

КОНФЕРЕНЦИЯ ПО ИСПОЛЬЗОВАНИЮ РАССЕЯНИЯ НЕЙТРОНОВ В ИССЛЕДОВАНИИ КОНДЕНСИРОВАННЫХ СРЕД (РНИКС-2025)

• — → • — → Томск, 29 сентября – 3 октября 2025 г.

IN SITU ИССЛЕДОВАНИЕ ЭВОЛЮЦИИ ФАЗОВОГО СОСТАВА МЕТАСТАБИЛЬНОГО СПЛАВА Fe₆₆ Ga₃₄ В ХОДЕ ИЗОТЕРМИЧЕСКИХ ВЫДЕРЖЕК

<u>Т. Н. Вершинина^{1,2}, Б. Ержанов¹, Дж. Хао³, Х. Лю³, Л. Хе³, И. С. Головин², А. М. Балагуров^{1,2}</u>

¹Объединенный институт ядерных исследований, Дубна, Россия ²Университет науки и технологий МИСИС, Москва, Россия ³China Spallation Neutron Source, Дунгуань, Китай *E-mail: vershinina@nf.jinr.ru

Методом дифракции нейтронов проведена серия *insitu* измерений со сплавом $Fe_{66}Ga_{34}$, полученного кристаллизацией из расплава. Изучались закономерности поведения выделявшегося в сплаве интерметаллида $Fe_{13}Ga_9$ в процессе изотермических выдержек сплава. Особенностью сплава являлось присутствие в его исходном состоянии метастабильных фаз DO3 и $Fe_{13}Ga_9$ и равновесной фазы α - Fe_6Ga_5 .

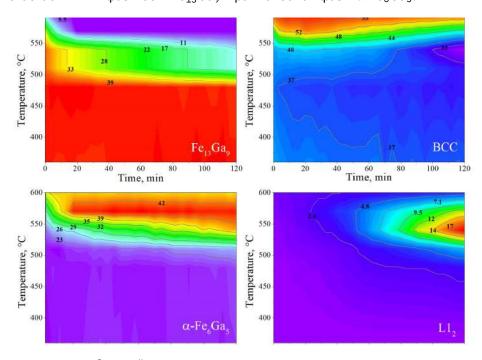


Рис. 1. Зависимость объемной доли присутствующих в сплаве $Fe_{66}Ga_{34}$ структурных фаз от температуры и времени отжига. Переход от красного цвета к фиолетовому соответствует уменьшению объемной доли фазы (показаны изолинии).

Измерения проведены на порошковом дифрактометре общего назначения GPPD, действующем на импульсном источнике нейтронов CSNS (Китай) [1]. Регистрация дифракционных спектров проводилась с использованием метода времени пролета тремя блоками детекторов, установленных при средних углах рассеяния 30°, 90° и 150°. Измерения проводились в условиях изотермических выдержек сплава при 360, 480, 510, 540, 570 и 600 °C в течение 120 минут каждая. Нагрев до заданной температуры осуществлялся со скоростью 10 °C/min. Дифрактограммы обрабатывались по методу Ритвельда с использованием программы MAUD.

КОНФЕРЕНЦИЯ ПО ИСПОЛЬЗОВАНИЮ РАССЕЯНИЯ НЕЙТРОНОВ В ИССЛЕДОВАНИИ КОНДЕНСИРОВАННЫХ СРЕД (РНИКС-2025)

• — → • — → Томск, 29 сентября – 3 октября 2025 г.

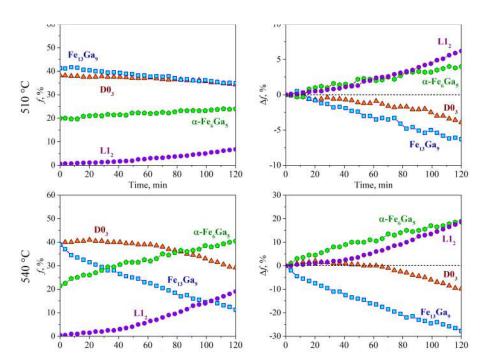


Рис. 2. Зависимости объемной доли (f) и ее прироста/убыли (Δf) отдельных фаз от времени изотермической выдержки.

В исходном состоянии объемные доли фаз составляют: $Fe_3Ga~(D0_3)-40\%$, $Fe_{13}Ga_9-40\%$, and α - $Fe_6Ga_5~20\%$. Вплоть до $480~^{\circ}$ С фазовый состав сплава не менялся. Первые изменения при $480~^{\circ}$ С зафиксированы на десятой минуте отжига – произошло выделение $L1_2$. Увеличение температуры изотермической выдержки привело к тому, что уже в процессе нагрева до заданной температуры начали происходить фазовые превращения, а именно, выделение $L1_2$, рост доли равновесной α - Fe_6Ga_5 , уменьшение долей $Fe_{13}Ga_9$ и фазы на основе ОЦК решетки, которая при температуре ниже $570~^{\circ}$ С представлена $D0_3$, а выше $570~^{\circ}$ С – B2. В ходе последующих изотермических выдержек эти процессы продолжались.

На основе количественных оценок фазового состава были построены зависимости объемной доли всех присутствующих в сплаве фаз от температуры и времени (рис. 1). Приведенные на рис. 1 данные наглядно демонстрируют взаимосвязь $D0_3/B2$ и $A1/L1_2$, а также $Fe_{13}Ga_9$ и α - Fe_6Ga_5 . Так минимум содержания $D0_3/B2$ совпадает с максимумом объемной доли $A1/L1_2$, а температура, при которой начинает исчезать $Fe_{13}Ga_9$, совпадает с началом роста объемной доли α - Fe_6Ga_5 . Детальное изучение зависимостей величины прироста/убыли отдельных фаз Δf (рис. 2) показывает, что увеличение объемной доли $L1_2$ не может происходить исключительно за счет убыли $D0_3/B2$, а уменьшение $Fe_{13}Ga_9$ не может осуществляться исключительно за счет роста доли α - Fe_6Ga_5 . Можно предположить, что происходит распад $Fe_{13}Ga_9$ на $L1_2$ и α - Fe_6Ga_5 .

Полученные в ходе настоящего исследования результаты, подтверждают ранее высказанное предположение [2] о необходимости предварительного выделения L1 $_2$ для реализации фазового превращения Fe $_{13}$ Ga $_9 \to \alpha$ -Fe $_6$ Ga $_5$.

- 1. L. He, S. Deng, F. Shen et. al., Nucl. Instrum. Meth. Phys. Res. A 1054, 168414 (2023).
- 2. T. N. Vershinina, N. Yu. Samoylova, S. V. Sumnikov et. al., J. Alloys Compd. 934, 167967 (2023).