ИЗУЧЕНИЕ СТРУКТУРЫ ЯДЕР ⁹Ве, ^{10,11}В В ОБОЛОЧЕЧНОЙ МОДЕЛИ ДЕФОРМИРОВАННОГО ЯДРА

В.В. Самарин^{1,2}

¹ Государственный университет «Дубна» ²Объединенный институт ядерных исследований

E-mail: samarin@jinr.ru

Структура ядер ⁹Ве, ^{10,11}В рассчитана в оболочечной модели деформированного ядра. Определены форма и параметры потенциала среднего поля, обеспечивающие согласие с экспериментальными данными результатов расчета радиальных зарядовых распределений. Показано, что пространственная структура протонной и нейтронной плотностей вероятности ядер ⁹Ве, ^{10,11}В близка к «молекулярной» структуре из двух альфа-кластеров и от одного до трех «валентных» нуклонов.

Ключевые слова: оболочечная модель, деформированные легкие ядра, уравнение Шредингера

Распространенной моделью сильно деформированного ядра ⁹Ве является представление его в виде системы из двух α-кластеров и нейтрона, находящегося с большой вероятностью

между ними [1–3]. Для ядер ^{10,11}В структура в виде двух α-кластеров и нескольких «валентных» нуклонов рассмотрена в работах [3, 4]. В работе [5] показано, что двух α-частичный остов сохраняется в ядре 9 Be, в то время как в ядре 10 Be два лишних нейтрона «портят» α-частичную структуру. В основном состоянии ядро ¹⁰Ве является нормальным деформированным оболочечным ядром. Под влиянием лишних нуклонов в деформированных ядрах ^{10,11}В α-частичная структура также размывается, что делает обоснованным применение к ним оболочечной модели деформированного ядра. Расчет состояний протонов дает возможность определения распределения электрического заряда в ядре и подбора среднего поля, обеспечивающего его близость к экспериментальному распределению с одновременной близостью энергии ⁸ир самого верхнего занятого уровня к энергии отделения протона от ядра E_{sep}, взятой с противоположным знаком.

В оболочечной модели предполагается, что независимые протоны находятся в среднем поле ядра $U_p(\vec{r}) = U_N(\vec{r}) + U_C(\vec{r})$, имеющем ядерную (N) и кулоновскую (C) составляющие, на независимые нейтроны действует только поле $U_N(\vec{r})$. Дополнительный оператор спин-орбитального взаимодействия имеет вид

$$\hat{H}_{ls} = -\frac{bx_0^2}{2\hbar}\vec{\sigma}\Big[\big(\nabla U_{\rm N}\big)\hat{\vec{p}}\Big],\tag{1}$$

где $\vec{\sigma}$ — матрицы Паули, \vec{p} — оператор импульса, $x_0 = 1$ фм, b — феноменологическая безразмерная постоянная, для которой при расчетах было использовано значение b = 38 [6]. Энергия ε и две компоненты ψ_1 , ψ_2 спинорной волновой функции нуклона в аксиально симметричном среднем поле $U_p(\rho, z)$ деформированного ядра могут быть найдены при решении уравнения Шредингера в цилиндрической системе координат (ρ, ϕ, z) [7]. Нормированные условием

$$\iiint \left(\psi_1^* \psi_1 + \psi_2^* \psi_2 \right) dV = 1, \qquad (2)$$

волновые функции с квантовым числом $m_j = -j, -j + 1, ..., j$ проекции полного момента *j* на ось симметрии ядра O_Z представимы в виде

$$\psi_{1m_j}(\rho, z, \phi) = (2\pi)^{-1/2} f_{1m_j}(\rho, z) \exp\left[i(m_j - 1/2)\phi\right], \quad (3)$$

$$\psi_{2m_j}(\rho, z, \varphi) = \left(2\pi\right)^{-1/2} f_{2m_j}(\rho, z) \exp\left[i(m_j + 1/2)\varphi\right].$$
(4)

Схема решения уравнения Шредингера, основанная на разложении функций f_1 и f_2 по функциям Бесселя, предложена в работе [7]. Плотность вероятности дается выражением

$$P_{m_j}(\rho, z) = \left| \psi_{1m_j} \right|^2 + \left| \psi_{2m_j} \right|^2 = \frac{1}{2\pi} \Big[f_{1m_j}^2(\rho, z) + f_{2m_j}^2(\rho, z) \Big].$$
(5)

Форма ядерной части потенциала $U_{\rm N}$ среднего поля ядра была выбрана с учетом квадрупольной деформации ядра и сохранения остаточного влияния двух α -кластерного остова

$$U_{\rm N} = V_1(r, \cos\theta) + V_2\left(\sqrt{\rho^2 + (z - z_0)^2}\right) + V_2\left(\sqrt{\rho^2 + (z + z_0)^2}\right), (6)$$

где $\pm z_0$ — координаты центров α -кластеров. Функции $V_1(\vec{r})$, $V_2(r)$ были выбраны в форме потенциала Вудса-Саксона с дополнительным сглаживанием вблизи точки r = 0,

$$V_{1}(r,\cos\theta) = -V_{01} \left\{ 1 + 2\exp\left(-\frac{R_{1}(\theta)}{a_{1}}\right) \left[\cosh\left(\frac{r}{a_{1}}\right) - 1\right] \right\}^{-1},$$
 (7)

$$V_{2}(r) = -V_{02} \left\{ 1 + 2 \exp\left(-\frac{R_{2}}{a_{2}}\right) \left[\cosh\left(\frac{r}{a_{2}}\right) - 1\right] \right\}^{-1}, (8)$$

где $a_1 = 0.6 \text{ фм}, R_2 = 1.11 \text{ фм}, a_2 = 0.325 \text{ фм}.$ Уравнение поверхности деформированного ядра имеет вид [8].

$$R_1(\theta) = \tilde{R} \Big[1 + \beta_2 Y_{20}(\theta, 0) \Big], \tag{9}$$

где Y_{20} — сферическая гармоника, β_2 — экспериментальное значение параметра деформации, значение параметра \tilde{R} определяется из условия равенства объема деформированного ядра с массовым числом A объему сферического ядра радиуса R_0 ,

 $R_0 = r_0 A^{1/3}$, $r_0 = 1.05$ фм. Экспериментальные значения параметров квадрупольной деформации для ядер ⁹Be, ¹⁰B и ¹¹B составляют соответственно 0.89±0.03, 0.52±0.03 и 0.498±0.03 [9].

Кулоновская составляющая среднего поля $U_c(\vec{r})$ принималась равной полю однородно заряженного эллипсоида с параметром деформации β_2 и вычислялась путем численного интегрирования [10]. Форма (6) и параметры среднего поля (табл.) для протонов и нейтронов ядер ⁹Ве, ¹⁰В, ¹¹В были подобраны так, чтобы обеспечить близость энергий отделения нуклонов к экспериментальным значениям, а также близость радиального распределению.

В ядре ⁹Ве два протона заселяют нижележащее четное состояние $1/2^+$ с $|m_j| = 1/2$, еще два протона заселяют вышележащее нечетное состояние $1/2^-$, также с $|m_j| = 1/2$. Плотности вероятности для этих состояний показаны на рис. 1, на рис. 2а показана суммарная плотность распределения электрического заряда. Суммарная плотность распределения нейтронов в ядре ⁹Ве показана на рис. 26. Рассчитанные распределения плотности протонов и нейтронов дают картину структуры ядра ⁹Ве в виде двух близких частично перекрывающихся альфа-кластеров с размытыми границами.

Параметры потенциалов среднего поля и свойства ядер ⁹Ве, ^{10,11}В: ε_{up} — энергия верхнего заполненного уровня, E_{sep} — энергия отделения нуклона, $\langle R \rangle$ — среднеквадратичный зарядовый

Ядро,	V_{01}	V_{02}	z_0 ,	$-\epsilon_{up}$,	E _{sep}	$\left< R \right>$, ϕ M	
нук- лон	нук- лон МэВ		фм	МэВ		рас- чет	экспе- римент
⁹ Be, <i>p</i>	49.2	32.85	2.75	16.88	16.886	2.48	2.519 ±
							0.012
⁹ Be, <i>n</i>	42.78	30.85	2.75	1.67	1.665		
10 B, p	52.8	32.3	2.4	6.58	6.587	2.34	2.4277
							±
							0.0499
$^{10}B, n$	52.05	30	2.4	8.44	8.437		

радиус [6]

Окончание табл.

Ядро,	V_{01}	V_{02}	z_0 ,	$-\epsilon_{up}$,	E _{sep}	$\langle F$	к ⟩, фм
нук- лон	МэВ		фм	МэВ		рас- чет	экспе- римент
¹¹ B , <i>p</i>	59.1	30.8	2.4	11.23	11.229	2.27	2.406 ± 0.0294
¹¹ B, <i>n</i>	55.4	30	2.4	11.46	11.454		

Рис. 1. Плотность вероятности $P_{m_j}(\rho, z)$ (градации серого цвета в логарифмическом масштабе) для состояний протонов в ядре ⁹Ве: 1/2⁺ с энергией $\varepsilon = -22.43$ МэВ (*a*), 1/2⁻ с $\varepsilon = -16.88$ МэВ (δ) и линии уровня среднего поля $U_p(\rho, z)$ (*b*), указаны значения в МэВ

В ядрах ¹⁰В и ¹¹В по два протона заселяют нижележащие состояния $1/2^+$, $1/2^-$, а пятый протон находится в состоянии $3/2^-$ с $|m_j| = 3/2$. Плотности вероятности для этих состояний показаны на рис. 3, на рис. 4а показана суммарная плотность распределения электрического заряда. Суммарная плотность распределения нейтронов в ядре ¹¹В показана на рис. 4*б*. Рассчитанные распределения плотности протонов и нейтронов также дают картину структуры ядер ¹⁰В, ¹¹В в виде двух близких альфа-кластеров с более сильным перекрытием и с более размытыми границами по сравнению с ядром ⁹Ве (рис. 2).

Рис. 2. Плотности распределения протонов (*a*) и нейтронов (δ) (градации серого цвета в линейном масштабе) в плоскости *xOz* ядра ⁹Ве

Рис. 3. Плотность вероятности $P_{m_j}(\rho, z)$ (градации серого цвета в логарифмическом масштабе) состояний протонов в ядре ¹¹В: $1/2^+$ с энергией $\varepsilon = -31.62$ МэВ (*a*), $1/2^-$ с $\varepsilon = -22.99$ МэВ (*б*), $3/2^-$ с $\varepsilon = -11.225$ МэВ (*в*) и линии уровня среднего поля $U_p(\rho, z)$ (*г*), указаны значения в МэВ

Рис. 4. Плотности распределения протонов (*a*) и нейтронов (*б*) (градации серого цвета в линейном масштабе) в плоскости *xOz* ядра ¹¹В

Радиальные плотности *n* распределения заряда в ядрах ⁹Ве и ¹⁰В, ¹¹В показаны на рис. 5. Экспериментальные зарядовые распределения из работ [11, 12] доступны также в базе знаний NRV [6] Лаборатории ядерных реакций ОИЯИ. Достаточно хорошее согласие с экспериментальными данными результатов расчетов радиальных зарядовых распределений свидетельствует о достаточной точности определения структуры ядер ⁹Ве, ¹⁰В и ¹¹В.

Рис. 5. Радиальная плотность *n* распределения электрического заряда в ядрах ⁹Be (*a*), ¹⁰B (*б*), ¹¹B (*в*): экспериментальные данные (сплошные кривые) из работ [11] для ⁹Be и [12] для ¹⁰B, ¹¹B в сравнении с результатами расчетов (штриховые кривые)

Список литературы

- 1. Von Oertzen W., Freer M., Kanada En'yo Y. Nuclear clusters and nuclear molecules // Phys. Rep. 2006. V. 432. P. 43-113.
- 2. Freer M. The clustered nucleus cluster structures in stable and unstable nuclei // Rep. Prog. Phys. 2007. V. 70. P. 2149-2210.
- 3. Samarin V.V. Study of spatial structures in α -cluster nuclei // Eur. Phys. J. A 2022. V. 58:117. P. 1-23.
- 4. Самарин В.В. Изучение основных состояний ядер ^{10, 11}В, ^{10,11}С методом фейнмановских континуальных интегралов // Изв. РАН. Сер. физ., 2021. Т. 85. № 5. С. 655-661.
- Оглоблин А.А. Реакции передачи с ионами лития // Физика элементарных частиц и атомного ядра. 1972. Т. З. Вып. 4. С. 936-992.
- 6. База знаний по низкоэнергетической ядерной физике Nuclear Reactions Video, http://nrv.jinr.ru/nrv/

- Самарин В.В. Описание реакций слияния и нуклонных передач в нестационарном подходе и методе сильной связи каналов // Ядерная физика. 2015. Т. 78. С. 133-146.
- Загребаев В. И., Самарин В.В. Околобарьерное слияние тяжелых ядер. Связь каналов. // Ядерная физика. 2004. Т. 67. С. 1488-1502.
- Центр данных фотоядерных экспериментов. Карта параметров формы и размеров ядер, http://cdfe.sinp.msu.ru/cgibin/muh/radchartnucl.cgi?zmin=0&zmax=14&tdata=123456&selz= 3&sela=8
- Самарин В.В. Нуклонные состояния сильнодеформированных ядер и двойных ядерных систем в неосцилляторной двухцентровой модели // Ядерная физика. 2010. Т. 73. С. 1461-1473.
- Jansen I.A., Peerdeman R.Th., de Vries C., Nuclear charge radii of ¹²C and ⁹Be // Nucl. Phys A. 1972. V. 188. P. 337-352.
- Stovall T., Coldemberg J., Isabelle D.B. Coulomb form factors of ¹⁰B and ¹¹Be // Nucl. Phys. 1966. V. 86. P. 225-240.