УДК 538.97.539

БАЛАНС НЕЙТРОНОВ ПРИ ИХ ПРОХОЖДЕНИИ ЧЕРЕЗ МАГНИТНЫЕ НЕКОЛЛИНЕАРНЫЕ И НЕКОМПЛАНАРНЫЕ СЛОИСТЫЕ СИСТЕМЫ

© 2011 г. Ю. В. Никитенко, В. К. Игнатович

Лаборатория нейтронной физика имени И.М. Франка ОИЯИ, Дубна, Московская область, Россия Поступила в редакцию 19.04.2011 г.

Установлено нарушение принципа детального баланса поляризованных нейтронов при их зеркальном отражении и пропускании через двухслойную магнитно-неколлинеарную структуру в магнитном поле (некомпланарная система) и без него (неколлинеарная система), а также существование лево-правой асимметрии пропускания неполяризованных нейтронов некомпланарной системой.

ВВЕДЕНИЕ

Принцип детального баланса (ПДБ) в нейтронном рассеянии основывается на требовании, что рассеяние не должно нарушать тепловое равновесие нейтронов и вещества, если оно было достигнуто ранее. Другими словами, поскольку равновесное состояние соответствует максимуму энтропии, то рассеяние не должно уменьшать энтропию системы.

Газ нейтронов при тепловом равновесии при температуре *T* в магнитном поле *H* описывается распределением Максвелла–Больцмана

$$dW(k,v) = N \exp(-(\hbar^2 k^2 / 2m + v\mu H) / k_{\rm B}T) d^3k,$$
(1)

где *m*, μ — масса и магнитный момент нейтронов, $k_{\rm B}$ — константа Больцмана, $\nu = \pm 1$ — квантовое число, соответствующее проекции спина нейтрона на направление магнитного поля, *N* — нормировочная константа. Упростим (1), введя соотношения *T*' = $2mk_{\rm B}T/\hbar^2$ и *H*' = $2m\mu H/\hbar^2$:

$$dW(k, v) = N\exp(-(k^2 + vH')/T')d^3k,$$
 (2)

где $N = (\pi T')^{-3/2} \exp(-H'/T')/(1 + \exp(-2H'/T')).$

Далее будем рассматривать только упругое рассеяние, когда внутреннее состояние рассеивающей нейтроны структуры не изменяется. Зададим вероятность рассеяния как $w(\mathbf{k}, v \rightarrow \mathbf{k}', v')d^3k'$. Требование детального баланса (ДБ) записывается в следующей виде:

$$\exp[-(k^{2} + \nu H')/T]d^{3}kkw(\mathbf{k}, \nu \rightarrow \mathbf{k}', \nu')d^{3}k' =$$

=
$$\exp[-(k'^{2} + \nu' H')/T]d^{3}k'k'w \times \qquad (3)$$
$$\times (-\mathbf{k}', \nu' \rightarrow -\mathbf{k}, \nu)d^{3}k.$$

Из (3) следует ограничение на форму $w(\mathbf{k}, v \rightarrow \mathbf{k}', v')$:

$$kw(\mathbf{k}, \mathbf{v} \to \mathbf{k}', \mathbf{v}') =$$

$$= \exp[-[(k'^2 - k^2) + H'(\mathbf{v}' - \mathbf{v})]/T'] \qquad (4)$$

$$\times k'w(\mathbf{k}', \mathbf{v}' \to \mathbf{k}, \mathbf{v}).$$

Далее рассмотрим зеркальное отражение и связанное с ним пропускание нейтронов через слоистую структуру. Для них $w(\mathbf{k}, v \rightarrow \mathbf{k}', v')$ записывается в виде:

$$w(\mathbf{k}, \mathbf{v} \to \mathbf{k}', \mathbf{v}') = P(\mathbf{k}_{\perp}, \mathbf{v} \to \mathbf{k}'_{\perp}, \mathbf{v}')\delta(\mathbf{k}_{\parallel} - \mathbf{k}'_{\parallel}) \times \\ \times \delta(k^2 - k'^2 + H'(\mathbf{v} - \mathbf{v}')),$$
(5)

где $P(\mathbf{k}_{\perp}, \nu \to \mathbf{k}'_{\perp} \nu')$ – вероятность отражения (коэффициент отражения) $|R(\mathbf{k}_{\perp}, \nu \to \nu')|^2$ или пропускания (коэффициент пропускания) $|T(\mathbf{k}_{\perp}, \nu \to \nu')|^2$ нейтронов структурой; значки "||" и " \perp " соответствуют направлению движения нейтронов вдоль и перпендикулярно границам раздела в структуре. Подставляя (5) в (4), получим:

$$\mathbf{k}_{\perp} P(\mathbf{k}_{\perp}, \nu \to \mathbf{k}'_{\perp}, \nu') = \mathbf{k}'_{\perp} P(-\mathbf{k}'_{\perp}, \nu' \to -\mathbf{k}_{\perp}, \nu). \quad (6)$$

Покажем далее, что ПДБ, формулируемый в виде соотношения (6), нарушается в случае двухслойной магнитной структуры.

ПРОХОЖДЕНИЕ НЕЙТРОНОВ ЧЕРЕЗ ДВУХСЛОЙНУЮ СТРУКТУРУ

Распространение нейтронов в магнитном поле **H**' в направлении *Z* описывается волновой функцией $|\psi(z)\rangle$, которая является решением уравнения Шредингера:

$$[(d^2/dz^2 + k_0^2)\hat{I} - \mu \mathbf{\sigma} \mathbf{H}']|\psi(z)\rangle = 0,$$
 (7)

где \hat{I} – единичная 2 × 2 матрица, **\sigma** – вектор матриц Паули.

Рис. 1. Схема двухслойной структуры в магнитном поле \mathbf{H} : \mathbf{M}_1 , \mathbf{M}_2 и \mathbf{B}_1 , \mathbf{B}_2 – намагниченности и магнитные индукции в слоях 1 и 2; I_0 , $I_{\mathbf{R}}$, $I_{\mathbf{T}}$ – падающий, отраженный и прошедший потоки нейтронов.

Решением (7) является

$$|\psi(z)\rangle = \exp(ikz)|\xi\rangle,$$
 (8)

где $\hat{k} = (k_0^2 - \mathbf{\sigma} \mathbf{H}')^{1/2}$, $|\xi\rangle = \alpha |u\rangle + \beta |d\rangle$, $|u\rangle |u\rangle |u\rangle - co$ стояния с проекцией спина нейтрона вдоль ипротив направления вектора магнитного поля.

Отражение и пропускание нейтронной волны на границе раздела вакуума со средой с ядерным потенциалом $U_n = \hbar^2 u/2m$ и индукцией магнитного поля *B*' описывается матрицами амплитуд отражения \hat{r} и пропускания $\hat{t} = \hat{I} + \hat{r}$ [1–3]:

$$\hat{r} = (\hat{k} + \hat{k}')^{-1}(\hat{k} - \hat{k}'), \quad \hat{k}' = (k_0^2 - u - \sigma \mathbf{B}')^{1/2}.$$
 (9)

Отражение и пропускание нейтронной волны слоем вещества толщиной L описывается матрицами \hat{R} и \hat{T} [4]:

$$\hat{R} = \hat{r} - (\hat{I} - \hat{r})\exp(i\hat{k}L) \times \\ \times \hat{r}(\hat{I} - (\exp(i\hat{k}L)\hat{r})^2)^{-1}\exp(i\hat{k}L)(\hat{I} + \hat{r}),$$
(10)

$$\hat{T} = (\hat{I} - \hat{r})(\hat{I} - (\exp(i\hat{k}L)\hat{r})^2)^{-1}\exp(i\hat{k}L)(\hat{I} + \hat{r}).$$
(11)

Матрицы амплитуд отражения и пропускания нейтронов для двухслойной структуры, состоящей из слоев "1" и "2" (помечено индексом "12"), характеризуемых векторами индукции магнитного поля \mathbf{B}'_1 и \mathbf{B}'_2 , соответственно, записываются в виде:

$$\hat{R}_{12} = \hat{R}_1 + \hat{T}_1 \hat{R}_2 (\hat{I} - \hat{R}_1 \hat{R}_2)^{-1} \hat{T}_1, \qquad (12)$$

$$\hat{T}_{12} = \hat{T}_2 (\hat{I} - \hat{R}_1 \hat{R}_2)^{-1} \hat{T}_1.$$
(13)

Далее положим, что магнитное поле **H**', направленное вдоль оси *Z*, пренебрежимо мало ($\mathbf{H} \approx 0$). Тогда матрицы (9)–(13) являются функциями только от $\mathbf{\sigma B}'_1$ и $\mathbf{\sigma B}'_2$.

Известно, что любую функцию $F(\sigma \mathbf{B})$ можно представить в виде:

$$F(\mathbf{\sigma}\mathbf{B}) = F^{+}(B) + (\mathbf{\sigma}\mathbf{B}/B)F^{-}(B), \qquad (14)$$

где $F^{\pm}(B) = (F(B) \pm F(-B))/2, B = |\mathbf{B}|.$

В дальнейшем нам понадобится также знать следующее соотношение:

$$(I - F_1(\mathbf{\sigma}\mathbf{B}_1)F_2(\mathbf{\sigma}\mathbf{B}_2))^{-1} =$$

= $(I + F_2(\mathbf{\sigma}\mathbf{B}_2)F_1(\mathbf{\sigma}\mathbf{B}_1))/N,$ (15)

где при $B_1 = B_2 = B$ имеет место $N = 1 - (F^2(B) + F^2(-B))/2$.

ПДБ ДЛЯ СТРУКТУРЫ БЕЗ МАГНИТНОГО ПОЛЯ

Пусть нейтроны поляризованы вдоль оси Z, намагниченность первого слоя \mathbf{M}_1 направлена вдоль оси X, а второго слоя \mathbf{M}_2 – вдоль оси Y(рис. 1). Используем (15) и получим из (13) для матрицы амплитуды пропускания нейтронов двухслойной структурой следующее выражение:

$$T_{12} = (T(\sigma_y)T(\sigma_x) - G(\sigma_y)G(\sigma_x))/N, \qquad (16)$$

где $\hat{G}(\sigma) = \hat{T}(\sigma)\hat{R}(-\sigma).$

Далее преобразуем (16), используя (14), и получим:

$$\hat{T}_{12} = [A\hat{I} + B(\sigma_x + \sigma_y) - iC\sigma_z]/N, \qquad (17)$$

где $A = T^{+2} - G^{+2}$, $B = T^+T^- - G^+G^-$, $C = T^{-2} - G^{-2}$. Для матрицы пропускания в обратном направлении (помечено индексом "21") имеем:

$$\hat{T}_{21} = [A\hat{I} + B(\sigma_x + \sigma_y) + iC\sigma_z]/N.$$
(18)

Отсюда получаем, что спин-флип пропускание удовлетворяет ПДБ. Действительно, для коэффициента пропускания имеем:

$$|T_{12}(u \to d)|^2 = 2|B|^2 = T_{21}(d \to u)|^2 = 2|B|^2.$$
 (19)

В то же время не спин-флип пропускание не удовлетворяет ПДБ, если *A* и *C* не являются одновременно реальными или мнимыми. Имеем для коэффициентов пропускания:

$$|T_{12}(u \to u)|^{2} = |A - iC|^{2} \neq T_{21}(u \to u)|^{2} = |A + iC|^{2},$$

$$|T_{12}(d \to d)|^{2} = |A + iC|^{2} \neq T_{21}(d \to d)|^{2} = |A - iC|^{2}.$$

Теперь рассмотрим отражение нейтронов. Подставим (15) в (12) и получим:

$$\hat{R}_{12} = \hat{R}(\sigma_x) + [\hat{T}(\sigma_x)\hat{R}(\sigma_y)\hat{T}(\sigma_x) - R(B)R(-B)\hat{T}^2(\sigma_x)\hat{R}_1(-\sigma_x)]/N.$$
(21)

ПОВЕРХНОСТЬ. РЕНТГЕНОВСКИЕ, СИНХРОТРОННЫЕ И НЕЙТРОННЫЕ ИССЛЕДОВАНИЯ № 12 2011

Выражение (21) преобразуется к виду:

$$\hat{R}_{12} = A\hat{I} + B\sigma_x + C\sigma_y. \tag{22}$$

Из (22) для спин-флип коэффициентов отражения имеем:

$$|R_{12}(u \to d)|^2 = |B + iC|^2 \neq$$

$$\neq R_{12}(d \to u)|^2 = |B - iC|^2.$$
(23)

Таким образом, ПДБ не выполняется и в канале отражения, если *В* и *С* не являются одновременно реальными или мнимыми.

На рис. 2 приведены результаты расчетов коэффициентов отражения и пропускания нейтронов для структуры из двух слоев из кобальта. Видно (кривые 1, 2 и 5, 6), что ДБ действительно нарушен в большом диапазоне изменения волнового вектора нейтрона для не спин-флипного пропускания и спин-флипного отражения. В этой связи кажется, что если мы возьмем сосуд с неполяризованным нейтронным газом и разделим его на две половины двухслойной структурой, тогда нейтроны станут поляризованными. Однако это не случится, поскольку возможность появления поляризации нейтронов в одной из половин сосуда будет исключаться спин-флип процессом. Однако в фазовом пространстве появляются направленные потоки нейтронов. Это показывает, что энтропия такой системы становится ниже того значения, которое соответствовало бы случаю выполнения ПДБ.

БАЛАНС НЕЙТРОНОВ ДЛЯ СТРУКТУРЫ В МАГНИТНОМ ПОЛЕ

Двухслойную магнитную структуру, помещенную в магнитное поле, будем называть некомпланарной системой, имея в виду, что три ортогональные компоненты имеет вектор магнитной индукции, а не вектор намагниченности. Для простейшей некомпланарной трехслойной структуры, в которой один из слоев намагничен перпендикулярно плоскости слоя, перпендикулярная компонента индукции магнитного поля равна нулю, и структура является тождественной неколлинеарной структуре. В неколлинеарной структуре ПДБ нарушается для поляризованных нейтронов, но существует баланс потоков нейтронов в направлениях слева направо и справа налево для неполяризованных нейтронов (БЛП). Как будет показано ниже, для некомпланарной системы БЛП нарушается в случае неполяризованных нейтронов. В качестве параметров, характеризующих степень нарушения БЛП, выберем разность коэффициентов пропускания ΔT и разность коэффициентов потерь $\Delta\eta$ неполяризованного потока нейтронов:

$$\Delta T = \sum_{i,j = u,d} k_j \left(\left| T_{12}(i \to j) \right|^2 - \left| T_{21}(i \to j) \right|^2 \right) / k_i, \quad (24)$$

Рис. 2. Зависимость коэффициентов отражения и пропускания от перпендикулярной компоненты волнового вектора *k* для структуры $Co(M_x = 1 \text{ Тл}, L = 20 \text{ нм})/Co(M_y = 1 \text{ Тл}, L = 20 \text{ нм})/Co(M_y = 1 \text{ Тл}, L = 20 \text{ нм}) при H = 0: 1 - |T_{12}(u \to u)|^2 = |T_{21}(d \to d)|^2; 2 - |T_{12}(d \to d)|^2 = |T_{21}(u \to u)|^2 = |T_{12}(u \to d)|^2 = |T_{12}(d \to u)|^2 = |T_{12}(d \to u)|^2 = |T_{12}(d \to u)|^2 = |R_{12}(d \to d)|^2 = |R_{12}(u \to d)|^2$

$$\Delta \eta = 2 - \left[\sum_{i,j=u,d} k_j (|T_{12}(i \to j)|^2 + |R_{12}(i \to j)|^2)/k_i \right] - \left\{ 2 - \left[\sum_{i,j=u,d} k_j (|T_{21}(i \to j)|^2 + |R_{21}(i \to j)|^2)/k_i \right] \right\} =$$

$$= -\Delta T - \Delta R = \sum_{i,j=u,d} k_j [|T_{21}(i \to j)|^2 - |T_{12}(i \to j)|^2 + |R_{21}(i \to j)|^2 - |R_{12}(i \to j)|^2]/k_i.$$
(25)

На рис. 3 приведены результаты расчетов $\Delta T(k)$ и $\Delta \eta(k)$ для структур, отличающихся значением мнимой части ядерного потенциала взаимодействия U_i. Видно, что с увеличением мнимой части потенциала $(U_i = U_i(Co))$ для кривых 1 и 2 и $U_i = 100 U_i(Co)$ для кривых 3 и 4) значения ΔT и $\Delta \eta$ возрастают, при этом выполняется равенство $\Delta T = -\Delta \eta$. Это свидетельствует о том, что разность коэффициентов отражения $\Delta R = 0$. Таким образом, наличие мнимой части потенциала приводит к нарушению БЛП. Более того, поскольку мнимая часть потенциала определяется сечением процессов захвата и рассеяния нейтронов, в результате чего поток поглощенных нейтронов пропорционален мнимой части потенциала, то нарушение БЛП в каналах, связанных с зеркальным отражением нейтронов, можно связать с нарушением БЛП в каналах захвата и рассеяния нейтронов. Таким образом, нарушение БЛП, связанное с рассеянием

ПОВЕРХНОСТЬ. РЕНТГЕНОВСКИЕ, СИНХРОТРОННЫЕ И НЕЙТРОННЫЕ ИССЛЕДОВАНИЯ № 12 2011

Рис. 3. Зависимости $\Delta T(k)$ (кривые 1 и 3) и $\Delta \eta(k)$ (кривые 2 и 4) для структуры $Co(M_x = 1 \text{ Тл}, U_i, L = 20 \text{ нм})/Co(M_y = 1 \text{ Тл}, U_i, L = 20 \text{ нм})$ при H = 5 кЭ; $U_i = U_i(Co) -$ кривые 1 и 2; $U_i = 100U_i(Co) -$ кривые 3 и 4.

нейтронов на неоднородностях в слоистой некомпланарной системе, является признаком ее неоднородной структуры. Степень нарушения БЛП возрастает в резонаторной некомпланарной системе, в которой плотность нейтронов (а точнее взаимодействие) возрастает благодаря многократным отражениям нейтронной волны в среднем слое структуры. На рис. 4 приведены данные расчетов $\Delta T(k)$ и $\Delta \eta(k)$ для резонаторной структуры Co/Al/Co. Видно, что зависимости имеют резонансный характер. С увеличением толщины слоев кобальта с 20 до 40 нм абсолютные значения ΔT и $\Delta \eta$ значительно возрастают, что является следствием увеличения плотности нейтронов в слое алюминия. Видно, что ΔT и $\Delta \eta$ для структуры Co/Al/Co при L = 40 нм имеют тот же порядок величины, что и для структуры $Co(U_i = 100U_i(Co))/Co(U_i = 100U_i(Co))$, в то время как мнимый потенциал алюминия в 360 раз меньше мнимого потенциала кобальта.

ЗАКЛЮЧЕНИЕ

В работе показано, что в зеркальных каналах отражения и пропускания нейтронов для некол-

линеарной и некомпланарной систем имеет место нарушение ПДБ, а для некомпланарной системы еще и нарушение БЛП. Нарушение БЛП свидетельствует о наличии захвата или рассеяния нейтронов в структуре. В случае, если структура состоит из слабо захватных элементов, поток рассеянных нейтронов будет превышать поток нейтронов, захваченный ядрами вещества. Нарушение БЛП будет являться признаком неоднородной структуры некомпланарной системы.

Авторы благодарят А.А. Фраермана и О.Г. Удалова за обсуждение данной работы и высказанные замечания. Работа поддержана РФФИ (грант № 08-02-00467а).

СПИСОК ЛИТЕРАТУРЫ

- 1. Ignatovich V.K., Nikitenko Yu.V. // ЖЭТФ. 2010. Т. 137. № 3. С. 473
- 2. Игнатович В.К., Никитенко Ю.В., Фраерман А.А. // ЖЭТФ. 2010. Т. 137. № 5. С. 886.
- 3. Utsuro M., Ignatovich V.K. // Phys. Lett. A. 1998. V. 246. P. 7.
- 4. Аксенов В.Л., Игнатович В.К., Никитенко Ю.В. // Поверхность. Рентген., синхротр. и нейтрон. исслед. 2007. № 9. С. 40.

Balance of Neutrons in Their Passage through the Magnetic Noncollinear and Noncoplanar Layered Systems

Yu. V. Nikitenko, V. K. Ignatovich

The violation of detailed balance principle for polarized neutrons in the case of their passage through a twolayered structure is determined. The left-right nonpolarized neutron transmission asymmetry for a noncoplanar layered system is stated.

ПОВЕРХНОСТЬ. РЕНТГЕНОВСКИЕ, СИНХРОТРОННЫЕ И НЕЙТРОННЫЕ ИССЛЕДОВАНИЯ № 12 2011