

КОНФЕРЕНЦИЯ ПО ИСПОЛЬЗОВАНИЮ РАССЕЯНИЯ НЕЙТРОНОВ В ИССЛЕДОВАНИИ КОНДЕНСИРОВАННЫХ СРЕД (РНИКС-2025)

• — → • — → Томск, 29 сентября – 3 октября 2025 г.

НЕЙТРОННЫЕ ДИФРАКЦИОННЫЕ ИССЛЕДОВАНИЯ ФУНКЦИОНАЛЬНЫХ СПЛАВОВ Fe-Ga-RE

<u>Б. Ержанов</u> 1,2,3 *, А. М. Балагуров 1 , С. В. Сумников 1 , Б. Мухаметулы 1,2 , В. В. Палачева 4 , И. С. Головин 4

 1 Объединенный институт ядерных исследований, Дубна, Россия 2 Институт ядерной физики Министерства энергетики Республики Казахстан, Алматы, Республика Казахстан 3 Казанский федеральный университет, Казань, Россия 4 Университет науки и технологий МИСиС, Москва, Россия

*E-mail: bekarys@jinr.ru

Сплавы на основе железа обладают многочисленными полезными функциональными свойствами, которые давно и широко используются в различных технологиях. Одним из них является «гигантская» магнитострикция, открытая в начале 2000-х годов в сплавах Fe—Ga с двумя максимумами магнитострикции в зависимости от содержания в них Ga, активно изучаемая в течение последних двух десятилетий [1]. Интересной структурной темой является изучение влияния легирования сплавов Fe—Ga редкоземельными элементами. Легирование сплавов Fe—Ga микроколичествами редкоземельных элементов (RE) приводит к улучшению магнитострикционных свойств этих функциональных сплавов. Физические и технические свойства таких функциональных сплавов во многом зависят от их специфической атомной структуры, объемного содержания различных структурных фаз и их микроструктурного состояния. Несмотря на многочисленные исследования, механизм формирования повышенной магнитострикции в сплавах Fe—Ga и его связь с атомным упорядочением до сих пор остается предметом дискуссий.

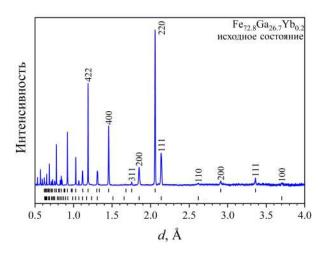


Рис. 1. Спектр $Fe_{73}Ga_{27}Yb_{0.2}$ сплава до его нагрева, на котором обнаружены фазы $D0_3$ (\sim 83%) и $L1_2$ (\sim 17%).

В широком температурном интервале проведены исследования эволюции фазового состава и микроструктуры литых магнитострикционных сплавов $\text{Fe}_{100-(x+y)}\text{Ga}_x\text{RE}_y$ ($x\approx 19$ ат% и 27 ат.%), легированных микродобавками ($y\approx 0.1$ – 0.5 ат.%) редкоземельных элементов (Dy, Er, Pr, Sm, Tb, Yb), всего 14 составов. Результаты получены в экспериментах с использованием дифракции нейтронов, проведенных на установке ФДВР

КОНФЕРЕНЦИЯ ПО ИСПОЛЬЗОВАНИЮ РАССЕЯНИЯ НЕЙТРОНОВ В ИССЛЕДОВАНИИ КОНДЕНСИРОВАННЫХ СРЕД (РНИКС-2025)

• — — • — — Томск, 29 сентября – 3 октября 2025 г.

(ОИЯИ, ИБР-2, Дубна) в двух режимах: с высоким разрешением по межплоскостному расстоянию и с высокой интенсивностью при непрерывном сканировании по температуре при нагреве до $\sim 900~$ °C и последующем охлаждении со скоростью $\pm 2~$ °C/мин [2]. Информация о микроструктурном состоянии сплавов получена с использованием методов Вильямсона-Холла и Пелашека, которые позволяют оценивать характерные размеры и распределение по размерам областей когерентного рассеяния путем анализа профилей дифракционных пиков.

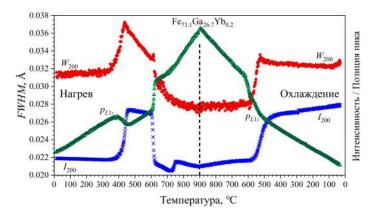


Рис. 2. Корреляция между резким увеличением интенсивности основного пика фазы $L1_2$ (I200), изменением его положения (p_{L1_2}), резким увеличением его ширины (W_{200}) при нагреве и охлаждении сплава $Fe_{73}Ga_{27}Yb_{0.2}$.

Нагрев и последующее охлаждение сплавов Fe₈₁Ga₁₉RE приводит к формированию кластеров фазы $D0_3$ с размерами в диапазоне (200 – 300) Å в матрице неупорядоченной фазы 2. Структурные перестройки в этих сплавах протекают в целом одинаковым образом, как в исходном сплаве $Fe_{81}Ga_{19}$. В сплавах $Fe_{73}Ga_{27}RE$ с содержанием RE от 0.1 до 0.5 ат.%, как последовательность образующихся и исчезающих структурных фаз при нагреве и охлаждении сплава, так и финальное состояние сплава зависят от типа и количества редкоземельного элемента. В этих сплавах обнаружен эффект подавления формирования фаз со структурами на основе ГЦК- $(L1_2/A1)$ и ГПУ-ячеек $(D0_{19}/A3)$ и стабилизации фаз со структурами на основе ОЦК-ячейки $(D0_3/A2)$ при легировании сплавов RE элементами. По-другому ведет себя сплав Fe₇₃Ga₂₇Yb_{0.2}, в котором в исходном состоянии обнаружено заметное присутствие фазы $L1_2$ в количестве (17%) (рис. 1). При его нагреве фазы со структурами на основе ГЦК-ячейки $(A1/L1_2)$ существуют вплоть до 900 °C, чего не наблюдается ни в одном другом составе. При охлаждении сплава с Yb равновесная фаза $L1_2$ с параметром ячейки $\alpha \approx 3.687$ Å также как в других составах становится основной при < 500 °C (рис. 2), но дополнительно к ней формируется фаза (ее доля \sim 20%) с такой же, как у $L1_2$ системой пиков, но с увеличенным до $\alpha \approx 3.708$ Å параметром ячейки.

Поиск структурного упорядочения в объеме сплава, соответствующего тетрагональной фазе $L6_0$, обнаруженной в ряде электронно-дифракционных исследований в Fe-Ga сплавах, не привел к положительному результату.

Работа выполнена в рамках проекта № 19-72-20080 РНФ.

- 1. E. M. Summers, T. A. Lograsso, M. Wun-Fogle, J. Materials Science 42, 9582-9594 (2007).
- 2. A. M. Balagurov and et al, Nuclear Inst. and Methods in Physics Research B 436, 263-271 (2018).