

КОНФЕРЕНЦИЯ ПО ИСПОЛЬЗОВАНИЮ РАССЕЯНИЯ НЕЙТРОНОВ В ИССЛЕДОВАНИИ КОНДЕНСИРОВАННЫХ СРЕД (РНИКС-2025)

→ → ◆ → → Томск, 29 сентября – 3 октября 2025 г.

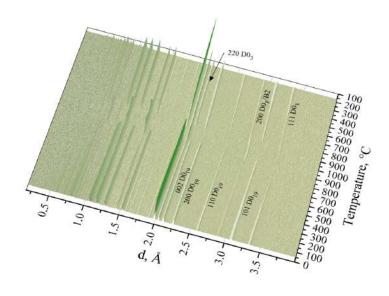
ЭВОЛЮЦИЯ СТРУКТУРНЫХ ФАЗ В $Fe_{75}Ga_{12.5}Ge_{12.5}$ В ШИРОКОМ ДИАПАЗОНЕ ТЕМПЕРАТУР: НЕЙТРОННОЕ ДИФРАКЦИОННОЕ IN SITU ИССЛЕДОВАНИЕ

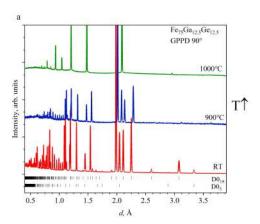
<u>А. С. Захарова</u>¹*, Т. Н. Вершинина¹, С. В. Сумников¹, А. М. Балагуров¹, И. С. Головин², Дж. Хао³, Х. Лю³, Л. Хе³

 1 Объединенный институт ядерных исследований, Дубна, Россия 2 Национальный исследовательский технологический университет «МИСиС», Москва, Россия 3 Spallation Neutron Source Science Center, Дунгуань, Китай

*E-mail: zakharova.anna.nano@gmail.com

В настоящей работе проведено исследование эволюции фазового состава сплава $Fe_{75}Ga_{12.5}Ge_{12.5}$ в условиях непрерывного нагрева до $1000^{\circ}C$ и последующего охлаждения при скорости изменения температуры $\pm 2^{\circ}C$ /мин. Измерения нейтронных дифракционных спектров проведены на дифрактометре общего назначения GPPD, действующего на импульсном источнике CSNS (Китай). Для набора *insitu* данных использовались 90° -детекторы с $\Delta d/d \approx 0.006$, индивидуальные спектры регистрировались каждые 5 мин.




Рис. 1. 3D карта температурной эволюции дифракционных спектров.

В исходном литом состоянии сплав $Fe_{75}Ga_{12.5}Ge_{12.5}$ содержит две структурные фазы с упорядочением по типу $D0_3$ и $D0_{19}$ (рис. 2a). Известно, что, фазовый состав сплава $Fe_{75}Ge_{25}$ в исходном литом состоянии является смесью Fe_3Ge ($D0_{19}$) и $B8_2$ [1], а $Fe_{75}Ga_{25}$ находится в однофазном $D0_3$ состоянии [2]. Таким образом, фазовый состав сплава $Fe_{75}Ga_{12.5}Ge_{12.5}$ представляет собой промежуточный вариант между фазовыми составами крайних состояний, соответствующих бинарным составами $Fe_{75}Ge_{25}$ и $Fe_{75}Ga_{25}$.

КОНФЕРЕНЦИЯ ПО ИСПОЛЬЗОВАНИЮ РАССЕЯНИЯ НЕЙТРОНОВ В ИССЛЕДОВАНИИ КОНДЕНСИРОВАННЫХ СРЕД (РНИКС-2025)

• → • → • → Томск, 29 сентября – 3 октября 2025 г.

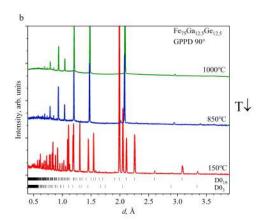


Рис. 2. Отдельные дифрактограммы, измеренные при нагреве (a) и охлаждении (b) для нескольких фиксированных температур. Штрихами обозначены положения пиков фаз при комнатной температуре (a) и при температуре 150°C (b).

Из 3D-карты эволюции дифракционных спектров (рис. 1) можно видеть, что в процессе нагрева по достижении 950°С имеет место переход $D0_3 \to B_2$, о чем свидетельствует исчезновение соответствующих сверхструктурных рефлексов. Также при этой температуре полностью исчезает фаза $D0_{19}$.

При охлаждении сверхструктурный пик (111) фазы $D0_3$ появляется при необычно высокой температуре (≈ 900 °C), что соответствует обратному переходу $B_2 \to D0_3$. При ≈ 870 °C появляется основной рефлекс (200) фазы $D0_{19}$, малоинтенсивные сверхструктурные пики (110), (101) этой фазы становятся хорошо различимы при температуре 850°C. При дальнейшем охлаждении до 150°C двухфазное состояние $D0_3 + D0_{19}$ сохраняется, но изменения интегральных интенсивностей пиков свидетельствуют о росте объемной доли $D0_3$ по сравнению с исходным литым состоянием (рис. 2b).

Дальнейшая обработка дифракционных спектров позволит получить информацию о температурном поведении параметров элементарных ячеек структурных фаз, их объемных долей и возможной модификации микроструктуры сплава.

- 1. A. M. Balagurov et.al., Phys. Rev. Mater. 7, 603 (2023)
- 2. I. S. Golovin et al., J. All. Comp. **675**, 393 (2016).