае есть надежда синтезировать новые сверхтяжелые элементы с $Z \ge 120$ с помощью существующих экспериментальных установок в реакциях с актинидыми мишенями и налетающими ядрами тяжелее, чем ⁴⁸Ca. В настоящее время предпринимаются попытки синтеза изотопов с $Z \ge 119$ в реакциях горячего слияния с пучками ионов ⁵⁰Ti и ⁵⁴Cr. Были сделаны попытки синтеза элемента с Z = 120в реакциях ⁵⁸Fe+²⁴⁴Pu и ⁶⁴Ni+²³⁸U. Синтез и изучение свойств элементов "острова стабильности" будут оставаться одними из приоритетных задач ведущих центров по физике тяжелых ионов.

В последние годы начались интенсивные исследования спектроскопических свойств тяжелых ядер с $Z \ge 100$. Повышение эффективности регистрации новых установок, таких как SHIP (GSI), GREAT (JYFL), BEST (GANIL) и GABRIELA (JINR), позволяет измерять в корреляции переходы типа $\alpha - \gamma$ и α -конверсионные электроны. Уделяется много внимания γ - и α -распадам, спонтанному делению, *K*-изомерам и низколежащим коллективным и квазичастичным состояниям.

Высокоспиновые изомеры (двухквазичастичные высокоспиновые состояния) наблюдались в тяжелых ядрах ^{250,256}Fm,^{252,254}No и ²⁷⁰Ds. Низколежащие одноквазичастичные изомерные состояния были также выявлены среди нечетных тяжелых ядер. Эти состояния имеют важное значение для анализа спектров α -распада и свойств спонтанного деления сверхтяжелых ядер, поскольку они живут достаточно долго и некоторые радиоактивные распады могут происходить из этих состояний. Таким образом, информация об изомерах важна для однозначной идентификации сверхтяжелых ядер. Например, если в дочернем ядре существует соответствующее состояние, то возможен α -распад из изомерного состояния. Микроскопическо-макроскопические модели дают хорошую возможность для предсказаний новых квазичастичных состояний и их основных характеристик.

Один из основных физических методов идентификации химических элементов новых нуклидов – это идентификация изотопов неизвестных элементов в коррелированных α-распадных цепочках. В области трансфермиевых элементов α-распад является одним из основных типов радиоактивного распада. В этом методе наблюдаются последовательные распады ядер, оканчиваюциеся спонтанным делением известного или неизвестного ядра. Для анализа α-распадов необходимо знание свойств структуры материнского и дочернего ядер, которое можно получить с помощью микроскопическо-макроскопических моделей или самосогласованных моделей среднего поля.

Подходы к описанию свойств ядер

В настоящее время для описания структуры атомных ядер используются различные модели, каждая из которых основывается на тех или иных экспериментальных фактах и позволяет объяснить определенные свойства ядра. Степени свободы ядра можно разделить на одночастичные и коллективные. Соответственно ядерные модели делятся на одночастичные (модели независимых частиц), описывающие движение индивидуальных частиц, на коллективные (мо-

дели с сильным взаимодействием), описывающие коррелированное движение большого числа частиц, и на обобщенные, учитывающие как одночастичные, так и коллективные степени свободы.

Состояние, в котором находится ядерное вещество, очень напоминает состояние классической жидкости, это дало основание для развития различных коллективных моделей ядра, в которых рассматриваются ограниченное число коллективных степеней свободы нуклонной системы. В этих моделях предполагается, что взаимодействие между соседними нуклонами настолько велико, что степени свободы индивидуальных нуклонов можно не учитывать.

Первая из коллективных моделей (и вообще из ядерных моделей) была предложена Н. Бором в 1936 г. [29], получившая название *гидродинамической* (капельной) модели ядра. Модель основана на эмпирической аналогии между ядерным веществом и жидкостью. Капельная модель позволила получить полуэмпирическую формулу для энергии связи нуклонов в ядре, качественно объяснила причины деления ядер и его механизм, а также существование коллективных возбуждений ядра, но ее предсказания не в полной мере соответствовали экспериментальным наблюдениям. Такие понятия как поверхность, поверхностное натяжение, сжимаемость и т.п. не вполне применимы к ядру, поскольку "капля - ядро" состоит не более чем из 300 нуклонов, и размер ядра превосходит среднее расстояние между нуклонами всего в несколько раз. Эта модель не объяснила повышенную устойчивость ядер, содержащих магическое число протонов и/или нейтронов.

Поскольку средняя длина свободного пробега нуклонов в ядре велика по сравнению с расстоянием между ними и превышает размеры ядра, возникла идея создания *моделей независимых частиц*. В этих моделях предполагается, что в первом приближении взаимодействие нуклонов приводит к возникновению среднего ядерного поля, в котором частицы движутся независимо друг от друга. Вычисляемые в потенциале среднего поля одночастичные уровни энергии распадаются на несколько групп (оболочек), разделенных достаточно ши-

рокими энергетическими интервалами. Развитию оболочечной модели способствовали работы Бартлета (1932 г.), Эльзассера (1933 г.) и Гепперт-Майер и Йенсена (1950 г.) [30–32]. В оболочечной модели к центральному потенциалу V(r) добавлено спин-орбитальное взаимодействие. Распределение нуклонов в ядре по дискретным энергетическим уровням (оболочкам), происходит согласно принципу Паули. Ядра с полностью заполненными оболочками наиболее устойчивы. Основное предположение оболочечной модели, независимость движения нуклонов в самосогласованном поле, находится в противоречии с гидродинамической моделью. Те характеристики ядра, которые хорошо описываются в гидродинамической модели (например, энергия связи ядра), не объясняются хорошо в оболочечной модели. Для устранения этого недостатка в современных микроскопических моделях учитывается остаточное взаимодействие между нуклонами, не вошедшее в среднее ядерное поле (обычно только между нуклонами, находящимися в незаполненной валентной оболочке). Это позволяет объяснить происхождение коллективных возбуждений ядра (таких как квадрупольные колебания поверхности ядра, гигантский дипольный резонанс и т.д.). Оболочечная модель позволила объяснить спины и магнитные моменты основных состояний ядер, различную устойчивость атомных ядер, а также периодичность изменений их свойств. Объясняя природу магических чисел и правильно воспроизводя их значения, оболочечная модель описывает широкий круг экспериментальных данных по спектрам возбуждений ядер вплоть до энергий 3-5 МэВ.

Экспериментальные тенденции ядерных свойств (энергия α -частицы Q_{α} и период полураспада T_{α}) и сечения образования, показывают увеличение стабильности ядер при приближении к сферической замкнутой нейтронной оболочке N = 184, а также указывают на относительно небольшой эффект протонной оболочкой при Z = 114 [33–37], предсказанной микроскопическо-макроскопическими моделями [38–40]. В этих моделях энергия основного состояния ядра вычисляется как сумма макроскопической части и оболочечной поправки Стру-

тинского, определяемой в одночастичном потенциале Вудса - Саксона. Большое (7 - мерное) деформационное пространство используется для нахождения основного состояния ядра. В этом подходе, максимальная отрицательная оболочечная поправка предсказана для ядра ²⁹⁸Fl, то есть данное ядро считается следующим дважды магическим после ядра ²⁰⁸Pb. Но в моделях релятивистского и нерелятивистского среднего поля [41–45] острову стабильности соответствуют Z = 120 - 126 и N = 184. В нерелятивистских моделях используются эффективные нуклон-нуклонные взаимодействия, такие как силы Скирма (взаимодействие нулевого радиуса действия) и Гогни (взаимодействие конечного радиуса действия). С помощью задания нескольких (до восьми) свободных параметров можно описывать многие свойства ядерной материи. Релятивистская модель среднего поля содержит обобщение этих моделей с использованием мезонных степеней свободы. В таких моделях некоторые релятивистские эффекты (например, спин-орбитальные силы) получаются естественным образом без введения дополнительных параметров.

Одночастичные потенциалы

Уровни энергии нуклонов E_i определяются собственными значениями решений уравнения Шредингера в потенциале среднего поля V(r) и характеризуются следующими квантовыми числами: N – главное квантовое число (оно нумерует одночастичные орбиты с одинаковыми l, j в порядке возрастания их энергии), l – орбитальный момент количества движения нуклона, j – полный момент количества движения нуклона и m – проекция этого момента на ось z.

В простейших моделях потенциал V(r) выбирают в виде потенциала трехмерного гармонического осциллятора [46], либо прямоугольной конечной (например) потенциальной ямы в зависимости от типа ядер – легкие описываются лучше первым потенциалом, а тяжелые – вторым. Более реалистический потенциал Саксона–Вудса $V_{S-V}(r)$ похож на форму распределения плотности ядерного вещества $\rho(r)$. Потенциал V_{S-W} представляет собой нечто промежуточное между осцилляторным потенциалом и потенциалом прямоугольной ямы [47]. В потенциале V_{S-W} снимаются вырождения, свойственные гармоническому осциллятору. Для протонов в самосогласованный потенциал должен быть также включен кулоновский потенциал.

Добавление к центрально-симметричному потенциалу V(r) спин-орбитального взаимодействия приводит к расщеплению уровня с данным значением l на два состояния (l + 1/2) и (l - 1/2). При этом состояние с (l + 1/2) смещается вниз по энергии, а состояние (l - 1/2) – вверх. Величина спин-орбитального расщепления пропорциональна величине орбитального момента l. Поэтому уровни с большими значениями орбитального момента l > 3, сильно смещаясь вниз по энергии, оказываются среди уровней предыдущей оболочки, что позволяет правильно воспроизвести магические числа. Для правильного описания уровней с большим l к осцилляторному потенциалу добавляют член пропорциональный l^2 .

Частично-дырочные возбуждения

В четно-четных ядрах энергия возбуждения первого уровня определяется энергией разрыва нуклонной пары. Свойства низколежащих уровней ядра, имеющих одну частицу сверх заполненных оболочек, должны определяться этой частицей, поскольку из-за большой энергии возбуждения можно пренебречь степенями свободы остальных нуклонов и считать, что они образуют инертный остов. Такое утверждение справедливо также для ядер, имеющих на один нуклон меньше, чем соседнее дважды магическое ядро. Действительно, дырку в заполненной орбите можно рассматривать как частицу, находящуюся на той же орбите, но имеющую другой знак заряда, массы и энергии (при удалении нуклона с одночастичной энергией ϵ_{nlj} сумма одночастичных энергий меняется на величину — ϵ_{nlj} ; энергия дырки, в отличие от энергии связанной потенциалом частицы, положительна и тем больше, чем ниже (глубже) расположен уровень, на котором она образуется).

Для ядер с несколькими частицами (или дырками) сверх замкнутых оболочек общая картина состояний должна быть сложной из-за большого числа вариантов связи угловых моментов валентных частиц. Однако, короткодействующие остаточные силы связывают нуклоны одного сорта, находящиеся на одной и той же одночастичной орбите *nlj*, в пары с результирующим нулевым моментом количества движения. Таким образом, все четно-четные ядра должны иметь в основном состоянии нулевой спин и положительную четность. Как показывают эксперименты, данное правило не знает исключений. В четно-нечетных и нечетно-четных ядрах спин и четность определяются состоянием нечетного нуклона, на которое влияет связь с коллективными возбуждениями. Связь с фононами обеспечивает смешивание частично-дырочных конфигураций [47]. Однако, эта связь начинает играть роль, если энергия состояния приближается к энергии фононного возбуждения.

Плотность ядерных состояний

Современные представления о ядре и его свойствах были получены во многом благодаря изучению основного и низколежащих состояний ядер. По мере совершенствования теории ядра, становилось все более успешным объяснение наблюдаемой спектроскопической информации о структуре низколежащих ядерных состояний. Однако, с увеличением энергии возбуждения число ядерных состояний растет так быстро, что детальный анализ каждого из них практически невозможен. Таким образом, вполне разумно перейти к усредненному статистическому рассмотрению свойств возбужденных ядер. Плотности возбужденных ядер – главная статистическая характеристика, которая может дать ответ на вопрос о таких свойствах сверхтяжелых ядер как, например, вероятность выживания и сечение образования сверхтяжелого элемента.

Наиболее простой моделью для описания статистических свойств возбужденных атомных ядер является модель ферми-газа. В ней нуклоны рассматриваются как невзаимодействующие фермионы [48]. Но значения параметров плотности уровней *a* [49, 50], полученные из анализа экспериментальных данных по среднему расстоянию между нейтронными резонансами, отличаются от величин, рассчитанных в рамках этой модели. В зависимости *a* от массового

числа отчетливо проявляются глубокие провалы в области магических ядер. Экспериментальные величины моментов инерции ядер также не совпадают с твердотельными значениями, полученными в рамках модели ферми-газа [51]. Для получения более реалистичной картины, необходимо учесть влияние оболочечных неоднородностей одночастичного спектра. Для этого, в частности, была предложена феноменологическая систематика параметра плотности уровней, зависящая от величины оболочечной поправки [52]. Для объяснения четнонечетных различий плотности уровней, к энергии возбуждения ядра обычно прибавляется соответствующая феноменологическая парная поправка [49, 50]. При малых энергиях возбуждения ядра более существенную роль играют парные корреляции сверхпроводящего типа [47, 53]. Поэтому при данном температурном режиме для более точного описания термодинамических характеристик системы используется сверхтекучая модель ядра [54]. При рассмотрении статистических характеристик возбужденных атомных ядер, необходим также учет коллективных степеней свободы, связанных с колебаниями ядерной поверхности и вращением ядра как целого (для деформированных ядер). Для этого в выражение для плотности уровней вводятся соответствующие факторы вибрационного и ротационного усилений [54].

Двухцентровая оболочечная модель ядра

Поскольку с помощью одноцентровых оболочечных моделей невозможно описать процесс деления ядер, в работах [55, 56] были разработаны двухцентровые *модели оболочек*. В симметричном варианте модели рассматривается исходное ядро, состоящее из двух одинаковых фрагментов A/2 с расстоянием между центрами фрагментов z. При $z \to 0$ происходит переход к модели Нильссона, а при больших расстояниях (больших, чем радиусы фрагментов) появляются два одинаковых, хорошо разделенных потенциала. В асимметричном варианте модели фрагменты могут иметь различные деформации, а также учитывается округление барьера между потенциалами. В двухцентровой оболочечной модели вычисление поверхности потенциальной энергии от основного состояния до предразрывных конфигураций относительно просто, поскольку параметризация формы системы с ростом ее удлинения не меняется.

Для изучения структуры ядра вблизи его основного состояния, можно использовать модели с различной параметризацией формы [38, 47, 56–61]. Удачная параметризация позволяет уменьшить количество коллективных переменных и упростить микроскопическое рассмотрение. В настоящей работе приводятся расчеты, основанные на модифицированной двухцентровой оболочечной модели (ДЦОМ). В рамках данной модели использование лишь двух коллективных переменных достаточно для описания основного состояния ядер.

Сечение образования составного ядра

Теоретические предсказания сечений образования сверхтяжелых элементов крайне необходимы для планирования и проведения экспериментов [62, 63] по синтезу сверхтяжелых ядер. Для выбора оптимальных условий синтеза необходимо найти оптимальный баланс между двумя противоположными требованиями - увеличение вероятности слияния ядер и уменьшением вероятности деления образовавшегося возбужденного составного ядра.

В рамках разных моделей [64–69] полное слияние рассматривается как двухшаговый процесс. На первом шаге реакции налетающее ядро захватывается ядром-мишенью, образуется двойная ядерная система (ДЯС). На втором шаге рассматривается переход ДЯС в составное ядро. Поскольку кинетическая энергия налетающего ядра обычно превосходит величину Q реакции полного слияния, то полученное составное ядро находится в возбужденном состоянии. Возможными каналами его девозбуждения является эмиссия одной или нескольких частиц и γ -квантов, ведущая к образованию испарительного остатка, а также деления.

Сечение образования испарительных остатков определяется произведением сечения $\sigma_{CN}(E^*)$ образования составного ядра с энергией возбуждения E^* и вероятности выживания полученного составного ядра относительно деления. И хотя сечения образования трансактинидов в реакциях полного слияния с

тяжелыми ионами всего порядка $10^{-6} - 10^{-4}$ барн и экспоненциально убывают при продвижении в область сверхтяжелых ядер, эти реакции остаются пока единственным методом синтеза элементов с $Z \ge 102$.

Перспективным путем синтеза сверхтяжелых ядер являются реакции горячего слияния, в качестве мишеней в которых используются актиниды, а в качестве ядра-снаряда – дважды магический изотоп кальция ⁴⁸Са. Характерные энергии возбуждения составных ядер в этом случае составляют около 30 - 40 МэВ и переход составного ядра в основное состояние происходит путем эмиссии 3 - 4 нейтронов, что меньше на 1 - 2 нейтрона, чем в других реакциях горячего слияния. При такой энергии возбуждения оболочечные эффекты еще играют заметную роль и вероятность выживания продуктов испарения больше, чем в обычных реакциях горячего слияния (с $E^* \ge 50$ МэВ). Таким образом, магичность ядра ⁴⁸Са ведет к понижению энергии возбуждения, хотя и не так сильно, как в случае использования ядер ²⁰⁸Pb и ²⁰⁹Be в реакциях холодного слияния. Реакции горячего слияния с использованием пучка ⁴⁸Са уступают реакциям холодного слияния по выживаемости составного ядра, но выигрывают по сечению слияния. К тому же, асимметрия масс и зарядов ядер во входном канале реакции приводит к уменьшению кулоновского отталкивания ядер $(Z_1 \times Z_2)$, т.е. к увеличению вероятности полного слияния. Для асимметричных реакций с участием ⁴⁸Са вероятность слияния на несколько порядков больше, чем для более симметричных реакций холодного слияния. В среднем, ядра, синтезированные в реакциях горячего слияния, имеют более высокие барьеры деления и меньшие энергии отделения нейтрона, что и дает им шанс на выживание в процессе испарения нейтронов.

Предсказанные свойства сверхтяжелых ядер указывают на то, что следующее магическое ядро после ²⁰⁸Pb будет при $Z \ge 120$. Ожидается, что для синтеза таких ядер нужно использовать реакции слияния ядер изотопов актинидов с ионами тяжелее, чем ⁴⁸Ca, например, с ионами ⁵⁰Ti,⁵⁴Cr,⁵⁸Fe,⁶⁴Ni. Необходимо исследовать зависимость рассчитанных сечений образования и периодов

полураспада новых сверхтяжелых ядер от предсказания положения замкнутой протонной оболочки. Следует оценить перспективу использования реакций полного слияния с актинидными мишенями для получения новых сверхтяжелых ядер. Для планируемых экспериментов полезно оценить сечения образования испарительных остатков и время жизни неизвестных ядер с Z = 120, получаемых в реакциях полного слияния ⁵⁰Ti+²⁴⁹Cf и ⁵⁴Cr+²⁴⁸Cm.

С предсказаниями микроскопическо-макроскопической модели [57] реакции ${}^{50}\text{Ti} + {}^{249}\text{Cf}$ и ${}^{54}\text{Cr} + {}^{248}\text{Cm}$ могут привести к ядрам с Z = 120 с максимальными сечениями 1.2 и 0.2 фб соответственно в 4*n* испарительном канале [70]. Если верны предсказания феноменологической модели [71], где протонная оболочка ожидается при Z = 126, то реакции ${}^{50}\text{Ti} + {}^{249}\text{Cf}$ и ${}^{54}\text{Cr} + {}^{248}\text{Cm}$ должны привести к получению ядер с Z = 120 с сечениями порядка 550 фб (3*n* испарительный канал) и 40 фб (4*n* испарительный канал) соответственно [70]. Таким образом, структура сверхтяжелых элементов сильно влияет на сечения образования испарительных остатков с Z > 120 в реакциях полного слияния с актинидными мишенями. Поскольку ядерные модели содержат некоторое число параметров, которые фиксируются для наилучшего описания известных ядер, их предсказательная способность может быть меньше для ядер, удаленных от хорошо изученной области. Для улучшения используемой модели можно подобрать ее параметры для описания свойств только известных ядер, близких к интересующему нас неизвестному региону. Мы следовали данной методике в настоящей работе.

Микроскопическо-макроскопические подходы [38, 57, 62, 72] позволяют описывать структурные и распадные свойства сверхтяжелых ядер. Результаты расчетов зависят от параметризации формы ядра, используемого одночастичного потенциала и параметров спин-орбитального взаимодействия.

Содержание диссертации

В данной работе проведены расчеты поверхности потенциальной энергии на основе метода Струтинского и с использованием модифицированной ДЦОМ.

Получаемый одночастичный спектр сверхтяжелого ядра соответствует нижайшему минимуму поверхности потенциальной энергии. Для данного минимума определяются значения параметров деформации и оболочечной поправки.

В первой главе диссертации подробно описывается двухцентровая оболочечная модель ядра, ее модификация и необходимость этой модификации. Рассматриваются изотопы тех свехтяжелых ядер, которые могут быть получены в реакциях полного слияния с имеющимися мишенями и снарядами. На основе данных, полученных при помощи модифицированной ДЦОМ, анализируются свойства этих сверхтяжелых элементов Z > 100, такие как энергии связи, энергии α -распада, оболочечные поправки, и их влияние на сечение образования испарительных остатков.

Во второй главе рассматриваются альфа-распадные цепочки, содержащие такие сверхтяжелые элементы как Fl, Lv, 117 и 120. Рассчитанные одно- и двухквазичастичные спектры этих цепочек рассматриваются на наличие высокоспиновых изомеров. Получены большие оболочечные эффекты в ядрах ^{296,298,300}120. В результате расчетов предсказаны ядра, на которых будут происходить обрывы α-распадных цепочек спонтанным делением. Исследуя структуру тяжелых ядер, мы получаем информацию о характеристиках среднего поля ядер, свойства которого являются определяющими для ядерной стабильности.

В третьей главе изучается плотность состояний при помощи статистического подхода. Эффекты спаривания рассчитываются в БКШ приближении. Параметры плотности уровней извлекаются из сравнения полученного численного решения и значения получаемого в модели Ферми-газа. Изучаются зависимости параметра плотности уровней от массового числа, оболочечных эффектов и энергии возбуждения составного ядра. А также устанавливается наличие зависимости параметра плотности уровней от числа нейтронов и протонов. Минимумы в такой зависимости соответствуют замкнутым оболочкам или подоболочкам в ядрах.

Полученные в работе результаты хорошо согласуются с данными, полу-

ченными в последние годы ведущими экспериментальными группами. Наши результаты могут быть полезны для подготовки экспериментов по синтезу 120 элемента.

Апробация работы

Основные результаты диссертации докладывались и обсуждались на семинарах Лаборатории теоретической физики им. Н.Н. Боголюбова ОИЯИ, были представлены на российских и международных совещаниях: Международная летняя школа им. Гельмгольца: Теория ядра и астрофизические приложения, Дубна, Россия, 21.07-1.08.2014; SKLTP-BLTP JINR объединенное совещание по физике сильно взаимодействующих систем, Дубна, Россия, 14-19.07.2014; школа-конференция для молодых ученых и специалистов, Алушта-2014, Россия, 2-7.06.2014; 11й международный весенний семинар по ядерной физике, Оболочечная модель и ядерная структура: достижения последних двух десятилетий, о. Ишья, Италия, 12-16.05.2014; XVIII Научная конференция Объединения молодых ученых и специалистов (ОМУС-2014), посвященная 105-летию Н.Н. Боголюбова, Дубна, Россия, 24-28.02.2014; ЯДРО-2013, Москва, международное совещание по ядерной спектроскопии и структуре атомного ядра, 8-12.10.2013; FAIRNESS-2013, Берлин, Германия, международная конференция для молодых ученых, интересующихся физикой FAIR, 15-21.09.2013; RANT-2013, Дубна, Россия, международная конференция "Последние достижения в теории ядра", 22-27.07.2013; NSRT-2012, Дубна, Россия, международная конференция "Структура ядра и смежные проблемы", 2-6.08.2012; ЯДРО-2012, Воронеж, Россия, международное совещание по ядерной спектроскопии и структуре атомного ядра, 26-30.06.2012; школа-конференция для молодых ученых и специалистов, Алушта-2012, Украина, 1-8.06.2012; XVI Научная конференция Объединения молодых ученых и специалистов (ОМУС-2012), Дубна, Россия, 6-11.02.2012; 35-я сессия ПКК по ядерной физике, Дубна, Россия, 26-27.01.2012; 18-я Еврошкола по ядерной физике на пучках экзотических ядер, Ювяскюля, Финляндия, 20-26.08.2011.

Глава 1

Анализ свойств сверхтяжелых элементов с $Z \geqslant 105$

1.1. Двухцентровая оболочечная модель и ее модификация.

Двухцентровая оболочечная модель (ДЦОМ) позволяет вычислять поверхность потенциальной энергии и описывать форму ядра от основного состояния до образования двух фрагментов деления при помощи следующего набора коллективных координат: $\lambda, \eta, \varepsilon, \beta_1, \beta_2$. Относительное удлинение $\lambda = l/(2R_0)$ определяет длину l ядра вдоль оси симметрии в единицах диаметра $2R_0$ сферического ядра. При больших удлинениях с помощью данной переменной можно описать относительное движение осколков деления. Коллективная координата массовой асимметрии η описывает переход нуклонов через шейку. Параметр шейки $\varepsilon = E_0/E'$ определен отношением высоты фактического барьера E_0 к барьеру E' в двухцентровом осцилляторе. Шейка растет с уменьшением ε . В ДЦОМ рассматриваюся пределительные формы с плавным соединением фрагментов. Изменение ϵ связано с изменением высоты потенциального барьера между ними. Левая и правая стороны ядра вдоль оси симметрии являются половинами эллипсоидов с полуосями a_i и b_i . Параметры $\beta_i = a_i/b_i$ с i = 1, 2 задают их отношение.

Одночастичный потенциал и форма ядра около основного состояния представлены на Рис. 1.1. В случае зеркальной симметрии, рассмотренной в данной работе, $\beta = \beta_1 = \beta_2 = a_1/b_1 = a_2/b_2$, что означает отсутствие статических деформаций нечетных мультипольностей. Для компактных форм ядра вблизи основного состояния можно положить $\varepsilon = 0$ и $\eta = 0$. Таким образом, остается только два параметра, λ и β , для описания деформаций различных четных

Рис. 1.1: Потенциал двухцентровой оболочечной модели вдоль оси симметрии и форма ядра около основного состояния.

мультипольностей.

В наших расчетах одночастичных энергий и оценках оболочечных эффектов используется одночастичный гамильтониан [56]

$$H = -\frac{\hbar}{2m_0} \nabla^2 + V(\rho, z) + V_{\bar{l},\bar{s}} + V_{l^2}, \qquad (1.1)$$

где одночастичный потенциал для зеркально-симметричного ядра около основного состояния параметризуется следующим образом:

$$V(\rho, z) = \begin{cases} \frac{1}{2}m\omega_z^2(z - z_1)^2 + \frac{1}{2}m\omega_\rho^2\rho^2, & z < z_1, \\ \frac{1}{2}m\omega_\rho^2\rho^2, & z_1 < z < z_2, \\ \frac{1}{2}m\omega_z^2(z - z_2)^2 + \frac{1}{2}m\omega_\rho^2\rho^2, & z > z_2, \end{cases}$$

где m - масса нуклона, $\omega_{\rho}/\omega_{z} = a/b = \beta$, $z_{2} - z_{1} = 2R_{0}\lambda - 2a$ и $\omega_{\rho} = \beta\omega_{0}R_{0}/a$ с $\hbar\omega_{0} = 41$ МэВ $A^{-1/3}$. Величина a связана с λ и β через выражение сохранения объема $3a^{2}R_{0}\lambda - a^{3} = 2R_{0}^{3}\beta^{2}$. Гамильтониан (1.1) содержит также спин-орбитальный член

$$V_{\bar{l},\bar{s}} = -\frac{2\hbar\kappa}{m\omega_0'} \left(\nabla V \times \mathbf{p}\right) \mathbf{s}$$
(1.2)

и l^2 член

$$V_{l^2} = -\kappa\mu\hbar\omega_0'\bar{l}^2 + \kappa\mu\hbar\omega_0'\frac{N(N+3)}{2}\delta_{if}.$$
(1.3)

здесь δ_{if} - единичный оператор, N – главное квантовое число сферического осциллятора, $\hbar\omega'_0 = 41$ МэВ $A'^{-1/3}$ и $A' = Aab^2/R_0^3$. Для того, чтобы улучшить описания спина и четности основного состояния ядер в работах [62, 72] была введена слабая зависимость параметров $\kappa_{n,p}$ и $\mu_{n,p}$ от (N-Z). Для ядер актинидного и трансактинидного регионов были предложены следующие выражения

$$\kappa_n = -0.076 + 0.0058(N-Z) - 6.53 \times 10^{-5}(N-Z)^2 + 0.002A^{1/3},$$

$$\mu_n = 1.598 - 0.0295(N-Z) + 3.036 \times 10^{-4}(N-Z)^2 - 0.095A^{1/3} \quad (1.4)$$

И

$$\kappa_p = 0.0383 + 0.00137(N - Z) - 1.22 \times 10^{-5}(N - Z)^2 - 0.003A^{1/3},$$

$$\mu_p = 0.335 + 0.01(N - Z) - 9.367 \times 10^{-5}(N - Z)^2 + 0.003A^{1/3}$$
(1.5)

для нейтронов и протонов соответственно. Если (1.4) приводит к $\kappa_n < 0.45 + 0.002A^{1/3}$, то в расчетах используется $\kappa_n = 0.45 + 0.002A^{1/3}$. Слабая зависимость от (N-Z) включена в импульсно-зависимую часть одночастичного гамильтониана с нильссоновским одночастичным потенциалом. Используя выражения (1.4) и (1.5), можно правильно описать спин и четность основного состояния многих хорошо изученных тяжелых ядер. Нужно отметить, что введенная дополнительная зависимость от (N-Z), в основном, влияет на поверхность потенциальной энергии в зависимость лишь дает лучшую последовательность одночастичных уровней вблизи поверхности Ферми.

В рамках микроскопическо-макроскопического подхода [62, 72, 73] параметризация ядерной формы, используемая в модифицированной ДЦОМ, эффективно включает в себе большое число четных мультипольностей. Малое число используемых коллективных координат значительно упрощает расчет потенциальной поверхности около основного состояния ядра. Из условия наилучшего описания спина и четности основного состояния известных тяжелых и сверхтяжелых ядер, а также двухквазичастичных состояний в ядрах редкоземельной области, были получены новые параметры двухцентрового гамильтониана, зависящие от изоспина (N - Z), и с их использованием вычислены поверхности потенциальной энергии сверхтяжелых ядер в координатах λ и β .

Одночастичные спектры, получаемые при помощи ДЦОМ, используются для нахождения оболочечной и парной поправок, а также - квазичастичного спектра. Для сверхтяжелого ядра абсолютное значение оболочечной поправки в основном состоянии приблизительно равно высоте барьера деления. Механизм, который фактически определяет влияние оболочечных эффектов на полный период полураспада сверхтяжелых ядер прост. В ядре существует барьер деления (зависимость энергии основного состояния от параметра удлинения), высота которого определяется жидкокапельной и микроскопической компонентами. Но для ядер с Z > 100 жидкокапельный барьер исчезает и ядро макроскопически оказывается неустойчивым по отношению к делению. Однако, было установлено, что оболочечная структура ядра оказывает существенное влияние на его стабильность из-за наличия существенной оболочечной компоненты барьера деления для ядер с $Z \geq 100$ [74]. Жидкокапельная часть потенциальной энергии слабо меняется в зависимости от удлинения ядра около основного состояния. Поэтому потенциальная энергия связи ядра рассчитывается как сумма плавно меняющейся макроскопической энергии U_{LDM} (включает в себя кулоновскую) и поверхностную энергии), рассчитанной с помощью модели жидкой капли, и микроскопической поправки δU_{mic} , состоящей из оболочечной и парной попра-BOK:

$$U(\lambda,\varepsilon,\eta) = U_{LDM}(\lambda,\varepsilon,\eta) + \delta U_{mic}(\lambda,\varepsilon,\eta).$$
(1.6)

Вычисления поверхности потенциальной энергии как функции коллективных

координат ДЦОМ приводят к нахождению на ней минимума, соответствующие основному состоянию, для которого и анализируется низколежащие квазичастичные состояния.

Для ядер с Z < 110 расчитанные нами абсолютные значения микроскопических поправок δU_{mic} , близки к результатам, полученным в [38, 57]. Например, в [57] для ядер ^{268,269,270,271}Hs $\delta U_{mic} = -5.95$, -6.38, -6.54 и -6.64 МэВ соответственно. В наших расчетах $\delta U_{mic} = -5.94$, -6.37, -5.95 и -5.86 МэВ.

Вклад нечетного нуклона в нечетно-четном ядре, занимающего одночастичное состояние $|\mu\rangle$ с энергией e_{μ} , описывается одноквазичастичной энергией

$$\sqrt{(e_{\mu}-e_F)^2+\Delta^2}.$$

Здесь энергия Ферми e_F и параметр энергии разрыва пары нуклонов Δ вычисляются в рамках приближения Бардина-Купера-Шиффера [75]. Парное взаимодействие монопольного типа для нейтронов и протонов описывается константами $G_{n,p} = (19.2 \mp 7.4 \frac{(N-Z)}{A}) A^{-1}$ МэВ соответственно [59]. В расчетах e_{μ} и Δ эффект блокировки [47] учтен эффективно. В расчетах одноквазичастичных

$$E_{\mu} = \sqrt{(e_{\mu} - e_F)^2 + \Delta^2} - \sqrt{(e'_{\mu} - e_F)^2 + \Delta^2}$$

и двухквазичастичных

$$E_{\mu} = \sqrt{(e_{\mu} - e_F)^2 + \Delta^2} + \sqrt{(e'_{\mu} - e_F)^2 + \Delta^2},$$

возбуждений используются результаты работы [47], где показано, что из-за эффекта блокировки происходит уменьшение Δ приблизительно на фактор 0.85. Здесь e'_{μ} одночастичная энергия последнего занятого уровня.

1.2. Энергия связи ядра

Для вычисления энергии связи ядра можно использовать следующее выражение [63]:

$$B(Z,A) = U(Z,A,\lambda_{gs},\beta_{gs}) - a_v \left(1 - a_s \left(\frac{N-Z}{A}\right)^2\right) A + W \left|\frac{N-Z}{A}\right| + \delta + c[(N-Z) - 58], \qquad (1.7)$$

где $a_s = 1.778$, вигнеровская константа W = 30 МэВ, c = 0.25 МэВ в выражении энергии зарядовой асимметрии и средняя энергия спаривания $\delta = 4.8/N^{1/3} + 4.8/Z^{1/3}$, $4.8/N^{1/3}$, $4.8/Z^{1/3}$ и 0 МэВ для нечетных Z и N, для четных Z и нечетных N, нечетных Z и четных N, четных Z и N соответственно. Мы обнаружили, что лучшее согласие между расчетными и экспериментальными данными для тяжелых ядер достигается, если мы принимаем a_v в виде

$$a_v = 15.715 - \frac{0.0127}{1 + \exp[\frac{(N-Z) - 52.5}{0.58}]} - \frac{0.00512}{1 + \exp[\frac{61 - (N-Z)}{0.58}]}$$

Значения a_v равны 15.715 МэВ для $54 \leq N - Z \leq 61$ и 15.703 МэВ для N - Z < 52. Дополнительная зависимость a_v от (N - Z), вероятно, компенсирует эффекты, которые не учитываются в выражении (1.7) по сравнению с аналогичным выражением в [57]. Отметим, что в литературе существуют разные выражения для B(Z, A) [76]. Попытка модификации жидкокапельной части B(Z, A) была сделана, например, в работе [77], чтобы улучшить описание ядер далеких от региона известных ядер. Отметим, что введенные зависимости от (N - Z) не влияют на значения Q_{α} ядер в α -распадных цепочках, так как все эти ядра имеют одинаковый изоспин.

Для оценки периода полураспада T_{α} ядра посредством вылета α -частицы используется выражение из работы [78]

$$\log_{10} T_{\alpha}(Z, A) = 1.5372Z(Q_{\alpha} - E_{\mu})^{-1/2} - 0.1607Z - 36.573,$$
(1.8)

где

$$Q_{\alpha}(Z,A) = B(Z,A) + 28.296 - B(Z-2,A-4)$$
(1.9)

является энергией α-перехода между основными состояниями ядер и E_{μ} – энергия возбуждения квазичастичного состояния дочернего ядра.

1.3. Вычисленные свойства сверхтяжелых ядер

Вычисленные дефекты масс M_{th} , энергии отделения нейтрона S_n , оболочечные поправки δE_{sh} и значения Q_{α} представлены в Таблице 3.1 (см. Приложение 1) для ядер с 105 $\leq Z \leq$ 126. Нами были рассмотрены только изотопы тех свехтяжелых ядер, которые могут быть получены в реакциях полного слияния с доступными мишенями и пучками. На Рис. 1.2 представлены вычисленные значения Q_{α} . Как видим, данные результаты находятся в хорошем согласии с существующими экспериментальными Q_{α}^{exp} [13, 18, 20, 26]. Отклонение расчета от эксперимента не превышает 0.3 МэВ.

Замкнутая подоболочка при N = 162 проявляется в наших расчетах как и в работах [38, 57]. Оболочечные эффекты при Z = 114 и N = 172 - 176 обеспечивают достаточно слабую зависимость Q_{α} от N. Сильная роль оболочки при N = 184 отражается в хорошо наблюдаемом минимуме Q_{α} . Для сравнения значения Q_{α} , предсказанные микроскопическо-макроскопической [57] и феноменологической [71] моделями, приведены на Рис. 1.3 и 1.4 соответственно. В наших расчетах зависимость Q_{α} от N слабее при N = 172 - 176 по сравнению с результатами работ [38, 57]. Слабые оболочечные эффекты при N = 184 и Z = 120 - 126 также можно увидеть на Рис. 1.3. Сильные оболочечные эффекты при N = 162 и при N = 172 - 176 не наблюдаются в расчетах феноменологической модели [71]. Однако, как и в наших вычислениях, есть сильный оболочечный эффект при N = 184 (Рис. 1.4).

Оболочечные поправки ответственны за выживаемость сверхтяжелых ядер.

Рис. 1.2: Вычисленные энергии α -распадов (символы, соединенные линиями) сравниваются с имеющимися экспериментальными данными (символы) [13, 18, 20, 21, 26] для четных-Z (b) и нечетных-Z (a) ядер с 107 $\leq Z \leq$ 126.

Рис. 1.3: Значения энергии α–распадов (символы, соединенные линиями), вычисленные в рамках микроскопическо-макроскопической модели [57] для для четных-Z (b) и нечетных-Z (a) ядер с 107 ≤ Z ≤ 126.

Рис. 1.4: Значения энергий α -распадов (символы, соединенные линиями), вычисленные в рамках феноменологической модели [71] для четных-Z (b) и нечетных-Z (a) и ядер с 107 $\leq Z \leq 126$.

Высота барьера деления B_f приближенно определяется абсолютной величиной оболочечной поправки в основном состоянии для ядер с Z > 100. В результате, B_f существенно зависит от числа протонов и нейтронов в составном ядре, особенно, от того, как близки они к магическим числам. При фиксированном зарядовом числе, предсказанные значения энергии отделения нейтрона B_n неуклонно уменьшаются с увеличением N для ядер с $N \ge 170$. Значения B_n , предсказанные в рамках различных моделей, варьируются в пределе 0.5 МэВ. Оболочечные эффекты или B_f отвечают за разницу в величинах $B_f - B_n$ в разных подходах (Рис. 1.5, 1.6, 1.7). Отметим, что вероятность выживаемости составного ядра достаточно сильно зависит от величины $B_f - B_n$.

Микроскопическо-макроскопическая модель [57] предсказывает замкнутую протонную оболочку при Z = 114 (Рис. 1.6) и возрастание величины барьера деления при приближении к N до N = 178 - 180. При фиксированном числе нейтронов и Z > 114 высота барьера деления уменьшается с ростом отклонения Z от 114.

Вместо магического числа Z = 114 феноменологическая модель [71] предполагает замкнутую протонную оболочку при Z = 126. В этой модели барьеры деления не даны. Вычитая из энергии связи, посчитанной в работе [71], жидкокапельную энергию связи из модифицированной ДЦОМ [62, 72], мы извлекли величину оболочечной поправки, которая для сверхтяжелых ядер напрямую связана с B_f . На Рис. 1.7 хорошо видны возрастание величины барьера деления при Z > 114 и появление замкнутой оболочки при N = 184.

Результаты наших вычислений величины $B_f - B_n$ как функции N представлены на Рис. 1.5. Хотя наш микроскопическо-макроскопический подход предсказывает подоболочку при Z = 114, оболочечные эффекты при Z = 120 - 126 проявляются сильнее. На Рис. 1.5 величина барьера деления возрастает, когда N приближается к N = 184, в то время как для ядер с Z = 120 - 126 значения Q_{α} минимальны при Z = 120 (Рис. 1.2), где барьеры деления имеют достаточно большие значения (Рис. 1.5). Ожидается, что ядра с Z = 120 и N = 180 - 184

Рис. 1.5: Изотопическая зависимость величины $B_f - B_n$. B_f и B_n взяты из Таблицы 3.1. Барьер деления B_f считается равным абсолютному значению оболочечной поправки в основном состоянии ядра. Результаты для изотопов, связанных с указанными четными-Z (b) и нечетными-Z (a), представлены символами, соединенными линиями.

Рис. 1.6: То же, что и на Рис. 1.5, но B_f и B_n для четных-Z ядер взяты из массовой таблицы [57].

будут более стабильными, чем ядра с Z = 114 и N = 176 - 178. Отметим, что в релятивистской модели среднего поля [41] замкнутая протонная оболочка ожидается при Z = 120.

На Рис. 1.8 представлены рассчитанные энергии нижайших двухквазипротонных состояний для ядер α -распадных цепочек сверхтяжелых ядер ^{308,310,312}126. В то время как у ядер с 110 $\leq Z \leq$ 118 энергии первых двухквазипротонных состояний меньше, чем 1.21 МэВ, в ядрах с Z = 120 и Z = 126энергии нижайших двухквазипротонных состояний составляют 1.68 и 1.91 МэВ соответственно. Это означает большую щель в протонном одночастичном спектре ядер с Z = 120 и 126. Таким образом, эффекты протонной оболочки становятся сильнее при Z большем, чем Z = 114.

Рис. 1.7: То же, что и на Рис. 1.5, но для четных-Z ядер и массовой таблицы [71].

1.4. Сечения испарительных остатков

Модель двойной ядерной системы (ДЯС) [65–69] успешно описывает реакции слияния–испарения, особенно, связанные с получением сверхтяжелых ядер. Для описания эволюции ДЯС используются следующие коллективные координаты: расстояние между центрами масс ядер R, массовая асимметрия $\eta = (A_1 - A_2)/(A_1 + A_2)$ (A_1 и A_2 - массовые числа ядер ДЯС). В отличие от других моделей слияния, где коллективной координатой, вдоль которой происходит слияние, является относительное расстояние R (или удлинение системы), в модели ДЯС слияние представляется как движение по η , т.е. слияние описывается как эволюция ДЯС к составному ядру за счет передачи нуклонов из легкого ядра в тяжелое. Другим возможным процессом эволюции ДЯС является квазиделение – распад системы по координате R на два свободных фрагмента (распад ДЯС). В этой модели процессы полного слияния и квазиделения –

Рис. 1.8: Вычисленные энергии нижайших двухквазипротонных состояний в указанных ядрах α -распадных цепочек ядер ³⁰⁸126 (темные квадраты), ³¹⁰126 (светлые круги) и ³¹²126 (светлые треугольники).

это диффузионные процессы по соответствующим коллективным координатам. Конкуренция каналов полного слияния по η и квазиделения по R определяет вероятность образования составного ядра.

Сечение образования испарительного остатка в *xn* испарительном канале вычисляется по формуле [65–69]:

$$\sigma_{ER}^{xn}(E_{\text{c.m.}}) = \sum_{J} \sigma_c(E_{\text{c.m.}}, J) P_{CN}(E_{\text{c.m.}}, J) W_{sur}^{xn}(E_{\text{c.m.}}, J).$$
(1.10)

Сечение захвата $\sigma_c(E_{\text{c.m.}}, J)$ определяется переходом сталкивающихся ядер через кулоновский барьер и образованием ДЯС, когда кинетическая энергия выше барьера превращается в энергию возбуждения ДЯС, а также угловой момент J относительного движения перераспределяется в ДЯС. Для рассматриваемых реакций максимальные испарительные остатки будут при $E_{\text{c.m.}}$, при которых столкновения для всех ориентаций деформированных ядер становятся возможными.

Вероятность полного слияния $P_{CN}(E_{c.m.}, J)$ зависит от конкуренции между полным слиянием и квазиделением после этапа захвата. Эта конкуренция может сильно уменьшить значение $\sigma_{ER}^{xn}(E_{\text{c.m.}})$. В интересующих нас реакциях значения $P_{CN}(E_{\text{c.m.}}, J)$ меньше, чем 10⁻². Вероятность выживания W_{sur}^{xn} учитывает девозбуждение составного ядра путем эмиссии x нейтронов и γ -квантов в конкуренции с процессом деления. Детальные описания методов вычислений σ_c, P_{CN} и W^{xn}_{sur} даются в работах [65–69]. Погрешности рассчитанных сечений в нашей работе находятся в пределах фактора 2-4. Различия в предсказаниях свойств сверхтяжелых ядер в разных моделях вызывают дополнительные неопределенности в вычисленных сечениях испарительных остатков для ядер с Z > 118 [70]. Более того, разница между величинами барьеров деления, предсказанными разными моделями, может быть существенно большой, около 2–3 МэВ. Из-за этого сечение образования 120 элемента, вычисленное с использованием предсказаний свойств ядер из работы [71], более чем в 100 раз превышают расчетные сечения, полученные с использованием предсказаний из работ [68, 70] и [57].

Микроскопическо-макроскопические модели [38, 57] и феноменологическая модель [71] позволяют получить значения Q реакций, барьеров деления и энергий отделения нейтрона, которые необходимы для вычисления сечений испарительных остатков. Для реакций полного слияния ⁴⁸Ca,⁵⁰Ti,⁵⁴Cr,⁵⁸Fe + ²²⁶Ra,²³²Th,²³⁸U,²³⁷Np,²⁴⁴Pu,²⁴³Am,²⁴⁸Cm,²⁴⁹Bk,²⁴⁹Cf были вычислены значения Q. На Рис. 1.9 и 1.10 видно, что с использованием различных массовых таблиц, для меньших Z наши результаты ближе к результатам, полученным с помощью массовой таблицы [38]. Для больших Z, вычисленные нами значения величины Q приближаются к результатам, полученным в микроскопическо-макроскопической модели [57]. Таким образом, неопределенность в значении величины Qприводит к неопределенности энергии возбуждения составного ядра порядка энергии отделения нейтрона 5–7 МэВ.

Рис. 1.9: Значения Q реакций полного слияния ⁴⁸Ca,⁵⁰Ti + ²²⁶Ra,²³²Th,²³⁸U,²³⁷Np,²⁴⁴Pu, ²⁴³Am,²⁴⁸Cm,²⁴⁹Bk,²⁴⁹Cf, рассчитанные с дефектами масс составных ядер Z из Табл. 1 (темные квадраты) и работ [57] (темные круги), [38] (светлые треугольники), [71] (светлые квадраты).

Рис. 1.10: То же, что на Рис. 1.9, но для реакций ⁵⁴Cr, ⁵⁸Fe + ²²⁶Ra, ²³²Th, ²³⁸U, ²³⁷Np, ²⁴⁴Pu, ²⁴³Am, ²⁴⁸Cm, ²⁴⁹Bk, ²⁴⁹Cf.
Используя наши предсказания ядерных свойств из Табл. 3.1, мы вычислили сечения испарительных остатков в реакциях ⁴⁸Ca,⁵⁰Ti,⁵⁴Cr,⁵⁸Fe,⁶⁴Ni + ²³⁸U,²⁴⁴Pu, ²⁴⁸Cm,²⁴⁹Cf (Puc. 1.12). По сравнению с нашими предсказанными сечениями, полученными на основе массовой таблицы [57] (Puc. 1.11), величина σ_{ER} убывает медленнее с ростом Z. Сильный оболочечный эффект, обнаруженный для ядер с Z > 118, приводит к большей вероятности выживания и соответственно большему значению σ_{ER} . Для реакций ⁴⁸Ca + ²³⁸U,²⁴⁸Cm,²⁴⁹Cf экспериментальные значения σ_{ER}^{3n} составляют около 0.5–2.5 пб, 1 пб, 0.5 пб [13] соответственно. Таким образом, разница между вычисленными и экспериментальными значениями σ_{ER} находится в пределах экспериментальной и теоретической неопределенностей. Хорошее описание существующих данных позволяет нам быть уверенными в предсказаниях для реакций с налетающими ядрами тяжелее, чем ⁴⁸Ca.

С использованием пучков ядра ⁵⁰Ті величина σ_{ER} для ядер с Z = 114 - 118ожидается в 5–10 раз меньше, чем для тех же ядер, полученных в реакциях с пучками ядра ⁴⁸Са. Главной причиной этого эффекта является уменьшение вероятности слияния P_{CN} с уменьшением массовой асимметрии во входном канале реакции. С пучками ⁵⁰Ті ядро ²⁹⁵120 может быть получено с расчетным сечением 23 фб. В реакции ⁵⁴Cr+²⁴⁸Cm составное ядро имеет на 3 нейтрона больше, чем в реакции ⁵⁰Ti+²⁴⁹Cf. Поэтому убывание P_{CN} частично компенсируется возрастанием W_{sur} и ядро ²⁹⁸120 может быть получено с сечением порядка 10 фб. Для синтеза ядер с Z = 122 - 126 в реакциях с пучками ядра ⁶⁴Ni должны приводить к относительно большим сечениям – (1–8) фб.

Сечения образования испарительных остатков в максимумах функций возбуждения и соответствующие оптимальные энергии возбуждения вычислены на основе массовой таблицы [57] и представлены на Рис. 1.12 для реакций 50 Ti, 54 Cr, 58 Fe, 64 Ni + 238 U, 244 Pu, 248 Cm, 249 Cf. Значения σ_{ER} убывают на 2–3 порядка величины с возрастанием атомного номера мишени от 92 до 98. Главной причиной уменьшения σ_{ER} с ростом Z составного ядра является сильное

Рис. 1.11: Рассчитанные максимальные сечения образования испарительных остатков с атомным номером Z в реакциях полного слияния ⁴⁸Ca,⁵⁰Ti,⁵⁴Cr,⁵⁸Fe,⁶⁴Ni + ²³⁸U,²⁴⁴Pu,²⁴⁸Cm,²⁴⁹Cf. Сечения образования сверхтяжелых ядер, полученных в реакциях с указанным налетающим ядром, представлены одинаковыми символами, соединенными пунктирными линиями. В расчетах использованы наши предсказания свойств сверхтяжелых ядер из Табл. 3.1. В скобках около символов приведены значения энергии возбуждения соответствующего составного ядра.

уменьшение вероятности слияния P_{CN} . Канал квазиделения становится более доминирующим относительно канала полного слияния с возрастанием $Z_1 \times Z_2$. Только в реакциях с налетающими ядрами ⁵⁰Ti и ⁵⁴Cr ожидаются сечения образования ядер с Z = 114, 116 и 118, которые еще могут быть достигнуты на существующих экспериментальных установках.

Рис. 1.12: То же, что на Рис. 1.11, но в расчетах использованы предсказания свойств сверхтяжелых ядер из массовой таблицы [57]. Сечения образования сверхтяжелых ядер, полученных в реакциях с указанным налетающим ядром, представлены одинаковыми символами, соединенными сплошными линиями.

1.5. Выводы

Полученные расчеты показали достаточно сильные оболочечные эффекты у ядер с Z = 120 - 126 и N = 184. Оболочечные эффекты при Z = 114 слабее, чем при Z = 120 - 126. Таким образом, наши микроскопическо-макроскопические расчеты качественно приводят к тем же результатам, что и в модели самосогласованного среднего поля. Большие оболочечные эффекты у ядер с Z = 120 - 126 приводят к большим барьерам деления и большей стабильности ядер относительно α -распада и спонтанного деления. Если наши предсказания структуры сверхтяжелых ядер верны в реакциях ⁵⁰Ti+²⁴⁹Cf и ⁵⁴Cr+²⁴⁸Cm, то можно синтезировать ядро с Z = 120 с сечениями 23 и 10 фб соответственно. Мы предсказали, что для ядра с Z = 120 и N = 175 - 179 ожидаются значения Q_{α} 12.1 – 11.2 МэВ и времена жизни 1.7 мс – 0.16 с. Эти Q_{α} находятся в неплохом согласии с предсказаниями, полученными в работе [71] и примерно на 2 МэВ меньше, чем в [38, 57]. По предсказаниям работ [38–40, 57] T_{α} должны принимать значения во временном интервале (1 - 20) мкс. Поэтому экспериментальное измерение Q_{α} для, хотя бы, одного изотопа Z = 120 элемента позволило бы нам выбрать самую реалистическую оболочечную модель для сверхтяжелых ядер с Z > 118. Такая идентификация будет интересна для выбора соответствующего оптимального набора параметров в микроскопических расчетах. Отметим, что сравнение максимумов экспериментальных и расчетных функций возбуждения позволит оценить предсказательные возможности различных моделей слияния.

Результаты, рассмотренные в данной главе, опубликованы в работе [63].

Глава 2

α-распадные цепочки ядер, содержащие сверхтяжелые элементы Fl, Lv, 117 и 120

В данной главе мы рассмотрим процесс α -распада, учитывая квазичастичные структуры материнского и дочернего ядер и возможные изомерные ядерные состояния. Будут проанализированы α -распадные цепочки, содержащие сверхтяжелые элементы Fl, Lv, 117 и 120. Последнее ядро α -распадной цепочки, распадается посредством спонтанного деления, которое происходит в случае, когда каналы α -распада подавлены из-за малой величины Q_{α} или из-за структурных эффектов в дочернем ядре. Полученные результаты будут сравниваться с имеющимися экспериментальными данными.

2.1. Цепочки *а*-распада, содержащие изотопы Fl

На Рис. 2.13 изображены вычисленные одноквазинейтронные спектры ядер α -распадной цепочки элемента ²⁸⁷Fl. В реакции полного слияния может быть заселено изомерное состояние 13/2⁻[716]. Это состояние может распасться на ротационные уровни, построенные на квазичастичном состоянии 5/2⁻[732] или 3/2⁻[761]. Рассчитанное время α -распада из этого изомерного состояния – около 0.18 с [79]. Хотя такие долгоживущие изомерные состояния в ядрах с Z > 110экспериментально пока еще не наблюдались, переходы из изомерных состояний нельзя исключать при анализе α -распадов.

Деформации ядер с $Z \ge 108$ на Рис. 2.13 достаточно малы и квазичастичные состояния имеют сложную структуру. Например, низколежащие состояния $3/2^{-}$ ядер ²⁸³Cn и ²⁸⁷Fl имеют около 20% примеси $3/2^{-}$ [732]. На Рис. 2.13 нильсоновские квантовые числа представлены для компонент с наибольшим весом. α -распад из основного состояния ²⁸⁷Fl элемента заселяет изомерное состояние

Рис. 2.13: Вычисленные энергии низколежащих одноквазинейтронных состояний в ядрах α -распадной цепочки элемента ²⁸⁷Fl, а также значения Q_{α} для α -распада между основными состояниями ядер. Возможные α -распады обозначены линиями, соединяющими соответствующие состояния. Экспериментальные значения взяты из [13].

 $3/2^{-}[761]$ в ядре ²⁸³Cn. Поскольку время данного α -распада – 0.45 с, более вероятен γ -переход из изомерного в основное состояние.

В ядре ²⁸³Сп α -распад из основного состояния, по оценкам, займет 3.23 с, как и в эксперименте [13]. В ядре ²⁷⁹Ds мы не обнаружили низколежащих изомерных состояний. Время α -распада из основного состояния этого ядра – 1.34 с для $Q_{\alpha} = 9.67$ МэВ или 0.45 с для $Q_{\alpha} = 9.84$ МэВ. Вычисленные периоды полураспада T_{sf} спонтанного деления ядер ^{278,280}Ds – 56 и 12 мс соответственно [80]. Беря 34 мс с фактором запрета 10 для ядра ²⁷⁹Ds из-за нечетного N, получаем 0.34 с, что близко к экспериментальному значению 0.2 с [13]. Таким образом, для ядра ²⁷⁹Ds $T_{sf} < T_{\alpha}$ и относительная вероятность спонтанного деления выше. Если же происходит α -распад ядра ²⁷⁹Ds, это приводит к заселению изомерного $9/2^+[615]$ и основного состояния ядра ²⁷⁵Hs.

Время α -распада возможного изомерного состояния 9/2⁺[615] ядра ²⁷⁵Hs больше 5.9 с при $Q_{\alpha} < 9.21$ МэВ. Для $Q_{\alpha} = 9.44$ МэВ получаем $T_{\alpha} = 1.44$ с. Как видно на Рис. 2.13, мы недооцениваем Q_{α} для ²⁷⁵Hs. В итоге, α -распад из основного состояния ядра ²⁷⁵Hs приводит к заселению основного состояния дочернего ядра. Однако, α -распад из изомерного состояния, вероятно, заселит изомерное состояние 11/2⁻[725] ядра ²⁷¹Sg. Для ядра ²⁷⁵Hs $T_{sf} \approx 29$ с, т.е. $T_{\alpha} < T_{sf}$.

Процессу α -распада из основного состояния ядра ²⁷¹Sg препятствует то, что состояние $3/2^+[611]$ в дочернем ядре ²⁶⁷Rf находится слишком высоко. В этом случае $Q_{\alpha} = 8.45$ МэВ и $T_{\alpha} = 4.7$ мин. α -распад ядра ²⁷¹Sg из изомерного состояния $11/2^-[725]$ имеет следующие характеристики: $Q_{\alpha} = 8.64$ МэВ и $T_{\alpha} \approx 1$ мин. Если оценка $T_{sf} = 5$ мин верна, то спонтанное деление будет конкурировать с α -распадом из основного состояния. Поскольку у изомерного состояния большое K, спонтанное деление из него менее вероятно, чем из основного состояния. Заселение состояния $11/2^-[725]$ ядра ²⁷¹Sg может служить указанием на α -распад из изомерного состояния $9/2^+[615]$ ядра ²⁷⁵Hs. Поскольку спонтанное деление является основной модой ²⁶⁷Rf, то α -распадная цепочка должна заканчиваться на этом ядре.

Вычисленные одноквазичастичные спектры ядер в α -распадной цепочке элемента ²⁹³Lv изображены на Рис. 2.14. α -распад из основного состояния ядра ²⁹³Lv происходит в состояние 5/2⁺[613] ядра ²⁸⁹Fl. α -распад из изомерного состояния 11/2⁻[705] при энергии 0.4 МэВ маловероятен из-за довольно короткого времени жизни изомерного состояния по отношению к γ -распаду на нижайшие состояния и из-за квазичастичной структуры дочернего ядра. В ядре ²⁸⁹Fl α -распад происходит из основного состояния в возбужденное состояние 1/2⁺[611] ядра ²⁸⁵Cn при энергии 0.3 МэВ, а затем происходит переход

Рис. 2.14: То же, что на Рис. 2.13, но для α–распадной цепочки ядра ²⁹³Lv. Возможные α-распады обозначены пунктирными линиями, соединяющими соответствующие состояния. Экспериментальные значения взяты из работ [13, 81].

в основное состояние посредством γ -распада. Заселение изомерного состояния $13/2^{-}[716]$ в ²⁸⁵Cn невозможно при α -распаде ядра ²⁹³Lv.

В результате α -распада ядра ²⁸⁵Сп заселяется состояние 1/2⁻[770] в ²⁸¹Ds с дальнейшим γ -переходом в возможное изомерное состояние 1/2⁺[611], близкое по энергии к основному состоянию. Это состояние может жить довольно долго и влиять на конкуренцию между каналами α -распада и спонтанного деления. Как показано на Рис. 2.14, энергии указанных распадов близки к своим экспериментальным значениям. Для ядра ²⁸⁵Сп значение T_{sf} , с учетом данных из [80], много больше, чем вычисленная величина $T_{\alpha} = 30$ с. Однако, для ядра ²⁸¹Ds $T_{sf} = 11.1$ с [13], что много меньше, чем $T_{\alpha} = 140$ с, и соответственно α -распадная цепочка ядра ²⁹³Lv, скорее всего, прервется на этом ядре. Как уже упоминалось, в этом случае с очень малой вероятностью заселяется основное состояние $13/2^{-}$ [716] ядра ²⁸¹Ds. Ожидается, что спонтанное деление будет происходить быстрее из изомерного состояния $1/2^{+}$ [611]. Относительная вероятность α -распада ядра ²⁸¹Ds будет оценочно менее 8%. В работе [13] сообщается лишь о спонтанном делении ядра ²⁸¹Ds. Возможно, что α -распад ядра ²⁸¹Ds, который наблюдался в работе [81], связан с распадом из основного состояния. Последнее заселялось с малой вероятностью в некоторых α -распадных цепочках ²⁸⁹Fl элемента. Основным каналом распада ядер ²⁷⁷Hs, ²⁷³Sg и ²⁶¹Rf является спонтанное деление. В этих ядрах одноквазичастичные состояния $9/2^+$ и $3/2^-$ близки по энергии и спонтанное деление может происходить из обоих состояний, но с разными величинами T_{sf} .

Вычисленные двухквазичастичные спектры ядер в α -распадных цепочках элементов ^{286,288}Fl представлены на Рис. 2.15 и 2.16 соответственно. α -распады низколежащих изомерных состояний, если они заселены, в такие же состояния дочерних ядер невозможны, так как последние имеют достаточно высокие энергии. Поэтому заселение двухквазичастичных изомерных состояний может привести к задержке α -распадов по отношению к α -распаду из основного состояния. Для ядра ²⁸⁶Fl с вычисленным Q_{α} мы имеем $T_{\alpha} = 0.32$ с, что сравнимо с $T_{sf} = 1.5$ с, полученным в [80]. Таким образом, ядро ²⁸⁶Fl может испустить α -частицу либо спонтанно поделиться. В работе [80] $T_{sf} = 35$ мин для ядра ²⁸⁸Fl, для которого мы оценили $T_{\alpha} = 0.43$ с. Поскольку $T_{sf} \gg T_{\alpha}$, это ядро испускает α частицу. Для ядер ^{282,284}Cn оценки дают $T_{\alpha} = 30$ мс и 3.23 с, что много больше, чем наблюдаемые $T_{sf} = 0.82$ и 97 мс соответственно [13]. Поэтому α -распадные цепочки заканчиваются на ядрах ^{282,284}Cn из-за их спонтанного деления. Отметим, что вычисленные значения Q_{α} на Рис. 2.15 и 2.16 близки к

Рис. 2.15: Вычисленные энергии низколежащих двухквазичастичных состояний в ядрах α -распадной цепочки элемента ²⁸⁶Fl, а также значения Q_{α} для α -распада между основными состояниями ядер. Экспериментальное значение $Q_{\alpha} = 10.33$ МэВ известно только для ядра ²⁸⁶Fl [13].

существующим экспериментальным данным.

2.2. 117 элемент

В работе [82] были рассмотрены свойства ядер в α -распадных цепочках элементов ^{293,294}117. Проведенный позже эксперимент [18] продемонстрировал хорошее согласие наблюдаемых и вычисленных энергий α -распада Q_{α} для большинства ядер. α -распадная цепочка элемента ²⁹³117 обрывается спонтанным делением ядра ²⁸¹Rg. Однако, в соответствии с предсказаниями работы [82] ожи-

Рис. 2.16: То же, что и на Рис. 2.15, но для ядер α -распадной цепочки элемента ²⁸⁸Fl. Экспериментальное значение $Q_{\alpha} = 10.08$ МэВ известно только для ядра ²⁸⁸Fl [13].

дается, что ядро ²⁸¹Rg испустит α частицу. Окончание α -распадной цепочки на ядре ²⁸¹Rg может быть вызвано меньшим значением Q_{α} , чем было предсказано, или же затрудненным α -распадом из-за структурных эффектов.

Используя вычисленные энергии связи ядер в основном состоянии (приведенные в Табл.1) были вычислены значения Q_{α} для α -распадов между основными состояниями. Для расчетов периодов полураспада T_{α} с вычисленными Q_{α} и одноквазичастичными спектрами использовались соответствующие выражения (1.8) и (1.9).

На Рис. 2.17 приведены вычисленные одноквазипротонные спектры и возможные α–распады из основных и изомерных состояний ядер α–распадной цепочки элемента ²⁹¹117. У изотопов ядер с Z ≤ 111 на 10 нейтронов больше, чем в изотопах, рассмотренных в работе [62, 72]. В результате, изменение деформаций ядер в основном состоянии является причиной перегруппировки некоторых квазичастичных уровней.

Рис. 2.17: Вычисленные низколежащие одноквазипротонные состояния в указанных ядрах α -распадной цепочки элемента ²⁹¹117. Указаны вычисленные значения Q_{α} между основными состояниями ядер. Возможные α -распады указаны стрелками. Экспериментальные значения Q_{α}^{exp} взяты из [13].

Вычисленные энергии α -распадов ядер ²⁸⁷115, ²⁸³113 и ²⁷⁹Rg, находятся в хорошем согласии с экспериментальными данными (не отличаются больше, чем на 0.2 МэВ), полученными для α -распадной цепочки ядра ²⁸⁷115 [13]. Отметим, что α -распад ядра ²⁷¹Bh был пропущен в первом эксперименте. Для ²⁷⁵Mt значения Q_{α} для K-разрешенных α переходов (Рис. 2.17), по крайней мере, на 0.45 МэВ больше, чем Q_{α} для распада между основными состояниями. Однако, α -распад из основного состояния на ротационные уровни, построенные на состоянии 9/2⁺[624] ядра ²⁷¹Bh, требуют только $\Delta K = 1$ и не могут быть полностью исключены.

Как видно на Рис. 2.17, *α*-распад ядра ²⁸⁷115 приводит к заселению состояния $9/2^{-}[505]$, а γ -распад данного состояния ведет к популяции состояния $11/2^{+}[615]$ или основного состояния (через состояние $7/2^{-}[503]$). Если изомерное состояние $11/2^+[615]$ ядра ²⁸³113 живет дольше, чем 7 мс, то может произойти α –распад из этого состояния с $Q_{\alpha} = 10.38$ МэВ. α –распад ядра 275 Мt будет затруднен, поскольку соответствующие одноквазичастичные состояния дочернего ядра расположены высоко по энергии. Периоды полураспада T_{sf} спонтанного деления соседних четно-четных ядер ²⁷⁴Hs и ²⁷⁶Ds оцениваются [80] как 5.8 с и 2.1 с соответственно. Спонтанное деление ²⁷⁵Мt требует более, чем 2.1 с, а α -распад протекает быстрее, $T_{\alpha} < 1$ с даже при $Q_{\alpha} = 9.61$ МэВ. α -распад ядра 275 Mt может произойти в первое ротационное состояние $11/2^+$ ядра 271 Bh. В этом случае значение Q_{α} может быть около 10.28 МэВ и $T_{\alpha} > 15$ мс. Распад $^{271}{\rm Bh}~\alpha \rightarrow ^{267}{\rm Db}$ происходит за ~ 9.3 с. Для α –распада ядра $^{267}{\rm Db}~T_{\alpha} \approx 35$ ч, что очень долго по сравнению со временем спонтанного деления, которое занимает около 1 ч [13]. Поэтому *а*-распадная цепочка элемента ²⁹¹117 или ²⁸⁷115 завершается спонтанным делением ядра ²⁶⁷Db.

На Рис. 2.18 представлены одноквазипротонные спектры ядер α -распадной цепочки элемента ²⁹³117. Отмечены возможные α -распады из основных и изомерных состояний. В соответствие с нашими расчетами состояние $1/2^{-}[510]$ ядра ²⁹³117 может быть изомером. Если оно живет дольше, чем 3 мс относительно γ -переходов, то становится возможным наблюдение α -распада из этого состояния. Ядро ²⁸⁹115 не имеет одноквазичастичных изомерных состояний и может испустить α частицу из основного состояния, заселяя состояние $9/2^{-}[505]$ ядра ²⁸⁵113. В свою очередь γ -переходы из $9/2^{-}[505]$ состояния заселят основное и $11/2^{+}[615]$ изомерное состояния. Ожидается, что время жизни изомерного состояния ядра ²⁸⁵113 будет короче, чем время [$T_{\alpha} > 0.7$ с] α -распада. Скорее всего α -распад произойдет из основного состояния, заселяя $3/2^{-}[512]$ состоя-

Рис. 2.18: То же, что на Рис. 2.17, но для α -распада элемента ²⁹³117. Экспериментальные значения Q_{α}^{exp} взяты из [18].

ние ядра 281 Rg. За счет М1-перехода $3/2^{-}[512]$ состояние перейдет в основное состояние.

 α -распад ядра ²⁸¹Rg может заселить изомерное состояние 1/2⁻[510] ядра ²⁷⁷Mt. Заселение нижайших состояний ядра ²⁷⁷Mt будет сильно затруднено, т.к. $\Delta K > 4$. Состояние 1/2⁻[510] имеет энергию 0.34 МэВ и более 10% примеси состояний 1/2⁻[521] и 1/2⁻[530]. Вычисленное значение $Q_{\alpha} = 9.91$ МэВ α -распада между основными состояниями на 0.46 МэВ меньше, чем в работе [82]. Учитывая структуры состояний 1/2⁻[521], можно оценить $T_{\alpha} = 8.1$ с для ядра ²⁸¹Rg. Если состояние 1/2⁻[521] ядра ²⁷⁷Mt было бы на 0.25 МэВ выше по энергии, то $T_{\alpha} = 44$ с. Экспериментальное значение периода полураспада $T_{sf} = 26$ с [18]. Периоды полураспада T_{sf} составляют около 4 и 11 с для соседних ядер ²⁸³Cn и ²⁸¹Ds соответственно. Спины основного состояния этих ядер (N = 171) равны

1/2, как и в случае ядра ²⁸¹Rg (N = 170). С учетом погрешностей, оценки T_{α} и T_{sf} для ядра ²⁸¹Rg сопоставимы и обрывание α –распадной цепочки на этом ядре кажется вполне возможным.

Для ядра ²⁸²Rg ожидается $T_{\alpha} \approx 25$ с ($Q_{\alpha} = 9.345$ МэВ [73]) и $T_{sf} \approx 110$ с, что почти в 27 и 10 раз больше, чем T_{sf} для соседних четно-нечетных ядер ²⁸³Cn и ²⁸¹Ds соответственно. Таким образом, ядро ²⁸²Rg подвержен α -распаду. Такой же вывод сделан в работе [18].

Используя энергии связи, нейтронные энергии отделения, оболочечные поправки, рассчитанные с помощью модифицированной ДЦОМ [73], и модель двойной ядерной системы [35, 65–68], мы вычислили сечения испарительных остатков в максимумах функций возбуждения – $\sigma_{3n} = 1.5$ пб, $\sigma_{4n} = 0.2$ пб и $\sigma_{3n} = 0.3$ пб, $\sigma_{4n} = 0.05$ пб для реакций ⁴⁸Ca+²⁴³Am и ⁴⁸Ca+²⁴⁹Bk соответственно. Для этих же реакций экспериментальные сечения [13, 18] при энергиях возбуждения составного ядра 35–44.5 МэВ следующие: $\sigma_{3n} = 2.7^{+4.8}_{-1.6}$ пб, $\sigma_{4n} = 0.9^{+3.2}_{-0.8}$ пб и $\sigma_{3n} = 0.5^{+1.1}_{-0.4}$ пб, $\sigma_{4n} = 1.3^{+1.5}_{-0.6}$ пб соответственно. Достаточно хорошее согласие между вычисленными результатами и экспериментальными данными дополнительно подтверждает достоверность наших расчетов.

2.3. 120 элемент

Выше были приведены результаты расчетов для нечетных Z ядер. Здесь же мы рассмотрим изотопы сверхтяжелых ядер с четными Z, которые могут быть получены в реакциях полного слияния с доступными мишенями и снарядами.

На Рис. 2.19 и 2.20 представлены энергии двухквазичастичных состояний для ядер α -распадных цепочек элементов ^{296,298}120. В то время как у ядер с $Z \leq 118$ первые двухквазипротонные состояния имеют энергии меньше, чем 1.2 МэВ, в ядрах ^{296,298}120 энергии первых двухквазипротонных состояний находятся при 1.9 МэВ. Это отражает большую щель в одночастичном протонном спектре. Таким образом, оболочечные эффекты становятся сильнее для ядер с

Рис. 2.19: Рассчитанные энергии низколежащих двухквазипротонных (π) и двухквазинейтронных (ν) состояний в указанных ядрах α -распадной цепочки элемента ²⁹⁸120. Указаны вычисленные значения K и четности ядер, Q_{α} α -распада между основными состояниями ядер.

 $Z > 114. \alpha$ -распадная цепочка, начинающаяся с элемента ²⁹⁸120, вероятнее всего, закончится на ядре ²⁸²Cn спонтанным делением [13], а цепочка, начинающаяся с элемента ²⁹⁶120 – спонтанным делением ²⁸⁴Fl. Действительно, ²⁸⁴Fl по оценкам распадается посредством спонтанного деления за 0.012 с [80], в то время как для α -распада данного ядра ожидается более длительный период полураспада – 0.045 с.

Мы проанализировали двухквазичастичные изомерные состояния, которые получаются в наших расчетах. Состояния $8_{\nu}^{-}\{15/2^{-}[707] \otimes 1/2^{+}[600]\}$ и $11_{\nu}^{-}\{15/2^{-}[707] \otimes 7/2^{+}[604]\}$ ядра ²⁹⁸120, $13_{\nu}^{-}\{11/2^{+}[606] \otimes 15/2^{-}[707]\}$ ядра ²⁹⁴118 и $8_{\pi}^{+}\{7/2^{-}[503] \otimes 9/2^{-}[505]\}$ ядра ²⁹⁰Lv (Рис. 2.19) могут трактоваться как изомеры. Если они будут жить достаточно долго (> 0.05 с) по отношению к γ -распаду, то можно ожидать α -распады из этих состояний. Эти распа-

Рис. 2.20: То же, что на Рис. 2.19, но для ядер *α*-распадной цепочки элемента ²⁹⁶120.

ды будут отличаться по периоду полураспада T_{α} и энергии Q_{α} от α -распадов между основными состояниями ядер. Спонтанное деление из этих изомерных состояний, скорее всего, будет затруднено по сравнению со спонтанным делением из основного состояния. Нижайшими двухквазичастичными изомерными состояниями для ядер ²⁹⁶120, ²⁹²118, ²⁸⁸Lv и ²⁸⁴Fl ожидаются 13_{ν}^{-} {11/2⁺[606] \otimes 15/2⁻[707]}, 8_{ν}^{+} {5/2⁺[602] \otimes 11/2⁺[6076}, 8_{π}^{-} {7/2⁻[503] \otimes 9/2⁻[505]} и 7_{ν}^{-} {1/2⁺[611] \otimes 13/2⁻[716]} соответственно (Рис. 2.20).

Поскольку спонтанное деление нечетных ядер затруднено, ожидается, что α -распадные цепочки элементов ^{295,297,299}120 будут длинными, оканчивающимися, по крайней мере, на ядре Rf [13]. На Рис. 2.21, 2.22 и 2.23 изображены вычисленные одноквазичастичные спектры ядер α -распадных цепочек элементов ^{295,297,299}120. Указаны возможные α -распады. Как видно на Рис. 2.23, α -распад ядра ²⁹¹Lv затруднен, так как связанные с данным распадом уровни в дочернем ядре расположены высоко по энергии.

Рис. 2.21: Вычисленные энергии низколежащих одноквазинейтронных состояниц в указанных ядрах α -распадной цепочки элемента ²⁹⁹120. Для состояний указаны нильсоновские асимптотические квантовые числа и вычисленные значения $Q_{\alpha} \alpha$ -распада между основными состояниями ядер. Стрелками обозначены возможные α -распады.

На Рис. 2.21-2.23 представлены ядра с Z > 108. Поскольку эти ядра слабо деформированы, квазичастичные состояния располагаются довольно плотно около основного состояния, что способствует появлению изомерных состояний. Эти изомерные состояния могут заселяться посредством α -распада. Если изомеры живут достаточно долго относительно времени γ –распада, то возможно наблюдение α –распада из них. Как следует из расчетов для ядер ^{295,297,299}120 и ²⁹⁵118, $T_{\alpha} \alpha$ –распада изомерного состояния больше, чем $T_{\alpha} \alpha$ -распада основного состояния.

Используя модель двойной ядерной системы и наши предсказания ядерных свойств (Табл. 1.), мы рассчитали сечения образования испарительных остатков

Рис. 2.22: То же, что на Рис. 2.21, но для ядер из *α*-распадной цепочки элемента ²⁹⁷120.

в реакциях ⁵⁰Ti+^ACf и ⁵⁴Cr+^ACm (Рис. 2.24 и 2.25). Предсказанные значения барьеров деления холодных ядер (энергия возбуждения равна нулю) находятся в интервале энергий (8.1–10.1) МэВ. В реакции ⁵⁰Ti+²⁴⁹Cf (Q = -194.75 МэВ) ядро ²⁹⁵120 может быть получено в 3*n* испарительном канале с сечением 23 фб. В реакции ⁵⁴Cr + ²⁴⁸Cm (Q = -205.59 МэВ) составное ядро будет иметь на 3 нейтрона больше, чем в реакции ⁵⁰Ti + ²⁴⁹Cf. Поэтому, убывание P_{CN} частично компенсируется возрастанием W_{sur} и ожидается, что ядро ²⁹⁸120 будет получено с сечением 10 фб (4*n* испарительный канал). Как и в работах [68], изотопическая зависимость σ_{ER} довольно слабая в рассматриваемом узком интервале массовых чисел *A*. Действительно, значения σ_{ER} почти одинаковые, когда в качестве мишеней используются ²⁴⁶Cm (Q = -208.07 МэВ) и ²⁴⁸Cm. Можно сделать вывод, что существует определенный узкий интервал массовых чисел ядра-мишени, где произведение $P_{CN}W_{sur}$ изменяется слабо [68].

Рис. 2.23: То же, что на Рис. 2.21, но для ядер из *α*-распадной цепочки элемента ²⁹⁵120.

2.4. Выводы

Значения рассчитанных Q_{α} находятся в хорошем согласии с экспериментальными Q_{α}^{exp} . На основе полученных одноквазичастичных спектров и энергий α -распадов можно определить ядро, на котором вероятно обрывается α -распадная цепочка. Хотя найденные значения T_{α} оказались достаточно большими для α -распадов из одноквазичастичных изомерных состояний ядер ²⁸⁷Fl, ²⁸³Cn и ²⁸¹Ds, нельзя исключить возможность таких распадов. Показано, что α -распад ядра ²⁸¹Ds может наблюдаться лишь из основного состояния, которое заселяется с малой вероятностью в α -распадных цепочках элемента ²⁸⁹Fl. Минимум Q_{α} для ядра ²⁸⁶Fl указывает на существование нейтронной подоболочки при N = 172. В других α -распадных цепочках не наблюдаются минимумы по Q_{α} при Z = 114, что, вероятнее всего, указывает на более сильный оболочеч-

Рис. 2.24: Рассчитанные максимальные сечения образования испарительных остатков в реакциях ⁵⁰Ti+^ACf в зависимости от A. В скобках даны энергии возбуждения соответствующих составных ядер. В вычислениях были использованы дефекты масс основного состояния $M_{\rm th} = 211.8, 213.05, 213.76, 215.15$ и 216.05 МэВ для ядер ²⁹⁸120, ²⁹⁹120, ³⁰⁰120, ³⁰¹120 и ³⁰²120 соответственно.

Рис. 2.25: То же, что на Рис. 2.24, но для реакций ⁵⁴Cr+^ACm.

ный эффект при Z ≥ 120 в наших расчетах. Последнее находится в согласии с тем, что предсказывают самосогласованные микроскопические расчеты [44].

Используя вычисленные одноквазипротонные спектры и энергии для α распадов, можно объяснить, почему α -распадные цепочки элементов ²⁹¹117 или ²⁸⁷115 оканчиваются спонтанным делением ²⁶⁷Db. Показано, что в α -распадной цепочке элемента ²⁹³117 α -распаду ²⁸¹Rg препятствуют структурные эффекты и ядро ²⁸¹Rg спонтанно делится. В дополнение нами были предсказаны изомерные состояния сверхтяжелых ядер с нечетными Z.

Сильные оболочечные эффекты хорошо видны в ядрах с Z = 120 - 126. Полученные свойства сверхтяжелых ядер ясно показывают, что следующее магическое ядро после ²⁰⁸Pb, вероятно, будет при $Z \ge 120$. Но необходимо подчеркнуть, что этот вывод зависит от используемой модели. Из наших расчетов следует, что у ядер с Z = 120 и $N = 178 - 182 Q_{\alpha}$ будет порядка 11.3 МэВ и время жизни более, чем 90 мс.

Рассмотренные в данной главе результаты опубликованы в работах [62, 73, 79].

Глава З

Плотность ядерных состояний

В данной главе рассматриваются внутренние плотности уровней сверхтяжелых ядер из альфа–распадных цепочек элементов ^{296,298,300}120 с использованием одночастичных спектров модифицированной ДЦОМ. В работе изучается роль оболочечных эффектов и эффектов спаривания в поведении плотности уровней, а также их затухание с увеличением энергии возбуждения. Извлеченный параметр плотности уровней рассматривается как функция массового числа, оболочечной поправки в основном состоянии ядра и энергии возбуждения. Результаты сравниваются с феноменологическими значениями параметра плотности уровней. Последние используются для вычисления вероятности выживания сверхтяжелых элементов.

3.1. Вычисление внутренней плотности уровней

Для вычисления ядерной одночастичной плотности уровней использовались выражения, полученные в работах [83, 84]. Явление сверхпроводимости обусловлено и коллективным, и парным поведением нуклонов. Взаимосвязаны движения не только двух нуклонов в куперовской паре, но и всех пар между собой. Таким образом, вполне разумно перейти к усредненному статистическому рассмотрению свойств возбужденных ядер.

Используя метод седловой точки, внутреннюю плотность уровней $\rho(U)$ возбужденного ядра, содержащего Z протонов и N нейтронов, можно записать в виде

$$\rho = \frac{\exp[S(\beta, \lambda_Z, \lambda_N)]}{(2\pi)^{3/2}\sqrt{D}}.$$
(3.1)

Здесь U – энергия возбуждения ядра, S – энтропия, $\beta = T^{-1}$ – величина, обратная термодинамической температуре, λ_Z и λ_N – химические потенциалы для

протонов и нейтронов соответственно. *D* – детерминант матрицы, содержащей вторые производные энтропии

$$D = \begin{vmatrix} \frac{\partial^2 S}{\partial \beta^2} & \frac{\partial^2 S}{\partial \beta \partial \mu_Z} & \frac{\partial^2 S}{\partial \beta \partial \mu_N} \\ \frac{\partial^2 S}{\partial \beta \partial \mu_Z} & \frac{\partial^2 S}{\partial \mu_Z^2} & 0 \\ \frac{\partial^2 S}{\partial \beta \partial \mu_N} & 0 & \frac{\partial^2 S}{\partial \mu_N^2} \end{vmatrix}$$
(3.2)

 $c \ \mu_k = \beta \lambda_k \ (k = N, Z).$

В модели сверхпроводимости [83, 84], энтропия S выражается как

$$S = 2 \sum_{k=Z,N} \sum_{\nu} \left\{ \ln[1 + \exp(-\beta E_{k\nu})] + \frac{\beta E_{k\nu}}{1 + \exp(\beta E_{k\nu})} \right\},$$
 (3.3)

где протонные k = Z и нейтронные k = N квазичастичные энергии $E_{k\nu} = \sqrt{(\varepsilon_{k\nu} - \lambda_k)^2 + \Delta_k^2}$ вычислялись с использованием одночастичных уровней ДЦОМ. Энергии Ферми λ_k (k = Z, N) и корреляционные функции Δ_k (k = N, Z) вычислялись при условии термодинамического равновесия ядра. При заданной температуре T, значения λ_k и Δ_k находились решением системы уравнений:

$$Z = \sum_{\nu} \left(1 - \frac{\varepsilon_{Z\nu} - \lambda_Z}{E_{Z\nu}} \tanh[\frac{1}{2}\beta E_{Z\nu}] \right),$$

$$N = \sum_{\nu} \left(1 - \frac{\varepsilon_{N\nu} - \lambda_N}{E_{N\nu}} \tanh[\frac{1}{2}\beta E_{N\nu}] \right),$$

$$\frac{2}{G_Z} = \sum_{\nu} \frac{\tanh[\beta E_{Z\nu}/2]}{E_{Z\nu}},$$

$$\frac{2}{G_N} = \sum_{\nu} \frac{\tanh[\beta E_{N\nu}/2]}{E_{N\nu}},$$
(3.4)

где G_Z и G_N – константы парного взаимодействия. В Ур. (3.4) суммирование производится по всем одночастичным уровням.

Полная энергия $E_{Z,N}$ и энергия возбуждения U ядра при температуре T вычислялись следующим образом

$$E_{Z,N}(T) = \sum_{k=Z,N} \left\{ \sum_{\nu} \varepsilon_{k\nu} \left(1 - \frac{\varepsilon_{k\nu} - \lambda_k}{E_{k\nu}} \tanh \frac{1}{2} \beta E_{k\nu} \right) - \frac{\Delta_k^2}{G_k} \right\},$$

$$U = E_{Z,N}(T) - E_{Z,N}(0).$$
(3.5)

В наших вычислениях были использованы 88 протонных уровней и 121 нейтронный. Для рассмотренных сверхтяжелых элементов число заполненных уровней изменялось от 50 до 65 и от 78 до 95 для протонов и нейтронов соответственно. Величины параметров G_Z и G_N , связанные с числом использованных уровней в Ур. (3.4) и (3.5), подбирались таким образом, чтобы вычисленные значения энергий спаривания

$$P_N(Z,N) = \frac{1}{2} \{ 2E_{Z,N-1}(0) - E_{Z,N}(0) - E_{Z,N-2}(0) \},$$

$$P_Z(Z,N) = \frac{1}{2} \{ 2E_{Z-1,N}(0) - E_{Z,N}(0) - E_{Z-2,N}(0) \}$$
(3.6)

приблизительно равнялись их экспериментальным значениям для известных ядер. При вычислении полной энергии нечетных ядер был учтен эффект блокировки [47].

Эффект блокировки учитывает влияние неспаренной частицы на свойства ядра. Если на каком-либо дважды вырожденном уровне среднего поля находится один нуклон, то этот уровень исключается из рассмотрения в гамильтониане, поскольку заполнение уровней проводится парами нуклонов.

Подобранные значения G_N и G_Z , отличаются от тех, что использовались ранее в наших расчетах по ДЦОМ, потому что в Ур. (3.4) используется бо́льшее число одночастичных состояний. Для рассмотренного числа протонных и нейтронных одночастичных уровней, можно предложить следующую параметризацию констант спаривания

$$G_{Z}^{N} \approx (19.5 \mp 7.5 \frac{N-Z}{A}) A^{-1} \text{MeV}$$
 (3.7)

для нейтронов (верхний знак) и протонов (нижний знак), в результате чего $G_N A \approx 17$ МэВ и $G_Z A \approx 22$ МэВ. Вычисленные значения энергетических щелей Δ_Z и Δ_N находятся в хорошем согласии со значениями Δ_Z^{TCSM} и Δ_N^{TCSM} , полученными из наших предыдущих расчетов (Табл. 3.2). Поэтому для сверхтяжелых элементов с неизвестными энергиями спаривания значения G_N и G_Z были выбраны таким образом, чтобы воспроизвести значения энергетических щелей, полученных в предыдущих расчетах по ДЦОМ [63].

Энергетические щели, полученные из Ур. (3.4), являются убывающими функциями от температуры. При $T > T_{cr}$ эффекты сверхпроводимости в ядрах исчезают и $\Delta_k=0$ (k=Z,N). В этом случае, все термодинамические характеристики являются теми же, что и для системы невзаимодействующих частиц [85]. В рассматриваемом регионе масс критические температуры $T_{cr,N}$ и $T_{cr,Z}$ для нейтронной и протонной подсистем изменяются от 0.23 до 0.37 МэВ, что соответствует энергиям возбуждения $U \approx (3-7)$ МэВ.

3.2. Сравнение рассчитанных плотностей уровней с экспериментом

Плотность уровней, полученная при помощи Ур. (3.1)–(3.5), представляет плотность $\rho(U)$ внутренних состояний. Для сравнения рассчитанных плотностей уровней с экспериментальными данными необходимо принять во внимание увеличение плотности уровней из-за существования коллективных вращательных и колебательных состояний. В адиабатическом приближении полная плотность уровней выражается следующим образом

$$\rho_{tot}(U) = K_{vib}(U)K_{rot}(U)\rho(U), \qquad (3.8)$$

где вращательный

$$K_{rot} = \begin{cases} 1, & \text{для сферических ядер,} \\ \Im_{\perp}T, & \text{для деформированных ядер,} \end{cases}$$
(3.9)

и колебательный

$$K_{vib} = \exp[0.0555A^{2/3}T^{4/3}] \tag{3.10}$$

факторы усиления рассчитывались также как и в [86]. В Ур. (3.9) $\mathfrak{F}_{\perp} = \mathfrak{F}_{r.b.}$ – твердотельный момент инерции относительно оси, перпендикулярной оси сим-

метрии. Момент инерции рассчитывался с учетом квадрупольного β_2 и гексадекапольного β_4 параметров деформации, полученных в ДЦОМ. Как известно, феноменологические коллективные факторы усиления приводят к плотностям уровней, которые похожи на те, что получены при использовании комбинаторного метода, учитывающего все возможные уровни [87].

Измеренная плотность уровней ρ_m связана с полной плотностью уровней как

$$\rho_m \approx \frac{\rho_{tot}}{\sqrt{2\pi\sigma^2}},\tag{3.11}$$

где параметр обрезания спина $\sigma^2 = (0.4mR^2T)/\hbar^2$ оценивается также как и в работе [86]. Здесь m – это нуклонная масса и $R = 1.2A^{1/3}$ фм.

На Рис. 3.26 представлены плотности уровней $\rho_m(U)$ для сильно деформированных ядер ¹⁶²Dy, ¹⁶⁶Er вместе с экспериментальными данными [88]. Для ²³⁰Th, ²³⁶U, ²⁴⁰Pu и ²⁴⁶Cm параметры плотности уровней, выделенные из измеренных плотностей уровней [86], имеют следующие знасения: 17.38, 19.58, 19.0 и 19.64 МэВ⁻¹ соответственно. В наших расчетах мы получили 16.9, 20.76, 21.1 и 20.26 МэВ⁻¹ соответственно. Видно хорошее согласие с экспериментальными данными, что дает уверенность в правильности предсказаний $\rho(U)$ для сверхтяжелых элементов.

3.3. Внутренняя плотность уровней в сверхтяжелых ядрах

Внутренняя плотность ядер находится под сильным влиянием оболочной структуры ядер. Для магических или "почти магических" ядер плотность уровней меньше, чем для других ядер при тех же энергиях возбуждения. В ядрах с заполненными оболочками этот эффект связан с большим расстоянием между основным состоянием и первыми возбужденными уровнями. Таким образом, неравномерность одночастичного спектра отвечает за оболочечные поправки и особенности внутренней плотности уровней.

Рис. 3.26: Вычисленные плотности уровней ρ_m в ядрах ¹⁶²Dy и ¹⁶⁶Er как функции энергии возбуждения (линии) сравниваются с экспериментальными данными (символы) из [88]. Для ядра ¹⁶²Dy экспериментальные и теоретические результаты умножены на фактор 0.1.

Вычисленные внутренние плотности уровней представлены на Рис. 3.27 для некоторых ядер альфа-распадной цепочки элементов ^{296,298,300}120. Непрерывные линии соответствуют изотопам ^{296,298,300}120 и иллюстрируют поведение плотности уровней в ядрах с довольно сильной оболочечной поправкой, в то время как пунктирные линии – для изотопов ^{264,266,268}Rf, где энергии оболочечной поправки небольшие. Как видно, при небольших энергиях возбуждения, порядка 10 – 30 МэВ, плотности уровней в изотопах с Z = 120 меньше на один порядок величины, чем в изотопах Z = 104 из-за меньшей плотности одночастичных состояний около поверхности Ферми. При малых энергиях возбуждения U < 10 МэВ эффекты спаривания проявляются сильнее в ядрах с более слабыми оболочечными эффектами. Поэтому плотности уровней с сильными и слабыми оболочечными эффектами становятся сравнимыми, что и видно на Рис. 3.27. При более высоких энергиях возбуждения оболочечные эффекты ослабевают и плотности уровней всех сверхтяжелых элементов становятся похожими.

Похожие эффекты, как для изотопов ядер с Z = 120, найдены для изо-

Рис. 3.27: Вычисленные внутренние плотности уровней как функции энергии возбуждения для ядер 264 Rf и 296 120 (a), 266 Rf и 298 120 (b), 266 Rf и 300 120 (c). Результаты для изотопов ядер Rf и ядер с Z = 120 представлены пунктирными и сплошными линиями соответственно.

Рис. 3.28: То же, что на Рис. 3.27, но для изотонов с N = 184: ³¹²128 (a), ³¹⁰126 (b), ³⁰⁸124 (c).

тонов с N = 184 (Рис. 3.28). Наши вычисления указывают на существование замкнутой нейтронной оболочки N = 184, что согласуется со всеми предыдущими расчетами в различных моделях.

3.4. Параметр плотности уровней

Используя связь между энергией возбуждения U и энтропией S,

$$a = S^2/(4U),$$
 (3.12)

Рис. 3.29: Параметры плотности уровней $a = S^2/(4U)$, вычисленные при помощи Ур. (3.4) и (3.5), как функции U для ядер ²⁶⁴Rf и ²⁹⁶120 (a), ²⁶⁶Rf и ²⁹⁸120 (b), и ²⁶⁸Rf и ³⁰⁰120 (c). Результаты представлены для изотопов Rf и ядер с Z = 120 пунктирной и сплошной линиями соответственно.

можно вычислить параметр плотности уровней *a*. На Рис. 3.29 представлены параметры плотности уровней для ядер 264,266,268 Rf и 296,298,300 120. Для всех ядер a(U) плавно переходит к своему асимптотическому значению с возрастанием U [89, 90]. Рост *a* быстрее для изотопов Rf, потому что у них небольшие оболочечные поправки.

Число ядерных уровней и соответственно асимптотическое значение a обычно увеличивается с ростом массового числа A ядра. Однако, при U = 39 МэВ $a(^{266}$ Rf) немного меньше, чем $a(^{264}$ Rf), потому что в ядре 266 Rf заполнена нейтронная оболочка N = 162. Таким образом, оболочечная структура слегка из-

Рис. 3.30: Сравнение между плотностями уровней, вычисленным при помощи сверхпроводящей модели (символы) и выражения (3.13) (непрерывные линии) для ядер 264 Rf (a) и $^{308}124$ (b). Параметры плотности уровней *a*, вычисленные при помощи Ур.(3.12), как функции *U* для ядер 264 Rf (c) и $^{308}124$ (d).

меняет глобальную зависимость параметра плотности уровней от энергии возбуждения.

Нами было найдено, что наилучшее согласие между внутренними плотностями уровней, вычисленными в рамках сверхпроводящей модели и модели ферми-газа, где

$$\rho_{FG}(U) = \frac{\sqrt{\pi}}{12a^{1/4}U^{5/4}} \exp 2\sqrt{aU}, \qquad (3.13)$$

достигается, если в (3.13) использовать параметр плотности уровней (3.12), где *S* и *U* вычисляются с помощью Ур. (3.3) и (3.5) соответственно. Отметим, что при использовании Ур. (3.1)–(3.5) не нужно делать сдвижку по энергии возбуждения как в феноменологическом подходе. Плотности уровней $\rho(U)$ и $\rho_{FG}(U)$ для ядер ²⁶⁴Rf и ³⁰⁸124, вычисленные с помощью Ур. (3.1)–(3.5) и (3.13) соответственно, представлены в верхней части Рис. 3.30. На графиках видно хорошее согласие между этими двумя вычислениями. Таким образом, модель фермигаза с параметром плотности уровней (3.12) подходит для вычисления внутренних плотностей уровней в сверхтяжелых ядрах.

Параметр плотности уровней a (3.12) также приведен в нижней части Рис. 3.30 для ядер ²⁶⁴Rf и ³⁰⁸124. Значение a, которое отражает степень возбуждения системы, возрастает с энергией возбуждения и достигает некоторого асимптотического значения \tilde{a} , когда оболочечные эффекты сильно ослабевают. Для ядра ²⁶⁴Rf с маленькой оболочечной поправкой асимптотическое значение \tilde{a} наступает быстрее, чем в случае ядра ³⁰⁸124 с большой оболочечной поправкой. В ядре ³⁰⁸124 заполнена нейтронная и почти заполнена протонная оболочки.

3.5. Зависимость параметра плотности от величины оболочечной поправки

Параметры плотности *a* для ядер с $Z \ge 100$ также интересны для рассмотрения положения следующей заполненной протонной оболочки после Z = 82. Рассмотрим зависимость *a* от *A*, *Z* и *N* для α –распадных цепочек, содержащих ядра ^{296,298,300}120, которые могут быть синтезированы в ближайшем будущем с использованием доступных мишеней и пучков. Результаты приведены на Рис. 3.31. Для основного состояния этих ядер вычисленные параметры деформации, эквивалентные параметрам мультипольной деформации, а также оболочечные поправки δE_{sh} приведены в Табл. 3.3.

Как уже было продемонстрировано на Рис. 3.29 и 3.30, поведение параметра плотности уровней *a* при низкой энергии возбуждения сильно зависит от оболочечной структуры соответствующего ядра. Это показано также на Рис. 3.31. Нижняя и средняя части этих графиков представляют соответственно зависимости оболочечной поправки δE_{sh} и параметра плотности уровней *a* от *A*. Используемые δE_{sh} взяты из Табл. 3.1. Можно видеть тесную взаимосвязь этих зависимостей. Наибольшие отрицательные оболочечные поправки приводят к снижению величины *a* по отношению к соседним ядрам. При Z = 108 и 120 наблюдается минимум *a* во всех трех цепочках. Это отражает достаточно сильный

Рис. 3.31: Вычисленные оболочечные поправки основного состояния δE_{sh} (нижняя часть), параметры плотности уровней *a* (3.12) при U = 10 (средняя часть) и при 60 МэВ (верхняя часть) как функции массового числа *A*. Ядра альфа–распадных цепочек, содержащих элементы ²⁹⁶120, ²⁹⁸120, ³⁰⁰120, отмечены темными кругами, светлыми кругами и звездочками соответственно.

эффект протонной оболочки при Z = 108 и 120. При Z = 120 минимум a наиболее глубокий. Подобное поведение a наблюдается около Z = 82. Таким образом, это отражает факт, что протонная оболочка ожидается при Z = 120. Подоболочка при Z = 114 также проявляется, но оболочечные эффекты слабее, чем при Z = 120. Для ядер с Z = 124 - 128 минимумы a обусловлены нейтронной оболочкой при N = 184. Протонные и нейтронные оболочечные эффекты еще более очевидны для протонного (a_Z) и нейтронного (a_N) параметров плотности уровней на Рис. 3.32. Поскольку термодинамическое равновесие предполагается для каждого значения энергии возбуждения, параметр плотности уровней a

Рис. 3.32: Вычисленные параметры плотности уровней a_N и a_Z (U = 10 МэВ) как функции числа нейтронов N (верхняя часть) и числа протонов Z (нижняя часть) соответственно. Ядра альфа–распадных цепочек, содержащих элементы ²⁹⁶120, ²⁹⁸120, ³⁰⁰120, отмечены темными кругами, светлыми кругами и звездочками соответственно.

можно записать в виде

$$a = S_N^2 / (4U_N) + S_Z^2 / (4U_Z) = a_N + a_Z, \qquad (3.14)$$

где $S_N(S_Z)$ и $U_N(U_Z)$ энтропия и энергия возбуждения нейтронной (протонной) подсистемы.

При малых энергиях возбуждения (U = 10 МэВ) можно использовать параметризации $a \approx A/(12 - 14)$ МэВ для ядер с Z < 116 и $a \approx A/(14 - 17)$ МэВ для ядер с Z > 116. При больших энергиях возбуждения (U = 60 МэВ) связь между δE_{sh} и a нарушается. Как показано на Рис. 3.31, зависимость параметра плотности уровней a от A становится достаточно плавной с увеличением U.

На основе изучения зависимостей a от δE_{sh} и от U, мы пришли к заключению, что в расчетах можно использовать следующую параметризацию [89] параметра плотности уровней:

$$a(A,U) = \tilde{a}(A) \left[1 + \frac{1 - \exp\{-U/E'_D\}}{U} \delta E_{sh} \right], \qquad (3.15)$$

где $\tilde{a}(A)$ – асимптотический параметр плотности уровней, зависящий от A. \tilde{a} определяет a при больших возбуждениях, когда оболочечные эффекты исчезают. Анализируя параметры плотности уровней (3.12), мы нашли значение параметра затухания $E'_D = 27$ МэВ оболочечных эффектов в ядре с увеличением энергии возбуждения. Затухание оболочечных эффектов в модели фермигаза учитывается в микроскопической части барьера деления. Соответствующий асимптотический параметр плотности уровней $\tilde{a}(A)$ может быть параметризован при помощи следующей функции [89]:

$$\tilde{a}(A) = \alpha A + \beta A^2, \qquad (3.16)$$

где константы $\alpha = 0.118 \text{ МэB}^{-1}$ и $\beta = -0.53 \times 10^{-4} \text{ МэB}^{-1}$ находятся методом наименьших квадратов. Эти значения близки к результатам, представленным в [89].

3.6. Выводы

В данной главе были рассмотрены вычисленные микроскопически внутренние плотности уровней для сверхтяжелых ядер. Метод вычисления был опробован на ядрах, для которых имеются экспериментальные данные. Параметры плотности уровней, которые часто используются в модели ферми-газа, были вычислены для ядер альфа-распадных цепочек, содержащих элементы ²⁹⁶120, ²⁹⁸120 и ³⁰⁰120. Сильные оболочечные эффекты при Z = 120 и N = 184 были продемонстрированы. Были изучены зависимости параметра плотности уровней от энергии оболочечной поправки и энергии возбуждения. Был вычислен коэффициент затухания, $E'_D = 27$ МэВ, оболочечной поправки с ростом энергии возбуждения сверхтяжелого ядра. Для рассмотренных сверхтяжелых ядер параметр плотности уровней равен приблизительно A/(12-14) МэВ для Z < 116 и A/(14-17) М
эВ - для Z>116при энергиях возбуждения, соответствующих (3 - 5) не
йтронным испарительным каналам.

Рассмотренные в данной главе результаты опубликованы в [91].
Заключение

Результаты диссертации, выносимые на защиту:

- В рамках модифицированной двухцентровой оболочечной модели проанализированы свойства изотопов сверхтяжелых элементов с 100 < Z < 130, которые могут быть получены в реакциях полного слияния с имеющимися мишенями и пучками. Для ряда сверхтяжелых элементов вычислены значения энергии связи ядра, дефекты масс, энергии отделения нейтрона и оболочечные поправки для основного состояния. Ожидается, что в реакциях ⁵⁰Ti+²⁴⁹Cf и ⁵⁴Cr+²⁴⁸Cm сечения образования испарительных остатков будут 23 и 10 фб соответственно.
- Исследованы одно- и двухквазичастичные состояния в альфа-распадных цепочках нечетно-четных, четно-нечетных и четно-четных ядер. Получены периоды полураспадов исследуемых ядер и энергии вылета α-частиц. Проанализированы возможные обрывания α-распадных цепочек спонтанным делением. Предсказаны высокоспиновые K-изомеры в ядрах рассмотренных α-распадных цепочкек.
- Микроскопически вычислены вычислены внутренние плотности уровней ядер на основе одночастичного спектра модифицированной ДЦОМ. Метод расчета опробован на ядрах, для которых существуют экспериментальные данные. Параметры плотности уровней вычислены для ядер α -распадных цепочек, содержащих элементы ²⁹⁶120, ²⁹⁸120 и ³⁰⁰120. Изучены зависимости параметра плотности уровней от оболочечной поправки сверхтяжелых ядер, эффектов спаривания и энергии возбуждения. Коэффициент затухания оболочечных эффектов с увеличением энергии возбуждения найден равным 27 МэВ. Получены следующие аппроксимации для сверхтяжелых ядер: параметр плотности уровней равен приблизительно A/(12-14) МэВ для Z < 116 и A/(14-17) МэВ - для Z > 116 при энергиях возбуждения,

соответствующих (3 - 5) нейтронным испарительным каналам.

 Полученные в ходе работы свойства сверхтяжелых ядер ясно указывают на сильные оболочечные эффекты при N = 184 и Z = 120-126, что находится в согласии с предсказаниями самосогласованных микроскопических моделей.

В дальнейшем мы планируем развитие используемого подхода и выполнение систематических расчетов для сверхтяжелых ядер. В связи с планируемыми экспериментами на основе предложенной микроскопическо-макроскопической модели будут проанализированы свойства альфа-распадных изотопов 118 элемента. Будет исследована роль изомерных состояний в распаде испарительных остатков ядер с Z = 118.

В заключении автор хотела бы выразить искреннюю благодарность своим научным руководителям Н.В. Антоненко и Г.Г. Адамяну за постановку задачи, помощь в работе и постоянную поддержку. Особую признательность автор испытывает к коллегам Т.М. Шнейдману, А.В. Андрееву и В.В. Саргсяну за плодотворные обсуждения работы. Благодарю коллег рабочей группы за поддержку и руководство Лаборатории Теоретической Физики им. Н.Н. Боголюбова за предоставленную возможность для выполнения диссертационной работы.

Приложение 1

Таблица 3.1: Вычисленные в рамках модифицированной ДЦОМ дефекты масс M_{th} , энергии отделения нейтрона S_n и оболочечные поправки δE_{sh} для основного состояния ядер и теоретические Q_{α} и экспериментальные Q_{α}^{exp} [13, 18, 20, 26] также представлены. Числа протонов Z и нейтронов N ядра указаны.

N	A	$M_{\rm th}~({ m M} m { m sB})$	S_n (M ₃ B)	$-\delta E_{sh}$ (M ₃ B)	Q_{α} (M ₃ B)	Q^{exp}_{α} (M \ni B)
		Z = 105				
155	260	103.62		4.82		
156	261	104.19	7.5	4.53		
157	262	106.35	5.91	5.07		
158	263	107.06	7.36	4.93		
159	264	109.27	5.86	5.39		
160	265	110.15	7.19	5.12		
161	266	112.61	5.61	4.59		
162	267	113.63	7.05	4.6		
163	268	116.54	5.16	4.12		
164	269	117.95	6.66	4.12		
165	270	121.20	4.82	4.54		
		Z = 106				
156	262	107.38		4.56		
157	263	109.27	6.18	4.86		
158	264	110.26	7.08	4.61		
159	265	112.32	6.01	5.39		
160	266	113.39	7.0	4.31		
161	267	115.52	5.94	4.59		
162	268	116.80	6.79	4.41		
163	269	119.20	5.67	4.11		

N	A	$M_{\rm th}~({\rm M}\Im{\rm B})$	$(A \ni B) \mid S_n (M \ni B) \mid -\delta E_{sh}$		Q_{α} (M \ni B)	Q^{exp}_{α} (M \ni B)
164	270	120.77	6.50	4.43		
165	271	123.48	5.36	4.38		
		Z = 107				
157	264	115.72		6.20	9.676	
158	265	115.98	7.81	6.07	9.366	9.45
159	266	117.85	6.2	6.22	9.076	9.22
160	267	118.49	7.43	5.96	9.006	8.96
161	268	120.54	6.02	5.8	8.846	
162	269	121.24	7.37	5.48	8.866	
163	270	123.98	5.33	5.38	8.946	9.06
164	271	125.08	6.97	5.24	9.026	
165	272	127.92	5.23	5.26 8.956		9.15
166	273	129.25	6.74	5.24	8.876	
167	274	132.38	4.94	5.53	8.756	8.93
		Z = 108				
158	266	120.01		5.47	10.206	10.35
159	267	121.67	6.41	6.16	9.976	10.04
160	268	122.34	7.41	5.94	9.656	
161	269	124.15	6.26	6.03	9.406	9.29
162	270	125.0	7.22	5.54	9.186	9.02,9.30
163	271	127.31	5.76	5.46	9.366	9.44
164	272	128.61	6.77	5.31	9.386	
165	273	131.15	5.53	5.36	9.476	9.73
166	274	132.59	6.63	5.15	9.395	
167	275	135.21	5.45	5.52	9.256	9.44
		Z = 109				
161	270	130.5		5.33	10.226	10.18

N	A	$M_{\rm th}~({\rm M}\Im{\rm B})$	S_n (M \ni B)	$-\delta E_{sh}$ (M ₃ B)	Q_{α} (M \ni B)	Q^{exp}_{α} (M \ni B)
162	271	130.98	7.59	4.44	10.066	
163	272	133.28	5.77	4.91	10.316	
164	273	134.3	7.05	4.77	10.636	
165	274	136.63	5.74	5.49	10.226	9.90
166	275	137.78	6.92	5.47	10.276	10.48
167	276	140.37	5.48	5.15	10.026	9.85
168	277	141.7	6.74	5.12	10.025	
169	278	144.47	5.3	5.1	9.666	9.69
170	279	146.18	6.36	4.69		
		Z = 110				
161	271	135.05		4.60	10.955	10.93
162	272	135.67	7.45	4.70	10.905	
163	273	137.84	5.9	4.60	11.266	11.367
164	274	138.5	7.41	4.50	11.076	
165	275	140.74	5.83	5.1	11.006	
166	276	141.67	7.14	5.07	10.636	
167	277	143.97	5.77	4.71	10.396	10.72
168	278	145.03	7.01	4.78	10.015	
169	279	147.48	5.62	5.51	9.845	9.84
170	280	148.68	6.87	5.4		
171	281	151.24	5.51	6.45		
		Z = 111				
165	276	147.40		5.04	11.695	
166	277	148.22	7.25	5.01	11.495	
167	278	149.84	6.45	5.02	10.785	10.85
168	279	150.77	7.141	5.1	10.665	10.52
169	280	152.79	6.05	6.09	9.995	9.87

N	A	$M_{\rm th}~({ m M} artheta { m B})$	S_n (M \ni B)	$-\delta E_{sh}$ (M ₃ B)	Q_{α} (M \ni B)	Q^{exp}_{α} (M \ni B)
170	281	154.03	6.83	5.42	9.906	
171	282	156.24	5.86	6.78	9.345	9.13
		Z = 112				
167	279	154.49		5.2	11.32	
168	280	155.28	7.28	5.6	11.185	
169	281	157.07	6.28	6.0	10.675	10.46
170	282	157.98	7.16	6.1	10.525	
171	283	159.83	6.22	6.4	9.925	9.67
172	284	160.87	7.03	5.4	9.765	
173	285	163.09	5.85	6.6	9.425	9.31
174	286	164.49	6.67	7.0		
	Z = 113					
167	280	161.22		6.1	11.395	
168	281	161.72	7.57	6.1	11.076	
169	282	162.9	6.89	7.2	10.636	10.78
170	283	163.55	7.42	6.53	10.357	10.26
171	284	165.24	6.38	7.82	10.025	10.11
172	285	166.45	6.86	7.2	9.995	9.88
173	286	168.53	5.99	8.0	9.865	9.77
		Z = 114				
170	284	168.41		6.8	10.705	
171	285	170.01	6.47	6.9	10.515	10.54
172	286	170.78	7.30	7.2	10.375	10.33
173	287	172.56	6.29	6.9	10.305	10.16
174	288	173.62	7.01	6.9	6.9 10.325	
175	289	175.62	6.071	7.0	10.105	9.96
176	290	176.81	6.881	6.3	9.895	

N	A	$M_{\rm th}~({ m M} artheta { m B})$	S_n (M \ni B)	$-\delta E_{sh}$ (M ₃ B)	Q_{α} (M \mathfrak{s} B)	Q^{exp}_{α} (M \ni B)
177	291	179.1	5.78	8.6		
178	292	180.44	6.73	8.8		
		Z = 115				
168	283	173.70		5.5		
169	284	174.80	6.97	7.41	11.155	
170	285	175.10	7.78	7.4	10.96	
171	286	176.275	6.9	7.88	10.95	
172	287	176.892	7.45	7.65	10.917	10.74
173	288	178.528	6.44	7.45	10.863	10.61
174	289	179.506	7.09	7.42	10.631	10.50
175	290	181.3	6.277	7.72	10.345	10.09
176	291	182.45	6.92	7.23		
	Z = 116					
171	287	181.0		7.8		
172	288	181.7	7.32	7.8	10.92	
173	289	183.29	6.53	6.8	10.85	
174	290	184.1	7.26	6.3	10.895	11.00
175	291	185.73	6.44	6.5	10.75	10.89
176	292	186.816	6.99	6.5	10.77	10.80
177	293	188.55	6.34	8.1	10.51	10.69
178	294	189.67	6.95	7.5	10.435	
179	295	191.45	6.29	8.3	9.925	
180	296	192.75	6.77	8.3	9.885	
		Z = 117				
172	289	189.574		7.15	12.049	
173	290	190.505	7.14	7.70	11.805	
174	291	191.05	7.53	7.72	11.733	

N	A	$M_{\rm th}~({ m M} artheta { m B})$	S_n (M \ni B)	$-\delta E_{sh}$ (M ₃ B)	Q_{α} (M \ni B)	Q^{exp}_{α} (M \ni B)
175	292	192.3	6.82	8.1	11.347	
176	293	193.15	7.22	7.8	11.219	11.18
177	294	194.5	6.72	7.6	10.775	10.96
178	295	195.4	7.17	7.6	10.525	
179	296	196.8	6.67	7.8		
180	297	197.85	7.02	7.8		
		Z = 118				
173	291	195.6		8.4	12.18	
174	292	196.15	7.52	7.8	12.025	
175	293	197.4	6.82	7.7	11.685	
176	294	198.05	7.42	6.9	11.525	11.81
177	295	199.4	6.72	7.3	11.245	
178	296	200.25	7.22	7.5	11.009	
179	297	201.85	6.47	7.8	10.875	
180	298	202.8	7.12	8.0	10.705	
		Z = 119				
174	293	204.39		8.31	12.39	
175	294	205.13	7.33	8.52	12.2	
176	295	205.45	7.75	8.5	11.975	
177	296	206.4	7.12	8.87	11.675	
178	297	206.85	7.62	9.16	11.275	
179	298	207.9	7.02	8.75	10.975	
180	299	208.55	7.42	9.03	10.725	
181	300	209.8	6.82	9.9	10.575	
182	301	210.75	7.12	10	10.475	
183	302	212.3	6.52	10.2		
		Z = 120				

N	A	$M_{\rm th}~({ m M} artheta { m B})$	S_n (M ₃ B)	$-\delta E_{sh}$ (M ₃ B)	Q_{α} (M \ni B)	Q^{exp}_{α} (M \ni B)	
174	294	209.4		8.1			
175	295	210.1	7.37	8.4	12.075)75	
176	296	210.35	7.82	8.4	11.775		
177	297	211.35	7.07	9.1	11.525		
178	298	211.8	7.62	8.8	11.325		
179	299	213.05	6.82	9.1	11.225		
180	300	213.76	7.361	9.2	11.085		
181	301	215.15	6.68	10.1	10.975		
182	302	216.05	7.17	10.1	10.825		
	Z = 121						
174	295	218.55		5.0			
175	296	218.96	7.66	6.26			
176	297	218.86	8.17	6.41	12.045	12.045	
177	298	219.42	7.51	7.13	11.865		
178	299	219.5	7.99	7.1	11.675		
179	300	220.37	7.20	8.2	11.545		
180	301	220.68	7.76	8.2	11.405		
181	302	221.6	7.15	9.53	11.275		
182	303	222.18	7.49	9.78	11.2		
183	304	223.38	6.87	10.63	11.155		
184	305	224.33	7.12	10.56	11.155		
		Z = 122					
176	298	226.16		5.83	14.335		
177	299	226.59	7.64	7.1	14.065		
178	300	226.39	8.27	7.0	13.615		
179	301	226.98	7.48	8.2	13.205		
180	302	226.98	8.07	8.1	12.755		

N	A	$M_{\rm th}~({\rm M}\Im{\rm B})$	S_n (M \ni B)	$-\delta E_{sh}$ (M ₃ B)	Q_{α} (M \ni B)	Q^{exp}_{α} (M \ni B)	
181	303	227.69	7.36	9.4	12.215		
182	304	228.16	7.6	9.1	11.975		
183	305	228.92	7.31	10.6	11.345		
184	306	229.55	7.44	10.5	11.075		
185	307	231.36	6.26	9.6			
186	308	232.76	6.67	9.5			
		Z = 123					
176	299	235.35		4.5	14.375		
177	300	235.48	7.94	6.62	14.095		
178	301	235.06	8.49	6.2	13.775		
179	302	235.32	7.81	7.7	13.475	5	
180	303	235.16	8.23	7.5	13.235		
181	304	235.46	7.77	9.3	12.665		
182	305	235.61	7.92	9.3	12.505		
183	306	236.21	7.47	11.5	12.185		
184	307	236.68	7.6	11.4	12.075		
185	308	238.29	6.46	10.6	12.485		
186	309	239.64	6.72	10.6	12.885		
		Z = 124					
178	302	242.68		6.3	14.095		
179	303	242.69	8.06	7.3	13.675		
180	304	242.31	8.45	7.7	13.495		
181	305	242.4	7.98	9.6	12.995		
182	306	242.24	8.23	9.6	12.835		
183	307	242.65	7.66	11.5	12.536		
184	308	242.95	7.77	11.3	12.365		
185	309	244.5	6.52	10.4	13.155		

N	A	$M_{\rm th}~({ m M} artheta { m B})$	S_n (M \ni B)	$-\delta E_{sh}$ (M ₃ B)	Q_{α} (M ₃ B)	Q^{exp}_{α} (M \ni B)	
186	310	245.49	7.08	10.6	13.515		
187	311	247.39	6.17	10.1	13.605		
188	312	248.71	6.75	9.9	13.525		
	Z = 125						
180	305	251.1		5.9	13.615		
181	306	250.96	8.21	8.0	13.215		
182	307	250.59	8.44	8.43	13.005		
183	308	250.77	7.89	10.36	12.885	85	
184	309	250.72	8.12	10.4	12.685		
185	310	252.17	6.62	9.87	13.535		
186	311	253.29	6.95	10.0	14.185		
187	312	255.42	5.94	9.54	14.705		
188	313	256.94	6.55	9.53	14.875		
		Z = 126					
182	308	258.06		7.87	13.325		
183	309	258.03	8.1	10.36	13.205		
184	310	257.75	8.35	10.36	13.085		
185	311	258.91	6.91	9.88 13.835			
186	312	259.73	7.25	9.89	14.355		
187	313	261.37	6.43	9.7	14.445		

Приложение 2

A	Z	Δ_N	$\Delta_N^{\rm TCSM}$	Δ_Z	$\Delta_Z^{\rm TCSM}$
		(МэВ)	(МэВ)	(МэВ)	(МэВ)
162	66	1.031	1.030	1.014	1.010
166	68	1.037	1.040	0.970	1.060
228	88	0.950	0.951	1.033	1.036
190	76	0.960	0.960	0.883	0.880
196	78	0.902	0.900	0.860	0.860
200	80	0.839	0.840	0.698	0.700
228	90	1.007	1.006	1.111	1.100
230	90	1.045	1.050	1.151	1.150

Таблица 3.2: Сравнение значений энергетических щелей Δ_N и Δ_Z , вычисленных с помощью (3.4) при T=0, со значениями, полученными в ДЦОМ.

Приложение 3

Таблица 3.3: Вычисленные значения параметров деформации ДЦОМ λ и β эквивалентных параметрам мультипольной деформации β_2 и β_4 , и оболочечные поправки δE_{sh} для основного состояния ядер.

A	Z	λ	β	β_2	β_4	$\delta E_{sh}(M \ni B)$
256	100	1.18	1.28	0.257	0.025	-4.56
260	102	1.18	1.28	0.257	0.025	-4.48
264	104	1.18	1.28	0.257	0.025	-4.09
268	106	1.16	1.16	0.256	0.000	-4.41
272	108	1.14	1.06	0.252	-0.022	-5.31
276	110	1.10	0.96	0.211	-0.044	-5.07
280	112	1.06	0.84	0.176	-0.074	-5.60
284	114	1.06	0.86	0.168	-0.067	-6.80
288	116	1.04	0.82	0.142	-0.076	-7.84
292	118	1.04	0.86	0.127	-0.062	-7.80
296	120	1.02	0.88	0.078	-0.048	-8.40
300	122	1.02	0.94	0.058	-0.028	-7.01
304	124	1.00	0.92	0.023	-0.026	-7.70
308	126	0.98	0.92	-0.018	-0.016	-7.87
312	128	0.98	0.90	-0.012	-0.023	-7.70
316	130	0.98	0.92	-0.018	-0.016	-4.51
258	100	1.18	1.28	0.257	0.025	-4.40
262	102	1.18	1.28	0.257	0.025	-3.94
266	104	1.18	1.22	0.273	0.012	-3.61
270	106	1.16	1.14	0.262	-0.004	-4.43
274	108	1.14	1.06	0.252	-0.022	-5.15
278	110	1.10	0.96	0.211	-0.044	-4.78

A	Z	λ	β	β_2	β_4	$\delta E_{sh}(M \ni B)$
282	112	1.06	0.84	0.176	-0.074	-6.10
286	114	1.04	0.78	0.158	-0.090	-7.20
290	116	0.92	0.88	-0.132	0.006	-6.30
294	118	1.04	0.88	0.119	-0.055	-6.90
298	120	1.02	0.90	0.071	-0.041	-8.80
302	122	1.00	0.90	0.030	-0.033	-8.10
306	124	0.98	0.88	-0.006	-0.031	-9.60
310	126	0.98	0.90	-0.012	-0.023	-10.36
314	128	0.98	0.90	-0.012	-0.023	-6.55
318	130	0.98	0.90	-0.012	-0.023	-4.62
260	100	1.18	1.28	0.257	0.025	-4.13
264	102	1.18	1.28	0.257	0.025	-3.93
268	104	1.16	1.22	0.239	0.014	-3.42
272	106	1.14	1.08	0.245	-0.017	-4.29
276	108	1.12	1.00	0.235	-0.036	-5.35
280	110	1.10	0.96	0.211	-0.044	-5.40
284	112	1.08	0.90	0.193	-0.059	-5.40
288	114	1.06	0.86	0.168	-0.067	-6.92
292	116	0.94	0.90	-0.095	-0.001	-6.50
296	118	1.02	0.94	0.058	-0.028	-7.50
300	120	1.00	0.88	0.036	-0.040	-9.20
304	122	1.00	0.92	0.023	-0.026	-9.10
308	124	0.98	0.90	-0.012	-0.023	-11.30
312	126	0.98	0.90	-0.012	-0.023	-9.98
316	128	0.98	0.90	-0.012	-0.023	-6.31
320	130	0.98	0.90	-0.012	-0.023	-4.52

Литература

- Ю.М. Чувильский, Кластерная радиоактивность, МГУ, Москва (1997);
 С.Г. Кадменский, С.Д. Кургалин и Ю.М. Чувильский, Кластерные состояния атомных ядер и процессы кластерного распада, ЭЧАЯ 38, 1333 (2007).
- [2] F.A. Gareev, B.N. Kalinkin, and A. Sobiczewski, Phys. Lett. B, 22, 500 (1966).
- [3] А. Собичевски, УФН **166**, 9 (1996).
- [4] G.N. Flerov and V.A. Druin, At. Energy Rev. 8, 255 (1970).
- [5] Yu.Ts. Oganessian, Lect. Notes Physics 33, 221 (1974); Yu.Ts. Oganessian,
 A.G. Demin and S.P. Tretyakova, Nucl. Phys. A 239, 353 (1975).
- [6] G.N. Flerov and G.M. Ter-Akopian, *Treatise on Heavy-Ion Science*, V. 4, ed.
 D.A. Bromley (New York: Plenum Press, 1984) p. 231.
- [7] G.T. Seaborg and W.D. Loveland, *Treatise on Heavy-Ion Science*, V. 4, Ed.
 D.A. Bromley (New York: Plenum Press, 1984) p. 253.
- [8] P. Armbruster, Ann. Rev. Nucl. Part. Sci. **35**, 135 (1985).
- [9] G. Münzenberg, Rep. Prog. Phys. **51**, 57 (1988).
- [10] S. Hofmann, Rep. Prog. Phys. **61**, 639 (1998).
- [11] Yu.Ts. Oganessian, *Heavy Elements and Related New Phenomena*, ed.
 W.Greiner and R.K.Gupta (Singapore: World Scientific, 1999) p. 43.
- [12] S. Hofmann and G. Münzenberg, Rev. Mod. Phys. 72, 733 (2000); S. Hofmann et al., Eur. Phys. J. A 10, 5 (2001); ibid A 14, 147 (2002); S. Hofmann, Eur. Phys. J. A 15, 195 (2002).
- [13] Yu.Ts. Oganessian *et al.*, J. Phys. G **34**, R165 (2007).

- [14] Morita K. et al., J. Phys. Soc. Japan 73, 2593 (2004); 76, 043201 (2007); 76, 045001 (2007).
- [15] Yu.Ts. Oganessian *et al.*, Phys.Rev.C **62**, 041604(R) (2000); Phys.Rev.C **63**, 011301(R) (2000).
- [16] Yu.Ts. Oganessian *et al.*, Phys.Rev.C **69**, 054607 (2004); Phys.Rev.C **70**, 064609 (2004); Phys.Rev.C **74**, 044602 (2006).
- [17] Yu.Ts. Oganessian et al., Phys. Rev. C 79, 024603 (2009).
- [18] Yu.Ts. Oganessian *et al.*, Phys. Rev. Lett. **104**, 142502 (2010).
- [19] Yu.Ts. Oganessian *et al.*, Phys. Rev. C. **83**, 054315 (2011).
- [20] S. Hofmann *et al.*, Eur. Phys. J. A **32**, 251 (2007).
- [21] S. Hofmann, Lec. Notes Phys. **764**, 203 (2009).
- [22] S. Heinz *et al.*, J. Phys.: Conf. Ser. **282**, 012007 (2011).
- [23] S. Hofmann *et al.*, Eur. Phys. J. A **48**, 62 (2012).
- [24] W. Loveland *et al.*, Phys. Rev. C **66**, 044617 (2002).
- [25] K.E. Gregorich *et al.*, Phys. Rev. C **72**, 014605 (2005).
- [26] L. Stavsetra, K.E. Gregorich, J. Dvorak, P.A. Ellison, I. Dragojević,
 M.A. Garcia, and H. Nitsche, Phys. Rev. Lett. 103, 132502 (2009).
- [27] Ch.E. Düllmann *et al.*, Phys. Rev. Lett. **104**, 252701 (2010).
- [28] J.M. Gates *et al.*, Phys. Rev. C 83, 054618 (2011).
- [29] N. Bohr, Nature **137**, 354 (1936).
- [30] J. Bartlett, Nature, **130**, 165 (1932).

- [31] M.G. Mayer, Phys. Rev. 74, 235 (1948); Phys. Rev. 75, 1969 (1949).
- [32] O. Haxel, J. H. D. Jensen, H. E. Suess, Phys. Rev. 75, 1966 (1949).
- [33] S. Hofmann *et al.*, Radiochim. Acta **99**, 405 (2011).
- [34] P. Armbruster, Eur. Phys. J. A **37**, 159 (2008).
- [35] G.G. Adamian, N.V. Antonenko, and V.V. Sargsyan, Phys. Rev. C 79, 054608 (2009).
- [36] G.G. Adamian, N.V. Antonenko, V.V. Sargsyan, and W. Scheid, Nucl. Phys. A834, 345c (2010).
- [37] J. Dong, W. Zuo, and W. Scheid, Phys. Rev. Lett. **107**, 012501 (2011).
- [38] I. Muntian, Z. Patyk, and A. Sobiczewski, Acta. Phys. Pol. B 32, 691 (2001);
 34, 2141 (2003); I. Muntian, S. Hofmann, Z. Patyk, and A. Sobiczewski, Acta. Phys. Pol. B 34, 2073 (2003); Phys. At. Nucl. 66, 1015 (2003).
- [39] A. Parkhomenko, I. Muntian, Z. Patyk, and A. Sobiczewski, Acta. Phys. Pol. B 34, 2153 (2003).
- [40] A. Parkhomenko and A. Sobiczewski, Acta. Phys. Pol. B 36, 3115 (2005).
- [41] P.G. Reinhard, Rep. Prog. Phys. **52**, 439 (1989).
- [42] P. Ring, Prog. Part. Nucl. Phys. **37**, 193 (1996).
- [43] M. Bender, P.H. Heenen, and P.G. Reinhard, Rev. Mod. Phys. 75, 121 (2003).
- [44] J. Meng, H. Toki, S.G. Zhou, S.Q. Zhang, W.H. Long, and L.S. Geng, Prog. Part. Nucl. Phys. 57, 470 (2006).
- [45] J.J. Li, W.H. Long, J. Margueron, and N. Van Giai, Phys. Lett. B 732, 169 (2014).

- [46] S.G. Nilsson, Phys.Rev. **99**, 1615 (1955).
- [47] В.Г. Соловьев, Теория сложных ядер, Наука, Москва (1971).
- [48] Г. Бете, Физика ядра, Гостехтеориздат, Москва, 1948.
- [49] А. В. Игнатюк, *Статистические свойства возбужденных атомных ядер*, Энергоатомиздат, Москва, 1983.
- [50] А. В. Малышев, Плотность уровней и структура атомных ядер, Атомиздат, Москва, 1969.
- [51] J. Gilat, Phys. Rev. C 1, 1432 (1970).
- [52] А. В. Игнатюк, Ю. Н. Шубин, ЯФ 8, 1135 (1968).
- [53] И. Н. Борзов, С. Гориели, ЭЧАЯ 34, 1375 (2003).
- [54] А. В. Игнатюк, К. К. Истеков и Г. Н. Смиренкин, ЯФ 29, 875 (1979).
- [55] Р.К. Гупта, ЭЧАЯ, 8, 4, (1977).
- [56] J. Maruhn and W. Greiner, Z. Phys. A **251**, 431 (1972).
- [57] P. Möller, J.R. Nix, W.D. Myers, and W.J. Swiatecki, At. Data Nucl. Data Tables 59, 185 (1995).
- [58] Z. Lojewski, V.V. Pashkevich, and S. Cwiok, Nucl. Phys. A436, 499 (1985).
- [59] S. G. Nilsson and I. Ragnarsson, Shapes and Shells in Nuclear Structure (Cambridge University Press, Cambridge 1995).
- [60] А.Б. Мигдал, Теория конечнечных ферми-систем и свойства атомных ядер, Наука, Москва (1983); S.A. Fayans, S.V. Tolokonnikov, E.L. Trykov, and D. Zawischa, Nucl. Phys. A. 676, 49, (2000); S.V. Tolokonnikov and E.E. Saperstein, Phys. Atom. Nucl. 73, 1684 (2010); E.E. Saperstein and S.V. Tolokonnikov, Phys. Atom. Nucl. 74, 1277 (2011).

- [61] S.P. Ivanova, A.L. Komov, L.A. Malov, V.G. Soloviev, Particle and Nuclei 7, 450 (1976).
- [62] A.N. Kuzmina, G.G. Adamian, and N.V. Antonenko, Eur. Phys. J. A 47, 145 (2011).
- [63] A.N. Kuzmina, G.G. Adamian, N.V. Antonenko, and W. Scheid, Phys. Rev. C 85, 014319 (2012).
- [64] C. Slieri, G. Kosenko and Y. Abe, Phys.Rev. C 66, 061602(R) (2002); Y. Abe,
 C.W. Shen, G.I. Kosenko, and D.Boilley, Phys. At. Nucl. 66, 1057 (2003); Г.И.
 Косенко, Ф.А. Иванюк, В.В. Пашкевич, Д.В. Диннер, ЯФ 71, 2086 (2008);
 V.L. Litnevsky, V.V. Pashkevich, G.I. Kosenko, and F.A. Ivanyuk, Phys. Rev.
 C 85, 034602 (2012).
- [65] N.V. Antonenko, E.A. Cherepanov, A.K. Nasirov, V.P. Permjakov, and V.V. Volkov, Phys. Lett. B **319**, 425 (1993); Phys. Rev. C **51**, 2635 (1995);
 G.G. Adamian, N.V. Antonenko, S.P. Ivanova and W. Scheid, Nucl. Phys. A **646**, 29 (1999).
- [66] G.G. Adamian, N.V. Antonenko, W. Scheid and V.V. Volkov, Nucl. Phys.
 A 633, 409 (1998); Nuovo Cimento A 110, 1143 (1997); G.G. Adamian,
 N.V. Antonenko and W. Scheid, Nucl. Phys. A 678, 24 (2000).
- [67] A.S. Zubov, G.G. Adamian, N.V. Antonenko, S.P. Ivanova, and W. Scheid, Phys. Rev. C 68, 014616 (2003).
- [68] G.G. Adamian, N.V. Antonenko, and W. Scheid, Phys. Rev. C 69, 011601(R) (2004); 69, 014607 (2004); 69, 044601 (2004).
- [69] G.G. Adamian, N.V. Antonenko, and W. Scheid, Lecture Notes in Physics, Clusters in Nuclei, Vol. 2, 848, ed. by C. Beck (Springer, Berlin, 2012).
- [70] G.G. Adamian, N.V. Antonenko, and W. Scheid, Eur. Phys. J. A 41, 235 (2009).

- [71] S. Liran, A. Marinov, and N. Zeldes, Phys. Rev. C 62, 047301 (2000); 63, 017302 (2000); 66, 024303 (2002); arXiv:nuclth/0102055 (2001).
- [72] G.G. Adamian, N.V. Antonenko, and W. Scheid, Phys. Rev. C 81, 024320 (2010); G.G. Adamian, N.V. Antonenko, S.N. Kuklin, and W. Scheid, Phys. Rev. C 82, 054304 (2010).
- [73] A.N. Kuzmina, G.G. Adamian, and N.V. Antonenko, Phys. Rev. C 85, 017302 (2012).
- [74] V.M. Strutinsky, Nucl. Phys. A **95**, 420 (1967); A **122**, 1 (1968).
- [75] J. Barndeen, L.N. Cooper, and J.R. Schriefer, Phys. Rev. **105** (5), 1175 (1957).
- [76] G. Royer, M. Guilbaud, and A. Onilon, Nucl. Phys. A 847, 24 (2010).
- [77] S. Goyal and R. K. Puri, Phys. Rev. C 83, 047601 (2011).
- [78] A. Parkhomenko and A. Sobiczewski, Acta Phys. Pol. B 36, 3095 (2005).
- [79] A.N. Kuzmina, G.G. Adamian, and N.V. Antonenko, Phys. Rev. C 85, 027308 (2012).
- [80] R. Smolańczuk *et al.*, Phys. Rev. C **52**, 1871 (1995).
- [81] Ch. Düllmann *et al.*, Phys. Rev. Lett. **104**, 252701 (2010); J.M. Gateset *et al.*,
 Phys. Rev. C **83**, 054618 (2011).
- [82] A. Sobiczewski, Acta. Phys. Pol. B **41**, 157 (2010).
- [83] P. Decowski, W. Grochulski, A. Marcinkowski, K. Siwek, and Z. Wilhelmi, Nucl. Phys. A 110, 129 (1968).
- [84] Г.Д. Адеев и П.А. Черданцев, ЯФ **21**, 491 (1975).
- [85] D. Gambacurta, D. Lacroix, and N. Sandulescu, Phys. Rev. C 88, 034324 (2013).

- [86] A.S. Iljinov, M.V. Mebel, N. Bianchi, E. De Sancitis, C. Guaraldo, V. Lucherini,
 V. Muccifora, E. Polli, A.R. Reolon, and P. Rossi, Nucl. Phys. A543, 517 (1992).
- [87] S. Goriely, S. Hilaire, and A.J. Koning, Phys. Rev. C 78, 064307 (2008).
- [88] E. Melby, M. Guttormsen, J. Rekstad, A. Schiller, S. Siem, and A. Voinov, Phys. Rev. C 63, 044309 (2001).
- [89] A.B. Ignatyuk, G.N. Smirenkin, and A.S. Tishin, *A*Φ **21**, 485 (1975).
- [90] S. Shlomo and J.B. Natowitz, Phys. Rev. C 44, 2878 (1991).
- [91] A.N. Bezbakh, T.M. Shneidman, G.G. Adamian, and N.V. Antonenko, J. Phys.
 Conf. 503, 012011 (2014); Eur. Phys. J. A 50, 97 (2014).