ОБЪЕДИНЕННЫЙ ИНСТИТУТ ЯДЕРНЫХ ИССЛЕДОВАНИЙ

На правах рукописи УДК 539.12+539.125.4+539.1.07

Спасков Владимир Николаевич

Измерение сечения дифракционного глубоконеупругого рассеяния с лидирующим протоном в эксперименте H1 на электрон-протонном коллайдере HERA.

Специальность 01.04.16 - физика атомного ядра и элементарных частиц

Автореферат диссертации на соискание ученой степени кандидата физико-математических наук

Дубна 2012

Работа выполнена в Лаборатории физики высоких энергий имени В.И. Векслера и А.М. Балдина Объединенного института ядерных исследований.

Научный руководитель:	кандидат физмат. наук Капишин Михаил Николаевич
Официальные оппоненты:	Зотов Николай Петрович доктор физмат. наук, НИИЯФ МГУ, г. Москва, ведущий научный сотрудник
	Поздняков Валерий Николаевич доктор физмат. наук, ЛФВЭ ОИЯИ, г. Дубна, ведущий научный сотрудник
Ведущая организация:	Институт физики высоких энергий, г.Протвино

С диссертацией можно ознакомиться в библиотеке ЛФВЭ ОИЯИ.

Ученый секретарь диссертационного совета кандидат физ.-мат. наук, старший научный сотрудник

В.А. Арефьев

1 Общая характеристика работы

1.1 Актуальность темы исследования

Во второй половине двадцатого века развитие теоретических и экспериментальных методов привели к созданию Стандартной модели (СМ) в физике элементарных частиц. С тех пор всесторонняя проверка предсказаний СМ является одной из главных научных задач, решаемых физиками во многих экспериментах. Процессы глубоконеупругого рассеяния (ГНР) сиграли и играют ключевую роль в развитии наших представлений о структуре адронов и могут эффективно использоваться для проверки положений квантовой хромодинамики (КХД), одной из составляющих СМ. Одним из открытий, сделанных на коллайдере НЕRА, было наблюдение в ГНР событий с дифракционной топологией. Поэтому исследование дифракции в ГНР, измерение сечения таких процессов играют ключевую роль в проверке КХД части стандартной модели и являются актуальными задачами в современной физике частиц.

Термин дифракция в физике частиц был введен¹ в пятидесятых годах прошлого столетия из-за наблюдающейся "аналогии" формы дифференциального сечения упругого рассеяния адронов по углу рассеяния с последовательностью чередующихся локальных максимумов и минимумов с характерной формой распределения интенсивности оптической дифракции. Модель полюсов Редже (реджистика), разработанная в 1960-х гг. в рамках аналитической теории *S*-матрицы, описала основные свойства мягких (т.е. периферических, идущих с малыми переданными импульсами) взаимодействий адронов с помощью обменов траекториями Редже.

В начале 1990-х гг. на коллайдере HERA (в *ер* рассеянии), изначально предназначенном для изучения внутренней структуры протона, были обнаружены новые явления, связанные с дифракцией, а именно: в глубоконеупругом *ер* рассеянии были обнаружены события, в которых отсутствуют адроны в большом интервале быстрот между рассеянным протоном и продуктами адронизации фотона (Large Rapidity Gap, LRG). Доля таких событий составляет ~10% и не зависит от энергии в системе центра масс реакции. Такие процессы были интерпретированы как дифракционные. При изучении дифракционных процессов было установлено, что обмен происходит бесцветным объектом, имеющим квантовые числа вакуума (в рамках реджеонной теории - это обмен померонной траекторией **P**, которой не соответствует ни

¹Имена связанные с этими ранними работами таковы: Л.Ландау, И.Померанчук, И.Фейнберг, А.Ахиезер, А.Ситенко, В.Грибов.

одна из известных частиц). Обнаружение дифракции в ГНР стимулировало попытки понять дифракцию частиц с точки зрения КХД, исследовать структуру вакуумного обмена - померона в рамках КХД.

Несмотря на большие достижения в понимании дифракционных процессов, существуют проблемы, которые еще не решены, а именно: универсальность описания дифракционных процессов, таких как инклюзивные процессы или процессы рождения векторных мезонов, очарованных адронов и струй адронов в рамках КХД. В таких процессах квадрат переданного 4-импульса виртуального фотона, масса *с* и *b* кварков, поперечный импульс адронной струи обеспечивают шкалу жесткости для применения КХД расчетов. Поэтому тема диссертации "Измерение сечения дифракционного глубоконеупругого рассеяния с лидирующим протоном в эксперименте H1 на электрон-протонном коллайдере HERA" важна и актуальна для развития методов исследования дифракции и их интерпретации в рамках комбинированного подхода, основанного на теории Редже и КХД.

1.2 Цель диссертационной работы

Целью данной диссертационной работы являлось исследование дифракционных процессов в глубоконеупругом *ер* рассеянии с регистрацией лидирующего протона спектрометром лидирующих протонов (FPS), измерение сечения таких процессов и проверка применимости гипотезы о факторизации процессов в протонной вершине для описания дифракционного ГНР с помощью многоцелевой установки H1 на коллайдере HERA.

Дифракционные события на коллайдере HERA надежно идентифицировались в центральных детекторах по наличию большого быстротного интервала между лидирующим протоном и остальными продуктами реакции (LRG метод), но при этом присутствовала часть событий с диссоциацией лидирующего протона. Принципиальной методической задачей являлось прямое измерение импульса лидирующих протонов с помощью FPS (FPS метод). Предполагалось провести сравнение результатов, полученных LRG и FPS методами для выявления общих свойств и отличий, а также для вычисления вклада протонной диссоциации в LRG.

1.3 Основные результаты диссертационной работы

В результате исследования дифракционных процессов в глубоконеупругих *ер* столкновениях на коллайдере HERA были получены следующие основные результаты, которые выносятся на защиту:

- Измерены сечения σ_r^{D(4)} и σ_r^{D(3)} в дифракционных процессах глубоконеупругого *ер* рассеяния при виртуальности фотона 4 < Q² < 110 ГэВ² с лидирующим протоном в конечном состоянии с помощью FPS метода.
 Экспериментальная погрешность наиболее точных измерений составляет ~10%;
- Впервые измерено сечение $\sigma_r^{D(3)}$ дифракционного глубоконеупругого ep рассеяния с лидирующим протоном в конечном состоянии при больших значениях виртуальности фотона Q^2 ($120 < Q^2 < 700 \ \Gamma \Rightarrow B^2$);
- Измерены параметры померонной траектории $\alpha_{IP}(t) = \alpha_{IP}(0) + \alpha'_{IP}t$ и наклона сечения B_{IP} ($\frac{d\sigma}{dt} \sim e^{B_{IP}t}$), где t – квадрат переданного 4импульса в протонной вершине реакции. Значение померонного интерсепта $\alpha_{IP}(0) = 1.10 \pm 0.02$ (эксп.) ± 0.03 (модель) согласуется с измерениями $\alpha_{IP}(0)$, проведенными в процессах мягкого адрон-адронного рассеяния. В то же время наклон померонной траектории $\alpha'_{IP} = 0.04 \pm 0.02$ (эксп.) $^{+0.08}_{-0.06}$ (модель) ГэВ⁻² в процессах дифракционного ГНР меньше, чем для мягких адронных взаимодействий. Параметры померонной траектории не зависят от Q^2 в пределах погрешностей. Полученные значения α'_{IP} и B_{IP} характеризуют дифракционные процессы в жестком рассеянии;
- Получены новые экспериментальные свидетельства универсальности дифракционных партонных распределений в протоне и применимости гипотезы о факторизации процессов в протонной вершине для описания дифракционного ГНР;
- Проведено сравнение сечения $\sigma_r^{D(3)}$, измеренного FPS (σ_{FPS}) и LRG (σ_{LRG}) методами и вычислен вклад процессов дифракционной диссоциации протона в σ_{LRG} . Отношение $\sigma_{LRG}/\sigma_{FPS} = 1.20 \pm 0.11$ (эксп.) не зависит от Q^2 и β , что указывает² на универсальность КХД процессов фотон-партонного рассеяния в реакциях с образованием лидирующего протона в конечном состоянии и с дифракционной диссоциацией протона;
- Разработана методика реконструкции лидирующих протонов в спектрометре FPS с использованием технологии Roman Pot и сцинтилляционных фиберных детекторов.

 $^{^2}$ переменная
 $\beta=x/x_{I\!P},$ гдеx- переменная Бьеркена,
а $x_{I\!P}$ - продольная доля импульса протона, переданная в дифракцион
ном обмене

1.4 Научная новизна работы

В данной работе представлены новые результаты по измерению сечения дифракционного глубоконеупругого $ep \rightarrow eXp$ рассеяния, полученные в эксперименте H1 на коллайдере HERA. Данные процессы характеризуются образованием в конечном состоянии лидирующих протонов, которые измерялись с помощью спектрометра лидирующих протонов (FPS). Увелечение светимости коллайдера во время периода HERA-2 позволило получить данные со статистической точностью приблизительно в 20 раз превышающей предыдущие FPS измерения (HERA-1 период).

Впервые было измерено сечение $\sigma_r^{D(3)}$ в дифракционных процессах глубоконеупругого *ер* рассеяния с лидирующим протоном в конечном состоянии в кинематической области больших Q^2 ($120 < Q^2 < 700 \ \Gamma \Rightarrow B^2$).

Были проведены измерения сечений $\sigma_r^{D(4)}$ и $\sigma_r^{D(3)}$ в дифракционных процессах глубоконеупругого *ер* рассеяния при $4 < Q^2 < 110$ ГэВ² с лидирующим протоном в конечном состоянии с помощью FPS метода. Экспериментальная погрешность наиболее точных измерений составляет ~10%.

Проведенное сравнение сечения $\sigma_r^{D(3)}$, измеренного FPS (σ_{FPS}) и LRG (σ_{LRG}) методами, позволило вычислить вклад процессов дифракционной диссоциации протона в σ_{LRG} . Были получены новые свидетельства универсальности дифракционных партонных распределений в протоне и применимости гипотезы о факторизации процессов в протонной вершине для описания дифракционного ГНР.

1.5 Научно-практическая значимость результатов

Полученные результаты по измерению сечения дифракционного глубоконеупругого *ер* рассеяния расширяют экспериментальный материал и могут быть использованы для дальнейшего развития и уточнения существующих представлений о природе дифракционного обмена, для развития методов и механизмов, лежащих в основе динамики дифракционных процессов. Также эти результаты могут быть использованы при планировании исследований на других экспериментальных установках и при других экспериментальных условиях.

1.6 Достоверность результатов

Основные результаты, представленные в диссертации, являются официальными результатами коллаборации H1, что гарантирует их достоверность.

Эти результаты докладывались на международных конференциях, совещаниях и были опубликованы в реферируемых научных изданиях.

Результаты данной работы также согласуются с измерениями, полученными другим, статистически независимым, методом (LRG метод) и с результатами эксперимента ZEUS, одновременно работавшего на коллайдере HERA.

1.7 Личный вклад диссертанта

Автор участвует в эксперименте H1 с 1996 г. и внес личный вклад в выполнение задач, связанных с проведением эксперимента, измерениями и анализом данных. Определяющий вклад, сделанный автором в получение представленных результатов, заключается в следующем:

- Лабораторные тесты и инсталляция горизонтальных и вертикальных регистрирующих станций спектрометра FPS в туннеле коллайдера HERA.
- Разработка и введение в состав программного обеспечения эксперимента H1 программ мониторирования сигналов FPS, моделирования и реконструкции треков лидирующих протонов в горизонтальных и вертикальных детекторах FPS.
- Постоянная поддержка функционирования детекторов и программного обеспечения FPS во время набора статистики эксперимента H1, мониторирование сигналов и эффективности FPS.
- Калибровка горизонтальных и вертикальных регистрирующих станций FPS, реконструкция энергии и поперечного импульса лидирующих протонов.
- Интеграция программ для реконструкции и анализа FPS событий в объектно-ориентированное программное обеспечение эксперимента H1 в рамках пакета ROOT.
- Измерение сечения дифракционных глубоконеупругих процессов FPS методом и анализ характеристик таких прцессов, сравнение экспериментальных результатов с теоретическими предсказаниями КХД и с результатами, полученными другими (статистическими независимыми) методами.
- Подготовка результатов исследования к публикациям.

1.8 Апробация работы и публикации

Результаты, представленные в диссертации, неоднократно докладывались и обсуждались на семинарах и рабочих совещаниях коллаборации H1 и на семинарах ЛФВЭ ОИЯИ. Результаты были представлены на международных совещаниях и конференциях:

- Low x workshop on deep inelastic scattering, diffraction, final states and related subjects, Lowx 2012, (Paphos, Cyprus, 2012).
- Ringberg workshop: New Trends in HERA Physics 2011 (Ringberg Castle, Bavaria, Germany, 2011).
- Low x workshop on deep inelastic scattering, diffraction, final states and related subjects, Lowx 2010, (Kavala, Greece, 2010).
- 18th International Workshop on Deep Inelastic Scattering and Related Subjects: DIS 2010 (Florence, Italy, 2010).
- 17th International Workshop on Deep Inelastic Scattering and Related Subjects: DIS 2009 (Madrid, Spain, 2009).

Основные результаты диссертации опубликованы в журналах "Nuclear Instru-ments and Methods"[1] и "The European Physics Journal C"[2].

1.9 Объем и структура работы

Диссертация состоит из введения, трех глав, заключения и списка библиографии. Объем диссертации составляет 147 страниц, включая 76 рисунков, 11 таблиц и список библиографии из 91 наименования.

2 Содержание диссертации

2.1 Введение

Во введении сформулированы цели диссертационной работы, дана краткая характеристика темы и описана структура диссертации. Во введении отмечается актуальность темы исследования, научная новизна работы, личный вклад автора в получение представленных результатов.

2.2 Дифракционное глубоконеупругое рассеяние в *ep* столкновениях

В первой главе кратко описаны механизмы дифракционных и ГНР процессов в *ер* столкновениях, описана кинематика таких процессов и приведена необходимая терминология. Дан обзор существующих экспериментальных данных и теоретических подходов для описания свойств дифракционных процессов в физике высоких энергий.

2.3 Постановка эксперимента

Во второй главе дается краткое описание коллайдера HERA и установки H1. Более подробно описаны детекторы установки H1, которые были использованы в представленных измерениях: центральный трековый детектор (CTD), задняя пропорциональная камера (BPC), калориметры SpaCal и LAr.

Также кратко описаны способы идентификации дифракционных событий на коллайдере HERA: метод большого быстротного интервала (LRG метод), основанный на анализе структуры событий в пространстве быстрот (псевдобыстрот), и метод лидирующего протона (FPS метод), основанный на регистрации лидирующего протона (рассеянного на малый угол с импульсом близким первоначальному) спектрометром лидирующих протонов (FPS).

Более подробно описывается спектрометр FPS, состоящий из четырех станций (Рис. 1), который был установлен в передней области детектора H1 на расстоянии 64–90 метров от точки *ер* стокновения, чтобы расширить аксептанс H1 детектора в этой области и измерять импульс лидирующих протонов, рассеянных на углы меньше 1 мрад. Спектрометр состоял из двух

Рис. 1: Схематичное изображение расположения станций спектрометров лидирующих протонов LPS (детектор ZEUS) и FPS (детектор H1).

горизонтальных станций (64H, 80H), расположенных на расстоянии 64 и 80

метров от точки взаимодействия и двух вертикальных (81V, 90V), расположенных на расстоянии 81 и 90 метров (Рис. 1)³. Протон, рассеянный в результате столкновения на маленький угол, пройдя через пучковые магниты HERA, на расстоянии приблизительно 60м от точки взаимодействия имел отклонение несколько сантиметров от центральной орбиты протонного пучка и его импульс измерялся с помощью спектрометра. Каждая станция содержала многослойные сцинтилляционные фиберные детекторы, свет с которых собирался на многоканальные позиционно-чувствительные фотоумножители (PSPM, ПЧФУ). Сцинтилляционные пластины перекрывали чувствительную область фиберных детекторов и использовались для триггерного сигнала. Чтобы обеспечить необходимую апертуру пучка протонов при инжекции в HERA, фиберные детекторы устанавливались в подвижных плунжерных сосудах, т.н. Римских горшках (Roman Pots), которые находились в выведенном положении во время формирования пучка и настройки его орбиты. Когда достигались устойчивые параметры пучка, детекторы вводились как можно ближе к циркулирующему пучку протонов. Координаты расположения магнитов, с известным магнитным полем вдоль пучковой трубы, позволяли не только регистрировать рассеянный протон, но и восстанавливать импульс и угол рассеяния лидирующего протона. Между точкой столкновения и FPS станциями были размещены только дипольные и квадрупольные магниты. Это позволяло независимо восстанавливать энергию рассеянного протона в обеих проекциях Х и Ү. Магнитная оптика между FPS и H1 детектором использовалась как спектрометр.

На первом этапе реконструкции трека сработавшие фиберы в координатном детекторе группировались в кластеры, совместимые с треком. Каждая станция FPS состояла из двух идентичных фиберных детекторов, расположенных на расстоянии 60 мм друг от друга. Каждый кластер в первом детекторе объединялся с каждым кластером во втором детекторе, чтобы получить проекцию трека. Наклон этих проекций использовался, чтобы выбрать треки лидирующих протонов. Типичное распределение угла наклона с узким пиком, соответствующим трекам лидирующих протонов, показано на Рис. 2а. Две проекции объединялись в локальный трек. На Рис. 2b показано распределение реконструируемых треков в одной станции в плоскости XY.

Все локальные треки в чувствительной области детектора использовались для восстановления глобальных треков для каждой пары вертикальных и горизонтальных FPS станций с учетом коррекции на положение детекторов. Большое расстояние между двумя станциями позволяло измерять наклон

 $^{^{3}\}mathrm{B}$ период HERA-2 первая станция распологалась на расстоянии 61 метр от точки взаимодействия

Рис. 2: Типичное распределение наклона реконструируемых треков в одной станции (a) и распределение треков в плоскости XY (b).

глобальных треков с точностью до нескольких мкрад. Для периода HERA-2, после модернизации FPS детектора, эффективность реконструкции трека лидирующего протона, пересекающего обе горизонтальные станции, составила 48%.

Интерсепт X и наклон X' глобальных треков в горизонтальной проекции были связаны с энергией E и углом θ_x рассеянного протона с помощью двух линейных уравнений:

$$X = a_x(E) + b_x(E) \cdot \theta_x \quad , \qquad X' = c_x(E) + d_x(E) \cdot \theta_x \; .$$

Функции преобразования $a_x(E)$, $b_x(E)$, $c_x(E)$ и $d_x(E)$ определялись из Монте Карло моделирования рассеянных протонов в центральных точках Z =+85 м и Z = +72 м для вертикальных и горизонтальных станций соответственно. Функции преобразования вычислялись относительно номинальной орбиты пучка. Фактическая орбита пучка изменялась для различных протонных заполнений в кольце HERA и, поэтому, прежде чем использовать параметры треков для восстановления энергии, требовалась калибровка положений детектора относительно пучка протонов.

Для калибровки горизонтальных станций использовались события дифракционного фоторождения ρ^0 -мезонов ($p\gamma^* \to p'\rho^0 \to p'\pi^+\pi^-$), где сравнивались переменные конечного состояния события полностью реконструируемого в центральном детекторе и в FPS. Калибровка положения детекторов относительно пучка протонов делалась для каждого заполнения протонов в кольце HERA. На Рис. 3 приведен $p_{x,y}$ -баланс между лидирующим

Рис. 3: $P_{x,y}$ -баланс между лидирующим протоном и ρ^0 -мезоном. Данные профитированы функцией Гаусса: a) средняя величина $\mu_x = 0.013 \pm 0.014$ ГэВ, $\sigma_x = 0.037 \pm 0.002$ ГэВ; b) $\mu_y = -0.0026 \pm 0.0037$ ГэВ, $\sigma_y = 0.096 \pm 0.005$ ГэВ.

протоном p', измеренным в FPS, и ρ^0 -мезоном, измеренным в центральном детекторе. Видно, что баланс между импульсами лидирующего протона и ρ^0 -мезона сохранялся с хорошей точностью. Неопределенность в измерениях поперечного импульса составляла 10 МэВ для p_x и 30 МэВ для p_y при различных параметрах пучка протонов (положение и наклон в точке взаимодействия).

2.4 Анализ и обработка экспериментальных данных

В третьей главе описаны условия отбора дифракционных ep событий в ГНР и представлены результаты измерения сечений в дифракционном глубоконеупругом $ep \rightarrow eXp$ рассеянии. Описаны алгоритмы оценки и введения коррекций на смещающие факторы измерений, разбиения кинематической области на интервалы, расчета аксептансов и определения систематики измерений. Все алгоритмы были отлажены с помощью Монте Карло моделирования ep событий, сгенерированных МК генератором RAPGAP.

Данные, используемые в этом анализе, соответствуют интегральной светимости 156.6 пб⁻¹ и были зарегистрированы детектором H1 в e^-p взаимодействиях (светимость 77.2 пб⁻¹) и e^+p взаимодействиях (светимость 79.4 пб⁻¹) во время периода HERA-2 с 2005 по 2007 гг. Во время этого периода коллайдер HERA оперировал электронным и протонным пучками с энергиями $E_e = 27.6$ ГэВ и $E_p = 920$ ГэВ, что соответствует энергии в системе центра масс ep столкновения $\sqrt{s} = 319$ ГэВ.

Отбор событий дифракционного ГНР, используемых в данном анализе, производился на основании совпадения триггерных сигналов FPS и сигналов в электромагнитном SpaCal или LAr калориметрах. Лидирующий протон измерялся в FPS, а рассеянный электрон реконструировался в SpaCal или LAr калориметрах.

Для подавления фоновых событий, вызванных синхротронным излучением и взаимодействием протонов с остаточным газом в пучковой трубе, для подавления фоновых процессов фоторождения и событий, в которых электрон теряет значительную энергию на электромагнитное излучение, применялись следующие условия отбора ГНР событий:

- Реконструированная z координата вершины события должна лежать в пределах 35 см (~ 3σ) от средней позиции. По крайней мере один трек, выходящий из вершины взаимодействия и восстановленный в CTD, обязан иметь поперечный импульс выше 0.1 ГэВ.
- Энергия $E_{e'}$ и полярный угол $\theta_{e'}$ рассеянного электрона определялись из SpaCal (LAr) кластера, координаты которого соответствовали координатам трека от заряженной частицы, восстановленного в ВРС (СТD), и вершиной взаимодействия, восстановленной в СТD. Электрон должен удовлетворять условиям 154° < $\theta_{e'}$ < 176° и $E_{e'}$ > 8 ГэВ в SpaCal калориметре или $\theta_{e'}$ < 154° и $E_{e'}$ > 10 ГэВ в LAr калориметре.
- Величина *E p_z*, вычисленная из энергий и продольных импульсов всех реконструированных частиц, включая электрон, должна лежать между 35 ГэВ и 70 ГэВ. Для ГНР событий с нейтральными токами эта величина должна быть равна двойной энергии электронного пучка, если пренебречь эффектами детектора и электромагнитным излучением.

Для лидирующего протона, измеренного в FPS, применялись следующие требования:

- Измерение ограничено областью с высоким FPS аксептансом: горизонтальная и вертикальная проекции поперечного импульса лежат в диапазонах -0.63 < p_x < -0.27 ГэВ и |p_y| < 0.8 ГэВ, соответственно, и энергия лидирующего протона E_{p'} больше 90% протонной энергии пучка E_p.
- Величина *E* + *p_z*, полученная суммированием по всем восстановленным частицам, включая лидирующий протон, должна быть ниже 1900 ГэВ. Для ГНР событий с нейтральными токами эта величина должна быть

равна двойной энергии протонного пучка, если пренебречь эффектами детектора. Это требование применялось, чтобы подавить случаи, где ГНР события, реконструированные в центральном детекторе, совпадают со случайным фоновым треком от гало пучка в FPS.

Рис. 4: (а) Распределение $E + p_z$ для FPS ГНР событий (кресты) и для ГНР событий, реконструированных в центральном детекторе H1, случайно совпадающих с гало протонов, дающему сигнал в FPS (гистограмма). Приведены систематические неопределенности (окрашенные полосы). (b) Энергетическое распределение лидирующего протона, реконструированного в FPS (кресты). Фон от гало пучка вычтен из данных. Распределение RAPGAP Монте Карло (гистограмма) приведено с экспериментальными систематическими неопределенностями (окрашенные полосы).

Чтобы оценить фон от гало пучка, величину $E + p_z$ для всех восстановленных частиц в центральном детекторе в ГНР событиях (без требования трека в FPS) суммировали с величиной $E + p_z$, измеренной в FPS от событий, записанных со случайным триггером. Получающееся фоновое распределение было нормализовано на распределение FPS ГНР данных в диапазоне $E + p_z > 1900$ ГэВ, где фон от гало пучка доминировал. В области $E + p_z < 1900$ ГэВ фон составлял в среднем 13 %. Спектр $E + p_z$ для

Рис. 5: (а) Распределения (а) x_{IP} , (b) p_x , (c) p_y , (d) |t|, реконструированные в FPS (точки). Фон от гало пучка вычтен из данных. Гистограмма RAPGAP Монте Карло моделирования (сплошная линия) приведена вместе с экспериментальными систематическими неопределенностями (окрашенные полосы).

лидирующего протона и ГНР событий гало протонов приведен на Рис. 4а. Фон определялся, используя распределение $E + p_z$, реконструированное как функция переменных x, Q^2 и t. Сравнение FPS данных после вычитания фона и результатов моделирования RAPGAP представлено на Рис. 4b для энергии лидирующего протона $E_{p'}$ и на Рис. 5 для переменных x_{IP}, p_x, p_y и |t|.

В данном анализе требовалось, чтобы абсолютная величина квадрата переданного 4-импульса в протонной вершине |t| лежала в диапазоне 0.1 <

 $|t| < 0.7 \ \Gamma \Rightarrow B^2$ и $x_{IP} < 0.1$. Измерение разделялось на область промежуточных Q^2 (4 < Q^2 < 110 $\Gamma \Rightarrow B^2$, 0.03 < y < 0.7)⁴ и область больших Q^2 (120 < $Q^2 < 700 \ \Gamma \Rightarrow B^2$, 0.03 < y < 0.8) для данных с рассеянным электроном, реконструированным в SpaCal и LAr калориметрах, соответственно. Данный анализ содержал около 68200 событий в области промежуточных Q^2 и около 400 событий в области больших Q^2 .

Измерение сечения

В данном разделе описана методика измерения сечения. Дифференциальное сечение инклюзивного дифракционного процесса, как функция четырех кинематических переменных, может быть выражено через структурные функции $F_2^{D(4)}$ и $F_L^{D(4)}$ следующим образом:

$$\frac{d^4 \sigma_{ep \to eXp}}{d\beta dQ^2 dx_{IP} dt} = \frac{4\pi \alpha_{em}^2}{\beta Q^4} \left(1 - y + \frac{y^2}{2}\right) \sigma_r^{D(4)}(\beta, Q^2, x_{IP}, t),$$
(1)

где приведенное сечение $\sigma_r^{D(4)}$ определяется выражением:

$$\sigma_r^{D(4)}(\beta, Q^2, x_{IP}, t) = F_2^{D(4)}(\beta, Q^2, x_{IP}, t) - \frac{y^2}{1 + (1 - y)^2} F_L^{D(4)}(\beta, Q^2, x_{IP}, t).$$
(2)

Вклад в сечение, вносимый фотонами с продольной поляризацией $F_L^{D(4)}$, часто предполагается пренебрежимо малым, что является достаточно хорошим приближением при небольших значениях *у*.

Дифференциальное сечение дифракционного глубоконеупругого *ер* рассеяния, с учетом коррекций сечения к значению в центре бина, в данном анализе вычислялось следующим образом:

$$\frac{d^{4}\sigma_{ep \to eXp}}{d\beta dQ^{2} dx_{IP} dt}\Big|_{c} = \frac{N_{DIS}(t, x_{IP}, \beta, Q^{2}) \cdot (1 - f_{BG}(t, x_{IP}, Q^{2}, E + p_{z}))}{A_{FPS}(t, x_{IP}) \cdot \varepsilon_{FPS} \cdot L \cdot A_{H1}(\beta, Q^{2})} \times \frac{BCC(t_{c}, x_{IP,c}, \beta_{c}, Q^{2}_{c})}{RadCor(x_{IP}, \beta, Q^{2})} \qquad (3)$$

где N_{DIS} - число отобранных ГНР событий в данных (~ 69000), f_{BG} - доля фоновых событий (~ 0.13), A_{FPS} и A_{H1} - аксептанс FPS и H1 детекторов, ε_{FPS} - эффективность реконструкции трека в FPS детекторе (~ 0.48), L интегральная светимость (156.6 пб⁻¹), RadCor - радиационные поправки , BCC - коррекции сечения к значению в центре бина.

Систематические погрешности измерения сечений включали в себя неопределенности МК моделирования и точности оценки характеристик детектора.

 $^{^4}$ переменная y называется неупругостью процесса. Величина ее равна доле энергии начального электрона, переданной виртуальному фотону в системе покоя протона.

Систематические погрешности, показанные на рисунках, получены добавлением в квадрате всех вкладов, кроме неопределенности нормировки, что дает среднюю погрешность для данных 8%. Неопределенность нормировки сечения составляет 4.3% и 6% для $\sigma_r^{D(4)}$ и $\sigma_r^{D(3)}$ измерений. Полная экспериментальная погрешность наиболее точных измерений сечений $\sigma_r^{D(4)}$ и $\sigma_r^{D(3)}$ составляет ~ 10% и представляет квадратичную сумму статистической, систематической и нормировочной погрешностей измерений.

Результаты и их интерпретация

Зависимость дифракционного ГНР от переменных β , Q^2 , x_{IP} и t изучалась в терминах приведенного сечения $\sigma_r^{D(4)}(\beta, Q^2, x_{IP}, t)$ и $\sigma_r^{D(3)}(\beta, Q^2, x_{IP})$. Результаты для $\sigma_r^{D(4)}$ получены в трех областях по t: $0.1 \leq |t| < 0.3$ ГэВ², $0.3 \leq |t| < 0.5$ ГэВ², $0.5 \leq |t| < 0.7$ ГэВ², которые интерполировались к величинам |t| = 0.2, 0.4, 0.6 ГэВ², используя измеренную t зависимость при каждом значении β , Q^2 и x_{IP} . На Рис. 6 показано приведенное сечение $x_{IP}\sigma_r^{D(4)}$ как функция x_{IP} для различных значений |t|, β и Q^2 . Для средних и больших величин β зависимость $x_{IP}\sigma_r^{D(4)}$ от x_{IP} падает или постоянна. Такое поведение согласуется с доминантным вкладом померонного обмена, описанным в рамках теории Редже линейной траекторией $\alpha_{IP}(t) = \alpha_{IP}(0) + \alpha'_{IP}t$ с интерсептом $\alpha_{IP}(0) \geq 1$. При низких β сечение $x_{IP}\sigma_r^{D(4)}$ растет с увелечением x_{IP} при самых больших x_{IP} , что интерпретируется как вклад реджеона (IR) с интерсептом $\alpha_{IP}(0) < 1$. Это наблюдение согласуется с предыдущим H1 FPS анализом.

В рамках параметризации Редже определены **параметры померонной траектории**. Чтобы описать зависимость сечения от x_{IP} и t, структурную функцию параметризуют в форму

$$F_2^{D(4)}(\beta, Q^2, x_{IP}, t) = f_{IP}(x_{IP}, t) F_2^{IP}(\beta, Q^2) + n_{IR} \cdot f_{IR}(x_{IP}, t) F_2^{IR}(\beta, Q^2), \quad (4)$$

которая предполагает факторизацию x_{IP} и t зависимостей в протонной вершине от зависимостей β и Q^2 для померона и реджеона без интерференции между этими двумя вкладами. Зависимости x_{IP} и t параметризуются, используя факторы потока померона f_{IP} и реджеона f_{IR} , согласно Редже феноменологии:

$$f_{IP}(x_{IP},t) = A_{IP} \cdot \frac{e^{B_{IP}t}}{(x_{IP})^{2\alpha_{IP}(t)-1}} \quad ; \quad f_{IR}(x_{IP},t) = A_{IR} \cdot \frac{e^{B_{IR}t}}{(x_{IP})^{2\alpha_{IR}(t)-1}} \quad . \tag{5}$$

В рамках Редже теории реджеон имеет линейную траекторию $\alpha_{I\!R}(t) = \alpha_{I\!R}(0) + \alpha'_{I\!R} t$ так же, как и померон. При фитировании экспериментальных $F_2^{D(4)}$ данных с помощью уравнения 4 рассмотрены следующие свободные

Рис. 6: Приведенное сечение $x_{IP}\sigma_r^{D(4)}$ как функция x_{IP} для различных величин t, β, Q^2 . Значение погрешности соответствует сумме статистической и систематической погрешностей в квадратурах. Неопределенность нормировки сечения 4.3 % не показана. Сплошные кривые представляют результаты феноменологического фита Редже, включая обмен помероном (*IP*) и реджеоном (*IR*).

параметры: интерсепт $\alpha_{IP}(0)$ и наклон α'_{IP} померонной траектории, экспоненциальный параметр B_{IP} для $x_{IP} \to 1$, померонная структурная функция $F_2^{IP}(\beta, Q^2)$ в каждом (β, Q^2) бине и параметр n_{IR} , описывающий нормировку реджеонного вклада. Реджеонная структурная функция $F_2^{IR}(\beta, Q^2)$ в каждом (β, Q^2) бине берется из параметризации пионной структурной функции. Поведение структурной функции $F_2^{D(4)}$ при больших x_{IP} и низких β чувствительно к реджеонным параметрам $\alpha_{IR}(0), \alpha'_{IR}$ и B_{IR} . Эти параметры брались из ранее опубликованных данных: $\alpha_{IR}(0) = 0.50, \alpha'_{IR} = 0.3 \ \Gamma \Rightarrow B^{-2}$ и $B_{IR} = 1.6 \ \Gamma \Rightarrow B^{-2}$. Полученные результаты для свободных параметров приведены в таблице 1. Экспериментальные погрешности параметров фита определены как квадратичная сумма статистических и систематических погрешностей. Модельные погрешности определены путем вариации фиксированных параметров фита, делая их свободными друг за другом при каждом повторении. Влияние малого вклада $F_L^{D(4)}$ в сечение $\sigma_r^{D(4)}$ также включено в модельную погрешность. Полученный результат для $\alpha_{IP}(0)$ согласуется с предыдущи-

Параметр	Значение
$\alpha_{IP}(0)$	1.10 ± 0.02 (эксп.) ± 0.03 (модель)
$\alpha'_{I\!P}$	0.04 ± 0.02 (эксп.) $^{+0.08}_{-0.06}$ (модель) ГэВ ⁻²
B_{IP}	5.73 ± 0.25 (эксп.) $^{+0.80}_{-0.90}$ (модель) ГэВ ⁻²
$n_{I\!R}$	$[0.87 \pm 0.10($ эксп. $)^{+0.60}_{-0.40}$ (модель) $] \cdot 10^{-3}$

Таблица 1: Центральные значения параметров, полученные в результате фитирования структурной функции $F_2^{D(4)}$ в рамках параметризации Редже, и их экспериментальные и модельные погрешности.

ми H1 измерениями с использованием LRG и FPS методов и с измерениями, полученными коллаборацией ZEUS. Также полученный результат согласуется в пределах погрешностей с измерениями $\alpha_{IP}(0) = 1.08$, проведенными в процессах мягкого адрон-адронного рассеяния. В то же время, наклон померонной траектории меньше, чем величина $\alpha'_{IP} \simeq 0.25 \ \Gamma \Rightarrow B^{-2}$, полученная в мягком адрон-адронном рассеянии, что характеризует дифракционные процессы в жестком рассеянии.

Для проверки факторизации в протонной вершине или Редже факторизации изучались зависимости $\alpha_{IP}(0)$, α'_{IP} и B_{IP} от Q^2 , повторяя фит, описанный выше, в трех различных диапазонах по Q^2 . Результаты фитирования, показанные на Рис. 7, указывают на то, что нет сильной зависимости от Q^2 . Экспериментальные погрешности определены как квадратичная сумма статистической и некоррелированной систематической погрешностей. При фитировании параметр нормировки n_{IR} брался фиксированным, согласно таблице 1.

Предполагая, что t-зависимость сечения $(d\sigma/dt \propto e^{Bt})$ пропорциональна экспоненте, параметр наклона B измерен как функция x_{IP} при различных фиксированных значениях Q^2 и β . При этом не наблюдалось существенной зависимости параметра наклона B от Q^2 и β для данных с $x_{IP} \leq 0.025$. Поэтому в рамках погрешностей t-зависимость сечения в области низких x_{IP} (доминирующий вклад померона) может факторизоваться от Q^2 и β зависимостей. Так как не наблюдалось существенной зависимости параметра наклона B от Q^2 или β , усредненный по этим переменным параметр B сравнивался с результатом параметризации t-зависимости, полученным при фитировании $F_2^{D(4)}$ в рамках параметризации Редже. Результат, как функция

Рис. 7: Результаты Редже фитирования в трех различных диапазонах по Q^2 для (a) $\alpha_{IP}(0)$, (b) α'_{IP} и (c) B_{IP} . Экспериментальные погрешности измерений изображены вертикальными отрезками. Длина отрезка соответствует сумме статистической и некоррелированной систематической погрешностей в квадратурах. Белые линии и окрашенные полосы показывают результат экспериментальной неопределенности стандартного фитирования по всему Q^2 диапазону.

 x_{IP} , показан на Рис. 8, на котором также показаны предыдущие H1 FPS результаты. На рисунке видно небольшое уменьшение параметра $B \ c \ 6 \ \Gamma
ightarrow B^{-2}$ до ~5 $\Gamma
ightarrow B^{-2}$ при значениях $x_{IP} \ge 0.05$, где вклад реджеона существенный. Уменьшение параметра наклона указывает на то, что размер области взаимодействия уменьшается для IR обмена по сравнению с IP обменом.

Приведенное сечение $\sigma_{\mathbf{r}}^{\mathbf{D}(3)}(\beta, \mathbf{Q}^2, \mathbf{x}_{\mathbf{IP}})$ определялось как интеграл сечения $\sigma_r^{D(4)}(\beta, Q^2, x_{IP}, t)$ в диапазоне $|t_{min}| < |t| < 1$ ГэВ², который является областью измерения Н1 при использовании LRG метода. В данном анализе приведенное сечение $\sigma_r^{D(3)}(\beta, Q^2, x_{IP})$ получено при экстраполяции FPS данных из области измерения 0.1 < |t| < 0.7 ГэВ² в область измерения LRG метода, используя *t*-зависимость в каждом (x_{IP}, β, Q^2) интервале.

Результаты измерения сечения $\sigma_r^{D(3)}$, полученные с помощью H1 FPS детектора, сравнивались с результатами, полученными с помощью спектромет-

Рис. 8: Параметр наклона *B*, полученный при фитировании функцией $d\sigma/dt \propto e^{Bt}$, показан как функция x_{IP} . Экспериментальные погрешности измерений изображены вертикальными отрезками. Длина внутреннего отрезка соответствует величине статистической погрешности, а длина внешнего отрезка – сумме статистической и систематической погрешностей в квадратурах. Сплошная кривая представляет результат феномологического фита Редже к данным, включая обмен помероном и реджеоном. Пунктирная кривая представляет предсказание вне x_{IP} диапазона, используемого при фитировании. Также приведены ранее опубликованные H1 FPS результаты (неокрашенные круги).

ра лидирующих протонов (LPS) коллаборации ZEUS. В пределах погрешностей не наблюдалось сильной зависимости отношения H1 FPS данных к ZEUS LPS данным от переменных x_{IP} , β , Q^2 .

При сравнении сечений $\sigma_r^{D(3)}$, полученных FPS и LRG методами, учитывалось разное определение сечений в этих двух случаях. При измерении сечения реакции $ep \rightarrow eXY$ LRG методом система Y включала продукты протонной диссоциации с массой $M_Y < 1.6$ ГэВ, тогда как при измерении сечения FPS методом, система Y определялась как протон. Отношение сечений, измеренных FPS и LRG методами, показано на Рис. 9 как функция Q^2 , β и x_{IP} . В пределах некоррелированных погрешностей (6%) нет существенной зависимости от Q^2 , β или x_{IP} . Величина отношения сечений LRG/FPS составила 1.18±0.01(стат.) ±0.06(некорр.сист.) ±0.10(норм.). Доминантный вклад в погрешностей, согласуется с величиной 1.23±0.03(стат.)±0.16(сист.), полученной в предыдущих опубликованных FPS и LRG данных. Объедине-

Рис. 9: Отношение сечений, полученных при использовании H1 LRG данных ($M_Y < 1.6\Gamma$ эВ, $|t| < 1\Gamma$ эВ²) и при использовании FPS данных ($M_Y < m_p$, $|t| < 1\Gamma$ эВ²). Приведены результаты для HERA-II периода (данный анализ) и для HERA-I периода (ранее опубликованные данные. Результаты показаны как функция (a) Q^2 , (b) β и (c) x_{IP} после усреднения по другим переменным. Экспериментальные погрешности измерений изображены вертикальными отрезками. Длина внутреннего отрезка соответвтвует статистической погрешности. Длина внешнего отрезка соответствует сумме статистической и некоррелированной систематической погрешностей в квадратурах. Неопределенность нормировки 8.5% видна как окрашенная полоса на рисунке (c). Пунктирная линия на рисунке (c) представляет результат фитирования данных в приведенной области при условии, что нет зависимости от x_{IP} .

ние ранее полученного результата с данным измерением приводит к более точному значению отношения сечений: $\frac{\sigma(M_Y < 1.6 GeV)}{\sigma(M_Y = m_p)} = 1.20 \pm 0.11$ (эксп.), где экспериментальная погрешность является комбинацией статистической, некоррелированной систематической и нормировочной погрешностей измерений.

Хорошее согласие между LRG (с учетом протонной диссоциации) и FPS данными подтверждает, что два метода дают согласующиеся результаты, несмотря на их очень разную систематику. Отсутствие зависимости отношения дифракционных сечений по переменным Q^2 и β , измеренных LRG и FPS методами указывает на универсальность КХД процессов в реакциях фотон-

Рис. 10: Приведенное сечение $x_{IP}\sigma_r^{D(3)}(\beta, Q^2, x_{IP})$ для $|t| < 1\Gamma \mathfrak{sB}^2$ как функция x_{IP} для различных значений β и Q^2 . Экспериментальные погрешности измерений изображены вертикальными отрезками. Длина отрезка соответствует сумме статистической и систематической погрешностей в квадратурах. Сплошная кривая представляет результат предсказания H1 2006 DPDF Fit B к LRG данным, уменьшенный на фактор 1.20 для коррекции на вклады от процессов протонной диссоциации. Полная неопределенность нормировки 6% не показана. Пунктирные кривые указывают на вклад померона в этой модели.

партонного рассеяния с образованием лидирующего протона в конечном состоянии и с дифракционной диссоциацией протона. Результат подтвердил, что вклады от протонной диссоциации в измерении LRG меняют Q^2 , β или x_{IP} зависимости незначительно и, поэтому не могут сильно влиять (до различия в нормировочном параметре) на дифракционные партонные плотности, извлеченные из LRG данных.

Зависимость сечения $\sigma_r^{D(3)}$ от переменных x_{IP} и Q^2 представлены на Рис. 10,11. Данные FPS сравнивались с предсказаниями КХД в следующем за лидирующим порядке теории возмущений (NLO), полученными из параметризации H1 2006 DPDF Fit B для описания H1 LRG сечений, включая вклады процессов с обменом помероном и реджеоном. Нормировка предсказаний H1 2006 DPDF Fit B уменьшена на фактор 1.20 для корректировки LRG сечений

Рис. 11: Приведенное сечение $x_{IP}\sigma_r^{D(3)}(\beta, Q^2, x_{IP})$ для $|t| < 1\Gamma$ эВ² как функция Q^2 для различных значений x_{IP} и β . Экспериментальные погрешности измерений изображены вертикальными отрезками. Длина отрезка соответствует сумме статистической и систематической погрешностей в квадратурах. Сплошная кривая представляет результат предсказания H1 2006 DPDF Fit В к LRG данным, уменьшенный на фактор 1.20 для коррекции на вклады от процессов протонной диссоциации. Полная неопределенность нормировки 6% не показана. Пунктирные кривые указывают на вклад померона в этой модели.

на вклады от процессов протонной диссоциации, как определено выше. На Рис. 10 виден рост сечения с увеличением x_{IP} , что указывает на существенный вклад реджеона в этой области. На Рис.11 показана зависимость сечения $\sigma_r^{D(3)}$ от Q^2 при фиксированных значениях x_{IP} и β . Нарушение скейлинга $(d\sigma_r^{D(3)}/d\ln Q^2 > 0)$ наблюдается по всему кинематическому диапазону, кроме самых высоких $\beta = 0.56$. Это наблюдение согласуется с предыдущими измерениями Н1 при использовании LRG метода и подразумевает большую глюонную компоненту в DPDF⁵. Исходя из предсказаний КХД, нарушение скейлинга может быть приписано померонному вкладу даже при больших значениях x_{IP} , где реджеонный вклад значителен. Зависимость сечения по Q^2 параметризована, фитируя данные при фиксированных значениях x_{IP} и

⁵DPDF - дифракционная функция распределения партонов (описывается уравнениями эволюции DGLAP).

 β функцией

$$x_{IP}\sigma_r^{D(3)}(\beta, x_{IP}, Q^2) = a_D(\beta, x_{IP}) + b_D(\beta, x_{IP})\ln(Q^2/1GeV^2) , \qquad (6)$$

так, что $b_D(\beta, x_{IP})$ является производной сечения по $\ln Q^2$ умноженного на x_{IP} . Этой функцией профитированы данные, для которых значения x_{IP} в центре бина удовлетворяют $x_{IP} \leq 0.035$ и для которых интервал по β содержит, по крайней мере, 3 точки. Вклад реджеонного обмена при $x_{IP} = 0.035$ меньше 15%. Получающиеся производные по $\ln Q^2$ показаны на Рис. 12. Хотя

Рис. 12: Производная сечения $x_{IP}\sigma_r^{D(3)}$ по $\ln Q^2$ для различных фиксированных значений x_{IP} и β . Экспериментальные погрешности измерений изображены вертикальными отрезками. Длина внутреннего отрезка соответствует статистической погрешности. Длина внешнего отрезка – сумме статистической и систематической погрешностей в квадратурах. Сплошная кривая представляет результат предсказания H1 2006 DPDF Fit B при $x_{IP} = 0.016$, уменьшенный на фактор 1.20 для коррекции на вклады от процессов протонной диссоциации.

данные по $\sigma_r^{D(3)}$ при различных значениях x_{IP} покрывают разные области по Q^2 , производные сечения по $\ln Q^2$ подобны, когда рассматриваются как функция β . Это подтверждает применимость гипотезы о факторизации процессов в протонной вершине для описания текущих данных. Результаты, полученные FPS методом, согласуются с предсказаниями, полученными из H1 2006 DPDF Fit B для H1 LRG данных (Рис. 12).

2.5 Заключение

В заключении приведены основные результаты работы, представленные к защите.

Измерены сечения $\sigma_r^{D(4)}(\beta, Q^2, x_{I\!P}, t)$ и $\sigma_r^{D(3)}(\beta, Q^2, x_{I\!P})$ в дифракционных процессах глубоконеупругого ер рассеяния при виртуальности фотона $4 < Q^2 < 110 \ \Gamma
m sB^2$ с лидирующим протоном в конечном состоянии с помощью FPS метода. Экспериментальная погрешность наиболее точных измерений составляет ~10%. Впервые было измерено сечение $\sigma_r^{D(3)}(\beta, Q^2, x_{IP})$ дифракционного глубоконеупругого ер рассеяния с лидирующим протоном в конечном состоянии при больших Q^2 ($120 < Q^2 < 700 \ \Gamma \Rightarrow B^2$). Измерены параметры померонной траектории $\alpha_{IP}(t) = \alpha_{IP}(0) + \alpha'_{IP}t$ и наклона сечения B_{IP} $(\frac{d\sigma}{dt} \sim e^{B_{IP}t})$. Значение померонного интерсепта $\alpha_{IP}(0) = 1.10 \pm 0.02$ (эксп.) ± 0.03 (модель) согласуется с измерениями $\alpha_{IP}(0)$, проведенными в процессах мягкого адрон-адронном рассеяния. В то же время наклон померонной траектории $\alpha'_{IP} = 0.04 \pm 0.02$ (эксп.)^{+0.08}_{-0.06}(модель) ГэВ⁻² в процессах дифракционного ГНР меньше, чем в мягких адронных взаимодействиях. Параметры померонной траектории не зависят от Q^2 в пределах погрешностей. Полученные значения α'_{IP} и B_{IP} характеризуют дифракционные процессы в жестком рассеянии. Получены новые экспериментальные свидетельства универсальности дифракционных партонных распределений в протоне и применимости гипотезы о факторизации процессов в протонной вершине для описания дифракционного ГНР. Проведено сравнение сечения $\sigma_r^{D(3)}(\beta, Q^2, x_{I\!P}),$ измеренного FPS (σ_{FPS}) и LRG (σ_{LRG}) методами и вычислен вклад процессов дифракционной диссоциации протонов в σ_{LBG} . Отношение $\sigma_{LBG}/\sigma_{FPS} =$ $1.20 \pm 0.11(exp.)$ не зависит от Q^2 и β , что указывает на универсальность КХД процессов фотон-партонного рассеяния в реакциях с образованием лидирующего протона в конечном состоянии и с дифракционной диссоциацией протона. Разработана методика реконструкции лидирующих протонов в спектрометре FPS с использованием технологии Roman Pot и сцинтилляционных фиберных детекторов.

Основные результаты диссертации опубликованы в следующих работах:

[1] P. Van Esch,..., V. Spaskov et al., Nucl. Instrum. Meth. A 446 (2000) 409 [hep-ex/0001046]

[2] F. Aaron,..., V. Spaskov et al. [H1 Collaboration], Eur. Phys. J. C 71 (2011)
 1578 [arXiv:1008.1731].