Электронная структура композитов Ln₂O₃-малослойные графитовые фрагменты

<u>Суслова Е.В.</u>¹, Ульянов А.Н.¹, Савилов С.В.¹, Шашурин Д.А.², Шелков Γ .А.³

Метод электронного парамагнитного резонанса (ЭПР) идеально подходит для исследования материалов, в состав которых входят ион-радикалы, свободные радикалы, частицы в триплетном состоянии, а также парамагнитные ионы переходных и редкоземельных металлов. Углеродные наноматериалы (УНМ) также характеризуются ЭПР-спектрами [1]. В представленной работе оксиднанесенные Ln_2O_3 (Ln=La,Nd,Gd) на малослойные графитовые фрагменты (МГФ) композиты изучены методами ЭПР и рентгено-фотоэлектронной спектроскопии (РФЭС). Эти композиты давно находятся в фокусе нашего внимания, так как являются контрастными агентами для энергочувствительной компьютерной и магнито-резонансной томографии [2].

Методом пропитки частиц МГФ растворимыми солями Ln^{3+} получены $Ln_2O_3/M\Gamma\Phi$ (Ln=La, Nd, Gd) с различным содержанием Ln_2O_3 . С увеличением содержания Ln_2O_3 в составе $Ln_2O_3/M\Gamma\Phi$ от 10 до 50 масс. % увеличивался размер оксидных частиц от 1–2 до 10–15 нм, согласно данным просвечивающей электронной микроскопии. Углеродная матрица стабилизирует наночастицы оксидов. Согласно C1s РФЭ-спектрам высокого разрешения, атомы углерода присутствовали в sp^2 -, sp^3 -гибридизированных состояниях и образовывали С-О связи. Количество sp^2 , sp^3 атомов С зависело от содержания Ln_2O_3 : с увеличением доли оксидов количество sp^3 атомов С уменьшалось. В ЭПР-спектрах исходных МГФ и всех полученных комплексов присутствовало два пика (узкий и широкий), которые могут быть приписаны объемным и поверхностных свободным электронам в структуре графита. Корреляции между соотношением количества связей С-О, sp^2 - и sp^3 -гибридизированными атомами С, природой и количеством Ln_2O_3 в составе композитов и полуширинами узкой и широкой ЭПР-линий свидетельствует об образовании хелатных связей между углеродным носителем и Ln^{3+} .

Литература

- 1. Ульянов А.Н., Кузнецова Н.Н., Савилов С.В. Журн. Физ. Хим., 2025, 99(3), 385.
- 2. Suslova E.V., Kozlov A.P., Shashurin D.A. et al. Nanomaterials, 2022, 12, 4110.

Работа выполнена при финансовой поддержке Российского научного фонда, проект 22-15-00072-П.

Авторы использовали оборудование, приобретенного за счет средств Программы развития Московского университета.

¹ Химический факультет МГУ имени М.В. Ломоносова, Москва, Россия

² Факультет фундаментальной медицины МНОИ МГУ имени М.В. Ломоносова, Москва, Россия

³ ОИЯИ, Дубна, Россия