

КОНФЕРЕНЦИЯ ПО ИСПОЛЬЗОВАНИЮ РАССЕЯНИЯ НЕЙТРОНОВ В ИССЛЕДОВАНИИ КОНДЕНСИРОВАННЫХ СРЕД (РНИКС-2025)

• — — • — — Томск, 29 сентября – 3 октября 2025 г.

МАГНИТНАЯ ФАЗОВАЯ ДИАГРАММА ПИРОКСЕНА НА ОСНОВЕ КОБАЛЬТА SrCoGe₂O₆

<u>К. А. Корчигин</u>¹, П. А. Максимов², С. В. Стрельцов¹, Х. Цао³, А. Подлесняк³, Ю. Суи⁴, А. Ф. Губкин¹*

 1 Институт физики металлов имени М. Н. Михеева, УрО РАН, Екатеринбург, Россия 2 Объединённый институт ядерных исследований, Дубна, Россия 3 Ок-Риджская национальная лаборатория, Ок-Ридж, США 4 Харбинский политехнический университет, Харбин, Китай

*E-mail: agubkin@imp.uran.ru

Пироксены широко распространены в природе и представляют собой целый класс природных минералов. Среди прочих можно выделить клинопироксены $_2O_6$ (– одноили двухвалентный металл, – двух- или трёхвалентный переходный металл, – Si или Ge) обладающие моноклинной кристаллической структурой с пространственной группо C2/с. Недавно было показано, что клинопироксен $SrCoGe_2O_6$, обладающий квазиодномерными зигзагообразными цепочками атомов Co ориентированными вдоль кристаллографического направления c (см. рисунок 1(a)), является перспективной платформой для изучения эффектов Китаевской физики [1].

Изучение макроскопических свойств $SrCoGe_2O_6$ на монокристаллическом образце показало, что при охлаждении в $SrCoGe_2O_6$ наблюдается два магнитных фазовых перехода: переход из парамагнитного состояния в магнитоупорядоченное при температуре Heeля $T_N = 9$ K и дополнительный переход неизвестной природы при температуре $T_t \sim 7$ K. Эти результаты противоречат магнитной фазовой диаграмме $SrCoGe_2O_6$, опубликованной в работе [2]. Таким образом, целью данной работы является уточнение магнитной фазовой диаграммы соединения $SrCoGe_2O_6$, методом нейтронной дифракции на монокристаллическом образце.

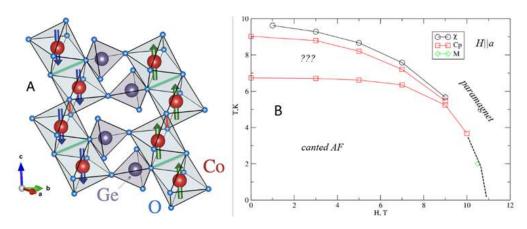


Рис. 1. (α) Модель магнитной структуры соединения $SrCoGe_2O_6$. Стронций не показан для наглядности. (b) Магнитная фазовая диаграмма соединения $SrCoGe_2O_6$, построенная по данным измерений магнитной восприимчивости и теплоемкости на монокристаллическом образце.

КОНФЕРЕНЦИЯ ПО ИСПОЛЬЗОВАНИЮ РАССЕЯНИЯ НЕЙТРОНОВ В ИССЛЕДОВАНИИ КОНДЕНСИРОВАННЫХ СРЕД (РНИКС-2025)

• — — • — — Томск, 29 сентября – 3 октября 2025 г.

Нейтрон-дифракционный эксперимент проводился на четырехкружном дифрактометре HB-3A, смонтированном на горизонтальном экспериментальном канале реактора HFIR (ORNL, USA) на монохроматичном пучке нейтронов с длиной волны $\lambda=1.54$ Å. Анализ данных нейтронной дифракции подтвердил реализацию антиферромагнитного упорядочения, описываемого магнитной пространственной группой $P2_1/c.1'C[C2/c]$ (№14.84), ниже температуры Нееля. Вместе с тем природа низкотемпературного фазового перехода пока остается невыясненной, т.к. наличие в образце двойника не позволяет получить высокое качество фита. Работа по поиску закона двойникования и учета вклада от двойника в интенсивности Брэгговских пиков продолжается.

Работа выполнена в рамках Госзадания Минобрнауки для ИФМ УрО РАН.

- 1. P. A. Maksimov, A. V. Ushakov et al., Proc. Natl. Acad. Sci. 121(43), e2409154121 (2024).
- 2. L. Ding et al., Journal of Materials Chemistry C. 4, 4236 (2016).