В.А. ХАЛЯПИН 1,2 , А.Н. БУГАЙ 3

¹Калининградский государственный технический университет

²Балтийский федеральный университет им. И. Канта, Калининград

³Объединенный институт ядерных исследований, Дубна

РЕЖИМЫ РАСПРОСТРАНЕНИЯ ФИЛАМЕНТОВ В ВОЗДУХЕ

Проведено аналитическое исследование динамики пространственновременных импульсов, распространяющихся в воздухе в области аномальной дисперсии групповой скорости.

V.A. KHALYAPIN^{1,2}, A.N. BUGAY³

¹Kaliningrad State Technical University ²Immanuel Kant Baltic Federal University, Kaliningrad ³Joint Institute of Nuclear Researches, Dubna

MODES OF FILAMENT DISTRIBUTION IN THE AIR

An analytical study of the dynamics of space-time pulses propagating in the air in the region of anomalous group velocity dispersion was carried out

В настоящей работе предложен подход описания динамики оптических импульсов, распространяющихся в области прозрачности воздуха. Соответствующее уравнение, описывающее однонаправленное распространение сигнала (без учёта ионизации), имеет вид

$$\frac{\partial E(z,r,\tau)}{\partial z} - \frac{c}{2} \int_{0}^{\infty} \Delta_{\perp} E(z,r,\tau-\tau') d\tau' + \frac{2\pi}{c} \frac{\partial}{\partial \tau} \left(\int_{0}^{\infty} \chi(\tau') E(z,r,\tau-\tau') d\tau' + \int_{0}^{\infty} R(\tau') E^{2}(z,r,\tau-\tau') d\tau' \right) = 0, \quad (1)$$

Здесь E – электрическое поле, z – ось, вдоль которой распространяется сигнал, $\tau = t - z/c$, r – поперечная координата, $\chi(\tau)$ – функция отклика, связанная преобразованием Фурье с линейной восприимчивостью среды $\chi(\omega)$, $R(\tau)$ – нелинейно-оптический отклик среды [1]. Электрическое поле можно представить следующим образом

$$E(z,r,\tau) = \frac{1}{2}\psi(z,r,\tau)\exp\left[i\left(k\left(\omega_0\right)z - \omega_0\tau\right)\right] + c.c.,$$
(2)

где $k(\omega_0)$ — волновое число на центральной частоте сигнала ω_0 . Подставляя (2) в (1), можно получить уравнение для ψ . При этом мы не используем приближение медленно меняющейся огибающей. Будем считать, что условие синхронизма, обеспечивающее эффективную генерацию гармоник не выполняется и соответствующими эффектами мы будем в дальнейшем пренебрегать.

Анализ динамики параметров сигнала проводится на основе метода моментов [2] с пробной функцией

$$\psi = B \exp \left[-\frac{1}{2} \left(\frac{\tau - T}{\tau_p} \right)^2 - \frac{1}{2} \left(\frac{r}{R} \right)^2 + i \left(\phi + \Omega \left(\tau - T \right) - C \frac{(\tau - T)^2}{2\tau_p^2} - \frac{\varepsilon r^2}{2R^2} \right) \right], \quad (3)$$

где B – амплитуда сигнала, R – параметр, пропорциональный радиусу сигнала, ε – описывает кривизну волновых поверхностей, $2\tau_p$ – величина, пропорциональная длительности сигнала, C – модуляция частоты, ϕ – фазовая добавка, Ω – смещение частоты, T – добавка к групповой скорости. Все параметры зависят от координаты z. Моменты импульса определим согласно работе [2]. Дифференцируя выражения для моментов по координате z и используя уравнение для функции ψ , можно получить систему уравнений на параметры импульса.

Одно из окон прозрачности воздуха, в котором спектр импульса лежит в области аномальной дисперсии групповых скоростей, принадлежит диапазону $\lambda = 3.8$ - 4.1 мкм. Длины волн этого диапазона лежат близко к длине волны, соответствующей резонансному переходу молекулы углекислого газа [3] $\lambda_1 = 4.2$ мкм. В связи с этим необходимо рассматривать новый параметр $2\pi c \tau_p/(\lambda_1 - \lambda)$ и полное уравнение (1).

Список литературы

- 1. Желтиков А.М. // УФН. 1965. Т. 181. № 1. С. 33-58.
- 2. Santhanam J. // Opt. Commun. A. 2003. V. 222. P. 413-420.
- 3. Voronin A.A., Zheltikov A.M. // Scientific Reports. 2017. V. 7. P. 46111.