ПОЛУЧЕНИЕ ВЫСОКОИНТЕНСИВНЫХ ПУЧКОВ ИОНОВ ⁴⁸Ca, ⁴⁸Ti И ⁵⁴Cr НА ЦИКЛОТРОНЕ ДЦ-280

OBTAINING HIGH-INTENSITY BEAMS OF ⁴⁸Ca, ⁴⁸Ti, AND ⁵⁴Cr IONS ON THE DC-280 CYCLOTRON

<u>А. А. Лукьянов,</u> И.В. Калагин, В. А. Семин, К. Б. Гикал, А. А. Протасов, С. Л. Богомолов, Д. К. Пугачев, К. И. Кузьменков, П. И. Виноградов, И. Г. Пищальников, Д. С. Яковлев

<u>A. A. Lukianov</u>, A. A. Protasov, I. V. Kalagin, V. A. Semin, K. B. Gikal, S. L. Bogomolov, D. K. Pugachev, K. I. Kuzmenkov, P. I. Vinogradov, D. S. Yakovlev, I. G. Pishchalnikov

Объединённый институт ядерных исследований, город Дубна, Московская область, Россия

Joint Institute for Nuclear Research, Dubna, Moscow Region, Russia

Успешная эпоха синтеза сверхтяжелых элементов с использованием ионов 48 Са, бомбардирующих тяжелые актинидные мишени, завершилась. Для дальнейшего продвижения в область элементов с Z>118, в качестве частиц, бомбардирующих физическую мишень, необходимо использовать высокоинтенсивные ускоренные пучки более тяжелых нейтронно-избыточных изотопов, таких как 50 Ti, 54 Cr, 58 Fe, 64 Ni и других [1]. При этом использование каждого нового изотопа для получения ускоренного пучка требует исследований, направленных на оптимизацию режимов работы ускорителя.

В работе представлены результаты получения высокоинтенсивных пучков ионов ⁴⁸Ca, ⁴⁸Ti и ⁵⁴Cr на циклотроне ДЦ-280 [2].

Введение

Прямой синтез элементов с Z > 118 в реакциях слияния, связан с переходом к бомбардирующим ядрам тяжелее ⁴⁸Ca, т.к. возможности наработки на ядерных реакторах мишенного материала ограничены производством изотопов ²⁴⁹Cf. Ожидается, что сечения образования ядер с Z = 120 в реакции ²⁴⁸Cm + ⁵⁴Cr и ядер с Z = 119 в реакции ²⁴⁹Bk + 50 Ті будут примерно в 10-20 раз ниже сечения образования изотопов сверхтяжелых элементов (СТЭ) в экспериментах по синтезу 114 и 115 элементов в реакциях с ⁴⁸Са. Поэтому для набора достаточной статистики в экспериментах по синтезу новых и детальному изучению свойств известных изотопов трансактинидных элементов необходимо существенное увеличение интенсивности пучка бомбардирующих ионов, что и является основной задачей ДЦ-280.

На данный момент ускоритель отработал более 20000 часов. Ведутся успешные эксперименты по получению и изучению свойств ранее открытых элементов. Во время приостановки физических экспериментов или же обработки полученных данных по проведенным экспериментам, ускоритель переключается на работу, направленную на оптимизацию, отладку и модернизацию его систем. В том числе немаловажная часть времени без эксперимента посвящена подготовке к будущим физическим экспериментам – настройке и поиску оптимальных режимов работы ускорителя.

Параметры циклотрона ДЦ-280

Базовой установкой Фабрики сверхтяжелых элементов является ускоритель тяжелых ионов – изохронный циклотрон ДЦ-280 с проектной интенсивностью ускоренных пучков не менее 10 мкА частиц для ионов средних масс (А~50), что существенно превышает интенсивность пучков на предыдущих ускорителях. Циклотрон предназначен для ускорения пучков положительно заряжен-

Параметры циклотрона ДЦ-280

Параметры	Расчетные	Реализованные				
Потребляемая мощность	550 кВт*ч					
Источник ионов	DECRIS-PM – 14 ГГц	на В/В платформе (U _{max} =70кВ)				
Энергия инжекции	До 100 кэB/Z	до 76 кэB/Z				
A/Z	4÷7,5	$4,44~({}^{40}\mathrm{Ar}^{+9})\div6,86~({}^{48}\mathrm{Ca}^{+7})$				
Диапазон энергий	4÷8 МэВ/нуклон	3,81÷7,46 МэВ/нуклон				
Диапазон ускоряемых ионов	4-238	$12(^{12}C^{2+})-84(^{84}Kr^{14+})$				
Максимальные интенсивности	>10 мкА частиц	10,4 мкА частиц (⁴⁰ Ar ⁷⁺), 7,73 мкА частиц (⁴⁸ Ca ¹⁰⁺)				
Уровень магнитного поля	0,6÷1,3 Тл	0,8÷1,23 Тл				
Напряжение на дуантах	130 кВ	130 кВ				
Напряжение на дуантах флэт-топ системы	13 кВ	13 кВ				
Эффективность ускорения	>50 %	56,28 % (⁴⁸ Ca, 2,1 мкА частиц)				
Эмиттанс	менее 30 π мм · мрад	измерения не проводились				

ных ионов с отношением массы А к заряду Z от 4 до 7,5 в диапазоне энергий 4-8 МэВ/нуклон [3].

Особенностями циклотрона ДЦ-280 является наличие высоковольтной платформы, снижающей влияние пространственного заряда пучка ионов в канале инжекции, и флэт-топ системы, снижающей энергетический разброс пучка и улучшающий его вывод из циклотрона.

Основные параметры циклотрона ДЦ-280 представлены в табл. 1.

Получение пучков ⁴⁸Са

Для проведения экспериментов с ионами изотопа ⁴⁸Са на физических установках Фабрики СТЭ в качестве ускоряемой частицы был выбран ион ⁴⁸Ca¹⁰⁺, это обусловлено отсутствием примесных ионов при сепарации пучка из ЭЦР-источника (рис. 1) [4].

Результаты, описывающие эффективность трансмиссии пучка ионов кальция от ЭЦРисточника до канала транспортировки, представлены в табл. 2. Для уменьшения нагрузки на элементы циклотрона процесс получения высокоинтенсивных пучков ионов ⁴⁸Ca¹⁰⁺ был разбит на 3 этапа. Первоначальная настройка производилась при токе из ЭЦР-источника 5,5 мкА частиц. На последующих этапах было плавное увеличение интенсивности. Ускорение осуществлялось на частоте ускоряющего поля 8,3 МГц. Настройка ускорителя во всех экспериментах производилась на цилиндр Фарадея, установленный в канале транспортировки (T0FC2) [5].

Рис. 1. Спектр ⁴⁸Са, оптимизированный для ⁴⁸Са¹⁰⁺

Как видно из табл. 2, увеличение интенсивности инжектируемого пучка ионов сказывается не только на его прохождении через систему аксиальной инжекции, но, и на захват в ускорение, и на вывод из циклотрона. Это, в свою очередь, снижает общий процент эффективности трансмиссии пучка от источника ионов до цилиндра Фарадея на канале транспортировки. Данное снижение, вероятно, обусловлено как увеличением объемного заряда пучка, так и качеством настройки ускорителя. Максимально полученная интенсивность – 7,73 мкА частиц, что является рекордом для циклотронов на данный момент.

Таблица 1

Таблица 2

I рансмиссия пучка "Са" при разных интенсивностях из источника в
--

	Энергия (МэВ)	V	Інтенсивн	юсть (1	мкА час	тиц)					
		аксиальная инжекция		циклотрон		Ю	Эффективность (%)				
Ион		горизонтальная часть	вертикальная часть	R=400 mm	R= 1770 mm	Канал транспортировк	аксиальная нжекция	3aXBaT	нослогиин	Довывод	BCELO
		5,5	5,1	3,9	3,4	2,51	92,2	76,3	87,1	75,0	46,0
$^{48}Ca^{10+}$	245	11,2	9,7	6,9	6,1	4,50	86,7	71,1	88,1	73,3	39,8
		20,4	17,6	12,4	11	7,73	86,6	70,5	88,4	70,4	38,0

Для успешного проведения физических экспериментов мало только получить высокую интенсивность, важно её удержать длительное время. Так как стандартный физический эксперимент может длиться от одной недели до нескольких месяцев.

На рис. 2 представлен тренд интенсивности пучка ${}^{48}\text{Ca}{}^{10+}$ во время длительного эксперимента в июне 2022 г. на газонаполненном сепараторе DGFRS-2 при интенсивности ~4 мкА частиц. Колебания тока на цилиндре Фарадея T3FC7 (стоппер на физической установке) обусловлены не только интенсивностью пучка в канале транспортировки, но и количеством газа в камере сепаратора.

Рис. 2. Стабильность во времени ускоренного пучка ионов ⁴⁸Ca¹⁰⁺ высокой интенсивности при проведении физического эксперимента (~4 мкА частиц)

Получение пучков ⁵⁴Cr

Для ускорения ионов 54 Cr, аналогично 48 Ca, были выбраны ионы 54 Cr ${}^{10+}$ (рис. 3).

Рис. 3. Спектр 54 Cr, оптимизированный для 54 Cr $^{10+}$

Вся сложность получения ускоренных высокоинтенсивных пучков ионов ⁵⁴Сг заключается в том, что с увеличение подаваемой СВЧ мощности в ЭЦР-источник, значительно ухудшается качество пучка. Это, в свою очередь, снижает как эффективность трансмиссии пучка от источника ионов до вывода из ускорителя, так и общую интенсивность. Для снижения влияния процессов, ухудшающих качество пучка, произведены работы по поиску наиболее оптимального режима работы ЭЦР-источника, при которых обеспечивается баланс между СВЧ мощностью и количеством по-

Трансмиссия пучка ионов ⁵⁴Cr¹⁰⁺

Ион (MэB)	B)	I	Интенсив	ность (мк	А частиц	.)					
		аксиальная инжекция		циклотрона		И	Эффективность (%)				
	Энергия (Мэ	горизонтальная часть	вертикальная часть	R=400 mm	R= 1770 мм	Канал транспортировки	аксиальная инжекция	3aXBaT	циклотрон	ВЫВОД	BCELO
$^{54}Cr^{10+}$	269	7,98	6,87	4,93	4,37	3,8	86,1	71,8	88,6	87	47,6
$^{54}Cr^{10+}$	276	9,75	8,22	58,4	56,6	4,32	84,3	71,05	89,46	79,56	44,3

даваемого вещества. Результатом этих работ стало получение ускоренного выведенного пучка интенсивностью 4,32 мкА частиц при 9,75 мкА частиц из ЭЦР-источника. Результаты представлены в табл. 3.

Также проводились исследования стабильности пучка во времени без подстройки источника ионов и ускорителя. Полученные результаты отражены на рис. 4. Было удержано ~4 мкА частиц на протяжении 21 часа.

Рис. 4. Стабильность во времени ускоренного пучка ионов ⁵⁴Cr¹⁰⁺ высокой интенсивности (~4 мкА частиц) и общий ток ЭЦР-источника

Получение пучков ⁴⁸Ті

При проведении первоначальных работ по настройке ускорителя выбран титан природного изотопного состава, который включает в себя следующие изотопы: 46 Ti (7,95 %), 47 Ti (7,75 %), 48 Ti

(73,45 %), ⁴⁹Ti (5,51 %), ⁵⁰Ti (5,34 %). Преобладающим изотопом в данной смеси является ⁴⁸Ti. В дальнейшем, полученные результаты будут применены при работе с требуемым, для проведения экспериментов по синтезу СТЭ, изотопом ⁵⁰Ti.

Ионы ⁴⁸Ті были получены разными способами:

 - ⁴⁸Ti⁹⁺ получен с применением компаунда титана (CH3)5C5Ti(CH3)3 (метод MIVOC) [6];

 - ⁴⁸Ti¹⁰⁺ получен с применением титановой фольги и SF6.

Максимальная интенсивность ионов ⁴⁸Ti⁹⁺, полученная при использовании метода MIVOC – 2,12 мкА частиц ускоренного пучка при 4,74 мкА частиц из ЭЦР-источника.

Помимо обычной настройки на максимальную интенсивность, исследовалось влияние изменения СВЧ мощности, подаваемой в ЭЦР-источник, на прохождение пучка ионов ⁴⁸Ti⁹⁺ через тракт инжекции и ускорение. Полученные данные представлены в таблице 4. Настройка осуществлялась на частоте ускоряющего поля 8,8 МГц.

Из табл. 4 видно, что с увеличением СВЧ мощности растёт и интенсивность из ЭЦРисточника, но при этом ухудшается качество пучка, что негативно сказывается на его прохождении как через канал аксиальной инжекции, так и через циклотрон. Это подтверждает и резкое возрастание суммарного тока ЭЦР-источника.

Представленные результаты показывают, что эффективность инжекции и ускорения ионов ⁴⁸Ti⁹⁺ падает с увеличением инжектируемого тока. Это может быть обусловлено бо́льшим (до 5 мА), по сравнению с аргоном и кальцием, общим током ионов, что значительно увеличивает влияние пространственного заряда. В то же время, самое эффективное полное прохождение (44,7 %) является

Таблица 3

Таблица 4

		И	нтенсивн	юсть (мв	А части	ц)						
Ион СВЧ мощность (Вт)	BT)	аксиальная инжекция		цикл	отрон							
	СВЧ мощность (горизонтальная часть	вертикальная часть	R=400 мм	R= 1770 мм	Канал транспортировки	аксиальная инжекция	3aXBaT	циклотрон	Вывод	всего	
⁴⁸ Ti ⁹⁺	115	2,35	2,12	1,46	1,23	1,1	90,2	68,9	84,2	89,4	46,8	
⁴⁸ Ti ⁹⁺	168	2,91	2,46	1,77	1,43	1,2	84,5	72	80,8	83,9	41,2	
⁴⁸ Ti ⁹⁺	198	4,74	4,09	3	2,64	2,12	86,3	73,3	88	80,3	44,7	
⁴⁸ Ti ⁹⁺	294	5,07	4,11	2,67	2,1	1,66	81,1	65	78,7	79	32,7	
⁴⁸ Ti ¹⁰⁺	310	14,49	10,65	4,63	4,09	3,26	73,51	43,46	75,82	79,72	22,51	
⁴⁸ Ti ¹⁰⁺	290	10.95*	9,49*	4,33*	3,96*	3,16*	86,6*	45,6*	77,6*	86,2*	28,8*	

Зависимость эффективности инжекции и ускорения ионов ⁴⁸Ti⁹⁺ от СВЧ мощности, подаваемой в ЭЦР-источник

* – интенсивность с частично зажатым коллиматором (ICL1) на горизонтальной части аксиальной инжекции

Рис. 5. Спектр ⁴⁸Ti, оптимизированный для ⁴⁸Ti¹⁰⁺

исключением (при СВЧ мощности 198 Вт). Можем сделать вывод о том, что этот режим работы источника ионов и ускорителя является оптимальным для работы с компаундом титана.

Ускоренный пучок ионов ⁴⁸Ti¹⁰⁺ максимальной интенсивности (3,26 мкА частиц) с лучшей стабильностью удалось получить при использовании титановой фольги и SF6, CBЧ мощности 310 Вт (ток ионов ⁴⁸Ti¹⁰⁺ из ЭЦР-источника – 14,49 мкА частиц), при достаточно посредственном проценте

Рис. 6. Резонансная характеристика 48Ti¹⁰⁺ и 19F^{4+.}

(22,51 %) полного прохождения. Такой низкий процент обусловлен присутствием в инжектируемом пучке ионов $^{19}F^{4+}$ вплоть до начальных радиусов ускорения. На спектре 48 Ti (рис. 5) видно, что ионы 48 Ti¹⁰⁺ и $^{19}F^{4+}$ находятся рядом в одном пике, но в процессе ускорения в циклотроне на радиусе 600 мм происходит их сепарация (рис. 6). Немного улучшить эффективность прохождения (до 28,8 %) с незначительным снижением интенсивности позволяет частичное закрытие коллиматора на гори-

зонтальной части аксиальной инжекции, что способствует уменьшению количества примесных ионов в инжектируемом пучке.

Также проводились исследования стабильности пучка во времени без подстройки источника ионов и ускорителя. Полученные результаты отражены на рис. 7. Было удержано ~3 мкА частиц на протяжении 11 часов.

Рис. 7. Стабильность во времени ускоренного пучка ионов ⁴⁸Ti¹⁰⁺ высокой интенсивности (~3 мкА частиц) и общий ток ЭЦР-источника

Вывод

На циклотроне ДЦ-280 получены и стабильно удержаны во времени высокоинтенсивные пучки ионов ${}^{48}\text{Ca}{}^{10+}$, ${}^{48}\text{Ti}{}^{9+}$, ${}^{48}\text{Ti}{}^{10+}$ и ${}^{54}\text{Cr}{}^{10+}$. Основная цель эксперимента – оптимизация процесса получения пучков бомбардирующих ионов на циклотроне ДЦ-280 для проведения экспериментов по синтезу сверхтяжелых элементов с Z > 118.

Полученные результаты увеличивают возможности проведения экспериментов по синтезу новых и изучению ядерно-физических и химических свойств ранее открытых сверхтяжелых элементов.

Список литературы

1. Гульбекян Г. Г., Дмитриев С. Н., Иткис М. Г. и др. Запуск циклотрона ДЦ-280 – базовой установки Фабрики сверхтяжелых элементов ЛЯР ОИЯИ // Письма в ЭЧАЯ. 2019. Т. 16, № 6(225). С. 653–665 http://www1.jinr.ru/ Pepan_ letters/panl 2019 6/40 Gulbehyan.pdf.

2. Виноградов П. И., Протасов А. А., Сёмин В. А. и др. Влияние «FLAT-TOP» резонансной системы ускорителя ДЦ-280 на пучок заряженных частиц // ВМУ. Серия 3. Физика. Астрономия. 2023. № 1. 2310502. DOI: 10.55959/MSU0579-9392.78.2310502 http://vmu.phys.msu.ru/file/2023/1/ 2310502.pdf.

3. Dmitriev S., Itkis M., Oganessian Yu. Status and Perspectives of the Dubna Superheavy Element Factory // Proc. of the Nobel Symp. ©NS 160^a. EPJ Web Conf. 2016. V. 131. P. 08001. DOI:10.1057/ epiconf/201613108001. URL: https: // inspirehep.net/ files.

4. Gikal K. B., Bogomolov S. L., Ivanenko I. A. et al. Peculiarities of producing 48Ca, 48Ti, 52Cr beams at the DC-280 // RuPAC2021, Alushta, Russia https://inspirehep.net/ files/15a71803066eca600ee34 087a32538d0.

5. Semin V. A., Bogomolov S. L., Gikal K. et al. The experimental research of cyclotron DC-280 beam parameter // RuPAC2021, Alushta, Russia https:// inspirehep.net/files/ 7488d7a48d675ac6e46cd6a7cc05 7d48.

6. Логинов В. Н., Богомолов С. Л., Бондарченко А. Е. др. Получение интенсивных пучков ионов никеля, хрома, кремния и кобальта на циклотроне ДЦ-60 // Письма в ЭЧАЯ. 2020. Т. 17, № 2(227). С. 153–157 www1.jinr.ru/Pepan_letters/panl_2020_ 2/12 Loginov.pdf.