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Preface to the first English edition 11

Preface to

the first English edition

The Russian edition of the present book was published in June 20131.

It just happened that it was the time between two significant dates: in

2011 the Nobel Prize was awarded “for the discovery of the accelerated

expansion of the Universe through observations of distant Supernovae

and in 2013 the Nobel Prize was awarded for “the theoretical discovery

of a mechanism that contributes to our understanding of the origin

of the mass of subatomic particles. Both these formulations left the

questions about the explanations of these phenomena in the framework

of the fundamental principles open.

Our book is devoted to attempts to explain the observed long dis-

tances to the Supernovae and the small value of the Higgs particle mass

by the principles of affine and conformal symmetries and the vacuum

postulate. Both these phenomena are described by quantum gravity in

the form of joint irreducible unitary representations of the affine and

conformal symmetry groups. These representations were used in our

book to classify physical processes in the Universe, including its origin

from the vacuum. The representations of the Poincaré group were used

in the same way by Wigner to classify particles and their bound states.

We are far from considering our understanding of the “distant Su-

pernovae” and the “origin of the mass of subatomic particles” to be

conclusive, but we do not abandon hope that the present revised and

1Victor Pervushin, Alexander Pavlov: Principles of Quantum Universe. LAP LAMBERT Aca-

demic Publishing. 420 pp. (2013). Saarbrücken, Deutschland (in Russian)
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enlarged English edition encourages a deeper and worthier investiga-

tion of these open questions in the future.

The authors express their appreciation and gratitude to the coau-

thors of the papers on which this book is based. The authors are

grateful to I.V. Kronshtadtova and G.G. Sandukovskaya for proofread-

ing the text of the book. The authors are grateful to Academician V.A.

Matveev, Professors V.V. Voronov and M.G. Itkis for the support.

V.N. Pervushin

A.E. Pavlov

February, 2014

Dubna
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Preface to

the first Russian edition

This monograph is based on papers published during last 25 years

by the authors and lectures delivered by one of the authors (V.P.) at

the universities of Graz (Austria), Berlin, Heidelberg, Rostock (Ger-

many), New Delhi (India), Fairfield, the Argonne National Laboratory

(USA), the physical faculty of Moscow State University and in the

Joint Institute for Nuclear Research. The main goal of the authors is

to bring readers into the interesting and intriguing problem of descrip-

tion of modern experimental and observational data in the framework

of ideas and methods elaborated until 1974 by the founders of the mod-

ern relativistic classical and quantum physics. The distinction of our

approach from the standard ones consists in using conformal symme-

try: everywhere, from the horizon of the Universe to quarks, we use

scale-invariant versions of modern theories on the classical level with

dimensionless coupling constants, breaking scale invariance only at the

quantum level by normal ordering of products of field operators. The

method of classification of novae data, obtained in the last fifteen years

in cosmology and high–energy physics, essentially uses quantum the-

ories and representations. From here the title of our book originated:

“Principles of Quantum Universe”. Let us briefly present the content

of the book. In Introduction (Chapter 1) we discuss the evolution of

ideas and mathematical methods of theoretical physics during last five

centuries of its development from Copernicus to Wheeler, focusing on

the problem of classification of physical measurements and astrophys-
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ical observations. In Chapter 2 we present the problems of choosing

initial data and frames of reference in Newton’s mechanics, relativistic

theory of a particle, cosmological standard models of a miniuniverse.

Chapter 3 is devoted to principles of symmetries, widely used in mod-

ern theoretical physics. In Chapter 4 we acquaint readers with the

method of nonlinear realizations of groups of symmetries developed at

the end of the sixtieth of the last century, which applied for derivation

of the theory of gravitation by joint nonlinear realization of affine and

conformal symmetries. In Chapter 5 the generally accepted Dirac –

Bargmann’s Hamiltonian formulation is presented; it is adapted to the

gravitation theory, deduced in Chapter 4. In Chapter 6 a quantum

cosmological model is studied which appeared in the empty Universe

approximation with the Casimir energy dominance. In Chapter 7 the

procedure of quantization of gravitons in terms of Cartan’s forms is im-

plemented and the vacuum creation of affine gravitons is considered.

In Chapter 8 the operator of creation and evolution of the quantum

Universe is constructed as a joint irreducible unitary representation

of affine and conformal groups of symmetries. In Chapter 9 the cre-

ation of matter from vacuum is formulated in the considered model

of the quantum Universe with a discussion of conformal modification

of S-matrix as a consequence of solutions of constraint equations in

the joint theory of gravitation and the Standard Model of elementary

particles. In Chapter 10, within the frame of this model, we describe

the spontaneous chiral symmetry breaking in QCD via normal order-

ing of products of operators of the gluon and quark fields, and also

derive the quark–hadron duality and the parton model as one of the



Preface to the first Russian edition 15

consequences of conformal modification of S–matrix. In Chapter 11 a

conformal modification of the Standard Model of elementary particles

without the Higgs potential is presented. Chapter 12 is devoted to the

vacuum creation of electroweak bosons; and the origins of anisotropy

of temperature of CMB radiation and the baryon asymmetry of the

Universe are discussed. In Chapter 13 a cosmological modification of

the Schwarzschild solution and Newton’s potential is presented. In

Chapter 14, in the framework of this cosmological modification of the

Newton dynamics, the evolution of galaxies and their superclusters

is discussed. In Chapter 15 (Postface), the list of the results is pre-

sented and the problems that arise in the model of the quantum Uni-

verse are discussed. In conclusion, the authors consider as a pleasant

duty to express deep gratitude to Profs. A.B. Arbuzov, B.M. Bar-

bashov, D. Blaschke, A. Borowiec, K.A. Bronnikov, V.V. Burov, M.A.

Chavleishvili, A.Yu. Cherny, A.E. Dorokhov, D. Ebert, A.B. Efremov,

P.K. Flin, N.S. Han, Yu.G. Ignatiev, E.A. Ivanov, E.A. Kuraev, J.

Lukierski, V.N. Melnikov, R.G. Nazmitdinov, V.V. Nesterenko, V.B.

Priezzhev, G. Roepke, Yu.P. Rybakov, S.I. Vinitsky, Yu.S. Vladimirov,

M.K. Volkov, A.F. Zakharov, A.A. Zheltukhin for stimulating discus-

sions of the problems which we tried to solve in this manuscript. One

of the authors (V.P.) is particularly thankful to Profs. Ch. Isham and

T. Kibble for discussions of the problems of the Hamiltonian approach

to the General Relativity and for hospitality at the Imperial College,

Prof. S. Deser, who kindly informed about his papers on Conformal

theory of gravity, Prof. H. Kleinert for numerous discussions at the

Free University of Berlin, Prof. M. McCallum for discussion of physi-
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cal contents of solutions of the Einstein equations, Profs. H. Leutwyler

andW. Plessas for discussions of mechanisms of chiral symmetry break-

ing in QCD, Prof. W. Thirring for discussion about predictions yielded

by the General Relativity and the considered theory of gravity, con-

cerning motions of bodies in celestial mechanics problems. V.P. is

also thankful to his former post-graduate students and coauthors D.

Behnke, I.A. Gogilidze, A.A. Gusev, N. Ilieva, Yu.L. Kalinovsky, A.M.

Khvedelidze, D.M. Mladenov, Yu.P. Palij, H.-P. Pavel, M. Pawlowski,

K.N. Pichugin, D.V. Proskurin, N.A. Sarikov, S. Schmidt, V.I. Shilin,

S.A. Shuvalov, M.I. Smirichinski, N. Zarkevich, V.A. Zinchuk, A.G.

Zorin for helpful collaboration. The authors are grateful to Profs. S.

Dubnichka, M.G. Itkis, W. Chmielowski, V.A. Matveev, V.V. Voronov

for support of collaboration with international scientific centers, also

to B.M. Starchenko and Yu.A. Tumanov for presented photos. One

of the authors (A.P.) is grateful to the Directorate of JINR for hospi-

tality and possibility to work on the monograph. The results of the

investigations, presented in the book, are implemented under partial

support of the Russian Foundation of Basic Research (grants 96-01-

01223, 98-01-00101), nd also grants of the Heisenberg – Landau, the

Bogoliubov – Infeld, the Blokhintsev – Votruba and the Max Planck

society (Germany).

V.N. Pervushin

A.E. Pavlov

June, 2013

Dubna



Chapter 1

Introduction

1.1 What is this book about?

In his remarkable book1 the Nobel laureate in Physics Steven Wein-

berg considers problems of Genesis according to the laws of classical

cosmology. In the Epilogue he gives predictions of further life of the

Universe resulted from these laws. “However all these problems may be

resolved, and whichever cosmological model proves correct, there is not

much of comfort in any of this. It is almost irresistible for humans to

believe that we have some special relation to the universe, that human

life is not just a more-or-less farcical outcome of a chain of accidents

reaching back to the first three minutes, but that we were somehow built

in from the beginning. As I write this I happen to be in an aeroplane

at 30,000 feet, flying over Wyoming en route home from San Fran-

cisco to Boston. Below, the earth looks very soft and comfortable –

1Weinberg, S.: The First Three Minutes: A Modern View of the Origin of the Universe. Basic

Books, New York (1977).
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fluffy clouds here and there, snow turning pink as the sun sets, roads

stretching straight across the country from one town to another. It is

very hard to realize that this all is just a tiny part of an overwhelmingly

hostile universe. It is even harder to realize that this present universe

has evolved from an unspeakably unfamiliar early condition, and faces

a future extinction of endless cold or intolerable heat. The more the

universe seems comprehensible, the more it also seems pointless. But

if there is no solace in the fruits of our research, there is at least some

consolation in the research itself. Men and women are not content to

comfort themselves with tales of gods and giants, or to confine their

thoughts to the daily affairs of life; they also build telescopes and satel-

lites and accelerators, and sit at their desks for endless hours working

out the meaning of the data they gather. The effort to understand the

universe is one of the very few things that lifts human life a little above

the level of farce, and gives it some of the grace of tragedy”. One of

these acts of the tragedy is dramatic events of last years in cosmology

and physics of elementary particles: expanding of the Universe with

acceleration and the intriguingly small value of the Higgs particle mass.

These events throw discredit upon or leave without any hopefulness for

success a lot of directions of modern theoretical investigations.

In recent years, two independent collaborations “High Supernova”

and “Supernova Cosmology Project” obtained new unexpected data

about cosmological evolution at very large distances – hundreds and

thousands megaparsecs expressed in redshift values z = 1÷1.7 [1, 2, 3].

Surprisingly, it was found that the decrease of brightness with distance,

on an average, happen noticeably faster than it is expected accord-
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ing to the Standard cosmological model with the matter dominance.

Supernovae are situated at distances further than it was predicted.

Therefore, according to the Standard cosmological model, in the last

period, the cosmological expansion proceeds with acceleration. Dy-

namics, by unknown reasons passes from the deceleration stage to an

acceleration one of expansion. Observable data (see Fig.1.1) testify

that the Universe is filled mainly not with massive dust that can not

provide accelerating expansion but with unspecified enigmatic sub-

stance of other nature—“dark energy” [4]. Cosmic acceleration, at

the present time, is provided by some hypothetic substance called as

quintessence. This term is borrowed from ancient Greece when philoso-

phers constructed their world view from five elements: earth, water,

air, fire, and quintessence as a cosmic substance of celestial bodies. In

the modern cosmology, this substance means a special kind of cosmic

energy. Quintessence creates negative pressure (antigravitation) and

leads to accelerating expansion. In classical cosmology it is necessary,

once again, for rescue of the situation, to put Λ-term into the Einstein’s

equations. The problem is that the energy density of accelerating ex-

pansion at the beginning of the Universe evolution differs 1057 times

from the modern density. Up to now there is no such dynamical model

that should be able to describe and explain the phenomenon of such

dynamical inflation [5].

The crisis of the Standard cosmology enables us to reconceive its

principles. In this critical situation these new observational data (see,

for example, Figs. 1.1, 1.2, 1.3) look like a challenge for theoretical

cosmology. In the present book this challenge is considered as a pos-
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Figure 1.1: According to NASA diagram, 25% of the Universe is dark matter, 70%

of the Universe is dark energy about which practically nothing is known.

sibility to construct the cosmological model that can explain modern

observational facts at the level of well-known fundamental principles of

relativity and symmetry without whatever dynamical inflation mech-

anism.

Let us recall that the theory of gravitation and corresponding cos-

mological models of the Universe are based on the classical papers of

Einstein, Hilbert, Weyl, Dirac, Fock and other researchers, who postu-

lated geometrical principles, including scale and conformal symmetries.

In particular, the Lagrangian of Weyl’s theory is an invariant with re-

spect to conformal transformations [6]. P. Dirac in the year 1973 con-

structed a conformal gravitation theory where scale transformations

of a scalar dilaton compensated scale transformations of other fields
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Figure 1.2: Map of Cosmic Microwave Background was lined up according to the

data from the Wilkinson Microwave Anisotropy Probe (WMAP) apparatus. Previ-

ously, the first detailed map was done by data according to the COBE apparatus,

however, its resolution is essentially (35 times) inferior to the data obtained by

WMAP. The WMAP data show that the temperature distribution of Cosmic Mi-

crowave Background by the celestial sphere has definite structure, its fluctuations

are not absolutely random. The angle anisotropy of Cosmic Microwave Background

is presented, id est dependence of photon temperature of directions of their coming.

The average photon temperature T0 = 2, 725 ± 0, 001 , and the dipole component

δTdipole = 3, 346 are subtracted. The picture of temperature variation is shown at

the level δT ∼ 100μ, so δT/T ∼ 10−4 ÷ 10−5 (see http://map.gsfc.nasa.gov).

[7]. In the framework of this theory of gravitation, the volume of the

Universe conserves during its evolution and the forthcoming collapse,

inevitable in the Standard cosmology, does not occur. The Conformal

gravitation theory with a scalar dilaton is derived from the finite group

of symmetry of initial data via the method of Cartan’s linear forms [8].

The Conformal gravitation theory in terms of Cartan’s forms, keep-

ing all achievements of the General Relativity for describing the solar
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Figure 1.3: Large-scale structure of the Universe represents a complex of sufficient

plane “leaves” divided by regions where the luminous matter is practically absent.

These regions (voids) have sizes on the order of hundred megaparsecs. At the scales

on the order of 300 megaparsecs the Universe is practically homogeneous.

system, admits a quantum formulation by quantization of initial data

immediately for these linear forms. A remarkable possibility is given to

test predictions of such a quantum theory of gravitation and its abil-

ity to describe the new data presented by observable cosmology and

solutions of its vital problems.

The goal of the present book is a consistent treatment of groups of

symmetries of initial data, Cartan’s method of linear forms, derivation

of the Conformal gravitation theory, its Hamiltonian formulation and

quantization, and also the description and interpretation of the new

observational data in the framework of the quantum theory.
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1.2 Program

One of the main problems of theoretical physics is a classification of ob-

servational and experimental data which form a space of all events (as

an assembly of all measurements). Measurable and observational data

have always the primary status everywhere. In the process of analysis

of these data also theoretical concepts are arising, such as the Faraday

– Maxwell fields and groups of symmetry of their equations, identified

with the laws of nature. Classification of observational and experimen-

tal data, according to Copernicus, turned out to be sufficiently simple

in some definite frame of reference. Indeed, classification of planet tra-

jectories is appreciably simplified in the frame of reference, connected

with the Sun, called heliocentric. Copernicus’ simplification consider-

ably helped Galileo, Kepler, and Newton in formulation of laws of the

celestial mechanics2.

In cosmology, there are also two privileged frames of reference: the

cosmic one, where the Universe with matter is created which is memo-

rized by temperature of Cosmic Microwave Background, and the other

frame of reference of an observer (Earth frame) with its devices [9]. Let

us remember a hierarchy of motions in which our planet is involved as

2In formal, all frames of reference are equal. By means of authors (Einstein, ., Infeld, L.: The

Evolution of Physics: From Early Concepts to Relativity and Quanta. Touchstone, New York

(1967)), if people understood relativity, there was not such dramatic, in the history of mankind,

changing of world outlook, where the Earth was the center of the world. It is not hard to guess that

the following, after heliocentric, was the galaxy-centric frame of reference. But, in every concrete

problem, there is the privileged frame of reference, in which the contents of the problem are clarified.
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it seems in our time3. In the galactic frame of reference4 l = 900,

b = 00 the Earth rotates around the Sun with the velocity 30 km/sec;

the Sun rotates with the velocity 220 km/sec around the center of our

galaxy. In turn, the center of our galaxy (Milky Way) moves with the

velocity 316 ± 11 km/sec to the center of the local group of galaxies5

in direction l = (93±2)0, b = (−4±1)0. Finally, we get the velocity of

the galactic center relative to the center of the local group of galaxies

is 91 km/sec in direction l = 1630, b = −190.

The centers of our galaxy and Andromeda Nebula (galaxy 31) under

action of mutual gravitational attraction come close with the velocity

120 km/sec. Suppose, that our galaxy and Andromeda contribute sub-

stantial loading to the common mass of the local group and the mass

of our galaxy two times less than the mass of Andromeda, we get that

our galaxy moves to Andromeda with the velocity 80 km/sec. A mea-

surement of dipole anisotropy of Cosmic Microwave Background radia-

tion (CMB radiation), implemented by the American cosmic apparatus

COBE, established that the velocity of the Sun relative to CMB ra-

diation is order (370 ± 3) km/sec in direction l = (266, 4 ± 0, 3)0,

3Chernin, .D.: Cosmic vacuum. Physics–Uspekhi. 44, 1099 (2001).

4Zeroth latitude (b) in galactic system corresponds to galactic equatorial plane, and zeroth

longitude (l) corresponds to direction to the center of the galaxy, located in Archer. Galactic

latitude is measured from galactic equator to North (+) and to South (-), galactic latitude is

measured in direction to West along galactic plane from galactic center.

5Local group of galaxies includes the Milky Way, Large and Small Magellanic Clouds, Giant

galaxy Andromeda Nebula (31) and approximately 2-3 dozens of dwarf galaxies. For information:

overall size of local groups is order 1 pc=3,0856 ×1019 km. 1 parsec (pc) is a distance, with whom

an object of size 1 astronomical unit (1 a.u.=1, 5 × 1013 m is a mean distance from the Earth to

the Sun) is seen at an angle 1 second: 1 pc= 2, 1× 105 a.u. = 3,3 (l. yr.). A light year (l. yr.) is a

distance, traversed by photon per one Earth’s year.
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b = (48, 4 ± 0, 5)0. This anisotropy is responsible for motion of the

observer relative to “global (absolute)” frame of reference. Inasmuch

as movement of the Sun relative to the local group and its movement

relative to the “absolute” frame of reference connected with the Cos-

mic Microwave Background radiation have, practically, opposite direc-

tions, the velocity of the center of the local group of galaxies relative

to the CMB radiation happens to be sufficiently large: approximately

(634±12) km/sec in direction l = (269± 3)0, b = (48, 4± 0, 5)0.

In summary, the center of the local groups moves in the following

directions:

a) in direction to Virgo l = 2740, b = 750 with the velocity 139

km/sec;

b) in direction to the Great Attractor l = 2910, b = 170, disposed

at the distance 44 pc, with the velocity 289 km/sec;

c) in direction opposite to the local empty region, l = 2280, b =

−100 with the velocity 200 km/sec.

Taking into account all these movements, one can affirm that the

local group moves with the velocity 166 km/sec in direction l = 2810,

b = 430. Inasmuch as errors of defining of individual velocities are in

the order of 120 km/sec, the local group is able to be, practically, at

the rest relative to far galaxies.

At the Beginning, at the instant of the Universe creation from vac-

uum, there were neither massive bodies, nor relic radiation, there was

chosen a frame of reference, comoving to the velocity of the empty local

element of volume. Such frame was introduced by Dirac in 1958 year,

as the condition of a minimal three-dimensional surface, imbedded into
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four-dimensional space-time [10].

In all cases in passing from the cosmic frames of reference to the

frame of reference of devices of an observer, it is necessary to have

transformations of physical observables, including, the interval itself.

These transformations require the formulation of the General Relativ-

ity in the tetrad formalism.

In the present book we demonstrate that the choice of a frame of

reference, co-moving to the velocity of the empty local element of vol-

ume, simplifies the classification of observational data on redshifts of

spectral lines of far Supernovae and helps us to formulate the princi-

ples of symmetry of the unified theory of interactions and quantum

mechanisms of their violations, as well as, in olden times, the Coperni-

cus frame helped Newton to formulate the laws of celestial mechanics.

The observable data on redshifts in the frame of reference of an empty

volume testify about conformal symmetry of laws of gravitation and

Maxwell electrodynamics6 and dominance of Casimir vacuum energy

for empty space in the considered model of the Universe.

When we speak of the nature of dark energy and dark matter that is

unknown, we mean that these quantities are not included into the clas-

sification of fields by irreducible representations of the Lorentz group

and the Poincaré group in some frame of reference. The theme of

6Conformal invariance of the Maxwell equations was proved for the first time in papers: Bateman,

H.: The conformal transformations of a space of four dimensions and their applications to geometric

optics. Proc. London Math. Soc. 7, 70 (1909); Cuningham, E.: The principle of relativity in

electrodynamics and an extension of the theory. Proc. London Math. Soc. 8, 77 (1909). P.A.M.

Dirac in his paper (Dirac, P.A.M.: Wave equations in conformal space. Ann. of Math. 37, 429

(1936)) resulted alternative, more simple proof.
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the present work is to describe observational and experimental data

on redshifts of Supernovae, including dark energy and dark matter, in

the framework of the well-known classification of fields by irreducible

representations of the Lorentz, Poincaré [11] and Weyl [12] groups.

Fundamental physical equations (Newton, Maxwell, Einstein, Dirac,

Yang – Mills, Weinberg – Salam – Glashow, et al.) are able to treat as

invariant structural relations of the corresponding group of symmetry

of initial data. The complete set of initial data includes all possible

measurements in the field space of events [13]. The question now arises

of what is more fundamental: equations of motion called the laws of

nature that are independent on initial data, or finite-parametric groups

of symmetry of frames of reference of initial data?

There is a point of view that is developed according to which all

physical laws of nature can be obtained from the corresponding group

of symmetry of initial data. The history of frames of reference of ini-

tial data, starting from Ptolemy and Copernicus, is considerably more

ancient than the history of equations of motion. Let us overlook for

the historical sequence of using in physics the groups of transforma-

tions of initial data with the finite number of parameters. Galileo

group assigns transitions in the class of inertial frames of reference;

the six-parametric group of Lorentz describes rotations and boosts in

Minkowskian space; the Poincaré group, including Lorentz group as its

subgroup, is complemented by four translations in the space-time; the

affine group of all linear transformations consists of Poincaré group

and ten symmetrical proper affine transformations; Weyl group in-

cludes the Poincaré group complimented by a scale transformation;
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the fifteen-parametric group of conformal transformations includes the

eleven-parametric Weyl group and four inversion transformations.

After creation of the special theory of relativity, for a decade, Al-

bert Einstein searched for the formulation of the theory of relativity,

extending the Poincaré group of symmetry of the Special Relativity to

a group of general coordinate transformations. The searching for co-

variant description led Einstein to the tensor formulation of his theory.

So, he named the theory of gravitation as the General Relativity. This

name reflects the general heuristic principle of the relativistic theory

of gravity. After the theory was constructed, in the following period of

re-thinking of its foundation7, the group of general coordinate transfor-

mations gained a status of the gauge group of symmetry as in modern

gauge theories. The group of general coordinate transformations in

the General Relativity is used for descriptions of interactions, while

the Poincaré group serves for classification of free fields.

For definition of the variables which are invariant relative to diffeo-

morphisms, and thereby, elimination of gauge arbitrariness in solutions

of equations of the theory, it is necessary to separate general coordi-

nate transformations (which play the role of gauge ones) from the

Lorentzian ones. The solution of the problem of separation of general

coordinate transformations from relativistic transformations of systems

of reference was suggested by Fock [14] in his paper on introduction

7According to V.A. Fock (Fock, V.A.: The Theory of Space, Time and Gravitation. Pergamon

press, London (1964)), principles, laid in the basis of the theory are following. The first basic idea

is to unify space and time in one whole space. The second basic idea is to reject uniqueness of

Minkowskian metrics and to pass to Riemannian metrics. The metric of space–time depends on

events that take place in space–time, in first order, from the distribution and motion of masses.
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of spinor fields in the Riemannian space. In fact, instead of a metric

tensor, Fock introduced tetrads defined as “square root” of the metric

tensor, with two indices. One index relates to Riemannian space, be-

ing the base space, and the second – to a tangent Minkowskian space.

Tetrad components are coefficients of decomposition of Cartan’s forms

via differentials of coordinate space. These differential forms, by def-

inition, are invariants relative to general coordinate transformations,

and have a meaning as measurable geometric values of physical space,

and integrable non-invariant differentials of coordinate space consid-

ered as auxiliary mathematical values of the kind of electromagnetic

potentials in electrodynamics.

There is a new approach based on Ogievetsky’s theorem [15] where

the formulation of the theory of gravity on the basis of finite-parametric

groups is essentially simpler than on the basis of the group of arbitrary

coordinate transformations.

The novel approach can be based on some more elementary objects

of the space–time. These elementary objects are fundamental repre-

sentations of conformal transformations group which Roger Penrose

associated with twistors. A space–time is constructed as adjoint rep-

resentation of conformal group by means of twistors, just as pions are

constructed as adjoint representations of the quark symmetry group in

the theory of strong interactions. In physics of strong interactions there

are energies, wherein pions are disassociated into elementary quarks.

From this analogy it follows that a space–time also is able to be disas-

sociated into elementary twistors under sufficient energies. In the next

sections, on examples of Einstein’s General Relativity, we present the
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derivation of physical laws from affine and conformal groups of symme-

try and try to find a confirmation of the program by the last observable

data both from cosmology and physics of elementary particles.

1.3 Does the creation and evolution of

the Universe depend on an observer?

Interpretation of classical and quantum theories, in particular, the de-

pendence of an object of observation on the observer, at all times, up

to the present day, has been a subject of very fierce disputes. Albert

Einstein asked a question8: “When a person such as a mouse observes

the universe, does that change the state of the universe?” Let us show

here some fragments of dramatic history of the Universe observers,

including Copernicus, Tycho Brahe, Galileo, Kepler, Descartes, New-

ton, Lagrange, Faraday, Maxwell, Einstein, Weyl, Dirac, Fock, Wigner,

Blokhintsev, and Wheeler.

Copernicus (1473 — 1543)

. . . Italy at the end of the 15th century, University in Bologna, tomes of

ancient manuscripts put up for sale, and books of theories by Pythago-

ras of Samos, Eudoxus of Cnidus, Heraclitus of Pontica, Aristarchus

of Samos, Hipparchus of Nicaea, Claudius Ptolemy and others, where

breath-taking harmony of celestial spheres and Divus plan of the Uni-

8Wheeler, J.A.: Albert Einstein (1879–1955). A Biographical Memoir by John Archibald

Wheeler. National Academy of Sciences. Washington. D.C. (1980).
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verse were being opened. May be there, in Bologna9, the idea came to

the young student Nicolaus Copernicus to give up the traditional con-

cept of the Earth as the center of the Universe. In order to reveal the

nature of visible motions of planets, Copernicus imaginatively placed

his observer into the Sun and recalculated in heliocentric system of

reference the trajectories of all planets. Copernicus’ major theory was

published in “De revolutionibus orbium coelestium” (“On the Revolu-

tions of the Celestial Spheres”), in the year of his death, 1543, where

he considered the Earth as one of ordinary planets rotating around the

Sun. In the new Heliocentric frame of reference, the complicated char-

acter of planet motions described in the Geocentric frame of reference

by Ptolemy epicycles, becomes essentially simpler. Just the mathe-

matical simplicity of Copernicus’ theory under description of motions

of bodies of the Solar system opens the path to Kepler, Galileo, and

Newton to creation of celestial mechanics, whose perfectibility has been

proved by all practice of investigation of interplanetary environment

and accuracy of predictions of celestial phenomena.

Tycho Brahe (1546 — 1601)

The King of Denmark and Norway Frederick II, by his decree, an

island Hven disposed near Copenhagen, granted to Tycho Brahe in

possession for life and also assigned great sums for building of an obser-

vatory and for its keeping. It was the first building in Europe specially

constructed for astronomical observations. Tycho Brahe’s observers

9In 1496, Copernicus took leave and travelled to Italy, where he enrolled in a religious law

program at the University of Bologna.



32 1. Introduction

were fishermen and sailors: his observatory was in existence of their

duty. In the Universe of Tycho Brahe all planets, excluding the Earth,

rotated round the Sun, while the Sun, together with these planets,

rotated round the Earth. It is the very thing, that was and has been

observed until the present days by all mariners. Tycho Brahe worked

for his taxpayers, measured every day the position of Mars on the ce-

lestial sphere with great, even for our time, precision. Later on, Tycho

Brahe leaved for Prague and served to the emperor Rudolf II as the

palace astronomer and astrologer. The Geo–heliocentric system of the

world had important advantage compared to Copernicus’ one, espe-

cially after the trial of Galileo: it did not provoke any objections of

the Inquisition.

Galileo (1564 — 1642)

It began with Galileo, the modern physics as a science of measure-

ments. Galileo in his book about a would-be dialogue between Ptolemy

and Copernicus introduced a plethora of observers with their inertial

systems of reference. Coordinates of bodies and time in different sys-

tems of reference are connected by transformations of Galileo’s group.

Galileo’s principle of relativity of constant motion was demonstrated

by using of an imaginary experiment with systems of reference of two

ships. Physical phenomena that happen inside the stationary ship do

not differ from analogous phenomena inside the ship of constant mo-

tion, relative to the first one. Galileo introduced the main kinematic

characteristics of a classical body moving rectilinear with constant ve-

locity, and moving rectilinear with constant acceleration. Observa-
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tions for falling bodies in the gravity field of the Earth led him to the

conclusion that all bodies falling to the Earth had one and the same

gravitational acceleration. According to Galileo’s principle of relativ-

ity, all inertial systems of reference mathematically and physically are

equivalent. Galileo’s relativity means that all observers in one ship of

the Universe measure the same phenomena (in our case, trajectories

of planets), as the observers in the other ship of the Universe that

moves with any constant velocity with regards to the first one. Ob-

servers of Ptolemy in non-inertial system of reference connected with

the Earth, observe trajectories of planets which belong to another class

of curves, in contrast to the observers of Copernicus who connect their

system of reference with the Sun. In the “Dialogue Concerning the

Two Chief World Systems” (1632) the Copernican system is compared

with the traditional Ptolemaic system10. Ptolemy’s and Copernicus’

systems physically are not equivalent. Formally, in mechanics, all sys-

tems of reference are equivalent, and trajectories of bodies obtained

in one system of reference is possible to be recalculated in the other

system. Just the same recalculating was the main matter of work and

scientific achievement of Nicolaus Copernicus. Copernicus singled out

a system of reference where equations of planet motions have the first

integrals of motion, called in Newton’s celestial mechanics as a con-

served energy and an angular momentum of system of bodies, that

10The “Dialogue” was published in Florence under a formal license from the Inquisition. In 1633,

Galileo was convicted of “grave suspicion of heresy” based on the book, which was then placed

on the Index of Forbidden Books, from which it was not removed until 1835 (after the theories it

discussed had been permitted in print in 1822.) In an action that was not announced at the time,

the publication of anything else he had written or ever might write was also banned.
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was characteristic for central forces. In summary, analysing phenom-

ena observed from different points of view, we come to a conclusion

that the formal mathematical equivalence of systems of reference does

not imply their physical equivalence.

Kepler (1571 — 1630)

A pupil of Tycho Brahe, Johannes Kepler got treasured data from his

teacher; he recountered a trajectory of Mars on the celestial sphere

for Copernicus’ system and obtained later three laws of rotations of

planets around the Sun. Kepler published these laws in his treatises

“Astronomia Nova” (1609) and “Harmonices Mundi” (1619) (“The

Harmony of the World”), and so promoted the establishment and de-

velopment of Copernicus’ doctrine of heliocentric system of reference.

It became apparent that planets did not move by circles, as Copernicus

thought, but along ellipses, in one focus of which the Sun was located.

Galileo, in turn, decisively rejected Kepler’s ellipses. In 1610 Galileo

reported to Kepler about the discovery of Jupiter satellites. Kepler

met this message with mistrust and in his polemical paper “Disserta-

tio cum Nuncio Sidereo” (“Conversation with the Starry Massenger”)

(1610) disagreed with humour: Logically, by his means, then Jupiter

must be inhabited by intelligent beings. Why else would God have

endowed Jupiter with the feature? Later, Kepler got his example of

the telescope and confirmed the existence of satellites and was engaged

in theory of lenses himself. The result was not only an improved tele-

scope but a fundamental paper “Dioptrice” (1611). Kepler’s system

of the world meant not only to discovery laws of planet motions, but
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much more. Analogous to Pythagoreans, in Kepler’s mind, the world

is the realization of some numerical harmony, simultaneously geomet-

rical and musical; revelation of structure of this harmony could take

the answers to the very deep questions: Kepler was convinced that11

“Great is our God, and great is His excellence and there is no count of

His wisdom. Praise Him heavens; praise Him, Sun, Moon, and Plan-

ets, with whatever sense you use to perceive, whatever tongue to speak

of your Creator; praise Him, heavenly harmonies, praise him, judges

of the harmonies which have been disclosed; and you also, my soul,

praise the Lord your Creator as long as I shall live. For from Him and

through Him and in Him are all things, “both sensible and intellectual”,

both those of which we are entirely ignorant and those which we know,

a very small part of them, as there is yet more beyond. To Him be the

praise, honor and glory from age to age. Amen”.

Descartes (1596 — 1650)

The observer of Descartes thought logically (according to Aristotle) in

some priori concepts of space and time, populating them with cosmic

objects and leaving the concern of creation of these concepts to the

Lord: “Cogito ergo sum”. In absolute space the coordinate system is

set named as the Descartes one. He wrote about Galileo’s condemna-

tion to Mersenne12: “But I have to say that I inquired in Leiden and

Amsterdam whether Galileos World System was available, for I thought

11Kepler, Johannes: The Harmony of the World. American Philosophical Society (1997).

12Jonathan Bennett: Selected Correspondence of Descartes. (2013).

www.earlymoderntexts.com/pdfbits/deslet1.pdf
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Id heard that it was published in Italy last year. I was told that it had

indeed been published but that all the copies had immediately been burnt

at Rome, and that Galileo had been convicted and fined. I was so as-

tonished at this that I almost decided to burn all my papers or at least

to let no-one see them. For I could not imagine that he – an Italian

and, as I understand, in the good graces of the Pope – could have been

made a criminal for any reason except than that he tried, as he no

doubt did, to establish that the earth moves. I know that some Cardi-

nals had already censured this view, but I thought Id heard it said that

it was nevertheless being taught publicly even in Rome. I must admit

that if the view is false then so are the foundations of my philosophy,

for it clearly follows from them; and its so closely interwoven in every

part of my treatise that I could not remove it without damaging the

whole work. But I utterly did not want to publish a discourse in which

a single word would be disapproved of by the Church; so I preferred to

suppress it rather than to publish it in a mutilated form”. In “Prin-

cipia Philosophiae” (1644) there were formulated the main theses of

Descartes:

• God created the world and laws of nature, then the Universe

acted as an independent mechanism.

• There is nothing in the world, beside moving matter of various

kinds. Matter consists of elementary particles, local interactions of

these execute all phenomena in nature.

• Mathematics is a powerful and universal method of studying na-

ture, and an example for other sciences.
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Newton (1643 — 1727)

Isaak Newton, using Copernicus’ reference system, for the first time,

formulated laws of nature in the form of differential equations and sep-

arated them from the initial data. Newton postulated the priority of

laws of nature and reduced all mechanics to mathematical equations

that are independent of the choice of initial data (and inertial refer-

ence systems). They predict evolution for all time of coordinates of a

particle, if its initial position and initial velocity are set. For Newton’s

observer, to explain the world in terms of classical mechanics means to

solve Newton’s equations with initial data (Cauchy’s problem). Here

it is appropriate to remember Laplace’s colorful expression13: “We

may regard the present state of the universe as the effect of its past

and the cause of its future. An intellect which at a certain moment

would know all forces that set nature in motion, and all positions of

all items of which nature is composed, if this intellect were also vast

enough to submit these data to analysis, it would embrace in a sin-

gle formula the movements of the greatest bodies of the universe and

those of the tiniest atom; for such an intellect nothing would be uncer-

tain and the future just like the past would be present before its eyes”.

“Philosophiae Naturalis Principia Mathematica” (“The Mathematical

Principles of Natural Philosophy”14) of Newton, first published in 1687

year, absorbed all previous human experience of observations of mo-

tions of celestial and earth matter, demonstrated the same power of

clarity, accuracy and efficiency of scientific methods of natural sci-

13Laplace, Pierre Simon: A Philosophical Essay on Probabilities. John Wiley & Sons. (1902).

14Newton, I.: The Mathematical Principles of Natural Philosophy. Encyclopedia Britanica (1952).
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ence as Euclidean principles in geometry. The weak place in Newton’s

gravitation theory was, by opinions of scientists of that time, the ab-

sence of description of nature of the invisible force, that was able to

act over vast distances. Newton stated only mathematical formalism,

and left the questions of cause of gravitational attraction and its car-

rier open. On this occasion, Newton stated: “hypotheses non fingo”,

that became his famous expression. For scientific community educated

on Descartes’ philosophy, the approach was unusual and challenging,

and only triumphal success of celestial mechanics in the 18th century

forced physicists temporarily come to terms with the Newtonian the-

ory. Physical basic concepts of the theory of gravitation were cleared

only more than two centuries later, with appearance of the General

Relativity. Newton’s theory absolutized sharp differences of concepts

of time, space, and matter, and the universal law of conservation of en-

ergy seemed to gain perpetual persistent status in philosophy. Newton

introduced absolute space and time. They are the same for all ob-

servers. The first physical theory was constructed by Newton, based

upon the name of its book, by analogy with Euclidean “Principles”.

Theological manuscripts of Isaak Newton tell us that Newton searched

justification of principles of logical constructions of the first physical

theory and concepts of absolute space and time, and, hence, absolute

units of their measurements, in arduous discussions with gnoseology

officially accepted in Trinity College where he was a professor15. New-

15Gnoseology, officially accepted in “Trinity College” and rejected by Newton, affirmed that a

studied object must possess some realities, each described by their self consistent logics of Aristotle.

According to the theory, the existence of two complementing each other confirmations was possible

about one and the same object of cognition, under condition, that these confirmations refer to
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ton’s mechanics assigned the structure of mathematical formulation

of modern fundamental physical theories, including Einstein’s theory

of gravitation, the Standard Model of elementary particles, et cetera,

where equations as laws of nature were put as foundation.

Lagrange (1736 — 1813)

Joseph–Louis Lagrange re-wrote Newton’s differential equations of mo-

tion in a covariant form, introducing generalized coordinates. He no-

ticed in the Preface to his treatise “The Mécanique Analytique”16:

“The reader will find no figures in this work. The methods which I set

forth do not require either constructions or geometrical or mechanical

reasonings: but only algebraic operations, subject to a regular and uni-

form rule of procedure”. Lagrange was one of the creators of the calcu-

lus of variations, he derived the so-called Euler – Lagrange equations as

the conditions for the extremum of functionals. Using the principle of

the least action, he obtained equations of dynamics. He also extended

the variational principle for systems with holonomic constraints, using

the so-called method of Lagrange multipliers. Nonholonomic dynamics

will be discovered later, only in the 20th century. The mathematical

formalism of the calculus of variations will be necessary for theoretical

physicists to formulate the equations of the gravitational field, at first,

in the Lagrangian covariant form, then as generalized Hamiltonian dy-

namics.

different realities of this object (John Meyendorff: Byzantyne Theology. Trends and Doctrinal

Themes. N.Y. (1979); G. G. Florovsky: Eastern Fathers of the 4th century. Inter. Publishers

Limited. (1972).

16Lagrange, Joseph-Louis: Mécanique Analytique. Cambridge University Press. (2009).
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Faraday (1791 — 1867)

The first steps in creating the modern relativistic physics were taken

by Michael Faraday. The great amount of scientific discoveries belong

to him, such as a laboratory model of the electric motor that, in future,

changed the life of the modern civilization. With impressive sequenc-

ing, Faraday demonstrated, by experiments, and developed his concept

of field nature of matter and unity of all physical fields of nature – guid-

ing ideas of physics of the 20th century where all particles are treated

as excitements of physical fields. Faraday created the field concept of

the theory of electricity and magnetism17. Before him, the presentation

of a direct and instantaneous interaction between charges and currents

through empty space dominated. Faraday experimentally proved that

matter carrier of this interaction is the electromagnetic field. The fact

that Faraday was unaware of the Newton mathematical formalism in

mechanics was not a barrier on the way of the experimentalist, but

helped him to formulate new basic concept of modern physics and pre-

dict the field nature of matter and unity of fields of nature, which

physicists discovered in the 20th century.

Maxwell (1831 — 1879)

Maxwell had to “dress” (as Heinrich Rudolf Hertz picturesquely noted)

Faraday’s theory into aristocratic clothes of mathematics. The first pa-

per of Maxwell on the theory of electromagnetic field is entitled: “On

17In 1938 year, in an archive of the Royal Society there was found Faraday’s letter, written in

1832 year, which he asked to open after 100 years, where he predicated of electromagnetic nature

of light (let us remember, that Maxwell was born in 1831 year).
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Faraday’s lines of force”. Maxwell set a goal of translating the ba-

sic Faraday’s treatise “Experimental Researches in Electricity”18 into

the language of mathematical formulae. The Maxwell theory turned

out to be universal in electromagnetic phenomena as Newton’s theory

in celestial phenomena. Electrodynamic formulae, written down in the

language of mathematical field theory, became to live their own life, dis-

playing their symmetric structure. The observer of Maxwell discovered

the dependence of description of results of experimental measurements

of electromagnetic phenomena from the definition of measured values

in the field theory from the choice of a standard of their measurement.

In Preface of his “Treatise on Electricity and Magnetism”19 Maxwell

wrote: “The most important aspect of any phenomenon from a mathe-

matical point of view is that of a measurable quantity. I shall therefore

consider electrical phenomena chiefly with a view to their measurement,

describing the methods of measurement, and defining the standards on

which they depend”. In Preliminary of his book he continued: “Every

expression of a Quantity consists of two factors or components. One of

these is the name of a certain known quantity of the same kind is the

quantity to be expressed, which is taken as a standard of reference. The

other component is the number of times the standard is to be taken in

order to make up the enquired quantity. The standard quantity is tech-

nically called the Unit, and the number is called the Numerical Value

of the quantity”. The Maxwell theory, its symmetries and concepts

18Faraday, Michael: Experimental Researches in Electricity. J.M. Dent & Sons. Ltd. London.

(1914).

19Maxwell, James Clerk: Treatise on Electricity and Magnetism. Clarendon Press, Oxford (1873).
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are prototypes of all working relativistic quantum theories of the 20th

century where all elementary particles are interpreted as oscillatory ex-

citations of corresponding fields. The scientific works of Maxwell were

not appreciated by his contemporaries. Only after Heinrich Hertz’s

experimental proof of the existence of electromagnetic waves predicted

by Maxwell the theory of electromagnetism got the status of consensus

omnium. It happened only ten years after Maxwell’s death.

Einstein (1879 — 1955)

Geometries of Lobachevski and Riemann, field theory of Faraday and

Maxwell disturbed confidence to the absolute space and time, and the

20th century became a century of relativity and principles of symme-

tries of quantized fields of matter. Einstein is a creator of two theories

of relativity. The first one of these theories is the Special Relativity.

It is based on the group of relativistic transformations of Maxwell’s

equations obtained by Lorentz and Poincaré. The Special Relativity

is an adaptation of Newton’s classical mechanics to relativistic trans-

formations. The generally accepted form of the Special Relativity is

the version of Einstein and Minkowski which opened a path to cre-

ation of modern quantum field theory. Any experimentalist of high

energy physics knows that life-time of unstable particle, measured in

the laboratory frame of reference, differs from life-time of the same

particle measured in a frame moving together with the particle. If the

particle is put into a train moving along the station, the Driver in the

train and the Pointsman in the station measured different life-times

of the particle. These times are connected by relativistic transforma-
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tions obtained by Einstein. From the Newton mechanics point of view,

these two different statements about life-time of the same particle are

in contradiction. To avoid it, according to Trinity College doctrine,

one should confirm that the particle has one reality for the Driver, and

another – for the Pointsman; then one should construct two noncon-

tradictory mechanics: the mechanics of the Driver and the mechanics

of the Pointsman and the relation between them as a new element of

the theory. Just by the very way of existence of two realities of one

and the same particle, the development of relativistic quantum field

theory went on. Einstein laid the foundation to this development, who

understood that the Lorentzian symmetry of the theory of Maxwell

meant equality of time and space coordinates of a relativistic particle.

Such equality supposes that time and space form the unified space-

time named as the Minkowskian space of events. Hermann Minkowski

proclaimed20: “The views of space and time which I wish to lay be-

fore you have sprung from the soil of experimental physics, and therein

lies their strength. They are radical. Henceforth space by itself, and

time by itself, are doomed to fade away into mere shadows, and only

a kind of union of the two will preserve an independent reality”. Un-

der its motion in this space, the particle depicts a world line, where

the geometric interval plays a role of the parameter of evolution. The

existence of two times of one and the same particle supposes, that for

the complete description of motion of the particle in the world space of

events, one needs as minimum, two observers to measure its initial data

(see. Fig. 1.4). One of them is at rest, the other is co-moving with the

20Minkowski, Hermann.: Raum und Zeit, Physikalische Zeitschrift. 10, 75 (1908).
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Figure 1.4: At the top of the Figure a relativistic train is depicted with an unsta-

ble particle, moving with velocity of 200 000 km per sec passing the Pointsman. If

life-time of the particle, measured by the Driver, is 10 sec, then life-time of the same

particle, measured by the Pointsman, is equal to 10/
√

1− (2/3)2 � 14 sec. In the

quantum field theory, that describes the process of creating a particle, these times

are complementary, not contradictory. The Driver, being created together with the

particle, could not be a twin to the Pointsman. The first measures the length of ge-

ometric interval (10 sec), and the second – dynamical parameter of evolution in the

space of events (14 sec). At the bottom of the Figure a Universe is pictured, where

a cosmological parameter of evolution ϕ plays the role of dynamical parameter of

evolution in the space of events, and the conformal time η plays the role of the length

of geometric interval. One and the same observer has two different measurement pro-

cedures of dynamical parameters of evolution (redshift) and the length of geometric

interval (distance to cosmic objects). These two observers (the Pointsman and the

Driver) of the relativistic object in quantum geometrodynamics do not contradict,

but complement each other.
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particle. The first one measures the time with his watch as a variable

of the world space of events, and the second one measures the time

with his watch as a geometric interval on the world line of the particle

in this space of events. A new element of the theory appeared – an

equation of constraint of four components of the vector of momentum,

one of which is the energy. A solution of this equation of constraint

for a particle at rest E = mc2 lies in the base of the atomic energet-

ics. The second of Einstein’s theories generalizes the field paradigm of

Faraday to gravitational interactions and it is named the General Rel-

ativity. The first attempts of generalizing of Faraday’s field paradigm

to other interactions were undertaken at the beginning of the last cen-

tury. The searching of principles of symmetry was Einstein’s underly-

ing concept that differed him from other researchers. The basic ideas

of the General Relativity were prepared by all history of development

of non-Euclidean geometry of the 19th century by Gauss21, Bolyai22,

Lobachevsky23, Clifford24, Riemann25. Einstein declared that observa-

tional results of his theory did not depend on parameters of a very wide

class of coordinate transformations. That is why Einstein named his

theory the General Relativity. Einstein’s dynamical equations are de-

21Gauss, C.F.: General Investigations of Curved Surfaces of 1827 and 1825. Princeton University

(1902)

22Bolyai, J.: The Science Absolute of Space. Independent of the Truth or Falsity of Euclid’s

Axiom XI (which can never be decided a priori. Austin, Texas (1896).

23Lobachevski, N.I.: Complete Collected Works. I–IV. Kagan, V.F. (Ed.). Moscow–Leningrad

(1946)–(1951).

24Clifford, W.K.: Mathematical Papers. MacMillan, New York–London (1968)

25Bernhard Riemann’s gesammelte mathematische Werke und wissenschaftlicher Nachlass. Teub-

ner, Leipzig (1876).
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rived from Hilbert’s variational principle delivered in Hilberts report

“Foundations of Physics” presented on November 20th, 1915 to the

Göttingen Mathematical Society26.

Weyl (1885 — 1955)

The main goal of theoretical physics is to establish several physical

principles to explain all observable effects just as a few Euclidean ax-

ioms and logical laws make it possible to prove many theorems in

geometry. In modern physics, such fundamental principles are princi-

ples of symmetry. The following statement of Hermann Weyl is worth

being reminded27: “What we learn from our whole discussion and what

has indeed become a guiding principle in modern mathematics is this

lesson: Whenever you have to do with a structure-endowed entity Σ try

to determine its group of automorphisms, the group of those element

– wise transformations which leave all structural relations undisturbed.

You can expect to gain a deep insight into the constitution of Σ in

this way”. From this viewpoint, transformations of reference frames

form an automorphism group in mechanics, while the equations of

motion derived by variation of action are invariant structure relation-

ships. The guiding principle of modern physical theories is to define

26In addition, Hilbert first formulated the theorem that was later referred to as the second

Noether theorem. This theorem leads to the interpretation of general coordinate transformations

as gauge ones and, therefore, to all consequences concerning both a decrease in the number of

independent degrees of freedom and the appearance of constraints imposed on initial data. The

first Noether theorem states that any differentiable symmetry of the action of a physical system

has a corresponding conservation law.

Noether, E.: Invariante Variationsprobleme. Nachr. D. König. Gesellsch. D. Wiss. Zu

Göttingen, Math-phys. Klasse. 235 (1918).

27Weyl, H.: Symmetry. Princeton University Press, Princeton. (1952).
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the transformation groups of reference frames (treated as manifolds of

initial data) that preserve the equations of motion. The Galileo group

in Newtonian mechanics and the Poincaré group in the Special Rel-

ativity, groups of classification of elementary particles, gauge groups

of symmetries led to equations of constraints of fields and their initial

data. Weyl proposed a principle of scale symmetry of laws of nature:

according to this proposition gravitation equations are independent of

choice of measure units and differed from the General Relativity ones.

In Weyl’s geometry lengths of objects under motion over a closed con-

tour are not integrable, and non-integrability is connected with the

presence of electromagnetic field.

Fock (1898 — 1974)

Fock was the first to introduce a tangent space of Minkowski into the

General Relativity. Now, all observers in the Universe are able to mea-

sure two parameters of evolution: a proper time interval, measured in

the tangent space, and a parameter of evolution in the field space of

events. The same two observers (we called them a “Pointsman” and

a “Driver”) could be also introduced into the General Relativity. In

the Special Relativity hardly anybody is interested in what the fate

of proper time of a particle should be, measured by a “Driver”, after

the causal quantization, which introduced the vacuum in the space of

events, with the help of changing of the operator of creation of a par-

ticle with negative energy to the operator of annihilation of a particle

with positive energy. We should see further that as a result of such

change on the world line of a particle, the positive arrow and absolute
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point of the beginning of geometrical interval of time measured by a

“Driver”, appear. Such quantum anomaly of geometrical interval, in

fact, means that if there is no particle there is no world line of a parti-

cle either nor the interval on this world line. Fock, solving the problem

of particles in the General Relativity, introduced a privileged, the so-

called, harmonic reference frame for solving Einstein’s equations. Fock

understood that despite the formal point of view, all reference frames

are equivalent, but investigating concrete problems, one should choose

the most acceptable reference frame.

Dirac (1902 — 1979)

Dirac’s observer solves problems of consequent probability interpreta-

tion of the wave function that satisfy Dirac’s equations, and stability

of the quantum system via the secondary quantization and filling all

states with negative energies (Dirac’s sea). A solution of the Hamil-

tonian constraint both in the Special Relativity and the General Rel-

ativity has two signs. The negative sign of energy in the Special Rel-

ativity was associated with the existence of anti-particle – positron

by Dirac. Theorists, headed by Dirac and Fock, solved the problem

of negative energy via two quantizations of a particle: primary one,

when generalized coordinates and conjugated momenta became oper-

ators in the equation of constraint, acting to the wave function, which

was identified with Faraday-type field; and secondary one, when the

same Faraday’s field, interpreted as a sum of operators of creation of

a particle with positive energy (+) and annihilation of a particle with

positive energy (–) as well. The most important element of Dirac’s
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theory is a vacuum as a state with minimum of energy, which disap-

pears if the operator of annihilation acts to it. This quantization in

the modern field theory was called causal quantization, and the theory

got the name: the quantum field theory. Dirac, following to Weyl,

introduced an observer [7]: “There are reasons for believing that the

gravitational constant varies with time. Such a variation would force

one to modify Einstein’s theory of gravitation. It is proposed that the

modification should consist in the revival of Weyl’s geometry, in which

lengths are non-integrable when carried around closed loops, the lack

of integrability being connected with the electromagnetic field”. Dirac

formulated a new action principle [7]: “A new action principle is set

up, much simpler that Weyl’s, but requiring a scalar field function to

describe the gravitational field, in addition to the gμν”. This scalar

field function got the name a dilaton. According to Weyl and Dirac, a

standard of measurement of length is chosen being expanded with mea-

sured lengths together with its unit. If the standard is also expanding,

the results of measurements of all lengths do not contain the cosmo-

logical scale factor. So, for an observer with the relative standard, the

Universe is static, and all masses are proportional to the cosmological

scale factor associated with the dilaton, and become vanishingly small

at the beginning of the Universe origin. The modern cosmology, actu-

ally, uses a double standard under description of cosmic evolution of

photons emitted by massive matter from the far cosmic object: abso-

lute (world interval) and relative (conformal interval). Friedmann was

the first who used geometric intervals with relative units of measure-

ments (a coordinate distance to a cosmic object and a conformal time



50 1. Introduction

of emitting of a photon), to solve his equations. These relative vari-

ables are used in the observable cosmology for description of motion

of cosmic photons. They left their “footsteps” in the form of spectral

lines in photographic plates put in the telescope. Comparing these

photographic plates with those where spectral lines left photons of the

Earth atoms at the present time, astrophysicists measure redshifts of

spectra of energies of cosmic atoms. Energy spectrum of atoms, as

known from quantum mechanics, is defined by masses of particles of

which these atoms are combined. An acceptance of a relative standard

leads to changing of masses, and an absolute standard — to changing

of geometric intervals. Dirac’s observer, as, in olden times, Copernicus’

observer, could choose himself a standard of measurement, and define,

according to Copernicus, what standard gives the most simplest clas-

sification of the observational data. All standards in Einstein’s theory

are equivalent from the formal mathematical point of view, in the same

way, as the frames of reference of Ptolemy and Copernicus in the ce-

lestial mechanics are, formally, equivalent. However, the phenomena

are described by solutions of the equations of motion, where the initial

data are demanded. For definition of the initial data in the General

Relativity, it is necessary to pass to conformal variables. This fact

was known to Andre Lichnerowicz yet in the year 194428. The tran-

sition to conformal variables in cosmology means recalculating of all

observational data from an absolute unit to relative ones, multiplying

these data to the cosmological scale factor in power equal to corre-

28Lichnerowicz, Andre: L’integration des equations de la gravitation ralativiste et le probleme des

n corps. J. Math. Pures Appl. 23, 37 (1944).
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sponding conformal weights. Just this recalculating demonstrates, as

we shall see further on, describing the data on Supernovae, physical

nonequivalence of standard variables and the conformal ones. Standard

cosmology, recalculated in terms of conformal variables is called Con-

formal cosmology. In particular, in Conformal cosmology measured

lengths are always longer than in Standard cosmology. Data on Su-

pernovae correspond to another equation of state of matter, identified

to Casimir energy in an empty Universe, as we will show in the next

Chapters.

Wigner (1902 — 1995)

Eugene Wigner showed that the principle of relativity of velocities of-

fered by Copernicus for description of motion of planets, generalized

by Poincaré and Einstein for motion of relativistic particles, turns out

to be the principle of classification of all observable and measurable

physical objects. As a result, physicists have got the classification of

states of a particle according to its mass and spin. Such classifica-

tion lays the basis of the quantum field theory. At the present time,

physicists come to a conclusion to include the Universe itself to this

scheme. Wigner explained [16]: “The world is very complicated and it

is clearly impossible for the human mind to understand it completely.

It has therefore devised an artifice which permits the complicated na-

ture of the world to be blamed on something which is called accidental

and thus permits him to abstract a domain in which simple laws can be

found. The complications are called initial conditions, the domain of

regularities, laws of nature. Unnatural as such a division of the world’s
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structure may appear from a very detached point of view, and probable

though it is that the possibility of such a division has own limits,29 the

underlying abstraction is probably one of the most fruitful ones that

human mind has made. It has made science possible”. An observer of

Wigner divides three levels of development of a physical theory: phe-

nomena, laws of dynamics, and principles of symmetry and prioritizes

to the principles of symmetry, whereof the laws of dynamics and the

description of nature can be deduced. It is wonderful that these princi-

ples have in their base the symmetry of the very same accidental initial

data, of which the laws of nature are independent.

Blokhintsev (1908 — 1979)

Dmitry Blokhintsev’s papers make us reflect about eternity of knowl-

edge. How do the terms and concepts arise and how far are they abso-

lute? How can we divide absolute and relative in learning of the world?

What is “physical reality?” How can one define “boundaries of appli-

cability of concepts”. Especially, Blokhintsev’s words amaze us about

impossibility of simultaneous, with arbitrary accuracy, measurement

of a coordinate and conjugated momentum of a particle: impossibil-

29The artificial nature of the division of information into “initial conditions” and “laws of nature”

is perhaps most evident in the realm of cosmology. Equations of motion which purport to be able

to predict the future of a universe from an arbitrary present state clearly cannot have an empirical

basis. It is, in fact, impossible to adduce reasons against the assumption that the laws of nature

would be different even in small domains if the universe had a radically different structure. One

cannot help agreeing to a certain degree with E.A. Milne who reminds us (Kinematic relativity

Oxford Univ. Press, 1948, page 4) that, according to Mach, the laws of nature are a consequence

of the universe. The remarkable fact is that this point of view could be so successfully disregarded

and that the distinction between initial conditions and laws of nature has proved so fruitful.
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ity means not restriction of our cognition, but limitation of the terms

themselves (a coordinate and a corresponding momentum). Blokhint-

sev said30: “It is wrong to think that modern physical experiment has

insufficient accuracy for measurements of “true” simultaneous values

of momentum and coordinate of a microparticle. On the contrary, it is

accurate enough to prove that for the microparticles the pair does not

exist in nature”. Separation of relative values from the objective ones

and definitions of boundaries of their applicability, according to the

quantum theory, gives amazing predictions of new effects and values

of physical magnitudes that describe these effects. In such a manner,

Dmitry Blokhintsev as a physicist can “explain in layman’s terms” val-

ues of physical magnitudes and predict fine effects, such as the Lamb

shift discovered only 10 years later and inaugurated the birth of the

quantum electrodynamics31. Blokhintsev’s observer treats a transition

from a classical particle to a quantum one as quantization of initial

data, but not of dynamical variables. Let us recall that Blokhintsev

associated a set of all possible free initial data in quantum field theory

with a statistical ensemble. The existence of the ensemble of quantum

states of initial data is a reason of probabilistic interpretation of a wave

function. For problems of cosmological particle creations, Blokhint-

sev’s quantization of initial data turns out more productive, from the

point of view of classification of observational data than quantization

of dynamical variables, because it forces us to search the complete set

30Private communication.

31In 1938 year Blokhintsev delivered a lecture at the seminar on theoretical physics in Lebedev

Physical Institute (Moscow), where he showed, that taking into consideration an interaction of

electrons with the field of radiation, it is able to lead to shift of their energetic levels.
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of free initial data as constants of motion in a definite frame of ref-

erence. In particular, in cosmology, where the particles are described

as oscillators, squeezed by a cosmological scale factor, it is possible

to quantize only the ensemble of initial data, as constants of motion,

which are established via Bogoliubov’s transformations. These trans-

formations can be fulfilled at the level of classical theory, then it is

possible to obtain the complete set of free initial data. For the theory

with the quantized initial data, the Bogoliubov transformations pro-

vide a quantitative description of the Universe creation (mysterious for

the variables without initial data), identified as the Big Bang.

Wheeler (1911 — 2008)

According to Wheeler’s geometrodynamics, there are the same reali-

ties – dynamical and geometrical – in the modern theory of gravitation,

where the Hubble’s law appears as a pure relativistic relation between

a cosmological scale factor played role as a time-like variable in the field

space of events introduced by Wheeler in 1967 and a geometric interval

of time on the world hypersurface in this space of events. A choice of a

relative standard, as we already marked, transfers a cosmic evolution

to masses, changing a fundamental parameter of Einstein’s theory –

Planck’s mass into dynamical variable in Wheeler – De Witt’s space

of events, which has accidental initial data, as well as any variable

in Newton’s mechanics. So, the relative standard deprives Planck’s

mass of a fundamental status in Einstein’s theory, as well as Coper-

nicus’ relativity deprived a fundamental status of the Earth position

in Ptolemy’s frame of reference. It could seem, that in the General
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Relativity there is no absolute value in natural units of measurement.

The scale symmetry of the classical theory can be broken via its quan-

tization and normal ordering of operators, leading to Casimir’s energy

and Casimir’s condensate. A secondary causal quantization of uni-

verses with a postulate of existence of vacuum as the state of minimal

energy, in full analogy with quantum field theory, leads to a cosmologi-

cal creation of universes and to a positive arrow of a geometric interval

of time. This time has the absolute origin that we, the Universe’s

inhabitants, conceive as the point of the Universe’s creation, with the

equation of state established from the data obtained with the Hubble’s

telescope. In relativistic cosmology, the positive arrow of the geometric

time and its origin are consequences of quantum vacuum postulate in

the field space of events, id est they are evidences of quantum nature

of our Universe. So, answering the question of what there was until the

creation of the Universe, we are able to say, after Augustine of Hippo

and Immanuel Kant, that there was not the time itself. Only in the

limit of infinitely large Universe and infinitely large energy of motion

of the Universe in the field space of events, the theory of early Universe

becomes the Einstein classical theory and modern quantum field the-

ory of elementary particles, accessible to our classical comprehension.

The quantum theory confutes the Laplace’s point of view: at some

time, having the knowledge of locations and velocities of all particles,

simultaneously, in the Universe. Wheeler asked32: “In short, whether

the Universe is, in some strange sense, a sort of “self-induced circuit?”

32Our free translation from “Centenario di Einstein” (1879–1979). Astrofisica e Cosmologia

Gravitazione Quanti e Relatività. Giunti Barbèra. Firenze (1979).
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Giving rise in some limited stage of its existence observers–members,

whether the Universe acquires, in turn, through their observations that

tangibility, which we call reality? Is not the mechanism of its exis-

tence? And whether from these reasonings to deduce the nature and

necessity of the quantum principle?” Wheeler continued to discuss:

“Today textbooks on quantum mechanics tells us how to proceed in sit-

uations where one observer is involved. Scientific articles have dealt

with the idealized experiments in the spirit of Einstein, Podolsky and

Rosen, which involved two observers. We do not have an idea of what

to do in an extreme situation, when a very large number of observers

– the participants and a very large number of observations play a huge

role”.

A contemporary observer (1973 — till the present time)

We marked the date of birth of a contemporary observer by 1973 33, to

bound him with ideas, models, and theories proposed till 1973 34 by the

giants of physics and mathematics, on whose shoulders he climbs, to

get the simple classification of all data on measurements and observa-

tions of physical and cosmological values obtained to the present time

(2013). We deprive the observer of having the ability of using uncom-

mitted in time ideas of his contemporaries, and, moreover, of having

his own ideas. We assume that our observer knows everything from

33In 1973 year the famous Dirac’s paper (Dirac, P.A.M.: Long range forces and broken symmetries.

Proc. Roy. Soc. London. A 333, 403 (1973)) was appeared.

34It turned, by the way, exactly 500 years, – half of the Millennium, – if you count the time

interval from the year of birth of Copernicus.
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Copernicus to Dirac, including three levels of classification of physical

data marked by Wigner: phenomena, laws of dynamics and principles

of symmetry, to the extent to which the knowledge has been outlined

above. At all these levels, adequate choice of the reference frame of

initial data and standards of their measure can essentially simplify

the classification of physical data and, therefore, facilitate further de-

velopment of our knowledge of the Universe and theories describing

dynamics of processes, that occur therein. To explain the dynamics of

the processes in the Universe, contemporary observer has the ability

to use quantum theory of phenomena. The quantum theory of phe-

nomena, described by unitary irreducible representations of a group

of symmetry of initial data, may be much simpler than the classical

theory that is based on solutions of classical dynamical laws, id est

equations of motion. In other words, to describe phenomena, a clas-

sical observer has laws of dynamics as equations of Newton, Maxwell,

Einstein, equations of the Standard Model of elementary particles and

modern unified theories; at the same time, a contemporary observer

has unitary irreducible representations of finite-parametric groups of

symmetry of initial data for description of the same phenomena. Just

therefore, we have a unique opportunity to further build our classifica-

tion of data using unitary irreducible representations of these groups

without applying to the classical laws of dynamics as the assumptions

of the physical theory, or deduce classic laws of dynamics from the first

principles of symmetry found up to 1973.
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1.4 Contents

Since the time of Newton’s physical theory, the dynamic processes

have been described by solutions of differential equations and some

unique initial data. The initial data are set by fitting of the results

obtained via the observations or direct measurements with devices that

are identified with a certain frame of reference35. The question is what

are the criteria and principles for the selection of the initial data for

the Universe? To answer these questions, in this paper we consider a

cosmological model in which the initial state of the Universe is given

by vacuum of particles. To such a state of vacuum the concept of

“temperature” can not even be applied as it arises when describing

the motion of the particles after the creation from the cosmological

vacuum.

In this case, the starting point of the observable Universe is the in-

stance of the creation of primary particle-like irregularities, the size of

which is determined by their masses in the Standard Model of elemen-

tary particles. Since the Compton wavelength of the particle can not

be larger than the horizon of the Universe at the time of its creation,

the very instance of creation of a particle can be estimated by equating

its Compton wavelength and the horizon of the Universe. Thus, the

initial value of the cosmological scale factor is given by the condition

35Any measurement or observation suggests the existence of two selected frames of reference – the

first is connected with the instruments of measurement, while the second (co-moving) is associated

with the object whose parameters are measured. In particular, in modern cosmology the rest frame

of instruments uniquely associated with the Earth, and the accompanying reference system of the

Universe – with the Cosmic Microwave Background radiation. The rest frame of reference differs

from the co-moving one by non-zero dipole component of temperature fluctuations 10−3.
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that the Compton wavelength of the primary particles is equal to the

horizon of the Universe (or equal its mass to Hubble’s parameter) at

the time of creation of the primary cosmological particles from the

vacuum. This condition follows from the uncertainty principle, which

limits changing of energy in the Universe by finite time of its existence.

In the Standard Model of elementary particles candidates for the

role of the primary particles are massive vector particles and minimally-

interacting scalar particles. Cosmological creation of these primary

particles is described in the Conformal model of a homogeneous Uni-

verse, which differs from the Standard cosmological model in the prin-

ciples of relativity of initial data, relativity of time, and relativity of

units that should be set forth below.

Let us outline conclusions of this Chapter.

1. The initial value of the cosmological scale factor given by the

condition of coincidence of Compton wavelength of the primary

particles with the horizon of the Universe (or their mass with

the Hubble parameter) at the instance of cosmological creation

of the primary particles from the vacuum. This condition follows

from the uncertainty principle, which limits the change of energy

in the Universe by its finite time of existence.

2. The principle of relativity of time is the second difference from

the accepted Standard cosmological model. Recall that the rela-

tivity of time in Special Relativity suggests that time coordinate

is also a degree of freedom of the particle, so that a complete

set of degrees of freedom forms the space of events introduced by
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Minkowski. Instead of a single Newton’s time there are three: the

time-like variable in the space of events, time-geometric interval

on the trajectory of the particles in the space of events, and a co-

ordinate evolution parameter, reparametrization of which leads

to a Hamiltonian constraint of momenta in Minkowski space.

The resolution of this constraint regarding the time-variable mo-

mentum gives the energy of the particle in the Special Relativity

(namely, the one used in the calculation of the energy in nu-

clear reactions). The primary and secondary quantization of the

Hamiltonian constraint in the Special Relativity allows us to for-

mulate a quantum field theory with the postulate of the vacuum

as the state with the lowest energy. In this book the quantum

model of the Universe is obtained in the theory of gravity as

a generalization of the above construction of the quantum field

theory from the Special Relativity using primary and secondary

quantization of the Hamiltonian constraint with the postulate of

a vacuum.

3. The third difference from the accepted Standard cosmological

model is the Weyl’s relativity of units (or scales) of measure-

ments, which means that the physical devices measure a dimen-

sionless ratio of the interval of time or space to the measurement

unit, defined by the standard mass. Weyl’s measured quanti-

ties (mass, density, temperature and so on) associated with the

measured values of the Standard cosmology by multiplying the

latter on a cosmological scale factor in power defined by confor-
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mal weight of each of these units. Standard cosmology, expressed

in terms of measured values, is called the Conformal cosmology.

Since in Conformal cosmology a distance identified with measur-

able one is always greater than the distance in the Standard

cosmology, the same Supernovae data correspond to different

equations of states in Conformal cosmology and the Standard

cosmology.

Thus, the above-mentioned principles of relativity explain the origin

of all matter in the Universe as a decay product of the primary scalar

and vector bosons created from vacuum, and the arrow of time as

an inevitable consequence of the primary and secondary quantization

of the Hamiltonian constraint. To describe such creation of particles

from the vacuum we construct the creation operator of evolution of the

quantum Universe as a joint and irreducible unitary representation of

the affine and conformal symmetry groups. Expected average values

of this operator between the states of matter (according to their clas-

sification of the Poincaré group in the tangent Minkowskian space) are

used to describe modern experimental and observational data.
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Chapter 2

Initial data and frames

of reference

2.1 Units of measurement

All units of measurement can be expressed in terms of three basic:

units of length, mass and time. Two fundamental physical theories of

the last century have reduced the number of basic units from three to

one. In the Special Relativity, it was found that there is a fundamental

limiting speed of propagating of physical processes which is equal to

the speed of light in the vacuum c. In the quantum theory, it was

appeared a new fundamental constant – the quantum of action �. If

we choose a system of units in which c = 1 and � = 1 all three main

units – length, mass and time can be expressed via any one of them.

Several examples of various physical quantities expressed in terms of

mass M are shown in Table (2.1) [1]. Once we choose the unit of

measurement of mass M , then all other units are identified.

65
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Magnitude Units M,L, T Units of mass M

Length L M−1

Velocity LT−1 M 0

Force MLT−2 M 2

Electric charge M 1/2L3/2T−1 M 0

Magnetic field M 1/2L−1/2T−1 M 2

Angular momentum ML2T−1 M 0

Gravitational constant M−1L3T−2 M−2

Table 2.1: Physical quantities in units of mass (c = 1, � = 1).

In theoretical physics, the natural units of measurement [2] are the

Planck time

TPl =

√
�G

c5
≈ 5.4× 10−44sec,

the Planck length

LPl =

√
�G

c3
≈ 1.6× 10−33cm,

and the Planck mass

MPl =

√
�c

G
≈ 2.2× 10−5g.

In the future we will use the natural system of measurements c = � = 1.
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2.2 Nonrelativistic mechanics of a

particle

First, we shall review the initial notions by using a simple example of

one-dimensional nonrelativistic mechanics, in Lagrange formulation,

defined by the action functional

SL =

∫
dtL(X(t), dX(t)/dt) (2.1)

with the Lagrangian

L(X(t), dX(t)/dt) =
m

2

[
dX(t)

dt

]2
.

Here X(t) is a variable, describing a particle trajectory, t is a time

coordinate, and m is a mass of a particle treated as a fundamental

parameter of the theory. A condition of extremum of the action (2.1)

δSL = 0,

under fixed boundary conditions

δX(t0) = δX(t1) = 0,

yields the differential equation of motion of the particle

m
d2X(t)

dt2
= 0. (2.2)

The general solution

X(t) = XI +
PI

m
(t− tI) (2.3)
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of this equation depends on the initial data of the particle: its position

XI and momentum PI

X(tI) = XI ,
dX(t)

dt
≡ PI

m
,

given at the initial time tI . The initial data are measured with a

set of physical devices (in this example, with a ruler and a watch

in a fixed space-time point), associated with a reference frame. The

reference frames, moving with constant relative velocities, are referred

to as inertial frames. The transformation

X �→ X̃ = X +Xg + vg(t− tI),

turns a fixed reference frame with its origin at the point

X(tI) = XI ,

into the reference frame, moving with the velocity vg and with its origin

at a point

Xg(tI) = XI +Xg.

This transformation group for reference frames in Newtonian mechan-

ics is referred to as the Galileo group. The differential equation (2.2)

is independent of initial data and, therefore, of a frame of reference.

The independence of the equations treated as laws of nature on initial

data is referred to as the principle of relativity [3]. In the Hamiltonian

approach, the action (2.1) takes the form

SH =

∫
dt

[
P (t)

dX(t)

dt
−H

]
, (2.4)
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where P (t) is the momentum of a particle, and the canonical variables

{P,X} are coordinates of the phase space. Hamiltonian function

H(P ) =
P 2

2m
(2.5)

is the generator of the phase flow, and its value on a phase trajectory

is the energy of the particle

E = H(PI).

The equations of motion of the particle obtained by variation of the

action (2.4) by the canonical variables are the first-order differential

equations:

P (t) = m
dX(t)

dt
,

dP (t)

dt
= 0, (2.6)

rather than the second-order differential equation (2.2). According to

Newtonian mechanics, all observers in different frames of reference use

the same absolute time t.

2.3 Foundations of Special Relativity

2.3.1 Action of a relativistic particle

As it was shown above, the notion of the spatial coordinates X(i), i =

1, 2, 3 in Newtonian mechanics as dynamical variables is clearly sepa-

rated from the absolute time t, treated as an evolution parameter.

The relativistic mechanics was constructed after the Maxwell elec-

trodynamics. Symmetry group of the electrodynamics was obtained
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by Lorentz1 and Poincaré2[4]. The time t = X(0) and spatial co-

ordinates X(i), i = 1, 2, 3 are treated in this group as coordinates

X(α), α = 0, 1, 2, 3 of unified space of events or the Minkowskian space-

time3 [5] with the scalar product of any pair of vectors

A(α)B(α) ≡ A(0)B(0) − A(i)B(i).

Relativistic particles are described in the Special Relativity by the

action

SSR = −m
∫

dτ

√(
dX(α)

dτ

)2

. (2.7)

This action is invariant with respect to transformations of the Poincaré

group

X(α) = XI(α) + Λ(α)(β)X(β),

which is the transformation group of reference frames. Its subgroup of

rotations Λ(α)(β)X(β) is referred to as the Lorentz group.

Fixing the indices (0), (i) in this space of events [X(0)|X(i)] implies

the choice of a specific Lorentz reference frame. It should be noted

that the Special Relativity contains a new symmetry with respect to

1Lorentz, H.A. Versl. Kon. Akad. v. Wet. Amsterdam. S. 809 (1904).

2In 1905 (published 1906) it was noted by Henri Poincaré that the Lorentz transformations can

be regarded as rotations of coordinates in a four-dimensional Euclidean space with three real space

coordinates and one imaginary coordinate representing time as
√
−1ct. Poincaré presented the

Lorentz transformations in terms of the familiar Euclidean rotations.

3Hermann Minkowski reformulated the Special Relativity in four dimensions. His concept of

space of events as a unified four-dimensional space-time continuum arose. He did not use the imag-

inary time coordinate, but represented the four variables (x, y, z, t) of space and time as coordinates

of four dimensional affine space. Points in this space correspond to events in the space-time. In this

space, there is a defined light-cone associated with each point, and events beyond the light-cone are

classified as space-like or time-like.
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the transformations that do not change the initial data; namely, the

action (2.7) is invariant with respect to the reparametrization of the

coordinate evolution parameter

τ −→ τ̃ = τ̃(τ), (2.8)

It results in originating a constraint between the variables. This trans-

formation group is referred to as a gauge group, while the quantities

invariant with respect to gauge transformations are called observables.

The geometric time interval

s(τ) =

∫ τ

0

dτ̃

√(
dX(α)

dτ̃

)2

(2.9)

on the world line of a particle in the space of eventsX(α) can be taken as

an observable that is invariant with respect to the time reparametriza-

tion. This interval is measured by a co-moving observer. The time

variable of the space of events X(0) is the time measured by an exter-

nal observer. The goal of the theory is to solve the equations describing

trajectories in the space of events in terms of gauge invariants.

The non-covariant variational principle for a relativistic particle

was proposed by Max Planck [6]. He delivered a lecture “The princi-

ple of relativity and the fundamental equations of mechanics” to the

Deutsche Physical Society in 1906.

2.3.2 Dynamics of a relativistic particle

Any reference frame in SR is defined by a unit time-like vector l(μ) :

with

l2(μ) = l2(0) − l2(i) = 1,
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which will be referred to as a time axis. These vectors form a complete

set of the Lorentz reference frames. The time in each frame is defined

in Minkowskian space X(μ) as a scalar product of the time axis vector

and the coordinate:

X(0) = l(μ)X(μ).

The spatial coordinates are defined on the three-dimensional hypersur-

face

X⊥
(μ) = X(μ) − l(μ)(l(ν)X(ν)),

perpendicular to the time axis l(ν).

Without the loss of generality, the time axis can be chosen in the

form

l(μ) = (1, 0, 0, 0),

defining the observer rest reference frame. After solving the equations,

the arbitrary Lorentz frame can be introduced. Taking out the factor

dX(0)/dτ from the radical in Eq. (2.7), we arrive at the action integral

in the Planck’s non-covariant formulation:

SSR = −m
∫

dτ
dX(0)

dτ

√√√√1−
∑
i

[
dX(i)

dX(0)

]2
= (2.10)

= −m
∫

dX(0)

√√√√1−
∑
i

[
dX(i)

dX(0)

]2
.

Expressing the momentum

P(i) =
∂L

∂V(i)
=

mV(i)√
1− V 2

(k)

, (2.11)
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in terms of the velocity V(i) = dX(i)/dX(0) entering into the variation

of the Lagrangian (2.10)

L = −m
√

1− V 2
(i)

one can obtain the Hamiltonian function

H(P(i)) = P(i)V(i) − L =
√

m2 + P 2
(i)(X(0)) (2.12)

and rewrite action (2.10) in the Hamiltonian form

SSR =

∫
dX(0)

[
P(i)

dX(i)

dX(0)

−H(P(i))

]
. (2.13)

The energy of a particle is defined as a value of the Hamiltonian func-

tion on the trajectory:

E = H(PI(i)) =
√

m2 + P 2
I(i).

The famous formula E = mc2 (with c = 1) is a consequence of the def-

inition of physical observables from the correspondence to the classical

mechanics and follows from the low energy expansion of the Hamilto-

nian function in powers of dynamical variables:

H(P(i)) =
√
m2 + P 2

(i) = m+
P 2
(i)

2m
+ · · · . (2.14)

Variation of action (2.13) with respect to canonical momenta P(i) and

variablesX(i) yields, respectively, the velocity in terms of the momenta,

V(i) =
P(i)√

m2 + P 2
(i)

, (2.15)

and the momentum conservation law:

dP(i)

dX(0)

= 0.
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The solution of these equations determines the particle trajectory in

the space of events:

X(i)(X(0)) = X(i)(XI(0)) + V(i)[X(0) −XI(0)], (2.16)

where XI(0) is the initial time relative to the observer rest frame.

The transformation to any reference frame is described by the cor-

responding Lorentz transformation and equivalent to an appropriate

choice of a time axis. Every reference frame has its proper time, energy,

and momentum. The relationship between dynamical variables and

times in different reference frames is treated as the relativity principle

formulated, most clearly, by Einstein [7]. According to the Einstein

relativity principle, the Lorentz transformations contain extra infor-

mation on relativistic effects, as compared to solutions (2.16) of the

dynamical equations derived by variation of the action (2.13). There-

fore, the appearance of relativistic effects due to the Lorentz kinematic

transformations (id est, transformations of reference frames) means

that the Einstein theory significantly differs from the Newtonian me-

chanics. In the latter, all the physical effects are to be deduced from

the equations of motion by variational method with due regard to the

initial data. In this case, the Galileo group in Newtonian mechanics

contains nothing new beyond the solutions of the equations of motion.

The following question arises: Can a relativistic particle theory be

formulated in such a way that all physical consequences, including rel-

ativistic effects, are described by a variational equation? We will prove

that such a relativistic particle theory can be formulated with perfect

analogy to Hilberts “Foundations of Physics” [8], id est, as geometrody-
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namics. According to this theory, the description of a physical system

is based on the action functional, geometric interval, symmetry of ref-

erence frames, gauge symmetry, equations of motion, and constraint

equations for initial data.

2.3.3 Geometrodynamics of a relativistic particle

Following to the ideas of Hilbert [8], one can construct the geometro-

dynamics of a relativistic particle. The covariant approach is based on

two principles: the action [9, 10]

SSR = −m

2

∫
dτe(τ)

[(
dX(α)

e(τ)dτ

)2

+ 1

]
(2.17)

for the variables X(α) = [X(0)|X(i)] forming the space of events of the

moving particle and the geometric interval

ds = e(τ)dτ (2.18)

in the Riemannian one-dimensional space on the world line of the par-

ticle in this space (see Fig. 2.1). Here, e(τ) is the only metric compo-

nent, the so-called lapse-function of the coordinate evolution parameter

(ein-bein).

Variation of the action with respect to the function e(τ) yields the

equations of geometrodynamics

[e(τ)dτ ]2 = dX2
(α) ≡ dX2

(0) − dX2
(1) − dX2

(2) − dX2
(3). (2.19)

Solving these equations in e(τ), we arrive at

e(τ) = ±

√(
dX(α)

dτ

)2

. (2.20)
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PARTICLE

Ψ(X
0
|Xi)

X1

X2

X0=X0I

Ψ (s|qi)
P0=E

q
2

q1

ds

X0

Figure 2.1: Motion of an unstable relativistic particle in a world line in the space

of events. The motion is completely described by the two Newtonian-like sets of

observables, dynamical and geometric. Each has its proper time and wave function

Ψ. The two measured life-times of the particle (the time as either a dynamical

variable X0 or a geometric interval s) are interrelated by the equations of motion

following from the action of Hilbert-type geometrodynamics rather than by Lorentz

transformations.

It is seen that the action (2.17) coincides in these solutions with the

initial action (2.7) of the relativistic particle up to a sign. The negative

sign of e(τ) in Eq. (2.20) implies the change of the mass sign in the

action (2.7) for an antiparticle. Equation (2.19) is referred to as a

constraint equation. For the Hamiltonian relativistic-particle theory

with constraints, the corresponding action can be derived from (2.17)

by introducing the canonical momenta

P(α) = ∂LSR/∂Ẋ(α) :

SSR =

τ2∫
τ1

dτ

[
−P(α)

dX(α)

dτ
+

e(τ)

2m

(
P 2
(α) −m2

)]
. (2.21)
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Here, the lapse-function e(τ) of the coordinate evolution parameter τ

defines geometric interval (2.18):

ds = e(τ)dτ �−→ s(τ) =

τ∫
0

dτe(τ). (2.22)

The action (2.21) and the interval (2.22) are invariant with respect to

the reparametrization of the coordinate evolution parameter τ :

τ −→ τ̃ = τ̃(τ). (2.23)

Therefore, SR could be referred to as a one-dimensional GR, with

the reparametrization group of coordinate evolution parameter (2.23)

serving as a group of gauge (general coordinate) transformations. The

equation for the auxiliary lapse-function δSSR/δe = 0 determines the

Hamiltonian constraint imposed on the particle momenta P(0), P(i):

P 2
(0) − P 2

(i) = m2, (2.24)

the so-called a mass surface equation.

The equations

P(α) = m
dX(α)

edτ
≡ m

dX(α)

ds
,

dP(α)

ds
= 0, (2.25)

for the variables P(α), X(α) derived by a variation of action (2.21) are

gauge-invariant.

The solution

X(α)(s) = XI(α) +
PI(α)

m
s, (2.26)

of these equations in terms of geometric interval (2.22) is a generaliza-

tion of the solution of the Newtonian equations (2.3) in the Minkowskian
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space. In this case, the geometric time interval serves as an evolution

parameter, while PI(α), XI(α) are initial data for the four variables at

the point s = 0:

X(α)(s = 0) = XI(α). (2.27)

These equations contain three new features, as compared to Newtonian

mechanics, namely, the momentum constraint (2.24), the time compo-

nent in solution (2.26) of the equation of motion, and the initial value

XI(0) of time as a variable.

2.3.4 Reduction of geometrodynamics to the

Planck’s relativistic dynamics (1906)

The action (2.21) and the interval (2.22) were above referred to as ge-

ometrodynamics of a particle. The geometrodynamics of a particle is

characterized by two times in every reference frames namely, the time

as a geometric interval measured by an observer on the world line

and the time as a dynamical variable measured by an fixed observer.

The physical interpretation of solutions (2.24) and (2.26) of geometro-

dynamics is determined by the choice of a specific Lorentz reference

frame Pμ = (P(0), P(i)), the so called observer rest frame. The solution

P(0)

P(0)± = ±
√

P 2
(i) +m2 = ±H (2.28)

of constraint equation (2.24) in the zero momentum component P(0) in

this reference frame is the Hamiltonian function in the spatial dynam-

ical variables [P(i), X(i)]. According to the principle of correspondence



2.3. Foundations of Special Relativity 79

to Newtonian mechanics, these variables belong to the so-called re-

duced phase space [11]. The variable X(0) is the evolution time relative

to the observer rest frame.

In a given Lorentz reference frame, the time component of solution

(2.26),

X(0)(s)−XI(0) =
P(0)±
m

s. (2.29)

of geometrodynamics has no analogy in Newtonian mechanics. In this

case, the formula (2.29) is a pure kinematic relation between the two

times noted above, namely, the dynamical variable X(0) and the geo-

metric interval s:

s = [X(0) −XI(0)]
m

P(0)±
. (2.30)

This equation will be referred to as a geometric ratio of the two times

of a relativistic particle, namely, the time [X(0)] as a variable and the

time s as an interval.

The substitution of geometric ratio (2.30) into spatial part

X(i)(s) = XI(i) +
P(i)

m
s (2.31)

of solution (2.26) gives the relativistic equation of motion in the re-

duced phase space [P(i), X(i)],

X(i) = XI(i) +
PI(i)

P(0)+

[X(0) −XI(0)]. (2.32)

with the time [X(0)] as a variable.

Thus, geometrodynamics in a specific reference frame consists of

constraint-free “particle dynamics” (2.32) and “geometry” (2.31) de-

scribing purely relativistic effects by the equations of motion in the

same reference frame [9, 10].
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The formula (2.13) for the action describing a moving particle can

be derived by substitution of solution (2.28) into geometrodynamic ac-

tion (2.21). Such a substitution also gives the action for a particle with

negative energy (2.28):

SSR|P(0)=P(0)−
=

X(0I)∫
X(0)

dX0

[
−P(i)

dX(i)

dX(0)

−
√

P 2
(i) +m2

]
. (2.33)

The equations corresponding to this action have the solutions

X(i) = XI(i) +
P(i)

P(0)−
[XI(0) −X(0)(s)] (2.34)

= X(i) +
P(i)

P(0)+

[X(0)(s)−XI(0)].

The problem of the negative energy was solved later, under con-

struction of the relativistic quantum field theory [12].

2.3.5 Quantum anomaly of geometric interval

It is known that quantum relativistic mechanics is defined as the quan-

tization of energy constraint (2.24)

P 2
(0) − P 2

(i) = m2,

by substituting the particle momentum P(α) = (P(0), P(i)) by its opera-

tor P̂(α) = −ı∂(α). The quantization yields the Klein – Gordon – Fock

equation for a wave function[
P̂ 2
(α) −m2

]
Ψ[P(α)|X(α)] = 0 (2.35)
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as a quantum analog of constraint equation (2.24). This equation has

the normalized solution

Ψ[P(α)|X(α)] =
1√

2 |P(0)|
× (2.36)

×
[
a+ΨP(0)+

θ(X(0)−XI(0))+a−Ψ∗P(0)−
θ(XI(0)−X(0))

]
,

where θ is the Heaviside step function. Two linear-independent terms

with the coefficients a+ and a− correspond to two classical solutions of

constraint equation (2.24) with positive and negative energies (2.28).

Quantum field theory is known to be formulated as the quantization of

the coefficients a+, a−, id est as the second quantization of relativistic

particles [12]. In this case, to exclude negative energies, −|P(0)| and
therefore to ensure the stability of quantum systems, the coefficients

a+ and a− are to be treated as creation and annihilation operators,

respectively, for particles with positive energy 4. This treatment is

equivalent to the postulate of the existence of the vacuum as a lowest-

energy state in the space of events. The postulate imposes a constraint

on the motion of a classical particle in the space of events, namely, the

particle with the energy P(0)+ (P(0)−) which moves forward (backward):

P(0)+ → XI(0) ≤ X(0); P(0)− → XI(0) ≥ X(0). (2.37)

The following question arises: How does the causal quantization (2.36)

with the restriction (2.37) influence geometric interval s (2.22)?

To answer this question we perform the Lorentz transformation

from the rest reference frame to the comoving frame: [X(0)|X(i)], where

4Moreover, the initial data XI(0) is treated in the quantum theory as a point of creation or

annihilation of a particle.
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P (i) = 0 and P (0)± = ±m. It follows from (2.30) and (2.37) that the

time X(0) in the comoving frame is related to the geometric interval s

by the equation

s(X(0)|XI(0)) = (2.38)

= (X(0)−XI(0))θ(X(0)−XI(0))θ(P (0))+(XI0−X0)θ(XI(0)−X(0))θ(−P (0)).

This expression for the geometric interval s in quantum field theory

looks like the Greens causal function of the comoving time:

d2s(X(0)|XI(0))

dX
2

(0)

= δ(X(0) −XI(0)). (2.39)

Therefore, the positive geometric arrow of time s ≥ 0 is a consequence

of the postulate of existence of the vacuum as a lowest-energy state

of the system, which leads to the existence of the absolute time ori-

gin s = 0. The positive arrow of time implies breaking of classical

symmetry with respect to the transformation s to −s. In contrast

to the classical symmetry, breaking of symmetry in quantum theory

is referred to a quantum anomaly5. Under the assumption of the ex-

istence of the vacuum as a physical lowest-energy state, the second

quantization of an arbitrary relativistic system leads to the absolute

geometric-time origin s = 0 in this system. The question on what was

before the creation of a relativistic particle or a universe has no physi-

cal sense for an observer measuring time because time s = 0 is created

5The anomaly associated with Dirac fields also follows from the vacuum existence postulate.

This fact was first pointed out by Jordan [13] and then rediscovered by the authors [14, 15]. The

vacuum existence postulate is verified by a number of experimental effects, in particular, anomalous

decays of pseudoscalar bound states (neutral pion and para-positronium) into two photons.
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together with the quantum relativistic universe as a consequence of the

universe stability.

We have seen that in quantum theory in each frame of reference

there are two measurable times: the proper time (2.38) at the world line

and the relative time [X(0)] (2.38) in the space of events [X(0), X(j)]. In

quantum theory, these two times are supplementary, and they cannot

be identified. Therefore, the so-called twin paradox that appears in

classical relativistic mechanics does not take place in the quantum

theory.

2.3.6 How does the invariant reduction

differ from the choice of gauge?

We now compare the gauge invariant method of describing the field

dynamics [9, 10] to the gauge-noninvariant method, assuming that the

coordinate time τ becomes observed6. In the case of SR under con-

sideration, this assumption implies the use of the synchronous gauge

e(τ) = 1 in action (2.21):

SSR =

τ2∫
τ1

dτ

[
−P(α)

dX(α)

dτ
+

e(τ)

2m

(
P 2
(α) −m2

)]
. (2.40)

This yields a constraint-free theory:

SSR|[e=1] = (2.41)

6The assumption of the coordinate time x0 as an observable was used in GR under description

of the island gravitational objects [16].
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=

τ2∫
τ1

dτ

[
P(i)

dX(i)

dτ
− P(0)

dX(0)

dτ
− 1

2m

(
−P 2

(0) + P 2
(i) +m2

)]
.

From the viewpoint of quantization, Eq. (2.41) describes an unstable

system because it contains the variable X(0) making a negative contri-

bution to the energy

E =
1

2m
(−P 2

(0) + P 2
(i) +m2),

which is defined in the interval (−∞ < E <∞). The particle action on

the three-dimensional hypersurface defined by the condition P(0) = 0

(the similar constraint in GR is referred to as a minimal surface [16])

coincides with the Newtonian action

SSR|[e=1,P(0)=0] = SNewton =

τ2∫
τ1

dτ

[
P(i)Ẋ(i) −

P 2
(i)

2m

]
. (2.42)

up to a constant factor, as well as with the Einstein action (2.13) in the

nonrelativistic limit, where the time X(0) in the rest frame coincides

with the time interval s. Theory (2.41) under the constraint

P 2
(0) = P 2

(i) +m2

reduces to SR because the gauge symmetry is restored.

Einstein [7] found that, in contrast to classical mechanics, just two

observers are needed to completely describe the motion of a relativistic

particle: the first is at rest, and the second moves with the particle.

For example, every Einstein’s observer measures its proper lifetime of

an unstable particle. Therefore, time is a relative quantity. Einstein

described this time relativity as a pure kinematic effect by using the
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Lorentz transformations from a fixed reference frame to a moving one.

As was shown above, there exists a geometrodynamic generalization of

the Einstein dynamics of 1905 (2.13) to a gauge theory with the con-

straint (2.21). This generalization allows us to describe the two-time

relativity as a consequence of the equations of motion rather than the

Lorentz kinematic transformations. This geometrodynamic description

defines the new two-time relativity as a ratio of the dynamical parti-

cle evolution parameter X(0) to geometric interval s (2.22). We now

illustrate this inference with a mini-universe. In this case, purely rela-

tivistic effects can not be described kinematically by transformations

of the Lorentz type variables.

2.4 Homogeneous approximation of

General Relativity

2.4.1 Radiation-dominated cosmological model

As was shown in the preceding Section, relativistic effects in variational

equations can be dynamically described within the framework of SR

formulated by analogy to the Hilberts variational description of GR

[8]. According to Hilbert, GR geometrodynamics is based on two basic

notions: the action

WH = −
∫

d4x
√
−gR

(4)(g)

6
(2.43)

in the units √
3

8π
MPl = c = � = 1
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and the geometric interval of the Riemannian coordinate manifold

ds2 = gμνdx
μdxν. (2.44)

Both the action (2.43) and the interval (2.44) are invariant with respect

to the general coordinate transformations

xμ → x̃μ = x̃μ(x0, x1, x2, x3). (2.45)

They serve as a generalization of the action considered above and

as an interval for a relativistic particle, invariant with respect to the

reparametrization group of coordinate time.

In the case of the homogeneous approximation,

ds2 = gμνdx
μdxν �

⎧⎪⎨⎪⎩g00(x
0)[dx0]2︸ ︷︷ ︸
(dt)2

− |g(3)(x0)|1/3︸ ︷︷ ︸
a2(t)

[dxj]2

⎫⎪⎬⎪⎭ (2.46)

one can keep only two metric components:

g00 = |g(3)|1/3N2
0

and the spatial metric determinant |g(3)(x0)|. In Friedmann’s notations

this metric takes the following form

ds2 = dt2 − a2(t)(dr)2. (2.47)

Here t is the world time, a(t) is the cosmological scale factor, and

r ≡
√

x21 + x22 + x23 (2.48)

is the coordinate distance to a considered cosmic object. They are

invariant with respect to reparametrization of the coordinate evolution

parameter

x0 → x̃0 = x̃0(x0). (2.49)
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From the light cone interval (2.47)

dt = a(t)dr

one gets a relation between the coordinate distance and the conformal

time η:

r(η) =

t0∫
tI

dt

a(t)
≡ η0 − η. (2.50)

Here η0 is the present day value of the conformal time, for which the

cosmological scale factor is equal to unit a(η0) = 1, and η is the time

of emission of a photon by an atom at a cosmic object, that is at the

coordinate distance r to the Earth. In other words, this coordinate

distance r is equal to a difference between η0 and η

r = η0 − η, or η = η0 − r. (2.51)

In the case of the homogeneous approximation, (2.47) the GR action

(2.43) reduces to the cosmology action [19, 18]

WH = −V0

∫
dx0N0

[(
da

N0dx0

)2

+ ρrad

]
=

∫
dx0L, (2.52)

that can contain an additional matter term, in particular, the energy

density of radiation ρrad = constant. Here V0 is the volume, L is the

Lagrangian, and

N(x0) = a−1
√
g00

is the lapse function. This action keeps the reparametrization time

invariance. As shown above, the reparametrization group of the co-

ordinate parameter means that one of the variables (here, the only
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variable is a) is identified with time as a variable, while its canonical

momentum

Pa =
∂L

∂(da/dx0)
= −2V0

da

N0dx0
≡ −2V0

da

dη
, (2.53)

is taken as the corresponding Hamiltonian function, with its value on

the equations of motion becoming the energy of events. The action

(2.52) reduces to the Hamiltonian cosmology action

WH =

∫
dx0
(
Pa

da

dx0
−N0

[
− P 2

a

4V0

+ V0ρrad

])
. (2.54)

Variation of the action (2.54) with respect to the lapse function N0:

δWH

δN0

= 0,

yields the energy constraint equation

P 2
a

4V0

= V0ρrad. (2.55)

Solutions of this constraint take the form

Pa = ±E; E = 2V0

√
ρrad. (2.56)

The Hubble law (
da

dη

)2

= ρrad (2.57)

follows from Eqs. (2.53) and (2.55), and it yields the relation between

the two times in the form of the Friedmann differential equation:

η0 − ηI =

a0∫
aI

da
√
ρrad

=
(a0 − aI)√

ρrad
. (2.58)

This relation describes classical cosmology, id est the Hubble law, and

is an auxiliary relation to the Wheeler – De Witt quantum cosmology,
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provided that this cosmology is defined as a quantization of the con-

straint equation (2.55). The quantization is defined by the substitution

of variables by operators, P̂ = ıd/da acting on the Wheeler – De Witt

wave function Ψ: [
d2

da2
+ 4V 2

0 ρrad

]
ΨU(a) = 0. (2.59)

As we have shown above, both the classical and the quantum cos-

mologies followed from the Hilbert geometrodynamics. This allows us

to combine them to settle their troubles, namely, the quantization of

classical cosmology and the description of the Hubble law in quantum

cosmology. The wave function can be presented in the form of the sum

of two terms

ΨU(a) =
1√
2 |E|

× (2.60)

×
[
A+

U exp(ıEa)θ(a(0) − aI(0)) + A−U exp(−ıEa)θ(aI(0) − a(0))
]
,

where A+
U and A−U are treated as the creation and annihilation operators

of the Universe with the positive energy in accordance with the vacuum

postulate A−U |0〉 = 0, by analogy with the wave function of a relativistic

particle (2.36).

In the Standard cosmology this wave function describes the Uni-

verse in the epoch of the radiation dominance, where the energy density

corresponds to the number of the CMB photons ∼ 1087 and their mean

energy and wave length ∼ 1 mm. The question is: How can we derive

these quantities from the first principles?
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2.4.2 Arrow of conformal time as quantum anomaly

The vacuum existence postulate A−U |0〉 = 0 restricts the motion of the

universe in the field space of events, and it means that the universe

moves forward (a > aI) or backward (a < aI) if the energy of events

is positive (Pa ≥ 0) or negative (Pa ≤ 0), respectively, where aI is the

initial value. In quantum theory, the quantity aI is considered as a

creation point of the universe with positive energy Pa ≥ 0 or as an

annihilation point of the anti-universe with negative energy Pa ≤ 0.

We can assume that the singular point a = 0 belongs to the anti-

universe: Pa ≤ 0. A universe with positive energy of events has no

cosmological singularity a = 0. According to the vacuum existence

postulate, the conformal time (5.1) as a solution of the Hubble law is

positive for both the universe and anti-universe

η0 − ηI ≥ 0. (2.61)

2.5 Standard cosmological models

We now consider the equation (2.57) of the universe evolution[
da

dη

]2
= ρc(a). (2.62)

The universe is filled with homogeneous matter with the density ρc(a).

In the Standard cosmology, the conformal density is the sum of those

depending on the scale a

ρc(a) = ρrigida
−2 + ρrad + ρMa+ ρΛa

4. (2.63)
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Here, ρrigid is the contribution of the equation of rigid state for which

the density is equal to pressure

ρrigid = prigid, (2.64)

The densities ρrad, ρM , and ρΛ describe the contributions of radiation,

baryon matter, and Lambda-term, respectively. For each of these

states, the Eq.(2.62) can be solved, under the initial conditions

a(η0) = 1, a′(η0) = H0 :

in terms of the conformal time η:

arigid(η) =
√
1− 2H0r, arad(η) = 1−H0r, (2.65)

aM(η) =

[
1− 1

2
H0r

]2
, aΛ(η) =

1

1 +H0r
. (2.66)

The conformal time η is defined in observational cosmology as the

instant of time at which the photon is radiated by an atom at a cosmic

object moving with the velocity c = 1 in a geodetic line on the world

cone

ds2 = a2[(η)2 − dr2] = 0.

This allows us to find the relation of the distance

r = η0 − η. (2.67)

In other words, η0 is the present-day conformal time of the photon

measured by a terrestrial observer with a(η0) = 1, and η is the time

instant at which the photon is radiated by an atom at the distance
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r from the Earth. Therefore, η is the difference between the present-

day conformal time η0 and the time of a photon flight to the Earth,

coinciding with the distance (2.67). Equation (2.67) gives

η = η0 − r. (2.68)

In an observational cosmology, the density (2.63) can be expressed in

terms of the present-day critical density ρcr:

ρc(a) = ρcrΩ(a), (2.69)

Ω(a) = Ωrigida
−2 + Ωrad + ΩMa+ ΩΛa

4 (2.70)

and the relative ones Ωrigid, Ωrad, ΩM , ΩΛ satisfying the condition [17]

Ωrigid + Ωrad + ΩM + ΩΛ = 1.

The Classical cosmology describes the redshift of the radiation spec-

trum E(η) at a cosmic object as relative to the spectrum E(η0) at the

Earth. The redshift is defined as the scale factor versus the coordinate

distance (given by conformal time (2.68)) to the object.

Taking these relations into account and substituting a = 1/(1 + z)

and η = η0 − r, we can write down the scale evolution equation (2.63)

at the light ray geodetic line dr/dη = −1 in the form

1

H0

dz

dr
= (1+z)2

√
ρcr [Ωrigid(1+z)2+Ωrad+ΩM(1+z)−1+ΩΛ(1+z)−4],

where H0 =
√
ρcr.

The solution

H0r(z) =

1+z∫
1

dx√
Ωrigidx6 + Ωradx4 + ΩMx3 + ΩΛ

, (2.71)



2.6. Summary and literature 93

coinciding with solution (2.67) of this equation, determines the coor-

dinate distance as a function of redshift z and gives formulae (2.65),

(2.66) for every state. The formula (2.71), being a basis of the ob-

servational cosmology (for example, see [18]), is used to determine

the equation of state of matter in the Universe according to the as-

trophysical measurements of the redshift in assumption of flat space.

The formula is universal for all standards of measurement. The Fried-

mannian distance R(z) in the Standard cosmology is connected with

conformal distance r(z) in Conformal cosmology by the relation

R(z) = a(z)(η0 − η) = a(z)r(z), a =
1

1 + z
, (2.72)

following from the definition of the metric

ds2 = a2(η)
[
dη2 − (dr)2

]
and the relation (2.51). Thus, different standards for the same data

on the dependence of the redshift of distances correspond to different

equations of state of matter in the Universe.

2.6 Summary

Thus, the unified geometrodynamic formulation of both theories (SR

and GR), which is based on the Hilbert variational principle [8], makes

it possible to quantize the cosmological models similarly to the first

and second quantization of a relativistic particle. The latter is a basis

of the modern quantum field theory [12], which is verified by a great

number of high-energy experiments. A similar approach to the quan-

tization within the framework of GR was first formulated by Wheeler
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[19] and De Witt [20]. They assumed that cosmological time, treated

as a variable, is identical with the cosmological scale factor. Moreover,

they introduced into GR the concept of a field space of events, in which

the relativistic universe moves, by analogy to the motion of a relativis-

tic particle of the Minkowskian space. However, the Wheeler – De Witt

formulation [19, 20] does not contain time as a geometric interval and,

therefore, its scale-factor dependence (interpreted in the Friedmann

cosmology as the Hubble law). Thus, as noted above, classical cosmol-

ogy fails to quantize [18], while quantum cosmology fails to describe

the Hubble law [19, 20]. In this Section, we use the invariant reduc-

tion of the Wheeler – De Witt cosmology, considered as a relativistic

universe geometrodynamics, to restore the relation of observational

cosmology (id est the Hubble law) to the first and second quantization

of the universe and calculate the distribution of created universes. This

reduction allows us to solve a series of problems, namely, Hubble evo-

lution, universe creation from the vacuum, arrow of time, initial data,

and elimination of the cosmological singularity, under the assumption

that the Hamiltonian is diagonal and the universe is stable. In what

follows, we consider a similar invariant reduction in the General Rel-

ativity in order to define physical observables, quantize gravity, and

formulate a low-energy perturbation theory.
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Chapter 3

Principles of symmetry

of physical theories

3.1 Irreducible representations of

Lorentz group SO(3, 1)

The Lorentz group is determined by the requirement of invariance of

the speed of light in all inertial reference systems. It is a general-

ization of the Galilean transformations, and includes those that are

mixed up spatial and time coordinates of a particle. The set of linear

transformations, preserving the invariant form of the interval

ds2 = c2dt2 − dx2 − dy2 − dz2 ≡ (dx0)
2 − (dx1)

2 − (dx2)
2 − (dx3)

2,

is called the Lorentz group. Transformations of the group are defined

as

x
′

μ = Λμνxν, (3.1)

98
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where Λ ∈ O(3, 1). We introduce the Hermitian generators of the

Lorentz transformations

Lμν = ı(xμ∂ν − xν∂μ).

The generators Lμν form a Lie algebra so(3, 1):

[Lμν, Lρτ ] = ı(gμρLντ − gμτLνρ − gνρLμτ + gντLμρ). (3.2)

The most common representation of operators, satisfying the commu-

tation relations (3.2), has the form

Mμν ≡ ı(xμ∂ν − xν∂μ) + Σμν,

where the spin operators Σμν form the same Lie algebra (3.2) and

commute with operators Lμν. The Hermitian generators Mij form an

algebra of rotations su(2) :

[Mij,Mkl] = −ıδjkMil + ıδikMjl + ıδjlMik − ıδilMjk. (3.3)

We introduce the operators of space rotations

Ji ≡
1

2
εijkLik,

where εijk is the Levi–Civita symbol, antisymmetric in all indices, and

boost operators

Ki ≡ L0i.

From the algebra (3.2) we get

[Ji, Jj] = ıεijkJk, [Ki, Kj] = −ıεijkJk, [Ji, Kj] = ıεijkKk.

(3.4)



100 3. Principles of symmetry of physical theories

The commutation relations (3.4) is possible to dissociate by introduc-

ing the linear combinations

Ni ≡
1

2
(Ji + ıKi), N+

i ≡
1

2
(Ji − ıKi)

with the algebra

[Ni, N
+
j ] = 0, [Ni, Nj] = ıεijkNk, [N+

i , N
+
j ] = ıεijkN

+
k . (3.5)

Therefore, in the new generators, the Lie algebra (3.2) is represented

as the direct sum of complex–conjugated spin algebras:

su(2)⊕ su(2).

There are two Casimir operators NiNi, N
+
i N

+
i , belonging to a uni-

versal enveloping algebra [1, 2] with eigenvalues n(n + 1), m(m + 1).

States within a considered representation differ by eigenvalues of the

operators N3 N+
3 of the corresponding algebras. According to the

Schur’s lemma, the operators, commuting with all the generators of

an algebra, are proportional to the unit. Therefore, the obtained rep-

resentations can be numbered by pairs of numbers (n,m) that take

integer and half-integer values:

n,m = 0, 1/2, 1, 3/2, 2, . . . .

For example, let us consider the following representations combined

by a pair of integer and half-integer numbers:

1. (0, 0): spin is equal to zero—scalar or pseudo-scalar particle;

2. (1/2, 0): spin is equal to 1/2, left Weyl’s spinor;

3. (0, 1/2): spin is equal to 1/2, right Weyl’s spinor;
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4. (0, 1/2)⊕ (1/2, 0): Dirac’s spinor;

5. (1/2, 0)⊕(0, 1/2) = (0, 0)⊕(1, 0): In this case, the inner product

is given by the antisymmetric product. A new representation (1,0) is

described by anti-symmetric self-dual second-rank tensor. The repre-

sentation (0,1) corresponds to the anti-selfdual tensor;

6. (0, 1)⊕ (1, 0): Maxwell’s tensor of the electromagnetic field.

3.2 Irreducible representations of

Poincaré group SO(3, 1)⊗̇T (4)

An additional requirement of invariance of an isolated physical system

with respect to uniform translations in space and time leads to a gen-

eralization of the six-parameter Lorentz group (3.1) to a ten-parameter

Poincaré group [1]

x
′

μ = Λμνxν + aμ, (3.6)

where Λμν ∈ SO(3, 1), aμ ∈ R.

Hermitian generators of translations Pμ = ı∂μ commute with each

other:

[Pμ, Pν] = 0, (3.7)

but do not commute with the generators of the Lorentz group:

[Mμν, Pρ] = −ıgμρPν + ıgνρPμ. (3.8)

Algebra of Poincaré is the semidirect sum of an ideal1 (3.7) and the

Lorentz algebra so(3, 1). As mentioned above, all irreducible represen-

1In the theory of Lie algebras, the ideal is a maximal commutative subalgebra.
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tations are characterized by the eigenvalues of the Casimir operators

that commute with all the generators of the algebra of the group.

Eugene Wigner (November 17, 1902, Bu-

dapest January 1, 1995, Princeton,

USA) was a Hungarian American theo-

retical physicist and mathematician. He

received a share of the Nobel Prize in

Physics in 1963 “for his contributions

to the theory of the atomic nucleus

and the elementary particles, particu-

larly through the discovery and appli-

cation of fundamental symmetry princi-

ples”; the other half of the award was

shared between Maria Goeppert–Mayer

and J. Hans D. Jensen. Wigner is im-

portant for having laid the foundation

for the theory of symmetries in quan-

tum mechanics as well as for his research

into the structure of the atomic nucleus.

Wigner developed the theory of irre-

ducible representations of the Poincaré

group as the theory of the classification

of elementary particles.

The Casimir operator is the square of the four-momentum operator

PμP
μ, because of its invariance with respect to the Lorentz transfor-

mations. The second Casimir operator is constructed from the pseu-

dovector Pauli – Lubański W μ:

W μ ≡ 1

2
εμνρσPνMρσ, (3.9)
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where εμνρσ is the antisymmetric tensor of Levi–Civita. It is the gen-

erator of the little group of the Poincaré group, that is the maximal

subgroup (with four generators), leaving the eigenvalues of the four-

momentum vector Pμ invariant. Considering (3.7) and (3.8), we obtain

the commutation relations for the vector:

[Wμ, Pν] = 0, [Mμν,Wρ] = −ıgμρWν + ıgνρWμ. (3.10)

Consequently,

[Wμ,Wν] = −ıεμνρσW ρP σ.

From here we see the square of the length of the vector W μWμ is the

Casimir operator. Wigner’s representations are infinite-dimensional

that corresponds to an unlimited momenta. From physical point of

view, the following representations of the group are of special interest.

1. An eigenvalue of the operator

PμP
μ ≡ m2

is a real positive number. An eigenvalue of the operator W μWμ is

W 2 = −m2s(s+ 1),

where s is a spin, with values s = 0, 1/2, 1, . . .. States within the

representation differ by the third component of the spin

s3 = −s, −s+ 1, . . . , s− 1, s

and continuous eigenvalues pi. The state corresponds to a particle with

a mass m, a spin s, three-dimensional momentum pi and the projection



104 3. Principles of symmetry of physical theories

of the spin s3. Massive particles with the spin s possess 2s+1 degrees

of freedom.

2. An eigenvalue of the operator P μPμ is equal to zero, that corre-

sponds to a particle with zero rest mass. An eigenvalue of the operator

W μWμ is equal to zero. The scalar product of operators P μ and W μ

is equal to zero:

P μWμ = 0.

The coefficient of proportionality is called helicity and equals±s, where

s = 0, 1/2, 1, . . .

is a spin of the representation. Examples of particles: a photon with

spin 1 and two states with helicity ±1, a neutrino with helicity ±1/2
and a metric graviton with two states of helicity ±2.

3. An eigenvalue of the operator

PμP
μ ≡ m2 < 0

is a real negative number. Hypothetical particles with imaginary mass

are called tachyons [3]. They are widely met in the physical world, ap-

pearing as quasi-particles in complex systems, having lost stability at

phase transitions. In the theory of elementary particles tachyons make

the vacuum state of the system unstable that leads to its restructuring,

providing the appearance of mass of the elementary particles. In the

Standard cosmology, the tachyon unstable vacuum state of the scalar

field is used in an inflationary scenario of the expansion of the Uni-

verse. Further, as we shall see in Chapter 7, in cosmological models of

the Universe, the gravitons acquire tachyon mass, equal to a Hubble
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parameter. Classification of fields by the Poincaré group differs from

the classification of fields by the Lorentz group, primarily because that

involves the selection of the reference frame, where the time coordinate

is separated from the space coordinates.

In quantum electrodynamics, under the classification by irreducible

representations of the Poincaré group, the time and spatial components

of the field are not equal, and satisfy different equations and describe

different physical phenomena. In particular, the time component of

the field is treated as a Coulomb potential of charges, forming simul-

taneously quantum states. And only the transverse field spatial com-

ponents are treated as independent electromagnetic waves (photons),

which give the radiative corrections to the spectrum of bound states.

In the case of free massless photons, one can select such a frame of

reference where conditions are imposed: the velocity of the longitudi-

nal component is zero and the longitudinal component is zero itself.

This last condition is called Coulomb gauge, or the choice of radiation

variables.

In a certain frame of reference a massive field is divided into a

time component and three spatial components. Time component is

non-dynamic and plays a role of the Yukawa potential, comoving to an

appropriate charge. Three spatial components of the massive vector

field are divided into two perpendicular to the direction of the wave

vector, and one is a longitudinal. All three components are indepen-

dent dynamical variables describing the degree of freedom with some

initial data.

In Einstein’s theory of gravity a separation of the time coordinate
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is called 4 = 3 +1 splitting of the space–time [4]. At the same time, at

every point of a pseudo–Riemannian space it is possible to construct

an appropriate tangent Minkowskian space where there are transfor-

mations of the Poincaré group. In the General Relativity, from ten

components of the metric only two spatial components of the metric

describe independent degrees of freedom of gravitons, while all the oth-

ers give Newton’s potentials and their generalizations in the General

Relativity.

3.3 Weyl group

Weyl group [2] includes, along with the Poincaré group, an Abelian

group of scale transformations2. The theory is scale – invariant if its

classical action does not contain dimensional constants. If coordinates

of a space transform under a scale transformation

xμ → x′μ = eλxμ, λ > 0, (3.11)

then a scalar field transforms as:

ϕ(x)→ ϕ′(x′) = eλnϕ(x), (3.12)

2Scale transformations were experienced by Alice (Carroll, Lewis: Alice’s Adventures in Won-

derland. Macmillan and Co., London (1865)) in order to penetrate through a small door. Scientists

have thought about this, as seen that every country adopted its measure lengths, weights. Thus,

Galileo, reflecting on the invariance of the laws of nature for a change of scale, wrote in the book

“Dialogue Concerning Two New Sciences” (1638) the following considerations. If you increase the

size of the animal two times, its weight will increase eight times, proportional to the volume. The

same cross-sectional size of its bones grow four times the square of the resolution. Consequently,

they can only withstand four times the load.
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where n is a conformal weight of the field.

In the infinitesimal form, under exp(λ) ≈ 1+λ the law of transfor-

mation takes a form

ϕ′(eλx) ≈ ϕ′(x+ λx) ≈ ϕ′(x) + λxμ
∂ϕ′

∂xμ
(x),

consequently,

δϕ ≡ ϕ′(x)− ϕ(x) = λxμ
∂ϕ′

∂xμ
(x). (3.13)

From here we get a generator of scale transformation (generator of

dilatation) D:

D ≡ −ıxμ ∂

∂xμ
.

Hermann Klaus Hugo Weyl, (9 Novem-

ber 1885 – 8 December 1955) was a Ger-

man mathematician, theoretical physi-

cist and philosopher. Although much

of his working life was spent in Zürich,

Switzerland and then Princeton, the

USA he is associated with the University

of Göttingen tradition of mathematics,

represented by David Hilbert and Her-

mann Minkowski. After the creation of

the General Theory of Relativity by Ein-

stein, he turned to the unified field the-

ory. Although the unified theory of grav-

ity and electromagnetism failed, his the-

ory of gauge invariance assumed great

significance. Weyl is also well known for

the use of the group theory to quantum

mechanics.
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Commutation relations of the generator of dilation D with the gen-

erators of the Poincaré algebra:

[D,Pμ] = −ıPμ, [D,Mμν] = 0.

Representations of the Weyl group are characterized by integer and

half-integer numbers – conformal weights. Conformal weights n of

various fields (scalar n = −1, spinor n = −3/2, vector n = 0, tensor

n = 2) are possible to be calculated, assuming the sum of conformal

weights of all the factors in the action for these fields to be zero.

Free actions of these fields and their interaction with each other

may include dimensional parameters, such as the mass. Then one talks

about the hard violation of the scale symmetry of the theory. Break-

ing of a scale symmetry of the theory is called soft if such violation

has occurred as a result of quantization of the original scale-invariant

classical theory. Then one talks about the quantum anomalies. An

example of such anomalies is the quantum vacuum fluctuations due to

creation and annihilation of particles of quantum fields. The source of

the anomaly can be taken for the separation of the field on the pos-

itive and negative frequency parts and the subsequent interpretation

of the coefficient of the wave function particles with negative energy

as the annihilation operator of the particles with positive energy. This

treatment of the particles with negative energy, nowadays, in quantum

field theory is the only unique way to build a vacuum state with the

lowest energy [5].

In this way, the separation of a field to the positive and negative

frequency parts, led to anomal meson decays, the above-mentioned
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Casimir energy, and dimensional condensates of fields in quantum field

theory (QFT), classical versions of which did not contain all of these

effects, experimentally validated. One can say that the very construc-

tion of a stable vacuum in quantum field theory, as the state of the

lowest energy, and even a hypothesis about its existence, suggests the

possibility of quantum anomalies.

3.4 Conformal group SO(4, 2)

A conformal transformation is an invertible mapping of the space-time

coordinates xμ → x′μ(x) such that it leaves the metric tensor invariant

up to a local scale factor

gμν(x)→ g′μν(x
′) = Ω2(x)gμν(x).

A classical theorem of Liouville [6] states that any conformal, or angle-

preserving map, between open subsets of Rn, for n ≥ 3, is a composi-

tion of an inversion, dilatation, and isometries. So, the aforementioned

Weyl’s group, supplemented by special conformal transformations

xμ →
xμ + βμx

2

1 + 2(βλxλ) + β2x2
, x2 ≡ xμx

μ, βμ ∈ R, (3.14)

defines the group of conformal transformations. The special conformal

transformation consists of an inversion on a unit hyperboloid

xμ → xμ

x2
,

followed by a translation

xμ → xμ + βμ,
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followed by a second inversion on a unit hyperboloid

xμ → xμ

x2
.

An infinitesimal special conformal transformation

xμ → x′μ = xμ − 2(βλx
λ)xμ + βμx2, |βμ| � |xμ|,

such that
∂x′μ

∂xν
= δμν − 2(βλx

λ)δμν + 2(xνβ
μ − xμβν).

A generator of dilatation D, generators of special conformal trans-

formations Kμ

Kμ = −ı(x2∂μ − 2xμ(xλ∂
λ)), (3.15)

and the above presented generators of the Poincaré group Pμ, Mμν,

besides the algebra of Poincaré, satisfy the following commutation re-

lations [7]:

[D,Pμ] = −ıPμ, [D,Mμν] = 0,

[D,Kμ] = ıKμ, [Kμ, Kν] = 0, (3.16)

[Kμ, Pν] = −2ı(gμνD +Mμν), [Kρ,Mμν] = ı(gρμKν − gρνKμ).

In order to identify the structure of algebra we introduce the fol-

lowing notations for the generators

Jμν = Mμν, J65 = D, J5μ =
1

2
(Pμ −Kμ), J6μ =

1

2
(Pμ +Kμ).

Then we obtain the commutation relations

[JKL, JMN] = ı(gKNJLM + gLMJKN − gKMJLN − gLNJKM)
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with the diagonal 6-dimensional metric tensor

gAA = (+−−−,−+), A = 0, 1, 2, 3, 5, 6.

This shows that the commutation relations define the algebra so(4, 2)

of the group of orthogonal rotations in the pseudo-Euclidean space,

which is isomorphic to the algebra su(2, 2) of the fundamental repre-

sentation of a twistor space C
4:

so(4, 2) ≈ su(2, 2).

The generators of the six-dimensional self-representation are given by

[8]

(JAB)CD = ı(gACgBD − gADgBC).

The little group which leaves x = 0 invariant is given by special

conformal transformations, dilatations and Lorentz transformations.

In accordance with the standard theory of induced representations [9],

if we determine any representation S(g, 0) of the little group, we can

determine the complete action of the generators of the conformal group

on the field ϕ(x). Let Σμν,Δ, κμ be the infinitesimal generators of the

little group. They satisfy

[κμ, κν] = 0, [Δ, κμ] = ıκμ,

[κρ,Σμν] = ı(gρμκν − gρνκμ), (3.17)

[Σρσ,Σμν] = ı(gσμΣρν − gρμΣσν − gσνΣρμ + gρνΣσμ).

For every element X of the conformal algebra we can define

Xϕ(x) = exp(−ıPμx
μ)X ′ϕ(0),
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where

X ′ ≡ exp(ıPμx
μ)X exp(−ıPμx

μ) =

=
∞∑
n=0

xν1 · · · xνn[Pν1, [· · · [Pνn, X] · · · ]].

Using the commutation relations (3.16) it is found that there are at

most three non-vanishing terms in this sum [7]. For example, for X =

Kμ, we get

exp(ıPνx
ν)Kμ exp(−ıPνx

ν) = Kμ−2xν(gμνD+Mμν)+2xμx
νPν−x2Pμ.

From this we deduce the action of the generators Kμ, D,Mμν on ϕ(x),

since the action on ϕ(0) is known by hypothesis, for example

Kμϕ(0) = κμϕ(0).

Finally,

Pμϕ(x) = ı∂μϕ(x),

Mμνϕ(x) = (ı(xμ∂ν − xν∂μ) + Σμν)ϕ(x),

Dϕ(x) = (ıxμ∂μ +Δ)ϕ(x),

Kμϕ(x) =
(
ı(2xμx

ν∂ν − x2∂μ − 2ıxν(gμνΔ+Σμν)) + κμ)
)
ϕ(x).

Let us consider here only a little group of finite-dimensional repre-

sentations for which

κμ = 0.

There are nilpotent finite-dimensional representations else, for which

κμ �= 0, but κn
μ = 0 for some value n, and infinite-dimensional rep-

resentations. The matrices Σμν form the irreducible representation of
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the Lorentz algebra, and for κμ = 0, according to the Schur’s lemma,

the matrix Δ is proportional to a unit matrix:

Δ = ıd,

where d is the conformal weight of the field ϕ.

3.5 Conformal invariant theories

of gravitation

The equations of free massless fields – Maxwell, Klein – Gordon, Dirac,

Yang – Mills are conformal invariant. Let us consider some attempts

of generalizations the General Relativity.

3.5.1 Weyl geometry

In Weyl geometry there is no absolute way to compare elements of

length at points spaced of each other, but it preserves the angles be-

tween the vectors during the conformal mapping. A comparison can be

held for infinitely close points [10]. Let us consider a vector of length s

in a point with coordinates xμ.We transfer it parallel to itself to a point

with coordinates xμ + δxμ. The change of its length is proportional to

s and δxμ:

δs = sκμδx
μ, (3.18)

where κμ is some vector. Suppose that the standard of length is

changed so that the length is multiplied by λ(x), depending of co-

ordinates. Then s becomes equal to s′ = λ(x)s, and s + δs changes
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as

s′ + δs′ = (s+ δs)λ(x+ δx) = (s+ δs)λ(x) + s
∂λ

∂xμ
δxμ,

where we neglect the values of the second order. One obtains

δs′ = λδs+ s
∂λ

∂xμ
δxμ = λs

(
κμ +

∂φ

∂xμ

)
δxμ,

where

φ ≡ lnλ. (3.19)

Thus, we obtain

δs′ = s′κμ
′δxμ,

where

κμ
′ = κμ +

∂φ

∂xμ
. (3.20)

If the vector is parallelly carried around the closed loop, the change in

its length will be expressed by the following formula:

δs = sFμνδS
μν,

where

Fμν ≡
∂κμ

∂xν
− ∂κν

∂xμ
, (3.21)

and δSμν is an element of area enclosed by the loop. The antisymmet-

ric tensor (3.21) is invariant under gauge transformations of the form

(3.20). The vector, carried along the contour, changes its length, so

the geometry underlying in the base of the theory, is non-Riemannian.

From the point of view of the analytical description of the geometry,

quadratic and linear differential forms

ds2 = gμνdx
μdxν, ω1 = κμdx

μ
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equivalent to the corresponding forms

λgμνdx
μdxν, κμdx

μ + d lnλ.

In the Weyl theory, field quantities κμ, appeared in (3.18) taken

as the electromagnetic potentials. They are subject to gauge trans-

formations (3.20), not associated with changes in geometry, but only

a change in length standards. These quantities (3.21) have a geomet-

rical meaning, independent of length standards, and comply with the

electromagnetic field tensor. Thus, the Weyl geometry, in the author’s

opinion, describes the electromagnetic field by the geometric language.

Weyl’s introduced the conformal-invariant tensor

Cλμνκ ≡

≡ Rλμνκ−
1

2
(gλνRμκ−gλκRμν−gμνRλκ+gμκRλν)+

1

6
(gλνgμκ−gλκgμν)R.

The dynamical equations are constructed from the variational prin-

ciple of minimal action. The Lagrangian density of the gravitational

field should be a magnitude with a conformal weight −2. Weyl chose

it as the square Riemannian curvature similar to the electromagnetic

field

L = Rμ
ναβR

ναβ
μ .

Einstein criticized the Weyl’s theory. The field equations are rather

complex. Despite the remarkable properties of the theory [11], it was

not accepted by physicists because it contradicts the quantum theory –

quantum phenomena give us an absolute standard of length. The ter-

minology, however, is caught in physics: gauge, gauge transformations,

gauge invariants.
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In the case of cosmology, there are only two ways to select the units

of lengths of geometric intervals – absolute units when the length of

interval

dl2 = g
(3)

ij dxidxj

measured by the energy scale, and the relative, where such similar

units are measured by similar, id est, intervals

d̃l
2
= g̃

(3)

ij dxidxj

– by intervals, and energies – by energies. In case of choosing the ab-

solute units, the space expands, and the sizes of space objects remain

unchanged. In case of choosing the relative units, the space remains

unchanged, and the sizes of space objects are reduced. Both of these

features are discussed in the book of A. A. Friedmann [12], dedicated

to the cosmology of the Universe, that binds a second chance with the

principle of scale invariance of the laws of nature. A. A. Friedmann

finds the following remarkable words about the principle of scale in-

variance3: “...moving from country to country, we have to change the

scale, id est, measured in Russia — by arshins, Germany — meters,

England — feet. Imagine that such a change of scale we had to do

from point to point, and then we got the above operation of changing of

scale. Scale changing in the geometric world corresponds, in the phys-

ical world, to different ways of measuring of the length. . . . Properties

of the world are divided into two classes: some are independent of the

above said change of scale, better to say, do not change their shape un-

der any changes of scale, while others under changing of the scale, will

3Our free translation from Russian.
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change their shape. Let us agree on their own properties of the world,

belonging to the first class, and call scale invariant. Weyl expands the

invariance postulate, adding to it the requirements that all physical laws

were scale-invariant properties of the physical world. Consistent with

such an extension of the postulate of invariance, we have to demand

that the world equations would be expressed in a form satisfactory to

not only coordinate, but the scale invariance”.

Alexander A. Friedmann (16 June 1888

– 16 September 1925), an outstanding

Russian theoretical physicist. In 1923 his

book “The World as Space and Time”

[in Russian] was issued; it informed the

public about the new physics. Fried-

mann predicted the expansion of the

Universe. The first non-stationary so-

lutions of Einstein’s equations received

by him in 1922–1924 in the study of

relativistic models of the Universe be-

gan the development of the theory of

non-stationary Universe. The scientist

studied the non-stationary homogeneous

isotropic models with space, of first, pos-

itive and then negative curvature filled

with dust matter (zero pressure).

3.5.2 Deser’s theory of gravitation

Conformal invariant scalar - tensor theory of gravitation was built by

S. Deser in 1970 [14]. Let us present his further arguments. Under the
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conformal transformation

gμν = ḡμνφ
−2,

√
−g =

√
−ḡφ−4

with some conformal factor φ we have

1

6

√
−gR(g)φ2 =

1

6

√
−ḡR(ḡ)−

√
−ḡḡμνφ;μφ;νφ

−2

and
√
−ggμνφ;μφ;ν = φ−2

√
−ḡḡμνφ;μφ;ν.

Consequently, in the expression

1

2

∫
d4x
√
−g
[
φ;μφ;νg

μν +
1

6
Rφ2

]
=

1

12

∫
d4x
√
−ḡR(ḡ),

the scalar field has been removed from the degrees of freedom.

A scalar field, added to the theory, is coupled non-minimally with

the metric field of gravity

W (φ) = −1

2

∫
d4x
√
−g
(
gμνφ;μφ:ν +

1

6
Rφ2

)
.

3.5.3 Scalar–tensor theory of Brans and Dicke

The theory of Brans – Dicke modifies the Einstein’s theory of gravity

by introducing a scalar field φ [15], which is related to the density

of mass in the Universe. The authors of the new theory proceeded

from Mach’s principle, which states that the phenomenon of inertia

is a consequence of accelerations of bodies relative to the total mass

distribution in the Universe. A variation of the action

δ

∫
d4x
√
−g
(
φR− ξ

φ;αφ
;α

φ

)
= 0,
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where ξ is some dimensionless constant, leads to the following fields

equations

Rμν −
1

2
gμνR =

ξ

φ2

(
φ;μφ;ν −

1

2
gμνφ;αφ

;α

)
+

1

φ
(φ;μ;ν − gμν�φ).

The model of Deser is obtained from Brans – Dicke model at ξ = −3/2.
”Is the earth affected by its cosmological setting in the Universe¿‘–

asked Dicke,– ”As the Universe expands, as distant matter moves away

from us, are there effects upon the earth of this changing distribution

of matter¿‘

Paul Adrien Maurice Dirac (8 August

1902 20 October 1984) was an English

theoretical physicist who made funda-

mental contributions to the early devel-

opment of both quantum mechanics and

quantum electrodynamics. Among other

discoveries, he formulated the Dirac

equations which describe the behavior

of fermions and predicted the existence

of antimatter. Dirac shared the No-

bel Prize in Physics for 1933 with Er-

win Schrödinger, “for the discovery of

new productive forms of atomic theory”.

He also did work that forms the basis

of modern attempts to reconcile General

Relativity with quantum mechanics.

3.5.4 Dirac’s dilaton theory

Fundamental physical constants allow us to set the system of absolute

units of distance, time, mass, et cetera. These constants are more than
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it is necessary for that purpose, and one can build a dimensionless

combination. The ratio of the electrical and gravitational forces, acting

between the electron and proton

e2

Gmemp
,

is order ∼ 1039, the ratio of the mass of the Universe to the mass of

the proton is order ∼ 1078. If we express the age of the Universe ∼ 109

years in atomic units
e2

mec3
,

then we get a numeric value close to ∼ 1039. This leads to the idea that

large numbers should not be viewed as constants, but the functions of

time expressed in atomic units, id est, up to prime factors t, t2 and so

on, where t is time in the modern era in atomic units. P.A.M. Dirac

expressed the new principle named by him as the Hypothesis of Large

Numbers:

“Any two of the very large dimensionless numbers occurring in Na-

ture are connected by a simple mathematical relation, in which the

coefficients are of the order of magnitude unity” [13].

The gravitational constant changes simultaneously with time t of

aging epoch inversely to t.

The scale-invariant theory of gravity, which retains all the achieve-

ments of Einstein’s theory, was formulated by Dirac in the famous

paper [16]. For this purpose, he developed the analysis in the confor-

mal geometry. Under any change of scale a length ds is multiplied by

a factor λ(x): ds′ = λds. If the local value ϕ is transformed by the law

ϕ′ = λnϕ, one says, that its conformal weight is n. From the expres-
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sion for the interval ds2 = gμνdx
μdxν it follows that the metric tensor

gμν has a conformal weight 2, because dxμ are not affected by a scale

transformation. Contravariant tensor gμν has a conformal weight −2,
and

√−g has a conformal weight 4. Following Dirac, let us obtain gen-

eralized covariant derivatives. Take first a scalar S of power n. Under

scale changing its covariant derivative (which is the usual derivative)

Sμ is transformed by the formula

S
′

μ = (λnS),μ = λnSμ + nλn−1λμS = λn
[
Sμ + n(κ

′

μ − κμ)S
]
,

where we used (3.19), (3.20). From here we get

(Sμ − nκμS)
′

= λn (Sμ − nκμS) , (3.22)

and the definition of the covariant derivative of a scalar:

S∗μ = Sμ − nκμS. (3.23)

Note that it, according to (3.22), has a conformal weight n.

For getting covariant derivatives of vectors and tensors, we in-

troduce modified symbols of Christoffel ∗Γα
μν, which are determined

through the usual symbols Γα
μν by the following way:

∗Γα
μν = Γα

μν − gαμκν − gαν κμ + gμνκ
α. (3.24)

Symbols ∗Γα
μν are invariant with respect to gauge transformations. Let

Aμ be a vector with conformal weight n. An expression

Aμ,ν − ∗Γα
μνAα

is a tensor. Under the gauge transformations it transforms as follows:(
Aμ,ν − ∗Γα

μνAα

)′
= λnAμ,ν + nλn−1λνAμ − ∗Γα

μνλ
nAα =
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= λn
(
Aμ,ν + n(κ

′

ν − κν)Aμ − ∗Γα
μνλ

nAα

)
.

Consequently, the covariant derivative of the vector has the form:

Aμ∗ν = Aμ,ν − nκνAμ − ∗Γα
μνAα,

or, using the definition (3.24), we rewrite it as

Aμ∗ν = Aμ;ν − (n− 1)κνAμ + κμAν − gμνκ
αAα. (3.25)

In a similar way to a contravariant vector Bμ of power n we get

Bμ
∗ν = Bμ

;ν − (n+ 1)κνB
μ + κμBν − gμνκαB

α. (3.26)

Then you can form a covariant derivative for tensors with different

upper and lower indices by the same rules. The covariant derivative

has the same degree as the initial value. The Leibnitz rule for the

product of two tensors is also performed

(TU)∗α = T∗αU + TU∗α,

as well as the consistency condition:

gμν∗α = 0, gμν∗α = 0.

Now we find the second covariant derivative of a scalar S of a power n

S∗μ∗ν = S∗μ;ν − (n− 1)κνS∗μ + κμS∗ν − gμνκ
σS∗σ.

Substituting here the formula for the first covariant derivative (3.23),

we get the following expression

S∗μ∗ν = Sμ;ν−nκμ;νS−nκμSν−nκν(Sμ−nκμS)+κνS∗μ+κμS∗ν−gμνκσS∗σ.
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So far as Sμ;ν = Sν;μ, then

S∗μ∗ν − S∗ν∗μ = −n(κμ;ν − κν;μ)S = −nFμνS.

For a vector Aμ of power n we have

Aμ∗ν∗σ =

= Aμ∗ν;σ−nκσAμ∗ν+(gρμκσ+gρσκμ−gμσκρ)Aρ∗ν+(gρνκσ+gρσκν−gσνκρ)Aμ∗ρ.

To get a curvature tensor, we calculate the difference between the

derivatives of the vector Aμ

Aμ∗ν∗σ − Aμ∗σ∗ν =

=

(
∗Bμνσρ+

1

2
(gρνFμσ+gμσFρν−gρσFμν−gμνFρσ)

)
Aρ−(n− 1)FνσAμ.

The tensor ∗Bμνσρ has the conformal weight 2 and symmetries under

permutations of the indices

∗Bμνσρ = −∗Bμσνρ = −∗Bρνσμ = ∗Bνμρσ,

and also

∗Bμνσρ +
∗Bμσρν +

∗Bμρνσ = 0.

It can be called the Riemann tensor of the Weyl space. The Ricci

tensor is obtained by contraction of the Riemann tensor by indices

∗Bμν =
∗Bσ

μσν = Rμν + κμ;ν + κν;μ + gμνκ
σ
;σ + 2κμκν − 2gμνκ

σκσ.

It has conformal weight equal to zero. Contracting once more, we

obtain a curvature

∗R = ∗Rσ
σ = R + 6κσ

;σ − 6κσκσ,



124 3. Principles of symmetry of physical theories

which is the scalar of power −2.
The action of scalar - tensor theory of gravitation is proposed to

be taken as a

W =

∫
d4x
√
−g
(
1

4
FμνF

μν − β2R + 6β;μβ;μ + cβ4

)
,

where β is a scalar field, c is a constant, and the first term is the

contribution from the electromagnetic field. Introduced by Dirac, the

scalar field has been called a dilaton [17] that means expansion because

of the dilaton D plays the role of a very cosmological scale factor

as a parameter of evolution in the space of field degrees of freedom,

where the motion of the Universe is given. Unlike the standard General

Relativity, the Dirac’s dilaton does not expand lengths, but increases

masses.

3.6 Affine group A(4) = L(3, 1)⊗̇T (4)

Affine group A(4) = L(3, 1)⊗̇T (4) consists of all linear transformations

of the space - time:

x
′

μ = aμνxν + cμ.

Affine group is a semidirect product of the group L(3, 1) and the

translation group and contains the Poincaré group as a subgroup. Al-

gebra of generators of the affine group consists of four translations Pμ,

six generators of the Lorentz group Mμν and ten generators of properly

affine transformations Rμν

Rμν = −ı(xμ∂ν + xν∂μ),
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together with dilatations, it has a form:

[Mμν,Mρτ ] = ı(gμρMντ − gμτMνρ − gνρMμτ + gντMμρ),

[Mμν, Rρτ ] = ı(gμρRντ + gμτRνρ − gνρRμτ − gντRμρ),

[Rμν, Rρτ ] = ı(gμρMντ + gμτMνρ + gνρMμτ + gντMμρ), (3.27)

[Mμν, Pρ] = ı(gμρPν − gνρPμ),

[Rμν, Pρ] = ı(gμρPν + gνρPμ).

In the vector representation, the generators Mμν and Rμν are defined

as

(Mμν)αβ = −ı(gμαgνβ − gμβgνα), (Rμν)αβ = −ı(gμαgνβ + gμβgνα).

The self-linear and self-conformal transformations do not corre-

spond to the main conservation laws. Therefore, these symmetries

must be dynamic ones, spontaneously broken.

3.7 Group of general coordinate

transformations

The Einstein’s theory of general relativity is covariant under general

coordinate transformations

x′μ = fμ(x0, x1, x2, x3),

where fμ(x) are arbitrary smooth functions of coordinates. The group

of transformations is an infinite-parameter one. The action of the
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group can be reduced to alternating actions of its two finite-parameter

subgroups: the special linear group SL(3, 1) and the conformal group

SO(4, 2).

According to Ogievetsky’s theorem [18], the invariance, under the

infinite-parameter generally covariant group, is equivalent to simulta-

neous invariance under the affine and the conformal group.

The proof of the theorem is based on the note, that infinite - dimen-

sional algebra of general transformation of coordinates is the closure

of the finite-dimensional algebras: sl(3, 1) and so(4, 2). The generator

of special conformal transformations in the coordinate space (3.15) is

quadratic in the coordinates. The result of its commuting with the

generator −ıxμ∂ν is again quadratic in x. Then, commuting the re-

sulting operators with one another, we arrive at operators of the third

degree in x, et cetera. In this way, step by step, we get all generators

of the group of arbitrary smooth transformations of coordinates

δxμ = fμ(x),

the parameters of which are coefficients of expanding of functions fμ(x)

in series by powers of coordinates. The algebra of this group has infinite

number of generators

Ln0n1n2n3 = −ıxn0

0 xn1

1 xn2

2 xn3

3 ∂μ,

where

n = n0 + n1 + n2 + n3.

Thereby, there is a new approach where the formulation of the theory

of gravity on the basis of finite-parametric groups is essentially simpler
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than on the basis of the group of arbitrary coordinate transformations.

3.8 Fundamental elements of

base Minkowskian space M

We associate a vector x = (x0, x1, x2, x3) of the space M with the

Hermitian matrix (2× 2) using quaternions:

X =

⎛⎝ x0 + x3 x1 − ıx2

x1 + ıx2 x0 − x3

⎞⎠ = x0I2 +
∑

i=1,2,3

xiσi,

where I2 is a unit matrix (2 × 2), and σi are matrices of Pauli. On

the light cone, where detX = 0, this matrix can be presented as a

direct product of a two-dimensional column Q =

⎛⎝ ξ

η

⎞⎠ to a complex

- conjugated line Q+ = (ξ̄, η̄)

X√
2
= Q⊗Q+ =

⎛⎝ξξ̄ ξη̄

ηξ̄ ηη̄

⎞⎠ ,

where ξ, η are two complex numerics. Thus, the Lorentz group can be

described by the spinor language.

Analogously, fundamental elements of the base Minkowskian space-

time of M, on which relativistic fields were built, were introduced by

Roger Penrose and named by him twistors [19]. Points of the space-

time are represented by two-dimensional linear subspaces of the four-

dimensional complex vector (twistor) space, on which Hermitian form

of signature (+ +−−) is defined.
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Then the matrix X can be associated with the matrix (4 × 2):⎛⎝ ıX

I2

⎞⎠ , where I2 is a unit matrix. Now we consider a two-dimensional

plane in a complex space C
4, spanned on two four-dimensional col-

umn - vectors of the matrix. The obtained two-dimensional complex

plane is the image of the point x ∈ M in the complexified space–

Grassmannian CM. Twistors themselves are the elements of the fun-

damental representation of the group SU(2, 2). A twistor Zα with com-

ponents (Z0, Z1, Z2, Z3) belongs to C
4 :

(Z0, Z1, Z2, Z3) ∈ C
4.

3.9 Summary

Is it possible for the classification of modern observational data (within

the concept of quantum relativistic Universe) to identify the wave func-

tion of the Universe with some unitary irreducible representation of any

finite-parametric symmetry group? To answer this question in this

Chapter candidates for the role of such symmetry were considered:

15-parametric group of conformal transformations and 20-parametric

group of affine transformations as natural extensions of the Poincaré

group. We would like to recall that the 20-parametric group of affine

transformations of the coordinates of the Minkowskian space includes

4 shifts, 6 Lorentz (antisymmetric) transformations and 10 properly

affine (symmetric) transformations. The fundamental representation

of the conformal group, called twistors, allows us to suggest that the

space-time on the light cone, as the adjoint representation of the con-
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formal group, consists of more elementary elements – twistors, just

as in the theory of strong interactions mesons consist of quarks. In

the following chapters we will assume that the analogy of the theory

of gravity to the theory of strong interactions has deeper roots, and

construct a theory of gravitation as nonlinear realization of affine and

conformal symmetries in the image and likeness of building of chiral

phenomenological Lagrangians, that were successfully operated for de-

scription of the experimental low-energy data of meson physics.
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Chapter 4

Nonlinear realizations

of symmetry groups

4.1 Differential forms of Cartan

A space of affine connection is built in the following way [1]. Let us

consider n–dimensional manifold. In every point

M(x1, x2, . . . , xn)

we define an affine frame by n linear independent vectors Ii(M), i =

1, . . . , n and consider it to be imbedded to n–dimensional affine space

An. The space has with our manifold a mutual point M and mutual

vectors in the point M . Any vector ξ in point M can be expanded by

vectors of the frame ξ = ξkIk(M). The manifold is said to be a space

of affine connection if the affine correspondence between local affine

spaces An and A′n, attached to infinitely close points

M(x1, x2, . . . , xn), M ′(x1 + dx1, x2 + dx2, . . . , xn + dxn)

133
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of our manifold is set.

Élie Joseph Cartan (9 April 1869 6 May

1951), a famous French mathematician.

The main theme of his works was the

theory of Lie groups. He worked over the

foundational material on the complex

simple Lie algebras. This proved defini-

tive, as far as the classification went,

with the identification of the four main

families and the five exceptional cases.

He defined the general notion of anti-

symmetric differential form, in the style

used now. Cartan added the exterior

derivative, as an entirely geometric and

coordinate-independent operation. With

these basics Lie groups and differential

forms he went on to produce a very

large body of work, and also some gen-

eral techniques, such as moving frames

that were gradually incorporated into

the mathematical mainstream.

This correspondence can be set by pointing out the place for the frame

of space A′n to be placed after mapping of A′n to An. The vector of

displacement of point
−−−→
MM ′ = dr we expand by basis

dr = ωkIk(M). (4.1)

The mapped basis vectors Ii(M
′) differ infinitely from Ii(M), so

Ii(M
′) = Ii(M) + dIi,
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and also dIi we expand by basis vectors:

dIi = ωk
i Ik(M). (4.2)

Coefficients of expanding ωk and ωk
i define the affine connection. They

depend on the choice of points M,M ′, so they are expressed as linear

differential forms ωk(d) and ωk
i (d) of coordinates. If in the space of

affine connection a curve xi = xi(t) is set, the coefficients ωk, ωk
i are

represented as functions of the parameter t, multiplied by dt. Let us

integrate the system of differential equations (4.1) for unknown vector

functions r and Ii. Initial conditions in the initial point of the path

under t = 0: r = 0, Ii = I0i . As a result of integration, r, Ii will be

vector functions of t in the space A0
n of the point M0 and give the affine

mapping of the space An at the arbitrary point of the path M(t) to

A0
n.

An especially interesting case occurs when a path is closed and we

return to the initial point M0. Then we get a mapping of the space

A0
n to itself. The group derived at the A0

n by these affine mappings is

called a holonomy group of the space of affine connection. For recog-

nition of characteristics of the considered geometry, let us consider an

infinitely small transformation of holonomy group, corresponding to

infinitely small closed path of going around. Let the cycle be as a

small parallelogram. There are two differential Cartan forms

ω(d) = aidx
i, θ(δ) = biδx

i.
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An external product of these forms ω and θ is called the anti-symmetric

product

ω(d) ∧ θ(δ) ≡ ω(d)θ(δ)− θ(d)ω(δ) = (aibk − biak)dxiδxk.

An external differential of the form ω is the following expression

ω′ ≡ dω(δ)− δω(d) ≡ daiδx
i − δaidx

i =

(
∂ai
∂xk

− ∂ak
∂xi

)
dxkδxi.

An ordinary differentiation corresponds to the shift along one of coor-

dinate axes, whereas the external differentiation corresponds to passing

along the closed infinitely small cycle. In case the Cartan form is full

differential, the external differentiation of this form is zero identically

(Poncaré’s lemma).

Cartan’s equations of structure are obtained by external differenti-

ation of equations (4.1) and (4.2). For the Euclidean space

0 = dIi ∧ ωi(δ) + Ii(ω
i)′,

0 = dIj ∧ ωj
i (δ) + Ij(ω

j
i )
′.

Substituting (4.2) into the obtained equations, we find

0 = Ii
(
(ωi)′ + ωi

j ∧ ωj
)
,

0 = Ij

(
(ωj

i )
′ + ωj

k ∧ ωk
i

)
.

From the linear independence of Ii the structural equations of Eu-

clidean space are the following:

(ωi)′ + ωi
j ∧ ωj = 0,

(ωj
i )
′ + ωj

k ∧ ωk
i = 0.
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In the Euclidean space, the frame connected with point M is not

changed in the contour path.

In the general case of the Riemannian geometry, a frame under the

infinitely small contour undergoes displacement

(ωi)′ + ωi
j ∧ ωj = Ωi,

(ωj
i )
′ + ωj

k ∧ ωk
i = Ωj

i .

Additional movement to return the frame into the initial place defines

a torsion and a curvature of the Riemannian space. The torsion is set

by the shift

Ωi = −1

2
T i
jkω

j ∧ ωk,

in order to return the origin of the frame into the initial placement,

and the curvature of the Riemannian space – by additional rotation of

the frame into the initial placement by the value

Ωj
i = −

1

2
Rj

iklω
k ∧ ωl.

Here T i
jk—the tensor of torsion, and Rj

ikl—the tensor of curvature.

4.1.1 Riemannian coordinates

Let us consider the Riemannian space with zero torsion T = 0, R �= 0.

Any point M in sufficiently small area of the point O lies in the definite

geodesic line with origin O. Let ai be the direction cosines of its tangent

line in O and t – a length of geodesic line OM. Then normal coordinates

of point M are called n values, defined by equations

xi = ait, 0 ≤ t ≤ 1.
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In point O the orthogonal frame is set. In every point M in the area

of point O the orthogonal frame is set by parallel transfer along the

geodesic curve OM. We find the forms ωi, ωj
i , setting infinitesimal

displacement and rotation under transition from the frame in point

M to the frame connected to infinitesimally close point M ′. We use

variables ai, t, assuming finally t = 1, ai = xi. If we put ai = const and

change t, the frame transfers in a parallel way

ωi = aidt; ωj
i ≡ 0.

We define ω̄i ω̄j
i as values of the form ωi and ωj

i under dt = 0 and

changing ai. Then

ωi(t, ai; dt, dai) = aidt+ ω̄i(t, ai; dai); (4.3)

ωj
i (t, a; dt, da) = ω̄j

i (t, a
i; dai). (4.4)

Now let us define the form ω̄i ω̄j
i as functions of t, consider ai, dai as

parameters. The initial point of the following reasonings are equa-

tions of structure of space with zero torsion, which Cartan named as

fundamental:

(ωi)′ = ωk ∧ ωi
k; (4.5)

(ωj
i )
′ = ωk

i ∧ ωj
k −

1

2
Rj

iklω
k ∧ ωl. (4.6)

Substituting here ωi, ωj
i with expressions (4.3), (4.4) and separating

terms containing dt, one gets

[dai, dt] + [dt,
∂ω̄i

∂t
] + daω̄

i = [akdt+ ω̄k, ω̄i
k];

[dt,
∂̄ω

j
i

∂t
] + daω̄

j
i = [ω̄k

i , ω̄
j
k]−

1

2
Rj

ikh[a
kdt+ ω̄k, ahdt+ ω̄h],
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where da denotes differentiation by all ai under condition t = const.

Comparing terms with multiplier dt, we get equations:

∂ω̄i

∂t
= dai + akω̄i

k (4.7)

∂ω̄j
i

∂t
= −1

2
Rj

ikh(a
kω̄h − ahω̄k) (4.8)

The equations (4.7), (4.8) solved by iterations in the parameter t

with the boundary conditions. We obtain the solutions with an accu-

racy o(t3)

ω̄i = tdai − 1

6
t3Ri

jkla
jakdal,

ω̄i
j = −

1

2
t2Ri

jkla
kdal.

Under t = 1: ω̄i = ωi, ω̄i
j = ωi

j, so the interval

ds2 = ηijω
iωj = gijdx

idxj,

where the metric

gij = ηij +
1

3
Rijklx

kxl,

and

ωi
j = −

1

2
Ri

jklx
kdxl.

Then we can continue iterations and obtain the solutions with an ac-

curacy o(t5)

ω̄i = tdai − 1

3!
t3(Ri

nlka
nal)dak + t5

1

5!
(Ri

nlk1
anal)(Rk1

n1l1k2
an1al1)dak2,

ω̄i
j = −

1

2!
t2Ri

jkla
kdal + t4

1

4!
(Ri

jlk1
al)(Rk1

n1l1k2
an1al1)dak2.
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The solutions of these equations under t = 1, ai = xi have the

following form:

ωi(x, dx)|t=1 =
∞∑
1

(mn)ik
(−1)n

(2n+ 1)!
dxk; (4.9)

ωi
j(x, dx)|t=1 = −

∞∑
0

(mn)lp
(−1)n

(2n+ 2)!
dxpRi

jklx
k, (4.10)

where

mi
k ≡ Ri

nlkx
nxl; (m2)ij ≡ mi

k1
mk1

j .

Symbolically, the expressions (4.9), (4.10) are able to be written

down shorter:

ωi(x, dx) = (sin
√
m/
√
m)ikdx

k; (4.11)

ωi
j(x, dx) = Ri

jklx
k[(1− cos

√
m)/m]lpdx

p. (4.12)

For the Euclidean space Ri
jkl ≡ 0 and the Cartan forms in the normal

coordinates:

ωi(x, dx) = dxi; ωi
j ≡ 0.

The square interval of length between infinitely close points is defined

by the expression [2]

ds2 = ωi(x, dx)ωi(x, dx) ≡ gab(x)dx
adxb (4.13)

in accordance with geometric sense of the form ωi. The group of trans-

formations of space that keeps the quadratic form (4.13) invariant, is

called the movement group of the Riemannian space.

Let us state connection with standard concepts of differential geometry—

metric tensor and symbols of Christoffel. For this, we should pass to
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natural frames Na :

(Na,Nb) = gab; Ii = eai (x)Na; eai e
j
a = δij; eai = eai ,

where

dr = Na(M)dxa, (4.14)

eai (x) are coefficients of decompositions of Cartan’s forms ωi(x, dx) by

differentials dxa:

ωi(x, dx) = eia(x)dx
a.

Laws of changing of an arbitrary vector A on the natural basis have

form

d(AiIi) = (dAi + Ajωi
j) ≡ d(AaNa) = dAaNa + Aad(eiaIi) =

= [dAb + Aa(deiae
b
i + eiaω

i
je

b
i)]N

j = [dAb + AaΓb
acdx

c]N j,

where

Γb
acdx

c = (ebide
i
a + ebiω

i
je

j
a).

4.2 Geometry of Lie groups

Let us consider some finite continuous group G, dependent of n + r

parameters a1, a2, . . . , an; η1, η2, . . . , ηr. One can consider parameters

a, η as coordinates of point A in n+ r–dimensional space called group

space. Latin indices are used for notifications of values connected with

generators Xi, and Greek ones—with generators Yα. Here ak, ηα are

parameters of the group; Yα are generators of transformations that

belong to subgroup H; Xk are generators that complement H to the
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full group G, id est generators of factor-space G/H. These generators

obey the algebraic commutation conditions

[Yα, Yβ] = ıCγ
αβYγ; [Xk, Yα] = ıC i

kαXi; [Xi, Xk] = ıCα
ikYα

Generators of the group can be considered as analog of basis vectors

of Cartesian frame placed to the origin of coordinates. Definition of

equality of vectors in the group space allows one to introduce a trans-

formation corresponding to infinitesimal vector with origin in the ar-

bitrary point of the space (a, η).

Every point of this space A(a, η) assigns a transformation of group

Ga,η = GA and vise versa. Let us agree to name a point corresponding

to identical transformation as the initial point of space. A pair of points

set a vector. A base point for investigation of geometry of group space

is the definition of equality of vectors. We shall say that two vectors

A1A2 and B1B2 are equal, if an element GA1
maps to GA2

and an

element GB1
maps to GB2

by one and the same transformation G(g),

acting by the rule:

G(g)GA1
= GA2

; G(g)GB1
= GB2

.

From here we get

GA2
G−1A1

= GB2
G−1B1

.

Any point infinitely close to the initial point is analytically defined

by infinitesimal transformation of the group. Any infinitesimal trans-

formation is expressed linearly by n+ r generators Xk, Yα:

G(dak,dηα) = I + dG(ak,ηα)
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G(dak,ηα) = ı[dakXk + dηαYα]; k = 1, ..., n; α = 1, ..., r. (4.15)

A vector (0, 0; da′, dη′) is equal to a vector (a, η; a + da, η + dη), if

a point (0, 0) maps to a point da′, dη′, a point (a, η) maps to a point

(a+ da, η + dη) by one and the same transformation

G(g) ≡ G(a+da, η+dη)G−1(a, η) = G(dη′, da′)G−1(0, 0) = G(dη′, da′).

It means that with every point of the space (a, η) it is possible to

connect such Cartesian frame, equal (in the group sense) to the frame

connected with the point of origin. A vector (a, η; a + da, η + dη) has

the same analytic expression as (4.15). Denoting

da′i = ωi(a, η; da, dη), dη′α = θα(a, η; da, dη),

we get

G(a,η)dG
−1
(a,η) = ı(ωiXi + θαYα). (4.16)

4.2.1 Structural equations

Let f be a function of variables in the space of irreducible representa-

tions of some group. An infinitesimal action of elements of the group

on the function f has a form

df = ı[ωi(d)Xi + θα(d)Yα]f . (4.17)

Let us build a bilinear differential

δdf = ı[δωi(d)Xi + δθα(d)Yα]f + ı[ωi(d)δ(Xif) + θα(d)δ(Yαf)],

where the differential of functions Xif and Yαf is defined according to

(4.17). An action of external differential to the left side of the equality
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(4.17) results to zero:

(df)′ = δdf − dδf = 0.

Equating the coefficients of similar linear independent generators

in (4.17) leads to the system of the structural equations:

(ωi)′ = C i
kβω

k ∧ θβ;

(θγ)′ =
1

2
Cγ

αβθ
α ∧ θβ +

1

2
Cγ

kiω
k ∧ ωi;

where

(ωk)′ = −δωk(d) + dωk(δ);

ωk ∧ θβ = ωk(d)θβ(δ)− ωk(δ)θβ(d).

Having obtained the equations, one can pass to such structural equa-

tions where there is dependence only on Latin indices connected with

the space of parameters ai of coset G/H. For this, we define new

differential forms

ωi
k = C i

kβθ
β (4.18)

and use the Jacobi identities leading to

Ck
αβC

l
jk = C l

βkC
k
αj − C l

αkC
k
βj.

Finally we get for the differential forms ωi, ωi
k the following equations

(ωi)′ = ωk ∧ ωi
k, (4.19)

(ωi
j)
′ = −1

2
Ri

jklω
k ∧ ωl + ωk

j ∧ ωi
k, (4.20)

where

−Ri
jki = C i

jγC
γ
kl;
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and dependence is left only on the Latin indices of the coset space.

The equations (4.19), (4.20) coincide in form with structural equa-

tions of Cartan for the Riemannian n–dimensional space with nonzero

curvature. Further, we consider only a group space of parameters ai,

setting the parameters equal to zero: ηα = 0. One can treat the differ-

ential forms ωi as components of infinitesimal shift of the frame origin

relatively from the frame in the point a, and ωi
j as changing of the

frame components. According to such geometric interpretation of the

forms ωi and θγ as shift and rotation, it is natural to consider that

transformation of group G is a rotation if it belongs to subgroup H,

and a shift if it is originated by infinitesimal transformation ωiXi. The

subgroup H of transformations leaves fixed the origin of the frame of

group space and is named as stationary subgroup of the space. One can

get realizations of the transformations representing a common group

transformation G in the form of multiplication

G = K(a)H(η), (4.21)

where K(a) is a transformation that belongs to the left coset G/H of

group G by subgroup H. Acting from the left on the element of group

G by arbitrary G(g) and factorizing the obtained element according to

(4.21):

G(g)K(a)H(η) = K(a′(a, g))H(η′(η, a, g)), (4.22)

one can define in which manner the parameters a, η are being trans-

formed. A parametrization of K(a), or, in other words, the explicit

form of finite group transformations, can be quite arbitrary. It corre-

sponds to arbitrary motions of frames in the differential geometry of
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Cartan. Every parametrization K is equivalent to definite choice of

coordinates in the coset G/H.

4.2.2 Exponential parametrization

Let us consider the exponential parametrization of groups

K(a) = exp(ıajXj). (4.23)

We define explicitly the Cartan forms and infinitesimal transformations

in this case. The equations for the differential forms are the following

exp(−ıXka
k)d
[
exp(ıXka

k)
]
= ı[ωi(a, da)Xi + θα(a, da)Yα].

Let us introduce a parameter t to (4.23) using a substitution ak → akt:

exp(−ıXka
kt)d

[
exp(ıXka

kt)
]
= ı[ωi(ta, tda)Xi + θα(ta, tda)Yα].

Differentiating by t, the left and the right sides of the obtained

equality, we get the system of equations:

∂ωi

∂t
= dai + akθβC i

kβ

∂θα

∂t
= aiωlCα

il .

After substitution (4.18) in terms of the forms ωi, ωi
j these equations

coincide with the fundamental Cartan’s equations (4.5), (4.6), which

describe the motion of the frame along the geodesic lines and define

Cartan’s forms in the normal coordinates. Consequently, the exponen-

tial parametrization of the finite group transformations are equivalent

to the choice of normal coordinates in coset G/H:

ωi(a, da) = (sin
√
m/
√
m)ikda

k;
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θα(a, da) = [(1− cos
√
m/m)]ikda

kCα
ila

l;

mi
l = −C i

jαC
α
kla

jak.

4.3 Algebraic and dynamical

principles of symmetry

According to Wigner [3], all groups of symmetry are divided into two

classes: algebraic symmetries that reflect laws of conservations and

are used for classification of free physical objects – particles and fields,

universes and their quantum analogous, and dynamical symmetries1,

which allow one to define interactions between these objects, and also

constrains of initial data and their quantization. Progress in under-

standing of the role and the essence of dynamical symmetries is con-

nected to studying of spontaneous symmetry breaking phenomenon of

vacuum. Firstly, the effects of spontaneous symmetry breaking phe-

nomena were considered in the theory of many particles by N.N. Bo-

goliubov [4], in the relativistic theory — by Nambu [5] and Goldstone

[6].

Symmetry under a group is said spontaneously broken if the vac-

uum of the system with an invariant Lagrangian as a state with mini-

mal energy is stable only under transformations of subgroup H of the

full group G. In such a case the subgroup H is an algebraic group of

classifications of fields and particles of the theory. Spontaneous break-

1By vivid expression of E. Wigner, (Wigner, E.: Symmetries and Reflections. Indiana University

press, Bloomington – London (1970)), the algebraic symmetries belong to the area of terra cognita,

and dynamical symmetries—to the area of terra incognita.
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ing of symmetry of the vacuum is accompanied by creation of separate

fields with zero mass, called as Goldstone fields (Bogoliubov’s theorem

in statistical physics and Goldstone’s theorem in field theory).

In particular, in the theory of strong interactions in the capacity of

dynamical symmetry the chiral symmetry2 takes place. According to

this symmetry, the strong interactions are invariant under actions of

transformation groups, including those with isotopic transformations

with algebra of generators

[Ii, Ij] = ıεijkIk (4.24)

also generators Kj with algebra

[Ii, Kj] = ıεijkKk, [Ki, Kj] = ıεijkIk, (4.25)

changing states with different parity. An example of linear representa-

tion of chiral symmetry is right and left neutrino. There is nonlinear

realization of chiral symmetry – chiral phenomenological Lagrangians,

with which the low-energy results in QCD during 1967–72 were ob-

tained, before formulation of the theory of QCD in 1973–74. In the

method of nonlinear realization of chiral symmetry with six parame-

ters, three isotopic parameters belong to the subgroup H of vacuum

stability, and three rest are proper chiral transformations, changing

states with different parity. The latter three chiral parameters are

identified with three Goldstone fields.

Shifts ωi(∂μ) and rotations θα(∂μ) describe various movements of

orthogonal frames in the coset space. Chiral phenomenological La-

2Chira – in Greek is a hand which is traditionally used for illustration of right and left particle

helicity.



4.3. Algebraic and dynamical principles of symmetry 149

grangians of fields interactions are built univalently in the coset K =

G/H out of these linear forms. These Lagrangians allow one to describe

numerous processes in low-energy physics of hadrons in satisfactory

agreement with experimental data [7, 8, 9, 10, 11]. In the method of

phenomenological Lagrangians a dynamical group is a complete group

G, an algebraic subgroup is its stationary subgroup H. Parameters ai

of coset space are identified with fields of Goldstone particles. Cartan

forms ωi, θα can be used to build invariants of groups, id est dynamical

Lagrangians. It is natural to identify with the Lagrangian of Gold-

stone particles ai a squared geodesic interval between two infinitely

close points ai and ai+ dai. The invariant with respect to translations

and rotations will be the expression

L =
1

2
ωi(a, ∂μa)ω

j(a, ∂μa)C
α
ilC

l
αj,

where

Cα
ilC

l
αj = gij

is the metric tensor of the group space.

Forms, describing the change of the basis, are used for definition

the covariant differentiation of particle fields Ψ which interact with

Goldstone fields

L(Ψ, ∂μΨ+ θα(a, ∂μa)TαΨ).

The fields Ψ are classified by irreducible representations Tα of a sub-

group H.

We consider nonlinear realizations of group A(4), which become

linear on its subgroup – Poincaré group. Let us have a look more
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closely at realization in coset space A(4)/L, where L is the Lorentz

group. We take a symmetric tensor field hμν and define an action of

an element of the group g :

g exp(ıxμPμ) exp
( ı
2
hμνRμν

)
=

exp
(
ıx′μPμ

)
exp
( ı
2
h′μν(x

′)Rμν

)
exp
( ı
2
Uμν(x

′)Lμν

)
,

where x′μ, h
′
μν(x

′) and Uμν(x
′) depend of parameters of transformation

g and field hμν. Let Ψ be an arbitrary field which is a linear represen-

tation of the Lorentz group. Then, an action of the group A(4) to the

field Ψ is defined as

gΨ = Ψ′(x) = exp
( ı
2
Uμν(h(x), g)L

Ψ
μν

)
Ψ,

where LΨ
μν is a matrix generator in linear representation of the Lorentz

group. Then arbitrary frame movements (shifts and rotations) in coset

space A(4)/L are described by Cartan’s forms ω as coefficients of ex-

pansion of infinitesimal transformations of generators of algebra A(4)

(3.27):[
exp
(
− ı

2
hαβRαβ

)
exp(−ıxμPμ)

]
d
[
exp(ıxμPμ) exp

( ı
2
hαβRαβ

)]
=

= GdG−1 = ı[P(α) · ωP
(α) +R(α)(β) · ωR

(α)(β)︸ ︷︷ ︸
shifts K=A(4)/L

+ L(α)(β) · ωL
(α)(β)︸ ︷︷ ︸

rotations K=A(4)/L

],

Forms

ωP
(α)(d) = e(α)μdx

μ, (4.26)

ωR
(α)(β)(d) =

1

2

(
eμ
(α)de(β)μ + eμ

(β)de(α)μ

)
, (4.27)

ωL
(α)(β)(d) =

1

2

(
eμ
(α)de(β)μ − eμ

(β)de(α)μ

)
. (4.28)
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define covariant differentials of coordinates and Goldstone fields and

are used for definition of covariant differential of fields Ψ. Here e(α)μ

are components of tetrads with two indexes. One index belongs to

Riemann space μ, and the second (α) – to tangent Minkowski space.

Components of tetrads are coefficients of expansion of Cartan forms

by differentials of coordinate space.

For descriptions of fermions in Riemann space the Fock frame in

tetrad formalism is used [12]. The action of fermion field is set as

Wmatter[g,Ψ] =

∫
d4x
√
−g
[
−Ψıγ(β)D(β)Ψ−m0ΨΨ

]
, (4.29)

where

γ(β) = γμe(β)μ

– Dirac γ–matrices, summarized with tetrads e(β)ν, and m0 is a fermion

mass at the present time. Covariant differentials of set of fields Ψ are

defined by the formula

D(γ)Ψ =
DΨ

ωP
(γ)

=
[
∂(γ) +

ı

2
v(α)(β),(γ)L

Ψ
(α)(β)

]
Ψ, (4.30)

where

∂(γ) = (e−1)μ(γ)∂μ,

and

LΨ
(α)(β) = [γ(α), γ(β)]

– are generators of the Lorentz group, a linear form v(α)(β),(γ) is built

by Cartan forms (4.27) (4.28):

v(α)(β),(γ) =
[
ωL
(α)(β)(∂(γ)) + ωR

(α)(γ)(∂(β))− ωR
(β)(γ)(∂(α))

]
. (4.31)
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4.4 Theory of gravitation as nonlinear

realization of A(4)⊗ SO(4, 2)

At the end of the 1950s - beginning of

the 1960s of the last century, in close

collaboration with I.V. Polubarinov, V.I.

Ogievetsky obtained a number of pioneer

results in the range of theory of fields

treatment of gauge theories and grav-

itation. The very bright achievement

was the new comprehension of the the-

ory of gravitation as nonlinear realiza-

tion of two spontaneously broken space-

time symmetries – conformal and affine

ones, and a graviton as corresponding to

the Goldstone particle. Until the last

years of his life he was a chief of the

“Supersymmetry” sector in the Labora-

tory of Theoretical Physics named after

of N.N. Bogoliubov, JINR.

In this section we follow the paper [13]. Using an analogy with

phenomenological chiral Lagrangians [11], it is possible to obtain phe-

nomenological affine Lagrangian as nonlinear joint realization of affine

and conformal symmetry groups. A nonlinear realization of the affine

group leads to a symmetric tensor field as a Goldstone field. The re-

quirement that the theory correspond simultaneously to a realization

of the conformal group as well leads uniquely to the theory of a tensor

field whose equations are Einstein’s. Such nonlinear joint realization
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was constructed in [13].

4.4.1 Nonlinear realizations of the affine group

We consider nonlinear realizations of group A(4), which become linear

on its subgroup – Poincaré group. Let us have a look more closely at

realization in coset space A(4)/L, where L is the Lorentz group. We

take a symmetric tensor field hμν and define an action of an element

of the group g :

g exp(ıxμPμ) exp
( ı
2
hμνRμν

)
=

= exp
(
ıx′μPμ

)
exp
( ı
2
h′μν(x

′)Rμν

)
exp
( ı
2
uμν(h, g)Lμν

)
,

where x′μ are the transformed coordinates, h′μν(x
′) is the transformed

field hμν(x), and uμν(h(x), g) depend of parameters of transformation

g and the field hμν. Let Ψ be an arbitrary field which is a linear

representation of the Lorentz group. Then, an action of the group

A(4) to the field Ψ is defined as

g : Ψ = Ψ′(x′) = exp
( ı
2
uμν(h(x), g)L

Ψ
μν

)
Ψ, (4.32)

where LΨ
μν is a matrix generator in linear representation of the Lorentz

group. The generator is for a scalar

LΨ
μν = 0,

for a spinor

LΨ
μν =

1

2
σμν,
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for a vector

(LΨ
μν)αβ = −ı(δμαδνβ − δναδμβ),

et cetera. The corresponding infinitesimal transformations are given

by

δΨ(x) = Ψ′(x) = Ψ′(x′)−Ψ(x),

and for three above considered cases:

δϕ(x) = 0,

δΨ(x) = − ı

4
uμν(h(x), g)σμνΨ(x),

δaμ(x) = uμν(h(x), g)aν(x).

The Poincaré group is presented by standard linear transformations.

For shifts we have

g = eıcμPμ, uμν = 0, x′μ = xμ+cμ, h′μν(x
′) = hμν, Ψ′(x′) = Ψ(x).

We introduce in the vector representation the quantity

rμν(x) =
(
exp
( ı
2
hαβRαβ

))
μν

=
(
eh
)
μν

= δμν + hμν +
1

2
hμσhσν + · · ·

(4.33)

and its inverse

r−1μν (x) =
(
e−h
)
μν

. (4.34)

Then we construct functions of the field hμν as squares of the tensors

rμν and r−1μν

gμν = rμσ(x)rσν(x) =
(
e2h
)
μν

, gμν = r−1μσ r
−1
σν =

(
e−2h

)
μν

.
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In the theory of gravitation, these quantities correspond to the co-

variant and contra-variant metric tensors. One can introduce linearly

transforming quantities for all fields of integer spin. For example

Aμ(x) = rμν(x)aν(x), Aμ(x) = r−1μν (x)aν(x), Aν = gμνAν.

For fieldf of half-integer spin, the transition to linearly transforming

quantities is impossible, because of absence of finite-dimensional spinor

representations of the affine group.

Let us introduce the notation

C = exp (ıxμPμ) exp
( ı
2
hαβRαβ

)
and consider the transformation properties of the expression C−1dC

C ′−1dC ′ = exp
( ı
2
uμνLμν

)
C−1gd

(
g−1C exp

( ı
2
uμνLμν

))
=

= exp
( ı
2
uμνLμν

)
(C−1dC) exp

(
− ı

2
uμνLμν

)
+

+exp
( ı
2
uμνLμν

)
d exp

(
− ı

2
uμνLμν

)
.

Expanding C−1dC with respect to the generators of the affine group

C−1dC = ıωP
μ (d)Pμ +

ı

2
ωR
μν(d)Rμν +

ı

2
ωL
μν(d)Lμν,

we obtain the Cartan forms

ωP
μ (d) = rμνdxν, (4.35)

ωR
μν(d) =

1

2
{r−1(x), dr(x)}μν, (4.36)

ωL
μν(d) =

1

2

[
r−1(x), dr(x)

]
μν

, (4.37)
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where we have used matrix notation, for example,[
r−1(x), dr(x)

]
μν
≡ r−1μσdrσν − drμσr

−1
σν .

Forms ωL are used to define the covariant differentials of fields Ψ:

DΨ =

(
d+ iωL

μν(d)
LΨ
μν

2

)
Ψ.

The covariant differentiation with respect to coordinate of space-time

is determined by dividing by the differential ωP
λ (d) :

∇λΨ(x) =
DΨ

ωP
λ (d)

= r−1λτ ∂τΨ(x) +
ı

2
vμν,λL

Ψ
μνΨ(x),

where

vmin
μν,λ =

1

2
r−1λτ (x)

[
r−1(x), ∂τr(x)

]
μν

,

The transformation properties of the covariant derivative ∇λΨ are not

changed if vmin
μν,λ is replaced by

Vμν,λ = vmin
μν,λ + c1(∇μhνλ −∇νhμλ)+

+c2(δμλ∇νhσσ − δνλ∇μhσσ) + c3(δμλ∇τhντ − δνλ∇τhμτ).

Therefore, the general form of the covariant derivative

∇λΨ(x) = r−1λτ ∂τΨ(x) +
ı

2
Vμν,λL

Ψ
μνΨ(x) (4.38)

is not fixed and contains the nonminimal constants c1, c2, c3. Below we

shall show that the values of these constants are determined by the

requirement of conformal invariance.

The invariant element of volume is given by the exterior product

dV = −ıωP
0 (d) ∧ ωP

1 (d) ∧ ωP
2 (d) ∧ ωP

3 (d) = det ||rμν||d4x. (4.39)
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The action
∫
L det ||rμν||d4x is invariant under the affine group if the

Lagrangian density

L(Ψ(x),∇λΨ(x),∇λhμν(x))

is a scalar with respect to the Lorentz group. A further restriction

on the theory is achieved by imposing the requirement of conformal

symmetry.

4.4.2 Dynamical conformal symmetry

Let us present an element of the conformal group ḡ in the form

ḡ = exp (ıcμPμ) exp (ıβμKμ) exp (ıβD) exp
( ı
2
βμνLμν

)
, (4.40)

where cμ, βμ, β, βμν are parameters of the transformation. We introduce

the Goldstone fields ϕμ(x) and σ(x) and denote

C̄(x) = exp (ıxμPμ) exp (ıϕμ(x)Kμ) exp (ıσ(x)D),

The action of the conformal group is determined from

ḡ : ḡC̄(x) = C̄ ′(x′) exp
( ı
2
uμν(x, ϕμ, σ)Lμν

)
.

The infinitesimal self conformal and scale transformations of x, ϕμ(x),

and σ(x) have the form

δxμ = x2βμ − 2(βx)xμ − λxμ,

δσ(x) = 2(βx) + λ,

δϕμ(x) = [1 + 2(xϕ(x))]βμ + 2(xβ)ϕμ(x)− 2(βϕ(x))xμ + λϕμ.
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Note that ϕμ(x) transforms in accordance with the same law as

(1/2)σμ(x). All the remaining fields transform in accordance with their

representations of the Lorentz group (see the formula (4.32) but with

the parameters ūμν). An infinitesimal transformation with ḡ in the

general form (4.40) leads to

ūμν = βμν + 2(βμxν − βνxμ),

for example, for the vector field

δaμ(x) = a′μ(x
′)− aμ(x) =

= ūμνaν(x) = βμνaν(x) + 2βμ(xa(x))− 2xμ(βa(x)).

We expand C̄−1dC̄(x) with respect to the generators Pμ, Mμν, D, and

Kμ and find the Cartan forms:

ω̄P
μ (d) = eσ(x)dxμ,

ω̄K
μ (d) = e−σ(x)(dϕμ(x) + ϕ2(x)dxμ − 2(ϕ(x)dx)ϕμ(x)),

ω̄D(d) = dσ(x)− 2dxμϕμ(x),

ω̄L
μν(d) = 2(dxμϕν(x)− dxνϕμ(x)).

The covariant derivative of the field σ(x) is defined in accordance with

∇̄μσ(x) =
ω̄D(d)

ω̄P
μ (d)

= e−σ(x)(∂μσ(x)− 2ϕμ(x)).

The covariant derivative of the arbitrary field Ψ(x) that transforms

in accordance with a representation of the Lorentz group with gener-

ators LΨ
μν is constructed on the basis of the Cartan form:

∇λΨ(x) =
dΨ(x) + (ı/2)ω̄L

μνLμνΨ(x)

ωP
λ (d)

= e−σ(x)(∂λΨ(x) + 2ıϕνLλνΨ).
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After substitution ϕν = (1/2)∂νσ, we obtain

∇̄λΨ(x) = e−σ(x)(∂λΨ(x) + ı∂νσL
Ψ
λνΨ(x)).

For the tensor field hαβ

∇̄λhαβ(x) = e−σ(x)∗

∗[∂λhαβ + ∂τσ(x)(δαλhτβ(x) + δβλhατ(x)− δατhλβ(x)− δβτhαλ(x))].

The scalar element of volume, dV̄ ′(x′) = dV (x), is written as

dV̄ (x) = −ıω̄P
0 ∧ ω̄P

1 ∧ ω̄P
2 ∧ ω̄P

3 = eıσ(x)d4x. (4.41)

4.4.3 Joint realization of affine and conformal

symmetries

The authors of the paper [13] proved that the theory coincides with

the Einstein General Relativity with Hilbert action, if one chooses

Lorentz subgroups as capacity of subgroup of vacuum stability, and

ten gravitons identify with ten parameters of coset space of proper

affine transformations

G = eıP ·xeıR·h.

The trace of the affine generator Rμν is related to the generator D

of scale transformations by the equation Rμμ = 2D. For example, in

space-time Rμν = −ı(xμ∂ν + xν∂μ), D = −ıxλ∂λ. Therefore, we must

identify the trace of the affine Goldstone field hμν with the conformal

Goldstone field:

σ(x) =
1

4
hμν
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and set

hμν(x) = h̄μν(x) + δμνσ(x).

The affine element of volume (4.39) coincides with the conformal one

(4.41).

Simultaneously for the affine and conformal symmetry the covariant

derivative of any field Ψ(x) is

∇λΨ(x) = r−1λτ ∂τΨ(x) +
ı

2
Vμν,λL

Ψ
μνΨ(x), (4.42)

where the connection Vμν,λ is uniquely defined as

Vμν,λ =
1

2

(
r−1λγ [r

−1, ∂γr]μν − r−1μγ {r−1, ∂γr}λν + r−1νγ {r−1, ∂γr}λμ
)
.

(4.43)

Covariant expression for action of Goldstone fields can be obtained

with the aid of commutator of covariant differentiation of a field Ψ

(4.30)

[∇δ∇γ −∇γ∇δ] Ψ =
ı

2
R

(4)

αβ,δγL
Ψ
αβΨ, (4.44)

where

R
(4)

μν,λρ = r−1λγ ∂γ Vμν,ρ + Vμν,γ Vργ,λ + Vμγ,ρ Vνγ,λ − (λ ↔ ρ) (4.45)

is a tensor of curvature. Under the action of the affine and conformal

groups, Rμνλρ transforms as a tensor under Lorentz transformations

with the parameter uμν and ūμν. Its contraction

R(4) = R(4)
μν,μν = 2r−1μγ ∂γVμν,ν + Vμν,γVνγ,μ − Vμγ,μVνγ,ν

is a scalar with respect to the affine and conformal groups.
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Let us show that the theory constructed in this way is identical

with Einstein’s theory of gravitation. We have seen above that lin-

early transforming co- and contra-variant quantities are constructed

by multiplying by rμν or r−1μν with respect to each index, respectively.

Thus, Aμ = rμν̄aν̄ is a covariant vector, Aμν = rμμ̄rνν̄aμ̄ν̄ is a covariant

tensor, Aν
μ = rμμ̄r

−1
νν̄ aμν is a mixed tensor, et cetera. A similar opera-

tion can also be performed with the covariant derivative of a covariant

vector Aμ as

DλAμ = rλλ̄rμμ̄∇λ̄aμ̄,

of a contra-variant vector as

DλA
μ = rλλ̄r

−1
μμ̄∇λ̄aμ̄,

of a covariant tensor of second rank as

DλAμν = rλλ̄rμμ̄rνν̄∇λ̄aμ̄ν̄,

and so forth. These definitions are identical to the standard definitions

in the theory of gravitation; for example,

DλAμ = rλλ̄rμμ̄∇λ̄aμ̄ = rλλ̄rμμ̄

[
r−1
λ̄τ
∂τ(rμ̄σAσ) + Vμ̄β,λ̄r

−1
βσAσ

]
=

= ∂λAμ − Γσ
λμAσ,

where Γσ
μν is the Christoffel symbol

Γσ
μλ = −

(
r∂λr

−1)
μσ
− rμμrλλ̄Vμσ,λ̄r

−1
σσ ≡

≡ 1

2
gσγ(∂μgγλ + ∂λgμγ − ∂γgμλ).
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The covariant curvature tensor is expressed as

Rμνλρ = rμμ̄rνν̄rλλ̄rρρ̄Rμ̄ν̄λ̄ρ̄.

For the Ricci tensor we have

Rμλ = rμμ̄rλλ̄Rμ̄νλ̄ν,

and the curvature R is obtained by complete contraction:

R = Rμν,μν.

Then one can get the Hilbert action for the General Relativity

WH(g) = −
∫

d4x

[√
−gR(g)

6

]
(4.46)

with the interval

ds2 = ωP
λ (d)ω

P
λ (d) = rμλdx

μrνλdx
ν = gμνdx

μdxν. (4.47)

We may point out that we obtained the theory of gravitation in the

tetrad formalism.

4.4.4 Explicitly conformal invariant General

Relativity

However, the action of the General Relativity (4.46) unobviously in-

variant of conformal group of symmetry: the conformal invariance is

hidden. The explicitly conformal invariant version of the General Rel-

ativity is obtained from the action (4.46), if we implement substitution

of variables

gμν = e−2Dg̃μν
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and choose another definition of measured interval. In this case the

curvature takes a form

R(4)(g = e−2Dg̃) = e−D
(
R(4)(g̃)− 6�̃

)
e−D,

where

�̃ ≡ 1√
−g̃

∂

∂xμ

(√
−g̃g̃μν ∂

∂xν

)
is the operator of D’Alembert in metric g̃ with interval

d̃s
2
= g̃μνdx

μdxν. (4.48)

After this substitution the action (4.46) takes a form

WC(g̃, D) = (4.49)

= −
∫

d4x

[√
−g̃
6

R(4)(g̃) e−2D − e−D
∂

∂xμ

(√
−g̃ g̃μν ∂

∂xν
e−D

)]
,

where D is a scalar dilaton field, scale transformation of which com-

pensates transformations of another fields.

Let us prove the conformal invariance of the action (4.49) explicitly.

For this, we take once more conformal transformation

g̃μν = e−2λĝμν.

Since the Ricci scalar transforms under the conformal transformations

as [14]

1

6

√
−g̃R̃(4) =

1

6
e−2λ

√
−ĝR̂(4) − e−λ

∂

∂xμ

(√
−ĝ ĝμν ∂

∂xν
e−λ
)
,

the action (4.49) takes the form:

WC(ĝ, D, λ) = (4.50)
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= −
∫

d4x

[√
−ĝ
6

R(4)(ĝ)e−2(D+λ)−e−(2D+λ) ∂

∂xμ

(√
−ĝ ĝμν ∂

∂xν
e−λ
)]
−

−
∫
d4x e−D

∂

∂xμ

(
e−2λ

√
−ĝ ĝμν ∂

∂xν
e−D
)
.

We transform the last two terms in the resulting expression, after se-

lecting a common factor exp (−(D + λ)):

e−D
∂

∂xμ

(√
−ĝ ĝμν ∂

∂xν
e−λ
)
+

∂

∂xμ

(√
−ĝ ĝμν e−λ ∂

∂xν
e−D
)
+

+
√
−ĝ ĝμν ∂

∂xμ
e−λ

∂

∂xν
e−D =

∂

∂xμ

(√
−ĝ ĝμν ∂

∂xν
e−(D+λ)

)
.

Now, we finally obtain

WC(ĝ, D, λ) = (4.51)

= −
∫

d4x

[√
−ĝ
6

R(4)(ĝ)e−2(D+λ)−e−(D+λ) ∂

∂xμ

(√
−ĝĝμν ∂

∂xν
e−(D+λ)

)]
.

The requirement of invariance of the action (4.49) determines the dila-

ton field transformation:

D + λ = D̂.

Thus we proved the conformal invariance of the action (4.49)

WC(ĝ, D, λ) = WC(ĝ, D̂). (4.52)

In the action of conformal invariant theory (4.49) a number of vari-

ables is the same as in the theory of Einstein (4.46). Moreover, in the

infinite volume all solutions of classical equations of the theory (4.49)

correspond to the solutions of classical equations of the theory (4.46).
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However, the observed data irrefutably testify the finite space volume

and finite time interval of life of the Universe, finite energy and finite

energy density. All these finite values can be defined in a concrete

system of reference. In conformal theory there is a system of reference

with unit determinant of space metric with conformal interval (4.48).

It is just the system we use for the classification of observed data.

4.5 Summary

For the purpose of construction of the quantum operator of creation

and evolution of the Universe as unitary irreducible representation of

conformal and affine groups of symmetry, one represents general el-

ements of the theory of nonlinear realizations of groups of symmetry

developed by Élie Cartan [1]. Then the derivation of classical theory of

gravitation as nonlinear joint realization of conformal and affine sym-

metries [13] is presented by analogy with the derivation of the chiral

phenomenological Lagrangian for pions [11].

The derived theory of gravitation contains, besides known physi-

cal effects of the General Relativity for the Solar system, all elements

of further development of Einstein’s ideas suggested by his contempo-

raries and followers, including Hilbert’s variational principle of action

(1915), Fock’s frames [12] in the tangent space of Minkowski, Dirac’s

conformal interval, where the determinant of metrics is identified with

the scalar dilaton.
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Chapter 5

Hamiltonian

formulation of the

theory of gravity

5.1 Foliation of space–time continuum

Let us consider a family of space-like hypersurfaces Σt, immersed in

four-dimensional space-time, where t is some parameter, fixing hyper-

surface, and xμ are some local coordinates of the space-time. At each

point M of the hypersurface

xμ = xμ(t, u1, u2, u3)

we construct a frame, consisting of the vectors [1]

n, e1 =
∂

∂u1
, e2 =

∂

∂u2
, e3 =

∂

∂u3
. (5.1)

168
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The unit vectors

ei =
∂xμ

∂ui
∂

∂xμ
≡ eμi ∂μ (5.2)

are tangent to the coordinate lines u = const on the hypersurface, and

n = nμ∂μ is the vector, normal to the tangent plane in M .

The induced metric

γij =
∂xμ

∂ui
∂xν

∂uj
gμν (5.3)

sets an invariant first quadratic form on the hypersurface

γij(u
1, u2, u3)duiduj. (5.4)

The metric γij is negative definite. Let us consider now the quantities

from (5.2)

eμi =
∂xμ

∂ui
, μ = 0, 1, 2, 3; i = 1, 2, 3 (5.5)

in some point M of the hypersurface. The Greek index refers to a

containing space-time and responds to coordinate transformations in

it as a contravariant index:

∂xμ

∂ui
=

∂xμ

∂xν
∂xν

∂ui
, so eμi =

∂xμ

∂xν
eνi .

The Latin index refers to the hypersurface and responds to coordinate

transformations ui in it as a covariant index. The variables eμi (5.5)

will be called as a mixed tensor, one-contravariant in the space-time

and one-covariant in the space. Similarly, mixed tensors of any rank

can be defined in the space. For example, suppose we have a mixed

tensor field

Zμi
j = Zμi

j (u1, u2, u3).
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For an infinitesimal displacement along the hypersurface we define an

absolute differential of this tensor by the formula

DZμi
j = dZμi

j + Γμ
ναZ

αi
j dxν +∗Γi

lkZ
μk
j dul −∗Γk

ljZ
μi
k dul. (5.6)

Terms, corresponding to Latin indices, are compiled using the connec-

tion coefficients ∗Γi
lk computed in the space with the metric tensor γij

(5.3).

From the absolute differential constructed in (5.6) it is not diffi-

cult to pass to the covariant derivative of the mixed tensor with ui.

Producing replacements

dZμi
j =

∂Zμi
j

∂uk
duk, dxμ =

∂xμ

∂ui
dui = eμi du

i,

one obtains

DZμi
j =

(
∂Zμi

j

∂up
+ eνpΓ

μ
νεZ

εi
j +∗Γi

pkZ
μk
j −∗Γk

pjZ
μi
k

)
dup. (5.7)

Coefficients under dup in (5.7) will be called covariant derivatives of

the mixed tensor on up:

∗∇pZ
μi
j =

∂Zμi
j

∂up
+ eνpΓ

μ
νεZ

εi
j +∗Γi

pkZ
μk
j −∗Γk

pjZ
μi
k . (5.8)

Now we turn to the second alternating absolute differential. On

the hypersurface we take an arbitrary two-dimensional surface ui =

ui(α, β). Differentials d and D correspond to infinitesimal displace-

ments along a coordinate line α, and d̃, D̃ correspond to infinitesimal

displacements along a coordinate line β. Let us consider some vector

fields Uμ and W ν with Greek indices in the space-time. Then we yield(
D̃D −DD̃

)
Uμ = Rν

μαβUνdx
αd̃x

β
, (5.9)
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(
D̃D −DD̃

)
W μ = −Rν

μαβW
νdxαd̃x

β
, (5.10)

and for the second alternating covariant derivatives:

(∇α∇β −∇β∇α)Uμ = UνR
ν
μβα, (5.11)

(∇α∇β −∇β∇α)W
μ = −W νRμ

νβα. (5.12)

Let us consider some vector fields Ui and W j in the space. The

differentials D and D̃ have sense of absolute differentials in the space.

Analogously to (5.9), (5.10), we obtain(
D̃D −DD̃

)
Ui = Uj

∗Rj
ikldu

kd̃u
l
, (5.13)(

D̃D −DD̃
)
W i = −W j∗Ri

jkldu
kd̃u

l
. (5.14)

Here ∗Ri
jkl denotes the curvature tensor of the space. If now an arbi-

trary mixed tensor field Zμi
j is set in the space, then we get(
D̃D −DD̃

)
Zμi
j =

= −Rμ
ναβZ

νi
j dxαd̃x

β
− ∗Ri

mklZ
μm
j dxkd̃x

l
+ ∗Rm

jklZ
μi
m dxkd̃x

l
.

The formula for the alternating second absolute derivative of a mixed

tensor is:

(∗∇l
∗∇k − ∗∇k

∗∇l)Z
μi
j = −Rμ

ναβZ
νi
j eαke

β
l − ∗Ri

mklZ
μm
j + ∗Rm

jklZ
μi
m .

(5.15)

5.1.1 Derivation formulae

To study the space it is important to look how the selected frame (5.1)

changes from a point to another point. Let us make an infinitesimal
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displacement of a given point M along the hypersurface. The covariant

derivative of the mixed tensor

∗∇je
μ
i =

∂

∂uj
eμi + eνjΓ

μ
ναe

α
i −∗Γk

jie
μ
k .

So far as
∂eμi
∂uj

=
∂2xμ

∂ui∂uj
,

and Γμ
να, and

∗Γk
ji are symmetric on low indices, it follows

∗∇je
μ
i = ∗∇ie

μ
j . (5.16)

The contravariant vector ∗∇je
μ
i is orthogonal to all vectors eμk , so it is

directed by normal to the hypersurface. Indeed, according to (5.3) the

induced metric tensor is

γij = eμi e
ν
jgμν.

Let us calculate term by term its absolute differential

Dγij = (Deμi )e
ν
jgμν + eμi (Deμj )gμν + eμi e

ν
j (Dgμν).

Since Dγij coincides with the absolute differential in the space, and

Dgμν with the absolute differential in the space-time, they both are

equal to zero. Substituting Deμi by ∗∇eμi du
j, and taking account that

duj are arbitrary, we obtain(
(∗∇ke

μ
i )e

ν
j + eμi (

∗∇ke
μ
j )
)
gμν = 0. (5.17)

We add two more equations derived from (5.17) by circular permuta-

tion of the indices (
(∗∇ie

μ
j )e

ν
k + eμj (

∗∇ie
μ
k)
)
gμν = 0, (5.18)
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((∗∇je
μ
k)e

ν
i + eμk(

∗∇je
μ
i )) gμν = 0. (5.19)

Taking into account (5.16), we notice that here three pairwise sum of

three values (5.17), (5.18), (5.19) are equal to zero, so that each of

them is equal to zero:

(∗∇ke
μ
i )e

ν
jgμν = 0.

So, we can define

∗∇ke
μ
i = Kkin

μ. (5.20)

The symmetric tensor Kki = Kik is called the tensor of extrinsic curva-

ture of the hypersurface. The corresponding invariant quadratic form

Kijdu
iduj (5.21)

is called the second quadratic form on the hypersurface.

We now express ∗∇in
μ using tensor Kik. The normal vector nμ is

orthogonal to any tangent vector eμi

gμνn
μeνi = 0. (5.22)

Taking the covariant derivative of (5.22) and taking into account

∗∇kgμν = 0,

we obtain

gμν(
∗∇kn

μ)eνi + gμνn
μ(∗∇ke

ν
i ) = 0.

Hence, since

gμνn
μnν = 1, (5.23)
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one yields

gμν(
∗∇kn

μ)eνi = −Kki. (5.24)

Differentiating (5.23), we get

gμν(
∗∇kn

μ)nν + gμνn
μ(∗∇kn

ν) = 0.

Since both terms of the left side are equal, then

gμν(
∗∇kn

μ)nν = 0. (5.25)

So the vector ∗∇kn
μ is orthogonal to the normal vector nν, placed in

the tangential plane and can be decomposed by vectors e1, e2, e3:

∗∇kn
μ = −K l

ke
μ
l . (5.26)

Coefficients of decomposition in (5.26) are obtained by comparing with

equality (5.24). The obtained formulae (5.20) and (5.26) are named

derivation formulae of the theory of hypersurfaces. They express the

covariant derivatives of the vectors ei, n through these vectors them-

selves.

5.1.2 Gauss – Weingarten equations

The tensor of extrinsic curvature measures a curvature of 3-space in

the space-time. The covariant derivative of the normal vector in the

i− th coordinate direction is

∇in = −Kj
i ej. (5.27)

Take the scalar product of both sides of (5.27) with the basic vector

ek.

Kij = K l
i
(3)glj = K l

i(el · ej) = −(ej · ∇in) =
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= (n · ∇iej) = (n · e0)Γ0
ji = (n · ∇jei) = Kji.

The finding the covariant derivative

∇iej =
∗Γk

jiek + Γ0
jie0

it is necessary to know the scalar products with every of four indepen-

dent vectors e1, e2, e3,n. Thus one arrives at the Gauss – Weingarten

equations, well-known in the geometry of imbedded hypersurfaces

∇iej = Kijn+ ∗Γl
ijel = ∇jei. (5.28)

The coefficients of ∇iej decomposition can be obtained by scalar mul-

tiplication of the both sides of (5.28) by n and ei. From this formula,

knowing the change of each basis vectors, one can find change of any

vector A that lies in Σ.

∇iA = ∇i

(
ejA

j
)
= ej

∂Aj

∂xi
+ Aj∇iej =

= ej
∂Aj

∂xi
+∗Γk

jiA
jek + AjKijn =

= ej

(
∂Aj

∂xi
+∗Γj

kiA
k

)
+ AjKijn = ejAj|i +KijA

jn.

5.1.3 Gauss – Codazzi equations

We now derive formulae, connecting the first (5.4) and second (5.21)

quadratic forms on the hypersurface. Let us consider the derivation

formulae (5.20), (5.26) as a system of differential equations for the

unknown functions eμi (u
1, u2, u3), nμ(u1, u2, u3) and obtain the equa-

tions of integrability. An alternating second covariant derivatives of
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the vectors ei

(∗∇∗l∇k −∗∇∗k∇l)e
μ
i = −Rμ

ναβe
ν
i e

α
ke

β
l +

∗Rm
ikle

μ
m =

= (−∗∇kKli +
∗∇lKki)n

μ − (KkiK
m
l −KliK

m
k )eμm (5.29)

take us the conditions of integrability of the system of equations (5.20).

Analogously, we get the conditions of integrability of differential equa-

tions (5.26):

(∗∇∗l∇k−∗∇∗k∇l)n
μ = −Rμ

ναβn
νeαke

β
l = −(∗∇lK

m
k −∗∇kK

m
l )eμm. (5.30)

A scalar product of both sides of the (5.29) with eνj :

∗Rijkl = Rαβγδe
α
i e

β
j e

γ
ke

δ
l + (KikKjl −KilKjk). (5.31)

They are called the equations of Gauss. A scalar product of both sides

of the (5.29) with nν:

Rαβγδn
αeβi e

γ
j e

δ
k = −(∗∇kKij − ∗∇jKik). (5.32)

They are called the equations of Codazzi.

Let us consider now the equations (5.30). Contraction them with

gμνe
ν
i , we get the relations (5.32). Then, contracting them with gμνn

ν,

we get identities. Thus, integrability conditions of the derivation equa-

tions exhaust by the conditions (5.31) and (5.32).

5.2 ADM coordinates

The interval is presented in the following form

ds2 = (Ndt)2 − (3)gij(dx
i +N idt)(dxj +N jdt). (5.1)
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Here N is a lapse function, N i is a shift-vector, γij ≡ −(3)gij are metric

coefficients of 3-geometry (see Fig. 5.2). The metric tensor of space-

time

(gμν) =

⎛⎝ N 2 −NiN
i −Ni

−Nj −(3)gij

⎞⎠ , (5.2)

and the inverse one is

(gμν) =

⎛⎝ 1/N 2 −N i/N 2

−N j/N 2 −
(
(3)gij −N iN j/N 2

)
⎞⎠ . (5.3)

Figure 5.2 shows a line of time and two space-like three-dimensional hypersurfaces

through which this line of time is spent in the General Relativity. A transition

from a
∑

t to a hypersurface
∑

t+dt is described by a lapse function N and a shift-

vector Ni. The family of all the space-like three-dimensional hypersurfaces is called

a congruence, and the appropriate parametrization of the metric component is called

4 = 3 + 1 bundle of the space-time.
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The covariant components Ni = (3)gijN
j are calculated using 3-

metrics. An element of 4-volume is calculated as

(−g)1/2 dx0dx1dx2dx3 = N
(
(3)g
)1/2

dtdx1dx2dx3.

The unit time-like normal vector has the components

nμ = (N, 0, 0, 0).

Raising the indices via (5.3), we obtain its contravariant components

nμ =

(
1

N
,−N i

N

)
.

The tensor Kij has the values

Kij = (n · ∇iej) = (n · e0)Γ0
ji = NΓ0

ji =

= N
(
g00Γ0,ij + g0kΓk,ij

)
=

1

N

(
Γ0,ij −Nk(3)Γk,ij

)
=

=
1

2N

(
∂Ni

∂xj
+

∂Nj

∂xi
+

∂

∂t
(3)gij − 2NkΓk,ij

)
,

or, finally

Kij =
1

2N

(
∂

∂t
(3)gij − (3)∇jNi − (3)∇iNj

)
. (5.4)

We are able now to obtain the Ricci scalar using (5.31) and (5.32).

R = (3)R + Tr
(
K2
)
− (TrK)2 (5.5)

The difference between the obtained formula and the real one is not

sufficient for dynamics of the gravitation field: we omitted only a time

derivative term plus divergence part. They do not influence on the

equations of its motion.
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5.2.1 Kinemetric subgroup

Metric components are objects of arbitrary general coordinate trans-

formations. In particular, the group of general coordinate transfor-

mations (diffeomorphisms) of the Hamiltonian approach contains the

following coordinate transformations

x0 → x̃0 = x̃0(x0); (5.6)

xi → x̃i = x̃i(x
0, x1, x2, x3). (5.7)

This group of transformations preserves the family (congruence) of

hypersurfaces x0 = const, and is called a kinemetric subgroup [3] of the

group of general coordinate transformations

xμ → x̃μ = x̃μ(x
0, x1, x2, x3).

The group of kinemetric transformations contains reparametriza-

tions of a coordinate time (5.6) in class of functions, depending only on

a coordinate time, which we call as global. Whereas, the transforma-

tions (5.7) we call as local. Thus, the subgroup of diffeomorphisms of

the Hamiltonian formulation of the General Relativity (5.6) and (5.7)

is composed of one global and three local transformations, id est, the

structure of the kinemetric subgroup is of the form 1G⊕ 3L.

Identification and extraction of physical degrees of freedom is one of

the most important problems of the theory of gravity, which stimulated

Dirac to create a generalized Hamiltonian formulation of systems with

constraints [4], and, later, to develop this formulation by many authors

[5, 6, 7]. The solution to this problem consists in extraction of true
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evolution of the observed dynamical and geometrical magnitudes from

general coordinate (gauge) transformation (5.6) and (5.7).

Introduced above, the formalism of Cartan allows us to formulate

the theory of gravity in terms of invariants relative to general coordi-

nate transformations through the transition to invariant components

of Fock’s frames. A foliation of the space-time 4=3+1 (see Fig.5.2)

involves the introduction of components of Fock frames ω(α) in the

following form

ω(0) = e−2DNdx0, (5.8)

ω(b) = e(b)idx
i +N(b)dx

0. (5.9)

Here N is the lapse function in the theory (4.49),

N(b) = N je(b)j

are components of the shift-vector; e(b)i are orthonormal triad compo-

nents with unit determinant:

e(b)ie
j
(b) = δji ; e(a)je

j
(b) = δ(a)(b).

In the action of affine - conformal theory of gravity (4.49), expressed

through the Maurer – Cartan forms, differentials of coordinates of the

Riemannian space are not directly measurable quantities dx0 and dxi,

but invariant under general coordinate transformations of orthogonal

components of the frame in the tangent space (5.8) and (5.9). These

components are, in general, non-integrable linear forms. The depen-

dence of the linear forms from the coordinates of the tangent space

X(b) = xie(b)i
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V.A. Fock was born in Saint - Peters-

burg. After graduating from high school

in Petrograd (1916), he entered the fac-

ulty of physics and mathematics of the

University of Petrograd. His primary sci-

entific contribution lies in the develop-

ment of quantum physics, although he

also contributed significantly to the fields

of mechanics, theoretical optics, theory

of gravitation, physics of continuous me-

dia. In 1926 he derived the Klein – Gor-

don equation. He gave his name to Fock

space, the Fock representation and the

Fock state, and developed the Hartree –

Fock method in 1930. He wrote the first

textbook on quantum mechanics “Foun-

dations of Quantum Mechanics” (1931)

and a very influential monograph “The

Theory of Space, Time and Gravitation”

(1955).

can be found by using the Leibnitz rule

AdB = d[AB]− [AB]d lnA

and the condition of orthogonality of triads

e(a) ie
j
(a) = δji .

Substituting these expressions to the linear form

ω(b)(d) = e(b)idx
i,
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we get

d[xi]e(b)i = d[xie(b)i]− xid[e(b)i] = d[xie(b)i]− [xie(a) i][e
j
(a)]d[e(b)j].

Then, using the definition of the observablesX(b) = xie(b)i, it is possible

to find the sought-for dependence:

ω(b)(d) = e(b)idx
i = dX(b) −X(c)e

i
(c)de(b)i

= dX(b) −X(c)[ω
R
(c)(b)(d) + ωL

(c)(b)(d)], (5.10)

where

ωR
(c)(b)(d) =

1

2
(ei(c)de(b)i + ei(b)de(c)i),

ωL
(c)(b)(d) =

1

2
(ei(c)de(b)i − ei(b)de(c)i)

are the Cartan’s forms (coefficients of the spin connection), describing

strong gravitational waves. The factor X(c) in Eq.(5.10) means that

a hypersurface, perpendicular to the wave vector of a gravitational

wave experiences an expansion or a contraction of the Hubble type [8],

known in the Standard cosmology.

5.3 Hamiltonian formulation of GR

in terms of Cartan forms

Let us reformulate the standard description of the General Relativity in

terms of Cartan’s forms. The Hilbert action with the electromagnetic
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field Fμν = ∂μAν − ∂νAμ and the scalar field Q has a form1:

W [g, A,Q] = (5.11)

= −
∫

d4x
√
−g
(
1

6
R(4)(g)− 1

4
FμαFνβg

μνgαβ + ∂μQ∂νQgμν

)
.

Passing to conformal variables gμν = e−2Dg̃μν, we get the action

W [g̃, A,Q] = −
∫

d4x
√
−g̃
[
e−D

(
1

6
R(g̃)−�

)
e−D (5.12)

−1

4
FμαFνβ g̃

μν g̃αβ + ∂μQ∂νQ g̃μν

]
, (5.13)

where

� ≡ 1√
−g̃

∂μ

(√
−g̃g̃μν∂ν

)
(5.14)

is the operator of D’Alembert. By determining the tetrad components

(5.8) and (5.9), the action (5.11) is rewritten in the following form

W =

∫
d4xN [LD + Lg + LA + LQ] . (5.15)

Here

LD = −v2D −
4

3
e−7D/2�e−D/2,

Lg =
1

6

[
v(a)(b)v(a)(b) − e−4D(3)R(e)

]
,

LA =
1

2

[
v2(b)(A) − FijF

ij
]
,

LQ = e−2D(vQ)
2 − e−2D

(
∂(b)Q

)2
;

1Remember that we use the natural system of units

� = c = MPlanck

√
3/(8π) = 1.
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Lagrangian densities and

vQ =
1

N

[
(∂0 −N l∂l)Q+ ∂lN

l/3
]
,

vD =
1

N

[
(∂0 −N l∂l)D + ∂lN

l/3
]
, (5.16)

v(a)(b) =
1

N

[
ωR
(a)(b)(∂0 −N l∂l) + ∂(a)N

⊥
(b) + ∂(b)N

⊥
(b)

]
, (5.17)

v(b)(A) =
1

N
ei(a)
[
∂0Ai − ∂iA0 + FijN

j
]

are velocities of the metric components and fields, and (3)R(e) is a

three-dimensional spatial curvature, expressed in terms of triads e(a)i

(3)R = (3)R(e)− 4

3
e7D/2�e−D/2, (5.18)

(3)R(e) = (5.19)

= −2∂i [ei(b)σ(c)|(b)(c)]− σ(c)|(b)(c)σ(a)|(b)(a) + σ
(c)|(d)(f)σ(f)|(d)(c),

where

σ(c)|(a)(b) = [ωL
(a)(b)(∂(c)) + ωR

(a)(c)(∂(b))− ωR
(b)(c)(∂(a))],

ωR
(a)(b)(∂(c)) =

1

2

[
ej
(a)∂(c)e

j
(b) + ei(b)∂(c)e

i
(a)

]
, (5.20)

ωL
(a)(b)(∂(c)) =

1

2

[
ej
(a)∂(c)e

j
(b) − ei(b)∂(c)e

i
(a)

]
, (5.21)

and

� ≡ ∂i[e
i
(a)e

j
(a)∂j]

is the operator of Beltrami – Laplace.
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With the help of Legendre transformation v2/N = pv −Np2/4 we

define momenta

p(a)(b) =
v(a)(b)
3

, (5.22)

pD = 2vD, (5.23)

pQ = 2vQ, (5.24)

pA(b) = vA(b). (5.25)

As a result, the action (5.15) takes the Hamiltonian form

W = (5.26)

=

∫
d4x

[
pQ∂0Q+ p(a)(b)ω

R
(a)(b)(∂0) + pA(b)∂0A(b) − pD∂0D − C

]
,

C = (5.27)

= NH +N(b)T(b) + A(0)∂(b)pA(b) + λ(0)pD + λ(b)∂ke
k
(b) + λA∂(b)A(b),

where N , N(b) and A(0) are Lagrangian multipliers, variation in which

yields the first kind constraints on the classification of Dirac [4], and

λ(0), λ(b) and λA are Lagrangian multipliers for the second kind of

constraints

∂ke
k
(b) = 0, (5.28)

pD = 0. (5.29)

First three constraints (5.28) fix space coordinates, and the constraint

(5.29) is known as the minimum condition of three-dimensional hyper-

surface embedded in a four-dimensional pseudo-Riemannian space. In

the Lagrangian formulation the constraint (5.29) looks like an equation
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on the divergence of the shift-vector

∂0(e
−3D) + ∂l(N

le−3D) = 0. (5.30)

Magnitudes

H = −δW

δN
= HD +Hg +HA +HQ, (5.31)

where

HD = −p2D
4
− 4

3
e−7D/2�e−D/2, (5.32)

Hg =

[
6p2(a)(b) +

e−4D

6
(3)R(e)

]
, (5.33)

HA =
e−2D

2

[
pi(A)p

i
(A) + FijF

ij
]
, (5.34)

HQ = e−2D

[
e2D

p2Q
4

+ e−2D
(
∂(b)Q

)2]
, (5.35)

and

T(0)(a) = −ei(a)
δW

δNi
= −∂(b)p(b)(a) + T̃(0)(a), (5.36)

where

T̃(0)(a) =
∑

F=φ,Q,F̃

pF∂(a)F (5.37)

are components of the tensor of energy – momentum.

Conditions of the components of the energy – momentum are equal

to zero

H = 0, (5.38)

T(0)(a) = 0 (5.39)
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and were called by Dirac as primary constraints of the first kind. In

accordance with it, the first of these conditions (5.38) is called a Hamil-

tonian constraint, by analogy with the corresponding condition for a

relativistic particle. Recall that the Hamiltonian of a relativistic parti-

cle is a solution of the Hamiltonian constraint, relative to the momen-

tum canonically conjugated to the evolution parameter in the space of

events. In this way of explicit solutions of the primary constraints of

the first kind there is one of the central problems of relativistic theories

of gravity – a choice of a parameter of evolution in the field space of

events.

As for the explicit solution of the second constraint (5.39), it is

convenient to use the expansion

N(b) = N
||
(b) +N⊥

(b), (5.40)

∂(b)N
||
(b) = ∂jN

j, (5.41)

∂(b)N
⊥
(b) = 0, (5.42)

p(b)(a) = p⊥(b)(a) + ∂(a)f
⊥
(b) + ∂(b)f

⊥
(a). (5.43)

Square of the momentum in the equation (5.33) is possible to be rep-

resented as

p2(b)(a) = (p⊥(a)(b))
2 + [∂(a)f

⊥
(b) + ∂(b)f

⊥
(a)]

2, (5.44)

where f⊥
(a) satisfies the equation[

�f⊥(a) + ∂(a)∂(b)f
⊥
(a)

]
= T̃(0)(a), (5.45)

which follows from (5.39) after a substitution of (5.43).

The constraint of the second class (5.29) leads to one more sec-
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ondary constraint
δW

δD
= −TD = 0,

namely,

(∂τ −N(b)∂(b))pD = TD, (5.46)

where

TD =
4

3

[
7N e−7D/2�e−D/2 + e−D/2�[N e−7D/2]

]
−

−N∂D[Hg +HA +HQ].

We here just adapted the standard Hamiltonian formulation [2] of the

theory of gravitation to Cartan’s forms. In terms of these forms, the

curvature takes the bilocal form. The action of such a theory describes

a physical system as a squeezed oscillator [9]. It gives hope to construct

a quantum theory of such a system, if we can solve the problems of

the standard Hamiltonian formulation at the level of Cartan’s forms.
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5.4 Problems of Hamiltonian formulation

Let us list these problems.

1. The first of them is a problem of unique determination of non-

zero Hamiltonian as the generator of evolution. The fact that

the General Relativity is a singular theory with primary and sec-

ondary first-class constraints. The Hamiltonian as a constraint

is equal to zero. As a result, under the constraints C = 0 the

action takes a form

WC=0 = (5.47)

=

∫
d4x

[
p(a)(b)ω

R
(a)(b)(∂0) + pQ ∂0Q+ pA(b)∂0A(b) − pD∂0D

]
,

where all of the canonical momenta and velocities satisfy the

conditions of constraints [10]. This fact complicates the unam-

biguous definition of the generator of the evolution for a quantum

state in a corresponding quantum theory.

2. The second problem is the self-consistency of the perturbation

theory. As it was noticed as early as by K. Kuchař [11], the lapse

function N generally is not included in the linearized constraint

equations. That is non-self-consistency that in turn greatly im-

pedes formulation of a perturbative quantum theory. Indeed, the

metric representation of the functional of the state is based on the

assumption that the components of the metric tensor are taken

as independent variables. In the classical theory this hypothesis

was formulated as a “thin sandwich theorem”, according to the
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initial values of the metric tensor together with its derivatives

that uniquely (under suitable boundary conditions) determine

the space-time metric. It is supposed that by setting the initial

hypersurface the metric tensor together with its derivatives and

using four constraint equations, one can determine the four un-

known ones – the lapse function and the shift-vector, that is to

define a fully 4-metric of space-time. In the linear approximation,

this theorem is violated and it is necessary somehow to fix the

lapse function and the shift-vector. From here one can conclude

that in the linear approximation there is not enough information

to determine, for example, the lapse function by a given metrics

and its time derivative.

3. One more problem is the problem of reduction. It means a sepa-

ration of the dynamical variables of the theory on the constraints

surfaces of the excess parameters of gauge transformations. Of

course, this problem is related to the previous two. There are

two ways to solve this problem. The first consists of imposition

of additional gauge conditions to exclude extra variables. The

second way is solving of the constraints. To the advantages of

the first method one should notice its convenience and simplicity,

because, as usual, such conditions are chosen that substantially

enable calculations, but its drawback is in quite narrow appli-

cability of such gauge and lack of confidence that the particular

gauge does not spoil the “true” dynamics. The method of solving

of the constraints, if it could be carried out, should be ideal for
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researchers [12, 13, 14].

4. Structure of the four local constraints of the first kind (5.28) and

(5.29) does not reflect the structure of diffeomorphisms of the

Hamiltonian formulation of the theory of gravity. Recall that in

the Hamiltonian formulation we have one global (5.6) and three

local diffeomorphisms (5.7).

5. Of course, on the way of constructing the quantum gravity there

are a number of other problems of fundamental as well as techni-

cal character. Among them we mention nonrenormalizability of

the theory associated with the dimension of Newton’s constant,

and the questions of interpretation of the vector of quantum state

[15] describing the quantum Universe. For the latter, there are

no outside classic instruments.

6. The local condition of the minimal surface vD = 0 (5.29) leads

to the absence of any dynamics including cosmological2.

7. The class of functions of standard perturbation theory [16]

gμν(x
0,x) = ημν +O(1/|x|),

where ημν = Diag :(1,−1,−1,−1), eliminates the cosmological

evolution. Recall that since the pioneering results of Friedmann

2In the General Relativity, this statement can be summarized as follows: in non static space

of the General Relativity with a closed family of hypersurfaces t = const and non-zero energy –

momentum tensor of matter, there is no global time-like congruence (id est, a continuous family of

time-like lines) that a field of unit tangent vectors to this congruence would satisfy to the following

properties: 1) tensor of the angular velocity is equal to zero, 2) trace of the tensor of velocities of

deformations is also equal to zero [12, 13].
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and, continuing their modern development [17, 18, 19, 20], the

cosmological evolution is introduced into the theory of gravity by

nonperturbative infrared dynamics of the metric tensor gμν(x
0) �=

ημν with a finite time interval, and a finite volume of space.

In other words, the above list of problems is proposed to be solved

with the introduction of the zero harmonic of the dilaton to the action

(4.49). In the future, as we said above, we call the equation (5.38) not

the zero Hamiltonian, but the Hamiltonian constraint, and solve the

Hamiltonian constraint relative to one of the canonical momenta, in

complete analogy with solution of the equation of mass surface in the

Special Theory of Relativity. Then, the canonical momentum must be

associated with the Hamiltonian of the reduced system (which on the

solutions of the classical equations will be identified with the energy

of the system). Canonically conjugated magnitude to the Hamiltonian

must be a scalar (or scalar density) with respect to kinemetric trans-

formations. Zero harmonic of the dilaton as a conformal multiplier,

extracted from the metric, is precisely such a quantity [20].

Here we list the solutions to these problems that have been given

at the level of a model miniuniverse:

1. The information capacity of a relativistic theory with constraints

is much more than the information contained in a non-relativistic

theory. It is sufficient to say that the relativistic theory of gravi-

tation (as well as the General Relativity and other theories) has

three spaces :

1) pseudo–Riemannian, introduced by Einstein,
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2) tangent, introduced by Fock, and

3) space of events, introduced by Bryce De Witt.

In all of these spaces there is their own evolution parameter:

1) a coordinate time as an object of the general coordinate trans-

formations,

2) a geometric interval (or components of the Fock’s frame), and

3) dynamic evolution parameter in the space of events, respec-

tively.

A non-zero Hamiltonian as the generator of evolution in the space

of events is uniquely determined, if we specify the dynamic evo-

lution parameter in this space, solve the equation of the Hamilto-

nian constraint and implement the primary and secondary quan-

tization to establish a stable vacuum.

2. A lapse function N is included into the number of the observed

ones only in the form of a factor to the differentials of the coor-

dinate time. (In other words, only the invariants as components

of the Fock’s frame are measured).

3. A way of resolving constraints, if it is fully implemented, is ideal

for the identification of the true dynamics of relativistic systems

with constraints [12, 13]. This is the method we use hereinafter.

4. Next, we will distinguish the Hamiltonian constraint from a non-

zero Hamiltonian, which is a solution to that constraint.
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5. Questions of interpretation of the vector of quantum state, de-

scribing the quantum Universe, are solved taking into account the

fact that the role of external classical instruments was played by

Casimir vacuum.

A solving of the constraints is called a reduction of the extended phase

space on the space of physical variables. The problem of solving of the

constraint equations in terms of linear forms will be discussed in the

next Section of this Chapter.

5.5 Exact solution of the Hamiltonian

constraint

5.5.1 Statement of the problem

From the theory of nonlinear finite-parametric representations of the

symmetry groups there was derived the action of the Conformal Theory

of Gravity that contains all consequences of the General Relativity

for the Solar system. However, the Conformal Theory of Gravity is

significantly different from the General Relativity under descriptions

of cosmological data.

• The action functional of the theory is defined on three spaces —

Riemannian xμ, tangent ω(α) and field [D|F ], each of them has its own

evolution parameter: x0, ω(0), and 〈D〉.

• The second difference is the identification of the observed dis-

tances with the conformal geometric interval. In contrast to the stan-
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dard interval of the General Relativity, the geometric interval can de-

scribe all the observed data at different periods of the evolution of

the Universe by the dominant Casimir vacuum energy of the empty

Universe.

• The action of the Conformal Theory of Gravity becomes bilocal

in terms of the Cartan forms and allows the quantization of gravitons

directly in terms of Cartan.

• The fourth difference is that the observed values of the theory are

the components of the Fock’s frame in the tangent space of Minkowski

ω(α), linear Cartan’s forms and the field variables of the space of events

[D|F ], so the solutions of the equations of the theory, including the

constraints, can be expressed only in terms of these linear forms.

5.5.2 Lagrangian formalism

Recall that in the Hamiltonian formulation we have one global (5.6)

and three local diffeomorphisms (5.7). In this Chapter we show that

the Hamiltonian formulation of the theory of gravity also contains

three local constraints in full accordance with the structure of dif-

feomorphisms (5.7) and one global constraint, as a consequence of the

invariance of the theory relative to reparametrization of the coordinate

time (5.6).

Invariance of the theory with respect to the reparametrization of

the coordinate time (5.6) means that a time-like evolution parameter

in the field space of events is identified with the zero harmonic of the

dilaton field 〈D〉 [8]. Recall that the zero harmonic is determined by
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“averaging” over the final volume V0 =
∫
V0
d3x

〈D〉(x0) ≡ 1

V0

∫
V0

d3xD(x0, x1, x2, x3). (5.48)

In astrophysics and cosmology, the zero harmonic of the dilaton (5.48)

describes luminosity, defining it (with sign minus) as the logarithm of

the cosmological scale factor

〈D〉 = − ln a = ln(1 + z), (5.49)

where z = (1 − a)/a is a redshift. In theories of gravity, indeed, the

zero harmonic of the dilaton plays the role of a parameter of evolution

in the field space of events.

The non-zero harmonics of the dilaton, which we have denoted

above as D, satisfy an orthogonality condition with zero harmonic:∫
V0

d3xD = 0.

In force of the condition of orthogonality of harmonics, nonzero har-

monics from this zero harmonics are independent. This means that

the non-zero harmonics D have zero velocities (5.30)

vD =
1

N
[∂0(e

−3D) + ∂l(N
le−3D)] = 0 (5.50)

and momenta [8]

pD = 2vD = 0

(see Eqs. (5.16), (5.23) and (5.29)). A condition of zero velocities

(5.50)) in the Lagrangian formalism looks like an equation of the di-

vergence of the shift-vector.
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We can choose the shift-vector divergence so that non-zero harmon-

ics of the dilaton, as we already mentioned above, will be Newtonian-

like potentials just those that increase twice the angle of deflection

of light by the gravitational field of the Sun in comparison with the

theory of Newton. Thus, the action (4.49) becomes the sum of two

terms

W = WG +W, (5.51)

where

WG = −
∫

dx0
[
d〈D〉(x0)

dx0

]2 ∫
d3x

1

N
≡
∫

dx0LG (5.52)

is the kinetic part of the action for the zero harmonics of the dilaton

and an expression W coincides with the action (5.15), where the speed

of a local volume element (5.16) is equal to zero. Thus, the equation

of the theory of gravity, obtained by variation of the action (5.51) on

lapse function

N
δWG

δN
= −N δW

δN
≡ NH̃,

takes a form

1

N

[
d〈D〉(x0)

dx0

]2
= NH̃; (5.53)

here

H̃ = −4

3
e−7D/2�e−D/2 +H, (5.54)

H = Hg +HA +HQ, (5.55)

Hg =
1

6

[
v(a)(b)v(a)(b) + e−4DR(3)(e)

]
, (5.56)

HA =
1

2

[
v2(b)(A) + FijF

ij
]
, (5.57)

HQ = e−2D(vQ)
2 + e−2D

(
∂(b)Q

)2
(5.58)
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– Hamiltonian densities at zero speed of the local volume element in the

expression (5.32). Averaging the equation (5.53) on three-dimensional

volume (see (5.48)) and using the definitions〈
1

N

〉
≡ 1

N0

; N ≡ N0N =⇒
〈

1

N

〉
= 1 (5.59)

and N0dx
0 = dτ , we get the diffeoinvariant global constraint equation[

d〈D〉(x0)
N0dx0

]2
≡
[
d〈D〉(τ)

dτ

]2
=
〈
NH̃

〉
. (5.60)

Substituting it into equation (5.53), we get surprisingly simple equation

for diffeoinvariant local lapse function[
d〈D〉(τ)

dτ

]2
= N 2H̃. (5.61)

Since the left side of the equality does not depend on the spatial coor-

dinates, a normalization condition 〈N−1〉 = 1 allows us to express the

diffeoinvariant local lapse function (5.59) in the explicit form

N =

〈√
H̃
〉

√
H̃

. (5.62)

Substituting (5.62) into Eq.(5.61), we obtain the required global con-

straint equation [
d〈D〉(τ)

dτ

]2
=
〈√

H̃
〉2

. (5.63)

The solution of the equation (5.60) gives the cosmological dependence

of the zero harmonic of the dilaton on the time interval of luminosity:

τ =

〈D〉0∫
〈D〉I

d〈D〉
〈√

H̃
〉−1

, (5.64)
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where 〈D〉I , 〈D〉0 are the initial and final data, correspondingly. The

dependence of the zero harmonic of the dilaton from the time interval

of luminosity, in the exact theory of gravitation, is an analogue of the

Hubble law in cosmology.

The equation of motion for the zero harmonic of the dilaton

δW

δ〈D〉 ≡ −T〈D〉 = 0

coincides with the equation obtained by differentiating on τ of the

global constraint equation (5.60):

d2〈D〉
(dτ)2

=
d〈
√
H̃〉

dτ
=

1√
H̃

d〈H̃〉
dτ

=
d〈H̃〉
d〈D〉 .

In the case of dominance of the vacuum energy, the right hand side is

equal to zero, and we get an empty model of the Universe, which is

considered in detail in Chapter 6. For non-zero harmonics an equation

of motion
δW

δD
= −TD = 0

takes a form

TD = TD − 〈TD〉 = 0, (5.65)

TD =
4

3

[
7N e−7D/2�e−D/2 + e−D/2�[N e−7D/2]

]
−N ∂H

∂D
, (5.66)

where H is given by the equations (5.55) – (5.58). Thus, solving the

constraints, we expressed all components of the metric through the

components of the energy-momentum tensor and linear forms of Cartan

(5.10)

d̃s
2
= e−4D

〈
√
H̃〉2

H̃
dτ 2− (5.67)
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−
(
dX(b) −X(c)[ω

R
(c)(b)(d) + ωL

(c)(b)(d)]−N(b)dτ
)2
.

Square interval in diffeoinvariant form on the surface of constraint

(5.59) depends only on the indices of the tangent space.

5.5.3 Hamiltonian formalism

For Hamiltonian formulation of the theory, we introduce momenta of

the fields according to the definitions (5.22) – (5.25). The momentum

of the global component of the dilaton

P〈D〉 =
∂LG

∂(d〈D〉/dx0) = −2V0

d〈D〉
N0dx0

≡ V0p〈D〉, (5.68)

the momentum of the scalar field

pQ = 2vQ =
2

N

[
(∂0 −N l∂l)Q+

1

3
∂lN

l

]
, (5.69)

momenta of the photon field

pA(b) = vA(b) =
1

N
ei(a)
[
∂0Ai − ∂iA0 + FijN

j
]
, (5.70)

and momenta of the gravitational field

p(a)(b) =
v(a)(b)
3

≡ p⊥(b)(a) + ∂(a)f
⊥
(b) + ∂(b)f

⊥
(a), (5.71)

v(a)(b) =
1

N

[
ωR
(a)(b)(∂0 −N l∂l) + ∂(a)N

⊥
(b) + ∂(b)N

⊥
(b)

]
. (5.72)

In the Hamiltonian formalism, the equation for the shift-vector has the

form (5.36)

ei(b)
δW

δNi
=−T(0)(a) = ∂(b)p(b)(a)− T̃(0)(a) = 0, (5.73)
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where

T̃(0)(a) =
∑

F=AT
(a),Q

pF∂(a)F (5.74)

– components of the tensor of energy - momentum of the photon and

the scalar field. The condition of the transverseness of the graviton

∂(a)ω
R
(a)(b) = 0

allows us to express the transverse part of the shift-vector through

the components of the tensor of energy–momentum of the photon and

the scalar field, while the divergence of the shift-vector (id est, its

longitudinal part) is given by the condition of zero momentum of the

local dilaton (5.50)

pD = 2vD =
2

N
[∂0(e

−3D) + ∂l(N
le−3D)] = 0. (5.75)

Thus, we determine all these components of the photon and the gravi-

tational field, except for the longitudinal component of the photon and

the anti-symmetric linear form of the gravitational field ωL
(c)(b)(d). How-

ever, these components in the kinetic terms of the action are absent,

and they are determined by the distribution of the external currents

and the matter, respectively.

Thus, on the level of constraints C = 0 the action is

WC=0 = (5.76)

=

∫
d3x

[∫
[p(a)(b)ω

R
(a)(b)(d) + pQ dQ+ pA(b)dA(b)]

]
−
∫

P〈D〉d〈D〉,



202 5. Hamiltonian formulation of the theory of gravity

where the canonical momentum of the dilaton P〈D〉 satisfies the Hamil-

tonian constraint

P 2
〈D〉 =

[
2

∫
d3x

d〈D〉(τ)
dτ

]2
=

[
2

∫
d3x
√
H̃
]2

(5.77)

and plays a role of the generator of evolution. The value of the mo-

mentum of the zero harmonics on the solutions of the equations of

motion is the energy of the Universe in this space of events. This is

one of ways to solve the problem of non-zero energy as well in General

Relativity [8].

Thus, if we leave the zero harmonic of the dilaton 〈D(x0)〉, the

homogeneous lapse functionN0(x
0) and the vacuum energy of quantum

oscillators, we obtain a simple dynamical system, known in literature

[21] as a miniuniverse (see Appendix E).

In the next two chapters miniuniverse will be considered as an

example, to demonstrate the ability of solving of most of the problems

listed above.

5.6 Summary

The quantization of any dynamical system involves a Hamiltonian de-

scription of the system. This chapter is focused on adapting Dirac’s

Hamiltonian approach to the General Relativity for the affine Confor-

mal Theory of Gravity, presented in Chapter 4. All the problems of a

unique definition of the energy and time, inherent in the Hamiltonian

description of the General Relativity, are inherited by the Conformal

Theory of Gravity. However, as it has been shown, these problems
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have a unique solution by introducing the concept of zero harmonic

of the dilaton and postulating of the existence of vacuum as the state

with the lowest energy, in full accordance with the dimension of dif-

feomorphisms of the Hamiltonian evolution. The Hamilton equation

of constraint in presence of the zero harmonic of the dilaton becomes

algebraic and exactly resolved relative to the canonical momentum of

the zero harmonic. This canonical momentum becomes a generator

of evolution of the Universe in a field space of events and defines the

energy of the Universe on the solutions of the classical equations. The

zero harmonic of the dilaton and the energy of the vacuum set the

empty Universe model, which Chapter 6 discusses.
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[10] Isham, C.J., Kuchař, K.V.: Representations of spacetime dif-

feomorphisms. I. Canonical parametrized field theories. Annals of

Physics. 164, 288 (1985).
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[15] Kuchař, K.V.: Time and interpretations of quantum gravity. Pro-

ceedings of the 4th Canadian Conference on General Relativity and

Relativistic Astrophysics. (Eds. Kunstatter, G., Vincent, D., and

Williams, J.). World Scientific (1992)

[16] Faddeev, L.D., Popov, V.N.: Covariant quantization of the gravi-

tational field. Physics–Uspekhi. 16, 777 (1974)

[17] Lifshitz, E.M., Khalatnikov, I.M.: Problems of relativistic cosmol-

ogy. Physics–Uspekhi. 6, 495 (1964)

[18] Mukhanov, V.F., Feldman, H.A., and Brandenberger, R.H.: The-

ory of cosmological perturbations. Phys. Rep. 215, 203 (1992)

[19] Giovannini, M.: Theoretical tools for the physics of CMB

anisotropies. Int. J. Mod. Phys. D 14, 363 (2005).

[arXiv: astro-ph/0412601]



5.6. Summary and literature 207

[20] Barbashov, B.M., Pervushin, V.N., Zakharov, A.F., Zinchuk,

V.A.: Hamiltonian cosmological perturbation theory. Phys. Lett. B

633, 458 (2006).

[arXiv: hep-th/0501242]

[21] Misner, Ch.: Quantum cosmology. I. Phys. Rev. 186, 1319 (1969)



Chapter 6

A model of an empty

Universe

6.1 An empty Universe

In the first five chapters, we set out the elements of an alternative

physics program which appeared in the period from 1915 till 1974 to

describe and classify the experimental data. This program is based

on the principles of symmetry of the initial data. The essence of this

program is as follows.

1. There are elementary objects (such as quarks or twistors) as

fundamental representations of the group G: (SU(2) ⊗ SU(2)) or

(A(4)⊗ C).

2. Mesons or space - time are formed from these elementary objects

as adjoint representations of the group G, that allows the determina-

tion of the vacuum stability subgroup H and the corresponding coset

K = G/H.

208
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3. Linear Cartan forms, describing an arbitrary motion (translation

and rotation) of the frame in this coset, are derived on the algebra of

G.

4. Lagrangians of the chiral theory and the theory of gravity are

constructed with the help of these forms.

5. Cartan forms are invariant under gauge transformations.

Next, we demonstrate the ability of feasibility of this program to

describe the observational data on the example of miniuniverse. Here

we will understand the miniuniverse as the theory of gravitation de-

veloped above, in which we keep only the zero harmonics of the dilaton

〈D(x0)〉, the homogeneous lapse function N0(x
0), and the vacuum en-

ergy of the quantum oscillators

ρτCas(a) =
1

V0

∑
f

H
τ
(f)Cas =

1

V0

∑
q,f

ωq,f

2
, (6.1)

where the vacuum energy of a finite universe in this model appears as

a sum of vacuum energies of all fields f . In quantum field theory, this

amount is called the Casimir energy [1]. Recall that the vacuum energy

arises under the normal ordering of the field operators after separation

of them to positive and negative frequency parts. In particular, the

energy of the sum of the oscillators has the form

1

2

∑
n

(
p2n + ω2

nq
2
n

)
=

1

2

∑
n

ωn

(
a+n a

−
n +a−n a

+
n

)
=

=
∑
n

ωna
+
n a

−
n +

∑
n

ωn

2
.

The latter term is called the vacuum energy, defined as the state of a

set of oscillators with the lowest energy.



210 6. A model of an empty Universe

Let us leave the vacuum energy in the action defined by the for-

mulae (5.51) (5.52), instead of matter fields. Then we get the cosmo-

logical model of the homogeneous empty Universe, described by the

action (up to a total derivative)

WUniverse = −V0

τ0∫
τI

dx0N0︸ ︷︷ ︸
=dτ

[(
d 〈D〉
N0dx0

)2

+ ρτCas(〈D〉)
]
. (6.2)

The value of the Casimir energy of field oscillators ρτCas(〈D〉) is in-

versely proportional to the size of the spatial volume. Therefore, in

the classical limit of an infinite volume, the action (6.2) is equal to

zero

lim
V0→∞

WUniverse = 0.

Varying the action (6.2) by variables 〈D〉 and N0, we get two equa-

tions

δWUniverse

δ〈D〉 = 0 ⇒ 2
d

dτ

[
d〈D〉
dτ

]
=

dρτCas
d〈D〉 , (6.3)

δWUniverse

δN0

= 0 ⇒
[
d〈D〉
dτ

]2
= ρτCas. (6.4)

The second equation is the integral of the first one and is treated as

a constraint equation of the initial data (initial momentum) of the

dilaton. According to the second Noether’s theorem, the second equa-

tion is a consequence of the invariance of the action (6.2), relatively to

reparametrization of the coordinate evolution parameter:

x0 → x̃0 = x̃0(x0).

The second equation, rewritten in terms of the cosmological scale factor
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a = exp(−〈D〉) and conformal density

ρηCas(a) =
ρτCas
a2

≡ H0

dCas(a)
, (6.5)

coincides with the Friedmann equation[
da

dη

]2
= ρηCas(a), (6.6)

where dCas(a) in (6.5) is the conformal size of the Universe and H0 is

the Hubble parameter, and a = (1+ z)−1 is a scale cosmological factor

and z is a redshift.

The solution of the Friedmann equation (6.6) gives a conformal

horizon

dhorison(a) = 2rhorison(a) = 2

a∫
0

da [ρηCas(a)]
−1/2. (6.7)

The horizon is defined as the distance that the photon runs on the

light cone dη2 − dr2 = 0 during the life - time of the Universe. In this

case, a conformal horizon coincides with apparent size of the Universe

dCas(a) in (6.5):

dCas(a) = dhorison(a). (6.8)

Solutions of the equations (6.5), (6.6), (6.7), and (6.8)

dhorison(a) =
a2

H0

⇒ ρτCas = H2
0 ≡ ρcr (6.9)

give the Hubble diagram of the description of Supernovae [2, 3] in

Conformal Cosmology [4, 5, 6, 7, 8, 9], obtained as a consequence of

the Dirac definition of measured intervals in the approximation of the
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empty space. In terms of conformal variables, the solution corresponds

to the equation of rigid state of an empty space (6.8)[
da

dη

]2
=

ρcr
a2

. (6.10)

In terms of the values of luminosity, where ρτCas is a constant,

dρτCas
d〈D〉 = 0,

we get the inertial motion of the dilaton with an acceleration equal to

zero. For an empty space, the obtained solution (6.10) describes the

Supernova data in the Conformal Cosmology, where the measured dis-

tances are longer than those, used in the Standard Cosmology. Thus,

according to the principles of conformal and affine symmetries, namely,

this remoteness of Supernovae were discovered by observers [2, 3].

6.2 The Supernovae data in

Conformal Cosmology

The Nobel Prize in Physics of 2011 was awarded to S. Perlmutter, A.

Riess, and B. Schmidt for their work [2, 10, 11, 12] related to studying

of Supernovae Type Ia to determine the parameters of cosmological

models. Thus it was assumed that the maximum luminosity of Su-

pernovae does not depend on the distance to them, but depends on

the rate of change of the luminosity according to the so-called law of

the Pskovski — Phillips [2], that is, they are the so-called “standard

candles”. Studying distant Supernovae from Earth, observers found

that these stars are at least a quarter fainter than predicted by the
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theory which means that the stars are too far away. Thus, calculat-

ing parameters of expansion in cosmological models of Friedmann –

Robertson – Walker [13] with an arbitrary equation of state of matter,

the researchers found that in frames of the Standard Cosmology, this

process is proceeded with acceleration.

Saul Perlmutter (born September 22, 1959) is an American astrophysicist and No-

bel Prize in Physics 2011 (together with Brian Schmidt and Adam Riess) “for the

discovery of the accelerated expansion of the Universe through observations of dis-

tant Supernovae”. Perlmutter grew up in the Philadelphia area Mount Airy, where

he studied in an elementary school Greene Street Friends School and Germantown

Friends School. In 1981 he graduated with honors from Harvard University. In 1986

in the University of California at Berkeley, Perlmutter received his PhD. His thesis

was devoted to the problem of detection of objects – candidates for the role of Neme-

sis. Currently, Perlmutter heads the project “Supernova Cosmology Project” at the

Lawrence Berkeley National Laboratory. His team together with a group of Brian

Schmidt proved the existence of accelerated expansion of the Universe. Perlmutter

is also a lead investigator in the Supernova/Acceleration Probe project, which aims

to build a satellite dedicated to finding and studying more Supernovae in the dis-
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tant Universe. This will help to better constrain the rate at which the Universe is

accelerating. He is also a participant in the Berkeley Earth Surface Temperature

project, which aims to increase our understanding of recent global warming through

improved analyses of climate data.

It corresponds to the presence of a non-zero Lambda term1. In

this case, one speaks about the so-called dark energy. There is still

an unresolved within the Standard cosmology, problem of the origin of

matter with similar properties. This form of matter is not predicted

even by representations of the Poincaré group.

On the other hand, there is a Conformal cosmological model [4],

which allows us to describe the Supernova data without lambda-term,

because in this model the observed distances are identified with confor-

mal longer intervals. The authors of the discovery in paper [2] recog-

nize the fact of existence of both alternative explanations, and compare

interpretations of the results of observations with the Conformal cos-

mological model [4].

As we saw above, in the Conformal cosmological model, to explain

far distances to Supernovae there are enough assumptions about the

1Albert Einstein in paper (A. Einstein: Kosmologiche Betrachtungen zur allgemeinen Rela-

tivitätstheorie. Sitzungsber. d. Berl. Akad. 1, 142 (1917)) was forced to introduce a universal

λ-term in the equations of the theory from static requirements of the cosmological solutions, de-

fensively only in that supplement where its covariance equations are not violated. Later, Einstein,

closely acquainted with the work of Alexander Friedmann (Friedmann, A: Über die krümmung

des raumes. Zs. für Phys. 10, 377 (1922)) admitted the erroneousness of the introduction of

λ-term, thereby, opening the way for the study of non-stationary models. After exploring the world

with positive curvature, Alexander Friedmann in paper (Friedmann, A: Über die möglichkeit einen

welt mit konstanter negativer krümmung des raumes. Zs. für Phys. 21, 326 (1924)) obtained a

cosmological solution with negative curvature.
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dominance of the zero energy of the vacuum. According to quantum

mechanics, in microworld, each particle has a zero energy of fluctua-

tions of vacuum, which is called the Casimir energy [1].

Brian Paul Schmidt (born February 24, 1967) is a Distinguished Professor, Aus-

tralian Research Council Laureate Fellow and astrophysicist at The Australian Na-

tional University Mount Stromlo Observatory and Research School of Astronomy

and Astrophysics. Schmidt, along with Riess and Perlmutter, jointly won the 2011

Nobel Prize in Physics for their observations which led to the discovery of the accel-

erating Universe. Schmidt attended Bartlett High School in Anchorage, Alaska, and

graduated form it in 1985. He earned his BS (Physics) and BS (Astronomy) from the

University of Arizona in 1989. He received his MA (Astronomy) in 1992 and then

PhD (Astronomy) in 1993 from Harvard University. Schmidt was a Postdoctoral Fel-

low at the Harvard – Smithsonian Center for Astrophysics (19931994) before moving

on to Mount Stromlo Observatory in 1995. Schmidt led the High-Z Supernova Search

Team from Australia, and in 1998 with Adam Riess the first evidence was presented

that the Universe’s expansion rate is accelerating. The observations were contrary

to the current theory that the expansion of the Universe should be slowing down; on

the contrary, by monitoring the brightness and measuring the redshift of the Super-
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novae, they discovered that these billion-year old exploding stars and their galaxies

were accelerating away from our reference frame. Schmidt is currently leading the

SkyMapper telescope Project and the associated Southern Sky Survey.

Adam Guy Riess (born 16 December 1969) is an American astrophysicist at the Johns

Hopkins University and the Space Telescope Science Institute and is known for his

research in using Supernovae as cosmological probes. Riess shared the 2011 Nobel

Prize in Physics with Saul Perlmutter and Brian P. Schmidt for providing evidence

that the expansion of the Universe is accelerating. Riess was born in Washington,

D.C., grew up in Warren, New Jersey. Riess graduated from the Massachusetts In-

stitute of Technology in 1992. He received his PhD from Harvard University in 1996;

it resulted in measurements of over twenty new type Ia Supernovae and a method

to make Type Ia Supernovae into accurate distance indicators by correcting for in-

tervening dust and intrinsic inhomogeneities. Riess jointly led the study with Brian

Schmidt in 1998 for the High-z Supernova Search Team. The team’s observations

were contrary to the current theory that the expansion of the universe was slowing

down; instead, by monitoring the color shifts in the light from supernovas from Earth,

they discovered that these billion-year old novae were still accelerating. This result

was also found nearly simultaneously by the Supernova Cosmology Project, led by
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Saul Perlmutter. The corroborating evidence between the two competing studies led

to the acceptance of the accelerating Universe theory, and initiated new research to

understand the nature of the Universe, such as the existence of dark matter.

CC optimal

SC optimal

CC rigid

CC matter

CC lambda

CC rad

Figure 6.1: Hubble diagram, based on 73 data obtained by the collaboration

SNLS. For the theoretical analysis, the model of a flat Universe in the Standard

cosmology (SC) and the Conformal cosmology (CC) is used. The better agreement

with the data demands the value of cosmological constant: ΩΛ = 0, 755 and cold

matter: Ωm = 0, 245 in case of the Standard cosmology, while in the case of the

Conformal cosmology, these data are consistent with the regime of nucleosynthesis

and domination of the rigid state condition Ωrigid = 0, 755.

In papers [8, 14] it was shown that with account of the great num-

ber of data of Supernovae, the interpretation of observational data with

the Conformal cosmological model (solid curve in Fig. 6.1) is almost

as good as the interpretation in the framework of models of Friedmann
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– Robertson – Walker with a non-zero Lambda member (the dashed

line in Fig. 6.1). According to the Conformal model, S. Perlmutter,

A. Riess and B. Schmidt discovered the physical vacuum which is the

Universe. For comparative analysis, data of the collaboration “Super-

nova Legacy Survey” (SNLS) are used [15]. Detection of Supernova

explosions was carried out with the telescope CFHT (Canada – France

– Hawaii), whereupon with modern telescopes, photometric and spec-

troscopic study of Supernovae were conducted. It is appropriate to

remind the correct statement of the Nobel laureate in Physics Steven

Weinberg2 about interpretation of experimental data on redshifts. “I

do not want to give the impression that everyone agrees with this inter-

pretation of the red shift. We do not actually observe galaxies rushing

away from us; all we are sure of is that the lines in their spectra are

shifted to the red, i.e. towards longer wavelengths. There are eminent

astronomers who doubt that the red shifts have anything to do with

Doppler shifts or with expansion of the universe”.

If we identify the observed values with conformal variables (confor-

mal time, conformal density, conformal temperature and Planck run-

ning mass), the evolution of the lengths in cosmology is replaced by

the evolution of the masses. This identification means choosing the

equations of General Relativity (GR) and the Standard Model (SM)

in conformally invariant form, where the space scale factor scales all

masses including the Planck mass. The initial values of the masses are

much less than modern ones. In this case, the Planck epoch in the

2Weinberg, S.: The First Three Minutes: A Modern View of the Origin of the Universe. Basic

Books, New York (1977).
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early Universe loses its absolute predestination. It was shown [7, 16]

that in the case of regime of rigid state equation the early Universe is

a factory of the cosmological creation of massive vector bosons from

the vacuum, when the Compton wavelength of these bosons coincides

with the event horizon of the early Universe, so the conformal-invariant

versions of the Standard Model and the General Relativity can, in prin-

ciple, explain the origin of the observed matter as the final product of

decay of primary bosons. In an evolving Universe as opposed to a

stationary Universe, a part of photons is lost during their flight to the

Earth. This is due to an increase in the angular size of the cone of light

of emitted photons (absolute standard) or because of reduced angular

size of the cone of light of absorbed photons (the relative standard),

as shown in Fig. 6.2 for both cases.

Figure 6.2: Comparison of case of a stationary Universe (right panel) to the case

of evolving Universe with an absolute standard (top left panel), and with the case of

the evolving Universe with the relative standard (bottom left panel).
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To restore full luminosity for both standards (both absolute and

relative) we have to multiply by a factor of coordinate distance (1+z)2

[4], therefore the observational cosmology uses the luminosity distance

�, which is defined as the measured distance (r (2.71) or R (2.72)),

multiplied by a factor (1 + z)2 for both standards

�abs(z) = (1 + z)2R(z) = (1 + z)r(z), (6.11)

�rel(z) = (1 + z)2r(z). (6.12)

In the literature, the first case corresponds to the Standard cosmol-

ogy (SC), the second – to the Conformal Cosmology (CC). So, for the

relative standard we have an additional factor (1 + z), and relations

(6.11) and (6.12) mean, that observational data are described by dif-

ferent regimes for different standards of measurement. In Fig. 6.1 [4]

the results of the Standard and Conformal cosmologies for the relation

between the effective magnitude and redshift are compared:

m(z) = 5 log[H0�(z)] +M,

whereM is a constant, according to latest data for Supernovae [2, 10].

As we see from Fig. 6.1, in the region 0 ≤ z ≤ 2 observational data,

including the last point (SN 1997ff) with z = 1, 7 [2], are interpolated

in the Standard cosmology with the absolute standard and parameters

Ωrigid = 0, ΩM ≥ 0, 245, ΩΛ ≤ 0, 755 (6.13)

as well as in the Conformal Cosmology with the relative standard and

parameters

Ωrigid ≥ 0, 755, ΩM ≤ 0, 245, ΩΛ = 0. (6.14)
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Further, in case of the relative standard of measurements, the evolution

of Supernovae does not contradict to the equation of state of primordial

nucleosynthesis with the dependence of the cosmological factor from

the observed conformal time

ã(η) = [z + 1]−1(η) =
√

1 + 2H0(η − η0), Ωrigid = 1. (6.15)

From this relation it is easy to find the coordinate distance r =

η0 − η as function of z:

H0r(z) =
1

2

[
1− 1

(1 + z)2

]
=

1

(1 + z)2

(
z +

z2

2

)
, (6.16)

which implies the dependence of the luminosity distance (6.12) from

the redshift z:

�rel(z) = (1 + z)2r(z) =
1

H0

[
z +

z2

2

]
. (6.17)

In Fig. 6.1 the function (6.17), arisen as a result of the solution of

the equation of rigid state, is shown by the solid line and we see that

the astrophysical data on Supernovae and primordial nucleosynthesis,

recalculated in terms of the relative standard, testify that all evolution

of the Universe takes place in the regime of dominance of rigid state

(6.15) with relative density

ρrigid(a) =
ρcr
a2

=
H2

0

a2
. (6.18)

It is singular at the zero value of the scale factor. If this density is

dominant in the modern era, it also dominated in the primary era of

the early Universe, for which the solution (6.15)

a(η) = aI
√

1 + 2HI(η − ηI) (6.19)
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is expressed in terms of the initial data

aI = a(ηI), HI =
a′(ηI)

a(ηI)
, (6.20)

which are associated with modern values

a0 = a(η0), H0 =
a′(η0)

a(η0)

by the following relations

a(η) = aI
√

1 + 2HI(η − ηI) = a0
√
1 + 2H0(η − η0). (6.21)

6.3 The hierarchy of cosmological scales

Let us consider the beginning of the Universe, assuming dominance

of the Casimir vacuum energy. If in the Beginning, the Universe was

quantum, we can apply the postulate of Planck’s least action to de-

termine the initial value of the cosmological factor and consider the

hierarchy (classification) of cosmological scales according to their con-

formal weights.

A hypothetical observer measures the conformal horizon (6.7)

dhorizon(a) = 2rhorizon(z) = 2

a∫
aI→0

da
a
√
ρcr

=
a2

H0

. (6.22)

as the distance that the photon runs on its light cone dη2 − dr2 = 0

during the lifetime of the Universe. In accordance with the formula

(6.22), four-dimensional volume of the early Universe, limited by the

horizon

ηhorizon = rhorizon(z) =
1

2H0(1 + z)2
,
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is equal to

V
(4)

horizon(z) =
4π

3
r3horizon(z) · ηhorizon(z) =

4π

3 · 16H4
0(1 + z)8

. (6.23)

It is natural to assume that at the time of its creation, the Universe

was quantum. In this case, values of the action of the Universe are

quantized. A minimal quant of the action of the Universe under initial

scale factor aPl = (1 + zPl)
−1 is given by the Planck postulate

WUniverse = ρcrV
(4)

horizon(zPl) =
M 2

Pl

H2
0

1

32(1 + zPl)8
= 2π. (6.24)

Using the current data for the Planck mass and the Hubble parameter3

at (τ = τ0) and h � 0.7

MCe
〈D〉(τ0) = MPl = 1.2211× 1019GeV, 〈D〉(τ0) = 0, (6.25)

d

dτ
〈D〉(τ0)=H0=2.1332× 10−42GeV× h=1.4332× 10−42GeV,(6.26)

we obtain from (6.24) the primordial redshift value

a−1Pl = (1 + zPl) ≈
[
MPl

H0

]1/4
×
[
4

π

]1/8
× 1

2
� 0.85× 1015. (6.27)

In other words, the Planck mass and the present value of the Hub-

ble parameter are related to each other as the age of the Universe,

expressed in terms of the primary redshift in the fourth order

MPl

H0

= (1 + zPl)
4 � z4Pl.

We can say that the conformal weight of the Planck mass is four in the

class frames of reference associated with the time interval of luminosity

3h = 0, 71± 0, 02 (stat) ±0, 06 (syst) is the Hubble parameter in units 100 (km/sec)/Mps [17].
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dτ , where the relativistic energy of the particle is

ωτ = a2
√

k2 + a2M 2
0 .

From the expansion of the energy in powers of the cosmological scale

factor there is a classification of energies by irreducible representations

of the Weyl group [18]. According to these representations, conformal

weights n = 0, 2, 3, 4 correspond to velocity of dilaton vD = H0, mass-

less energy a2
√
k2, massive energy M0a

3, Newtonian coupling constant

MPla
4 (6.24), respectively. In this classification it is possible also to

include a non-relativistic particle

H0 × a−1Pl = 10−13 cm−1

with conformal weight n = 1 of its energy

ωnonr
τ =

a1k2

M0

.

The cosmological evolution of all these energies is given by the Hubble

parameter and can be written by a unified formula of the kind

〈ω〉(n)(a) =
(

a

aPl

)(n)

H0 , (6.28)

According to this formula in the Beginning of the Universe, values of

all these energies coincide with the Hubble parameter. In modern time

the values of all these energies are determined by the product of the

Hubble parameter to the primary (Planck) value of the redshift (6.27)

in power equal to the corresponding conformal weight:

〈ω〉(0)0 = H0, 〈ω〉(1)0 = R−1⊙ ,



6.4. Special Relativity – General Relativity correspondence 225

n n=0 n=1 n= 2 n=3 n=4

ω
(n)
0 H0 � 1, 4 ·10−42 � 1, 2 ·10−27 � 10−12 � 3 · 102 � 4 · 1018

Table 6.1: The hierarchy of cosmological scales in GeV.

〈ω〉(2)0 = kCMB, 〈ω〉(3)0 = MEW , 〈ω〉(4)0 = M0Pl.

As a result, Planck’s postulate of minimal action leads to a hierarchy

of cosmological scales to the present days (a = 1)

ω
(n)
0 ≡ 〈ω〉(n)(a)

∣∣∣
(a=1)

= (1/aPl)
(n)H0, (6.29)

shown in Table 6.1.

Table 6.1 contains scales corresponding to the inverse size of the

Solar System for the conformal weight (n = 1), the average momentum

of the CMB (n = 2), electroweak scale of SM (n = 3) and Planck’s

mass (n = 4). We conclude that the observational data suggest that

the cosmic evolution (6.28) of all of these energy scales with confor-

mal weights (n = 0, 1, 2, 3, 4) has a common origin, which can be the

Casimir energy of an empty space.

Thus, the use of minimum action postulate leads to the primary

value of the cosmological scale factor aPl, given by the equation (6.27)

in the considered Conformal model of the Universe. The classification

of the different states of matter, in accordance with their conformal

weights, reveals a hierarchy of energy scales, according to the observa-

tions.

Why is an empty Universe filled with particles? And why are these

particles just enough as we observe in the Universe? The answers to

these questions will be discussed in the next chapters.
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6.4 Special Relativity–General Relativity

correspondence

The problem of understanding creation and evolution of the Universe

is probably not in the exact solution of the equations of the General

Relativity, but in an ontology, id est, in the adequate application of the

concepts of modern relativistic and quantum physics to observational

cosmology. To demonstrate this assertion, let us consider according to

Wheeler and De Witt, a quantum theory of the Universe for a model

of an empty Universe (6.2), that can be solved exactly in classical and

quantum cases.

Above, there were presented arguments and evidence that the clas-

sical exact solution provided a description of the data on the depen-

dence of the redshift from the distance to cosmic objects in all ages of

the evolution of the Universe, including the latest data on the Super-

novae. As we show below, the quantum solution gives a positive arrow

of time interval and allows to describe the creation of the Universe

from a vacuum, defined as the state with the lowest energy, according

to the postulates of quantum field theory. We make in the action (6.2)

the change of variables (neglecting the total derivative)

√
2V0 〈D〉 = XU , (6.30)√
2V0 ρcr = MU . (6.31)

Then the expression (6.2) takes the form of the action for a relativistic
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particle at rest in the Special Relativity

WUniverse = −1

2

τ0∫
τI

dx0N0

[(
dXU

N0dx0

)2

+M 2
U

]
=

τ0∫
τI

dx0L, (6.32)

dx0N0 = dτ, (6.33)

where the speed of light is set equal to unity, c = 1. Here, XU plays

a role of an evolution parameter in a space of measurements, x0 is

a coordinate evolution parameter in the one-dimensional Riemannian

manifold as the object of coordinate transformations x0 → x̃0 = x̃0(x0)

with unmeasured parameters, N0(x
0) is a lapse function that has sense

as a metrics for a geometric time interval N0(x
0)dx0 = dτ for classical

equations of motion.

By introducing the canonical momentum variable XU :

PU =
∂L

∂(∂0XU)
,

the action (6.32) we rewrite in the canonical form

W =

∫
dx0
[
PU

dXU

dx0
+

N0

2

(
P 2
U −M 2

U

)]
. (6.34)

The equations of motion take a form

dPU

dτ
= 0,

dXU

dτ
= PU .

The solutions of these equations

XU(τ) = XIU + PIU (τ − τI) (6.35)

depend on initial data

XU(τ = τI) = XIU , PIU = EU .
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A variation of the action by the metric N0(x
0) yields a formula for

Hamiltonian constraint of an initial momentum EU

E2
U −M 2

U = 0. (6.36)

In the General Relativity, this formula is traditionally identified with

the zero-point energy of the system. In our monograph, the energy of

relativistic Universe is the solution of the constraint (6.36) in respect

to EU

EU = ±MU . (6.37)

A formula for the Hamiltonian constraint (6.36) for the energy of rel-

ativistic Universe is an analog of the Hamiltonian constraint for the

energy of relativistic particle at rest

E2 −m2 = 0.

For the relativistic particle a solution of the Hamiltonian constraint

gives two values of energy: positive and negative E = ±m. A neg-

ative value of energy means that the classical relativistic particle is

unstable. To get rid of negative energies in the relativistic theory and

enter a stable vacuum as a state of the lowest energy, one makes two

quantizations of the Hamiltonian constraint (6.36): the primary, when

the constraint is converted into the equation for the wave function,

and the secondary, where the wave function itself becomes the oper-

ator in Fock’s space of numbers of occupation. Let us consider these

quantizations in our model of the Universe.
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6.5 The arrow of time as a consequence

of the postulate of vacuum

For the first time such an idea on the level of quantization of the

General Relativity by analogy with the quantization of the Special

Relativity was formulated by Bryce De Witt [19], where he identified a

parameter of evolution in cosmology with the cosmological scale factor

and introduced in the General Relativity the concept of field space

of events, where the relativistic Universe moved, by analogy with the

concept of Minkowskian space of events, where the relativistic particle

moved.

The primary quantization of the constraint P 2
U = M 2

U , by replace-

ment of a particle momentum P(0) to an operator

P̂U = −ı d

dXU

leads to an equation of the Klein – Gordon for the wave function [20]

(P̂ 2
U −M 2

U)ΨU = 0, (6.38)

which in cosmology is called the equation of Wheeler – DeWitt (WDW).

Its solution is a sum of two terms

ΨU =
1√
2EU

× (6.39)

×
[
A+

I e
ıE(XU−XIU )θ(XU −XIU) + A−I e

−ıE(XU−XIU )θ(XIU −XU)
]

with coefficients A+
I , A

−
I , according to two classical solutions of the

constraint equation with positive and negative energy. The secondary
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UNIVERSE

Ψ(ϕ  |F)=A
+

ψ +A
-
ψ∗

Ψ(s|G)

Pϕ =E

ϕ=ϕ
0

ϕ

e

F

ϕ=ϕ
I

ds

Figure 6.3: The figure shows the motion of a relativistic Universe in its field space

of events. Full description of the motion is given by the two sets of observables:

dynamical in the space of events and geometrical in the tangent Minkowskian space.

Each of these sets has its parameter of evolution and its wave function Ψ. Two

measured parameters of evolution (dynamical parameter ϕ = MPle
−D and time as

geometrical interval s) are connected by the Hubble law.

quantization of the initial data

[Â−I , Â
+
I ] = 1

leads to the vacuum A−I |0 >= 0 as state with the lowest energy if the

coefficient A+
I is interpreted as an operator of creation of a particle

with positive energy, which flies ahead of the initial data

XIU < XU ,

and the coefficient A−I as an operator of annihilation of a particle also

with positive energy, which flies to the initial data

XU < XIU .
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Substituting these solutions into the expression for the trajectory of

the Universe (6.35), we obtain, that the geometrical interval τ−τI > 0

is always greater than zero. This is the arrow of time. Thus, the

existence of a stable vacuum leads to the arrow of time.

The WDW equation (6.38) is obtained by variation of the action of

the corresponding classical theory of field type Klein – Gordon [19] 4:

WU =
1

2

∫
dXU

[(
dΨU

dXU

)2

− E2
UΨ

2
U

]
≡
∫

dXULU. (6.40)

Such an approach could be called a field theory for the universes [21,

22].

The negative energy solutions in (6.37) means that the relativistic

system has not a minimum of its energy and arbitrarily small interac-

tion makes the system unstable. The system can be made stable in a

quantum field theory, arising from the second quantization of WDW

field ΨU , if further the existence of a vacuum state with the lowest

energy is postulated. Introducing the canonical momenta

PΨ =
∂LU

∂(∂XU
ΨU)

,

one can yield the Hamiltonian formulation of the theory with an action

(6.40)

WU =

∫
dXU

(
PΨ

dΨU

dXU
−HU

)
, (6.41)

4Unlike the original relativistic system (6.2) with three spaces, the formulation of the Wheeler

and De Witt (6.40) loses time as geometrical interval and, consequently, its dependence on the scale

factor, which is interpreted in the classical Friedmann cosmology as Hubble’s law. As a result, in

classical cosmology one does not know how to quantize, and in quantum cosmology [19] – how to

describe the Hubble law.
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where

HU =
1

2

[
P 2
Ψ + E2

UΨ
2
U

]
(6.42)

is the Hamiltonian. Determination of the energy EU for one particular

universe gives us the opportunity to present the Hamiltonian HU in

standard form of product of the energy EU and the number of occupa-

tion of excitations of Wheeler – De Witt field, which can be identified

with the number of created universes

N̂U = A+A−, (6.43)

HU =
1

2
EU

[
A+A− + A−A+

]
= EU

[
NU +

1

2

]
(6.44)

by passing to holomorphic variables [23]

ΨU =
1√
2EU

(A+ + A−), PΨ = ı

√
EU

2
(A+ − A−), (6.45)

where A+, A− are operators of creation and annihilation of universes,

correspondingly.

To eliminate the negative energy one would have to postulate that

the A− is the operator of annihilation of universe with positive energy,

it assumes the existence of a vacuum state as the state with the lowest

energy:

A−|0 >A= 0. (6.46)

A number of universes NU = A+A− (6.43) can not be saved if the en-

ergy EU depends on XU . In this case, the vacuum state (6.46) becomes

unstable, since a dependence of the energy EU of the dynamic evolu-

tion parameter XU leads to an additional term in the action (6.40), if
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it is rewritten in terms of holomorphic variables in the functional space

PΨ

dΨU

dXU
= (6.47)

=

[
ı

2

(
A+

q

dA−

dXU
− A+ dA

−

dXU

)
− ı

2

(
A+A+ − A−A−

)
�(XU)

]
,

where

�(XU) =
1

2EU

dEU

dXU
. (6.48)

The last term in the expression (6.47) describes a cosmological cre-

ation of universes from the vacuum. The method of describing of such

cosmological creation is the Bogoliubov transformations [23, 24].

6.6 Creation of the Universe

To determine a vacuum and a set of conserving numbers, called in-

tegrals of motion, we can use (as in the case of cosmological cre-

ation of particles [23]) the Bogoliubov transformations [24] of variables

(A+, A−)

A+ = αB++β∗B−, A− = α∗B−+βB+ (|α|2 − |β|2 = 1), (6.49)

so corresponding equations, expressed in terms of universes (A+, A−):(
ı

d

dXU
+ EU

)
A+ = ıA−�,

(
ı

d

dXU
− EU

)
A− = ıA+�, (6.50)

take a diagonal form in terms of quasiuniverses B+, B−:(
ı

d

dXU
+ EB

)
B+ = 0,

(
ı

d

dXU
− EB

)
B− = 0. (6.51)
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This means that coefficients of the Bogoliubov transformations sat-

isfy to equations

(
ı

d

dXU
+ EU

)
α = ıβ�,

(
ı

d

dXU
− EU

)
β∗ = ıα∗�. (6.52)

If we express the coefficients of the Bogoliubov transformations in the

form of

α = eıθ cosh r, β∗ = eıθ sinh r, (6.53)

where magnitudes r, θ are called parameters of shear and rotation,

respectively, these equations take the following form

(
dθ

dXU
− EU

)
sinh 2r = −� cosh 2r sin 2θ,

dr

dXU
= � cos 2θ, (6.54)

while the energy of the quasiuniverses in equations (6.51) is given by

EB =
EU − ∂XU

θ

cosh 2r
. (6.55)

By these equations (6.51), a number of quasiuniverses NB = (B+B−)

is conserved

dNB

dXU
≡ d(B+B−)

dXU
= 0. (6.56)

Hence, we get the definition of vacuum as state without quasiuniverses:

B−|0 >U= 0. (6.57)
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N.N. Bogoliubov (8 (21) August 1909,

Nizhni Novgorod 13 February 1992,

Moscow). The outstanding Russian

mathematician and physicist, Academi-

cian of the Russian Academy of Sciences,

founder of scientific schools in nonlinear

mechanics and theoretical physics. Since

1956 - Director of the Laboratory of

Theoretical Physics, JINR, Dubna, since

1965 till 1988 Director of JINR. Head

of quantum field theory and statisti-

cal physics department of Moscow State

University from 1966 to 1992. The main

works are devoted to asymptotic meth-

ods of nonlinear mechanics, quantum

field theory, statistical mechanics, calcu-

lus of variations, the approximate meth-

ods of mathematical analysis, differential

equations and mathematical physics, the

theory of stability, dynamical systems,

and other areas of theoretical physics.

A number of created universes from this Bogoliubov vacuum can be

found by calculating the average of the operator of number of universes

(6.43) by Bogoliubov vacuum. It can be seen that this number is

proportional to square of the coefficient, given in equation (6.49)

NU(XU) = U< 0|A+A−|0 >U≡ |β|2. (6.58)

This value can be called as number of universes NU(XU), while the
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No UNIVERSE PARTICLE

1. x0 → x̃0 = x̃0(x0) τ → τ̃ = τ̃(τ)

2. N(x0) dx0 = dτ =
dη

a2
=

dt

a3
ds = e(τ) dτ

3. [〈D〉 | F̃ ] [X0 | Xk]

4. P 2
〈D〉 − E2

U = 0 P 2
0 − E2

0 = 0

5. τ(±) = ±
∫ 〈D〉0
〈D〉I d〈D〉 〈(H̃)−1/2〉 ≥ 0 s± = ±m

E
[X0

0 −X0
I ] ≥ 0

6. EU = ±2
∫
d3x(H̃)1/2 Ep = ±

√
m2 + p2

7. [P̂ 2
〈D〉 − E2

U ]ΨWDW = 0 [P̂ 2
0 − E2

0 ]ΨKG = 0

8. ΨU =
A+ + A−√

2EU

ΨKG =
a+ + a−√

2E0

9. A+ = αB++β∗B− a+ = αb++β∗b−

10. B−|0 >B= 0 b−|0 >b= 0

11. B< 0|A+A−|0 >B �= 0 b< 0|a+a−|0 >b �= 0

value of

RU(XU) =
( ı
2

)
U< 0|[A+A+ − A−A−]|0 >U= (6.59)

= ı(α∗β∗ − αβ) = − sinh 2r sin 2θ

as Bogoliubov condensate, correspondingly. Bogoliubov equations, ex-

pressed in terms of quantities of number of universes NU(XU) and
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Correspondence Universe – particle.

No1 – group of diffeomorphisms,

No2 – diffeoinvariant integrals,

No3 – space of events with a parameter of evolution,

No4 – Hamiltonian constraint in the space of events,

No5 – Hubble law,

No6 – energy in the space of events,

No7 – primary quantization,

No8 – secondary quantization,

No9 – Bogoliubov transformations,

No10 – vacuum of quasiparticles,

No11 – occupation numbers of universes and particles.

Bogoliubov condensate RU(XU) take the form⎧⎪⎪⎨⎪⎪⎩
dNU

dXU
= �(XU)

√
4NU(NU + 1)−R2

U,

dRU

dXU
= −2EU(XU)

√
4NU(NU + 1)−R2

U

(6.60)

with initial data

NU(XU I) = RU(XU I) = 0.

We see that the vacuum postulate leads to a positive value of con-

formal time as for the Universe

EU > 0, XU > XU I ,

and for an anti-Universe

EU < 0, XU I < XU ,
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that is leading to an arrow of conformal time. Time has a beginning

and the Quantum Universe is created with his time.

6.7 Summary

We have considered in this Chapter an empty Universe model, leav-

ing only a zero harmonic of the dilaton and experimentally measured

Casimir vacuum energy. Casimir vacuum energy is given by the size

of the space. If the size of space is equal to the horizon, which in turn

is determined by Casimir energy in the empty Universe, there is a self-

consistent equation of state of the empty space. The solution of this

equation gives the dependence of the density of the cosmological scale

factor. In the Conformal cosmology, with longer intervals than in the

Standard one, the resulting dependence of the density of empty space

of the cosmological scale factor describes the recent observational data

on the Supernovae. Thus, data on the Supernovae show that we still

live in a nearly empty Universe.

The Planck principle of minimal action of gravity (id est the quan-

tum of action) for the space limited by the size of the horizon, leads

to the primary value of the cosmological scale factor (and the corre-

sponding redshift) ∼ 0.8×1015. Representations of the Weyl group for

massive and massless particles give (together with modern values of

Hubble’s parameter and the Planck mass) a hierarchy of cosmological

scales in a surprising agreement with the values of the CMB tempera-

ture (for massless particles) and the scale of the electroweak interaction

(for massive particles).
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From a mathematical point of view, the Conformal theory of grav-

ity in the approximation of the empty Universe is a model of squeezed

oscillator of the dilaton. Primary and secondary quantization of this

model with the postulate of the existence of the vacuum leads to the

arrow of the geometric interval of time and to a certain wave function

of the Universe, such as the irreducible unitary representations of the

Poincaré group for a relativistic particle. Now we are ready to con-

sider the irreducible unitary representations of affine and conformal

symmetry groups in the exact theory, that will be done in Chapter 8.
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Chapter 7

Quantization of

gravitons in terms of

Cartan forms

7.1 Affine gravitons

It is well known that the General Relativity in terms of the metric

components is nonrenormalizable theory. A renormalizable quantum

gravitation theory does not exist [1]. Here we show that GR in terms of

Cartan forms becomes not only renormalizable theory, but describes

free gravitons, far from the matter sources, where the Newton-type

potentials can be neglected:

D̄ = 0, Ni = 0, N = 1

(like as, in QED, photons become free far from the charges and cur-

rents) [2].

244
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Let us consider the graviton action (5.47), where one keeps only

the simplex components

ω(a)(d) = ẽi(a)dx
i.

They obey the condition of the diffeo-invariance. It is one of the main

differences of the diffeo-invariant Conformal GR from the metric GR.

The choice of the diffeo-invariant symmetry condition in the GR leads

to the result that follows from the theorem [3]: any arbitrary two-

dimensional space metric

dl2 = hABdx
AdxB, (A,B = 1, 2)

can be represented by diffeomorphisms

xA → x̃A = x̃A(x1, x2)

in a diagonal form. The result is in the fact that a kinemetric-invariant

nonlinear plane wave moving in the direction k with the unit determi-

nant det h = 1 contains only a single metric component.

In particular, in the frame of reference k = (0, 0, k3) one has

ẽ1(1) = eg(x(3),τ), ẽ2(2) = e−g(x(3),τ), ẽ3(3) = 1;

all other (non-diagonal) components ẽi
(a) are equal to zero.

Thus, we obtain

ω(1) = dX(1) − [X(1)]dg, (7.1)

ω(2) = dX(2) + [X(2)]dg, (7.2)

ω(3) = dx3 = dX(3), (7.3)
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where a single-component affine graviton g = g(X(3), τ) is a function

depending on the time and a single spatial coordinate X(3) in the tan-

gent space X(b). The solutions of the equation

δW

δg
= 0 → g = g(η,X)

can be expressed via the tangent coordinates:

X(1) = eg(x(3),τ)x1 (7.4)

X(2) = e−g(x(3),τ)x2. (7.5)

Eqs. (7.1) and (7.2) mean an expansion (or contraction) of the hyper-

surface X(A) (A = 1, 2) perpendicular to the direction of the gravita-

tional wave propagation X(3). A gravitation wave changes the particle

velocity via the Hubble like law: the more is the base, the more is the

additional velocity induced by the graviton. The exact local Hamilto-

nian density for the affine graviton is given by (5.33)

Hg =

[
6p2(a)(b) +

1

6
R(3)(ẽ)

]
, (7.6)

where R(3)(e) and p2
(a)(b) are are defined from Eqs. (5.19) (5.22), re-

spectively. For the frame of reference k = (0, 0, k3), we have [4]:

R(3)(ẽ) = (∂(3)g)
2, p2(a)(b) =

1

9
[∂τg]

2 . (7.7)

There is a difference of the diffeo-invariant affine graviton from the

metric one

gTTij = gTTji

in GR [4]. While the affine graviton has a single degree of freedom,

the metric graviton has two traceless and transverse components that
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satisfy four constraints

gTTii = 0, (7.8)

gTTi3 = gTT3i = 0. (7.9)

In the general case of the Conformal GR ẽ(b)i = eT
(b)i, both the trans-

verse constraint

∂ie
T
(b)i = 0 (7.10)

and the unit determinant one

|eT(b)i| = 1 (7.11)

(as the analog of the Lichnerowicz gauge in the metric formalism [5])

admit to generalize Eqs. (7.1), (7.2), and (7.3) for the linear forms

ω(b)(d) = eT(b)idx
i (7.12)

= d[eT(b)ix
i]− xjdeT(b)j

= dX(b) −X(c)e
Ti
c deT(b)i

= dX(b) −X(c)

[
ωR
(b)(c) + ωL

(b)(c)

]
in the tangent coordinate space. Here X(b) can be obtained by the

formal generalization of Eqs. (7.1), (7.2), and (7.3) by means of the

Leibnitz rule

eT(b) id[x
i] = d[eT(b) ix

i]− xideT(b)i.

The diffeomorphism-invariance admits the choice of the gauge in Eq. (7.12)

ωL
(b) (c) = 0. (7.13)

Similar result is valid for a general case of arbitrary wave vector

k =
2π

V
1/3
0

l,
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where X(3) is replaced by

X(k) =
(k ·X)√

k2
.

The single-component graviton g(τ,X) considered as the tensor mass-

less representation of the Wigner classification of the Poincaré group

can be decomposed into a series of strong waves (in natural units)

ωR
(a)(b)(∂(c)) = ı

∑
k2 �=0

eıkX√
2ωk

kc × (7.14)

× [εR(a)(b)(k)g
+
k (η) + εR(a)(b)(−k)g−−k(η)].

Here εR
(a) (b)(k) satisfies the constraints

εR(a)(a)(k) = 0, (7.15)

k(a)ε
R
(a)(b)(k) = 0 , (7.16)

similar to (7.8), (7.9). The variable ωk =
√
k2 is the graviton energy

and the affine graviton

gk =

√
8π

MPlanckV
1/2
0

gk (7.17)

is normalized to the units of volume and time (like a photon in QED [4]).

In the mean field approximation

N (x0, xj) = 1, N j = 0, D = 0, (7.18)

d̃s
2

= [dη]2 − [ω(b) ⊗ ω(b)], (7.19)

when one neglects all Newtonian–type interactions, the action of an

affine graviton reduces to the form of the exact action for the strong

gravitational wave [4]

W g
lin =

∫
dτLgτ ,
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L
g
τ =

v2
(a)(b) − e−4DR(3)

6
=
∑
k2 �=0

vgkv
g
−k − e−4Dk2gkg−k

2
=

=

⎡⎣∑
k2 �=0

pg−kv
g
k

⎤⎦− H
g
τ , (7.20)

where vgk = ∂τgk is the derivative with respect to the luminosity time

interval and

H
g
τ =

∑
k2 �=0

pgkp
g
−k + e−4〈D〉k2gkg−k

2
(7.21)

is the corresponding Hamiltonian.

Thus, in the mean field approximation (7.18) the diffeo-invariant

sector of the strong gravitational plane waves coincides with a bilinear

theory given by Eqs. (7.20)–(7.21). In this approximation our model is

reduced to a rather simple theory which is bilinear with respect to the

single-component graviton field as discussed also in Ref. [2]. Note that

we consider here the tangential space, and the chosen variables allow

us to obtain the simple solutions. The main postulated condition here

was the requirement of the diffeo-invariance of the graviton equation

of motion. While in the standard GR the symmetry properties are

required only for the interval, we impose the symmetry with respect

to diffeomorphisms also on the Maurer – Cartan forms.

7.2 Comparison with metric gravitons

It is instructive to compare the properties of the affine and metric

gravitons, which was done first in Ref. [6]).
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The action of metric gravitons in the accepted GR [7] coincides

with the affine one (7.20) in the lowest order of the decomposition over

k2/M2
Pl

WGR
non−lin = W g

lin +Wnon−lin, (7.22)

if we keep only diagonal graviton components. It is well-known [1] that

the accepted action (7.22) is highly nonlinear even in the approxima-

tion (7.18).

In the approximation (7.18), we keep only the dynamical part ωR
(cb)

(which enters into the action (7.20)) and the present day value of the

cosmological scale factor a = e−〈D〉 = 1. Let us compare the affine

gravitons (7.12) with the commonly accepted metric gravitons, given

by the decomposition [7]

d̃s
2

h = (dη)2 − dxidxj
(
δij + 2hTT

ij + · · ·
)
. (7.23)

In the accepted case, the graviton moves in the direction of vector k,

its wave amplitude cos(ωkx(k)) depends on the scalar product

x(k) =
(k · x)
ωk

.

The graviton changes the squared test particle velocity(
ds

dη

)2

∼ dxidxj

dη dη
εαij

in the plane, orthogonal to the direction of motion. Here εαij is the

traceless transverse tensor:

εαii = 0, kiε
α
ij = 0.
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All these effects are produced by the first order of series (7.23)

dl2h = 2dxidxjhTT
ij (t,x) = (7.24)

= dxidxjεαij
√
6 cos

(
ωkx(k)

)
(H0/ωk)Ω

1/2
kh +O(h2),

where H0 is the Hubble parameter,

Ωkh =
ωkNkh

V0ρcr

is the energy density of the gravitons in units of the cosmological crit-

ical energy density. One observes that in the accepted perturbation

theory the contribution of a single gravitational wave to the geometri-

cal intervals, Eq. (7.23), is suppressed by the factor H0/ωk.

In our version the linear term of the spacial part of Eq. (7.12) takes

the form

dl2g = 2dX(b)X(c)ω
R
(c)(b) = dX(b)X(c)ε

α
(c)(b)

√
6 cos{ωkX(k)}H0Ω

1/2
kh .

Evidently, two models (the GR and the CGR) differ by an additional

factor which can be deduced from the ratio∣∣∣∣dl2hdl2g

∣∣∣∣ = ∣∣∣∣ dxidxj
(
hTT
ij

)
(dX(b)X(c)ω

R
(c)(b))

∣∣∣∣ � 1

r⊥ ωk

∼ λg

r⊥
. (7.25)

Here

r⊥ =

√
| �X⊥ |2

is the coordinate distance between two test particles in the plane per-

pendicular to the wave motion direction and λg is the graviton wave

length. Therefore, in the CGR there is the effect of the expansion of

the plane perpendicular to the affine wave motion direction.
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As a result, in the CGR the total velocity of a test classical particle

in the central gravitational field of a mass M and of a strong gravita-

tional wave is the sum of three velocities at the cosmic evolution a �= 1.

The first term is the standard Newtonian (N) velocity, the second is

the velocity of the graviton expansion (g) in the field of a gravitational

wave, and the third one is the velocity of the Hubble evolution (H):

|�v|2 =
∣∣dlg
dη

∣∣2 = (7.26)

⎡⎢⎢⎢⎣ �nN

√
rg
2R⊥︸ ︷︷ ︸

Newtonian velocity

+�ng

√
R⊥H0

√
Ωg︸ ︷︷ ︸

graviton expansion

+ �nHγH0R⊥︸ ︷︷ ︸
Hubble evolution

⎤⎥⎥⎥⎦
2

.

Here,

R⊥ = r⊥a(η)

is the Friedman distance from the central mass, H0 is the Hubble

parameter,

rg(R⊥) =
M

M 2
Pl

is a constant gravitational radius, and⎧⎪⎪⎪⎨⎪⎪⎪⎩
�nN = (0,−1, 0),
�ng = (+1/

√
2,−1/

√
2, 0),

�nH = (1, 0, 0)

(7.27)

are the unit velocity vectors. Their scalar products are

(�nN · �ng) �= 0, (�nN · �nH) = 0, (�nN · �ng) �= 0, (�nN · �nH) = 0.

The graviton energy density Ωg is given in units of the cosmological

critical energy density ρcr.
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The last two terms provide possible sources of a modified Newto-

nian dynamics. One observes that the interference of the Newtonian

and the graviton-induced velocities in (7.26)

vn−g interf � 4
√
ΩgrgH0

does not depend on the radius R⊥. This term can play a role of “dark”

matter. In this case it is enough Ωg � 0.1, in order to get the velocity

of the Sun in our Galaxy vn−g interf � 200 km/sec.

The third term could imitate the Dark Matter effect in COMA-

type clusters with |R| ∼ 1025cm, in accordance with the validity limit

of the Newtonian dynamics,

rg
Rlimit

< 2(RlimitH0)
2,

discussed in [8, 9]. The factor γ =
√
2 is defined by the cosmological

density [10].

Thus, in our model strong gravitational waves possess peculiar

properties which can be tested by observations and experiments.

7.3 Vacuum creation of affine gravitons

Here we are going to study the effect of intensive creation of affine

gravitons. We will briefly recapitulate the derivation given in Ref. [6]

and further, using the initial data of the hierarchy of cosmological

scales obtained in Sect. 6.3, estimate the number of created particles.

The approximation defined by Eqs. (7.20)–(7.21) can be rewritten
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by means of the conformal variables and coordinates, where the action

W g
lin =

η0∫
ηI

dη
[
−V0(∂η〈D〉)2e−2〈D〉 + L

g
η

]
(7.28)

is given in the interval ηI ≤ η ≤ η0 and spatial volume V0. Here the

Lagrangian and Hamiltonian

L
g
η =

∑
k2 �=0

e−2〈D〉
vgkv

g
−k − k2gkg−k

2
=

⎡⎣∑
k2 �=0

pg−kv
g
k

⎤⎦− H
g
η, (7.29)

H
g
η =

∑
k2 �=0

e2〈D〉pgkp
g
−k + e−2〈D〉ω2

0kgkg−k
2

(7.30)

are defined in terms of the variables gk, their momenta, and one-

particle conformal energy

pgk = e−2〈D〉vgk = e−2〈D〉∂ηgk, ωg
0k =

√
k2, (7.31)

respectively. The transformation (squeezing)

pgk = p̃gke
−〈D〉[ωg

0k]
−1/2, gk = g̃ke

〈D〉[ωg
0k]

1/2 (7.32)

leads to the canonical form

H
g
η =

∑
k2 �=0

ωg
0k

p̃gkp̃
g
−k + g̃kg̃−k

2
=
∑
k

Hg
k, (7.33)

Hg
k =

ωg
0k

2
[g̃+k g̃

−
−k +g̃−k g̃

+
−k] , (7.34)

where

g̃±k = [g̃k ∓ ip̃k] /
√
2 (7.35)

are the conformal-invariant classical variables in the holomorphic rep-

resentation [10].
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In virtue of Eqs. (7.31)–(7.35), the action (7.28) takes the form

W g
lin =

η0∫
ηI

dη
[
−V0(∂η〈D〉)2e−2〈D〉 − H

g
η

]
(7.36)

+

η0∫
ηI

dη
∑
k2 �=0

p̃−k [∂ηg̃k + ∂η〈D〉g̃k] .

The evolution equations for this action are

∂ηg̃
±
k = ±iωg

0kg̃
±
k +Hη g̃

∓
k , (7.37)

where Hη = ∂η(ln a) = −∂η〈D〉 is the conformal Hubble parameter (in

our model Hη = H0/a
2).

It is generally accepted to solve these equations by means of the

Bogoliubov transformations

g̃+k = αkb
+
k + β∗-kb

−
-k, (7.38)

g̃−k = α∗kb
−
k + β-kb

+
-k, (7.39)

αk = cosh rgke
iθg

k, β∗k = sinh rgke
iθg

k, (7.40)

where rgk and θgk are the squeezing parameter and the rotation one,

respectively These transformations preserve the Heisenberg algebra

O(2|1) [12] and diagonalize Eqs. (7.37) in the form of:

∂ηb
±
k = ±iωg

Bkb
±
k , (7.41)

if the parameters of squeezing rgk and rotation θgk satisfy the following
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equations [10]:

∂ηr
g
k = Hη cos 2θ

g
k, (7.42)

ωg
0k − ∂ηθ

g
k = Hη coth 2r

g
k sin 2θ

g
k, (7.43)

ωg
Bk =

ωg
0k − ∂ηθ

g
k

coth 2rgk
. (7.44)

A general solution of the classical equations can be written with the

aid of a complete set of the initial data b±0k:

b±k (η) = exp

⎧⎨⎩±i
η∫

η0

dη ωg
Bk(η)

⎫⎬⎭ b±0k. (7.45)

On the other hand, quantities b+0k(b
−
0k) can be considered as the

creation (annihilation) operators, which satisfy the commutation rela-

tions:

[b−0k, b
+

0k′
] = δk,-k′, [b−0k, b

−
0k′
] = 0, [b+0k, b

+

0k′
] = 0, (7.46)

if one introduces the vacuum state as b−0k|0〉 = 0. Indeed, relations

(7.46) are the results of: i) the classical Poisson bracket {PF̃ , F̃} = 1

which transforms into

[g̃−k , g̃
+
−k] = δk,k′; (7.47)

ii) the solution (7.45) for the initial data; iii) the Bogoliubov transfor-

mations (7.38), (7.39).

With the aid of Eqs. (7.38)–(7.40) and (7.45)–(7.47) we are able

to calculate the vacuum expectation value of the total energy (7.33),

(7.34)

〈0|Hg
η(a)|0〉 =

∑
k

ωg
0k|βk|2 =

∑
k

ωg
0k

cosh{2rgk(a)} − 1

2
. (7.48)
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The numerical analysis [6] of Eqs. (7.42)–(7.43) for unknown vari-

ables (rgk, θ
g
k) with the zero boundary conditions at a = aI (at the

beginning of creation)

rgk(aI) = 0, θgk(aI) = 0 (7.49)

enables us to suggest an approximate analytical solution for the evo-

lution equations.

Our approximation consists in the following. It arises, if instead of

rk one substitutes an approximate value rapr in the vicinity of the soft

mode of the Bogoliubov energy (7.44) ω0appr = ∂ηθ
g
appr,

rappr =
1

2

X=2θgappr(a)∫
XI=2θgappr(aI)

dX

X
coshX � 2〈D〉I , (7.50)

X(a) = 2θgappr(a) = 2

η(a)∫
η(aI)

dηω0k. (7.51)

This soft mode provides a transition [6] at the point a2relax � 2a2Pl

from the unstable state of the particle creation to the stable state with

almost a constant occupation number during the relaxation time

ηrelax �
2e−2〈D〉I

2H0

≡ 2a2I
2H0

. (7.52)

At the point of the relaxation, the determinant of Eqs. (7.37) changes

its sign and becomes positive [13]. Finally, we obtain

〈0|Hg
k|0〉
∣∣
(a>arelax)

=ωg
0k

cosh[2rgk]− 1

2
≈ ωg

0k

4a4I
. (7.53)

We have verified that the deviation of the results obtained with the

aid of this formula from the numerical solutions of Eqs. (7.42)–(7.43)

(see Ref. [6]) does not exceed 7%.
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In virtue of this result, we obtain the total energy

〈0|Hg
η|0〉
∣∣
(a>arelax)

≈ 1

2a4I

∑
k

ωg
0k

2
≡

H
g
η Cas(a)

2a4I
, (7.54)

where H
g
η Cas(a) is the Casimir vacuum energy.

Thus, the total energy of the created gravitons is

〈0|Hg
η|0〉 �

γ̃H0

4a2a4I
. (7.55)

It appeared that the dilaton initial data aI = e−〈D〉I and H0 deter-

mine both the total energy (7.54) of the created gravitons and their

occupation number Ng at the relaxation time (7.52):

Ng(arelax) �
〈0|Hg

η|0〉
〈ωg

k〉
� γ̃(g)

16a6I
� 1087, (7.56)

where we divided the total energy by the mean one-particle energy

〈ωg
k〉 ≈ 〈ω(2)〉(aI)

defined in Eq. (6.28). For numerical estimations we use γ̃(g) ≈ 0.03.

The number of the primordial gravitons is compatible with the number

of the CMB photons as it was predicted in Ref. [7].

The main result of this Section consists in the evaluation of the pri-

mordial graviton number (7.56). We suppose that the Casimir energy

is defined by the total ground state energy of created excitations, see

Eq. (7.54).
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7.4 Summary

We developed a Hamiltonian approach to the gravitational model, for-

mulated as the nonlinear realization of joint affine and conformal sym-

metries. With the aid of the Dirac – ADM foliation, the conformal and

affine symmetries provide a natural separation of the dilaton and grav-

itational dynamics in terms of the Maurer – Cartan forms. As a result,

the exact solution of the energy constraint yields the diffeo-invariant

evolution operator in the field space.

In the CGR, the conformal symmetry breaking happens due to the

Casimir vacuum energy. This energy is obtained as a result of the quan-

tization scheme of the Hamiltonian dynamics. The diffeo-invariant dy-

namics in terms of the Maurer – Cartan forms with application of the

affine symmetry condition leads to the reduction of the graviton repre-

sentation to the one-component field. The affine graviton strong wave

yields the effect of expansion (or contraction) in the hypersurface per-

pendicular to the direction of the wave propagation. We demonstrated

that the Planck least action postulate applied to the Universe limited

by its horizon provides the value of the cosmological scale factor at the

Planck epoch. A hierarchy of cosmological energy scales for the states

with different conformal weights is found. The intensive creation of

primordial gravitons and Higgs bosons is described assuming that the

Casimir vacuum energy is the source of this process. We have calcu-

lated the total energy of the created particles, Eq. (7.54), and their

occupation numbers, Eq. (7.56).
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Chapter 8

Mathematical principles

of description of the

Universe

8.1 The classical theory of gravitation

The classical theory of gravitation, presented in our monograph is

based on the following three principles:

1. The joint nonlinear realization of affine and conformal symmetry

groups via Cartan’s forms, described in Chapter 4.

2. 3+1 foliation of a pseudo–Riemannian space with kinemetric sub-

group of the group of general coordinate transformations, de-

scribed in Chapter 5.

3. The reduction of the phase space by solving of all constraints.

262



8.1. The classical theory of gravitation 263

The solving of all constraints, including the Hamiltonian one, which

were presented in Chapter 5, reveals a diffeoinvariant physical con-

tent of the considered conformal and affine theory of gravitation. The

diffeoinvariant content of the conformal theory of gravity includes in

itself:

• dynamics at the surface of all the constraints, which is described

by the action (5.47)

WC=0 = (8.1)

=

∫
d3x

[∫ (
p(a)(b)ω

R
(a)(b)(d) + pQ dQ+ pA(b)dA(b)

)]
−
∫

P〈D〉d〈D〉;

• square of the geometric interval (5.67) as a sum of squares of the

components of the Fock’s frame in terms of the observed values

d̃s
2
=e−4D

〈
√
H̃〉2

H̃
dτ 2−

(
dX(b) −X(c) ω

R
(c)(b)(d)−N(b)dτ

)2
; (8.2)

• geometrodynamics (such as Hubble’s law)

τ =

〈D〉0∫
〈D〉I

d〈D〉〈√
H̃
〉 , (8.3)

as cosmological relationship between geometry and dynamics as a

function of the geometric luminosity interval from zero harmonic

of the dilaton.

The action (8.1) contains an operator of evolution of the Universe

P〈D〉 = ±EU, (8.4)

EU = 2

∫
d3x
√
H̃, (8.5)
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determined from the exact solution of the constraint (5.77)

P 2
〈D〉 − E2

U = 0. (8.6)

The role of the evolution parameter in the field space of events per-

forms a value 〈D〉 called in observational cosmology as luminosity (or

brightness), and P〈D〉 is its canonical momentum. The value of the

generator of evolution of the Universe (8.5) on the equations of motion

is

δWC=0

δF
= 0,

δWC=0

δPF
= 0, (8.7)

where F are field variables, we call the energy of the Universe in

the field space of events by analogy with the energy of a particle in

Minkowskian space in the Special Relativity.

8.2 Foundations of quantum theory

of gravity

8.2.1 The irreducible unitary representation

of the group A(4)⊗ SO(4, 2)

The theory of gravity was presented above as a nonlinear realization

of finite-dimensional affine and conformal groups of symmetry, that

close the group of general coordinate transformations. Therefore, as

mentioned above, there is a unique opportunity to build further clas-

sification of experimental and observational data, using the unitary

irreducible representations of these groups, without resorting to the
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classical laws of dynamics as initial statements of the physical theory,

or concluding classical laws of dynamics from the first principles of

symmetry.

In the quantum theory of the Universe at the level of operator

quantization in the field space of events [〈D〉|F ] Hamiltonian constraint

equation (8.4) becomes the equation of Wheeler – De Witt type (2.35)[
P̂ 2
〈D〉 − E2

U

]
Ψ̂〈D〉I ,〈D〉0 = 0, (8.8)

corresponding to the dimension of the kinemetric subgroup of invari-

ance of the Hamiltonian formulation. In the quantum theory, the

canonical variables P̂〈D〉, 〈D〉 become operators with a commutation

relation

[P̂〈D〉, 〈D〉] = ı.

The general solution of this Wheeler – De Witt equation in the approx-

imation of the empty Universe with Casimir vacuum energy obtained

in Section 6.6 by the Bogoliubov transformation.

By analogy with the unitary irreducible representation of the Poincaré

group (see Chapter 2 (2.36)) in quantum field theory we get a general

operator solution of the Wheeler – De Witt equation (8.8) for the

Universe as a sum of two -ordered with respect to parameter 〈D〉 ex-
ponents:

Ψ̂〈D〉I ,〈D〉0 = Â+
〈D〉IÛ

0
I

1√
2E0U

+ Â−〈D〉I
1√
2E0U

Û
I†
0 , (8.9)

describing the creation of the Universe at the time of 〈D〉I , its evolution
from 〈D〉I till the moment 〈D〉0 and a state at the modern epoch 〈D〉0.
The two terms correspond to the positive and negative energy, where
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Â+
〈D〉I can be interpreted as an operator of creation of the Universe at

the moment 〈D〉I from a state of vacuum, and Â−〈D〉I is an operator

of annihilation of the Universe, correspondingly, with a commutation

relation

[Â−〈D〉I , Â
+
〈D〉I ] = 1 :

Û
0
I = T〈D〉 exp

⎧⎪⎨⎪⎩−ı
〈D〉0∫
〈D〉I

d〈D〉EU

⎫⎪⎬⎪⎭ ; Û · Û† = Î (8.10)

is an operator of evolution in the space of events, or space of measure-

ments [〈D〉|F ], relatively to the evolution parameter [〈D〉]. A vacuum

state B−
∣∣
〈D〉I0〉 = 0 is set by actions of the Bogoliubov operators B±,

which diagonalize the evolution equations, as was shown above in Sec-

tion 6.6. Negative energy is removed by the second quantization of the

Universe and all the fields.

Thus, the reduction of the extended phase space to the subspace of

physical variables gives the corresponding reduced action (8.1), which

is rejected in the Standard Hamiltonian formulation of the General

Relativity [1] as trivial. This action here is at the forefront, as the

basic element of constructing of a quantum operator of creation and

evolution of the Universe in the field space of events, by analogy with

dynamic formulation of the Special Theory of Relativity.

Using a direct correspondence of Wheeler – De Witt between a

particle in the Special Relativity and the Universe in the General Rel-

ativity (see Table at the end of Section 6.6), and the definition of

irreducible unitary representations of the Poincaré group in the space
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of events [P(α)|X(α)]:

Ψ[P(α)|X(α)] = (8.11)

=
1√

2 |P(0)|

[
a+ΨP(0)+

θ(X(0)−XI(0))+a−Ψ∗P(0)−
θ(XI(0)−X(0))

]
,

we can interpret the functional Ψ̂〈D〉I ,〈D〉0 (8.9) as an unitary represen-

tation of the group A(4) ⊗ C in the field space of events [〈D〉|F ]. In

the quantum geometrodynamics of the Universe for the relativistic the-

ory of gravitation, we shall not forget also the geometric interval (8.2)

and the relation (8.3) between the geometric interval and the dynamic

parameter of evolution. This relation is the Hubble law in the exact

theory, which includes quantum effects, such as the arrow of time, ap-

pearing in the quantum description of the Universe as a consequence

of the postulate of the existence of the vacuum.

The unitary of representation of the (8.9)

Û · Û† = Î

follows from the assumption of a positive definite metric in the Hilbert

space of states. In the future, we show that the theory used to describe

the matter after the constraints have been solved, indeed, contains only

self-conjugated fields with a positive probability, for which the energy

of the Universe (8.5) is positive and has not an imaginary part

EU = 2

∫
d3x
√
H̃ ≥ 0; Im

√
H = 0. (8.12)

For the construction of the irreducible representations (8.9) we intro-

duce a complete set of orthogonal states

〈Q|Q′〉 = δQ,Q′,
∑
Q

|Q〉〈Q| = Î . (8.13)
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Here Î is a unit operator, and Q are quantum numbers, which charac-

terize this representation of orthonormal states of the Universe, arisen

out of the vacuum as the state with the lowest energy by an action of

the operator of creation. The set Q includes numbers of occupation

of particles and their one-particle energies, spins and other quantum

numbers. All these definitions are within a framework of the axiomatic

approach in Quantum Field Theory, including the postulate of the ex-

istence of vacuum [2] and representations of the Poincaré group in the

tangent space of Minkowski.

The new fact is only that we are expanding representations of the

Poincaré group in the tangent space of Minkowski by zero harmonic of

the dilaton in full compliance with two classes of functions of kinemetric

subgroup of diffeomorphisms of Hamiltonian describing of the evolution

of the Universe. It should describe the physical excitations of quantum

gravity by the two classes of functions. Thus, all physical excitations in

the reduced phase space can be classified by the homogeneous dilaton

(zero harmonic) and localized field–particles, and the Newtonian-like

potentials with zero momenta. Two independent variables: dilaton and

graviton are squeezed oscillators, that allow the quantization and the

Casimir vacuum energy specified in Chapter 6.

8.2.2 Casimir’s vacuum

The canonical momentum of the zero harmonic of the dilaton is an evo-

lution operator in the field space of events. The canonical momentum

of the dilaton is not equal to zero if there is a non-zero Casimir energy
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of all the other fields in the empty space, as was shown in Chapter 6.

One method of measuring of this homogeneous dilaton is the redshift

of spectral lines of atoms. Moreover, the occurrence of atoms of matter

is also described by the operator of creation of the Universe (8.9). In

this regard, we will consider the homogeneous dilaton 〈D〉 as a form of

matter, along with non-homogeneous particles and their bound states,

if matter is understood as all that is measured and independent of an

observer. In any case, the separation of the dilaton from the metric

of a space which was offered by Dirac, allows us to include the homo-

geneous dilaton in a field space of events as a parameter of evolution.

The key idea of creation of the Universe (and, as we shall see later, its

matter) is that the homogeneous dilaton in Conformal quantum theory

of gravity is a squeezed oscillator. Therefore, the statement that at the

beginning of the Universe there was the homogeneous dilaton and the

Casimir vacuum energy of all fields1 is physically correct in the con-

text of solving the problem of creation of the Universe and particles of

matter from the vacuum in the early Universe by standard quantum

theory methods, as it has been done in Chapter 7 in describing creation

of gravitons from the vacuum.

1A similar phrase in the Standard cosmology “in the early Universe there was a redshift of

spectral lines of atoms of matter, and then there appeared the very atoms of matter” recalls rather

a fabulous statement about the Cheshire Cat: at first there was a smile of a Cat, and then himself

(Carroll, Lewis: Alice’s Adventures in Wonderland. Macmillan and Co., London (1865).)
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8.2.3 An approximation of a nearly empty

Universe

According to the conformal scenario, the Universe was empty and cold

at the time of its creation from vacuum. At this moment, the Casimir

vacuum energy dominated. The Universe is almost empty through-

out its evolution, including the modern era, according to the latest

data on the Supernovae. As was shown in Chapter 6, in the frame-

work of the Conformal cosmology, a cosmological scale factor of the

empty Universe depends on the measured time interval as the square

root. This is consistent with the description of the chemical evolution,

which indicates that there are only a few percents of the baryonic mat-

ter in the Universe. In other words, the Universe is cold and almost

empty all the time of its existence, since the conformal temperature is

a constant equal to three Kelvin. This constant appeared under the

normal ordering of the field operators in the Hamiltonian as a sponta-

neous breaking of conformal symmetry. The operator of creation and

evolution of the Universe also contains additional quantum anomalies,

such as the arrow of time. After the procedure of normal ordering the

Hamiltonian takes the form

H̃ = ρCas+ : H̃ :, (8.14)

where

ρCas =
∑
f,Q

ωf,Q

2
(8.15)

is the density of the Casimir energy of all the particles, as discussed

in Chapter 6. The Casimir energy is appear as a result of normal
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ordering the product of the field operators in the free Hamiltonian and

the interaction Hamiltonian. According to the observational data on

the Supernovae, the Casimir energy

EI
U = 2

∫
d3x
√
ρCas (8.16)

of the Universe is dominated. Dominance of the Casimir energy is the

second cornerstone of our construction.

Let us consider further an expansion of the generator of the evolu-

tion (8.12) regarding this vacuum expectation

EU = 2

∫
d3x

√
ρCas+ : H̃ : =

= 2

∫
d3x
√
ρCas +

∫
d3x : H̃ :
√
ρCas

+ · · · = (8.17)

= EI
U +

HQFT√
ρCas

+ · · ·

where in the expression

HQFT =

∫
d3x : H̃ : (8.18)

it is easy to recognize the Hamiltonian of all fields of matter, including

the field of gravitons. All of these fields have a positive definite metric

after the explicit solving of all constraints in the frame of reference,

selected by a unit time-like vector [2] (see Chapter 7).

In the case of approaching nearly empty space, the evolution oper-

ator (8.10) is presented as the product of three factors

Û√
2EU

=
U0√
2EI

U

·
[
1− 1

4
Ω̂creation

]
· Tt̃ exp

⎧⎪⎨⎪⎩−ı
t̃0∫

t̃I

dt̃HQFT

⎫⎪⎬⎪⎭ . (8.19)
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In the first factor on the left you can recognize the cosmological wave

function of the empty Universe

U0√
2EI

U

,

earlier discussed in Section 6.6. The second factor in the form of square

brackets, containing the operator of the relative density of matter cre-

ation in the Universe, includes the ratio of the Hamiltonian of QFT to

the vacuum energy

Ω̂creation =
HQFT

V0ρCas
. (8.20)

The third factor

Tt̃ exp

⎧⎪⎨⎪⎩−ı
t̃0∫

t̃I

dt̃HQFT

⎫⎪⎬⎪⎭ ≡ Û
t̃0
t̃I

(8.21)

is a standard evolution operator in quantum field theory with respect

to time

dt̃ =
d〈D〉
√
ρCas

, (8.22)

which is given by the effective parameter of evolution in the field space

of events. We shall see later that this time (8.22) coincides with the

conformal time.

dt̃ = dη. (8.23)

The third factor can be presented as the product of N factors, breaking

up the entire time interval of evolution of the Universe on N parts.

Û
t̃0
t̃I
=

n=N∏
n=1

Û
t̃0−n�t

t̃I
. (8.24)
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Inserting an identity operator between the factors as a sum over a

complete set of all possible states

Î =
∑
Q

|Q〉〈Q|,

one can get the elements of the S - matrix in the representation of

interaction [2]

〈
Q′|Tt̃ exp

⎧⎪⎨⎪⎩−ı
t̃0−(n−1)�t∫
t̃0−n�t

dt̃HQFT

⎫⎪⎬⎪⎭ |Q′′
〉
≡
〈
Q′int|Ŝ|Q′′int

〉
. (8.25)

A time interval �t is determined by the energy resolution of physical

devices and characteristic time of the processes in high-energy physics

in modern accelerators2.

Thus, the Hamiltonian formulation of the theory of gravity in the

reduced phase space leads to a modification of a well-defined theory

of the S - matrix, which will be discussed in the next chapter. The

reduced Hamiltonian approach is the primary method of learning the

theory of gauge fields, starting with the pioneering work of Dirac [3, 4],

Heisenberg and Pauli [5, 6] and papers of Schwinger on the quantization

of non-Abelian fields [7] (see details in [8, 9, 10, 11] and Appendix A).

2In this case, the interval �t is a moment of time life of physicists, and the lifetime of physicists

is a moment of the lifetime of the Universe.
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Igor V. Polubarinov (1928, Moscow

1998, Dubna) is a Russian physicist. He

is known by his pioneering results in the

field - theoretical interpretation of gauge

theories and gravity, obtained in close

cooperation with V.I. Ogievetsky, and

Hamiltonian formulation of the S-matrix

for physical gauge fields, left after solv-

ing of all constraints. One of the most

valuable results of I.V. Polubarinov is

construction of an explicit form relativis-

tic transformations of the physical fields

from one frame to another. He was at

the forefront of the fundamental opera-

tor quantization of gauge fields, on which

the present monograph is based.

In all these papers, time components of the vector field with nega-

tive contributions to the energy are excluded, as was accepted in the

Dirac approach to quantum electrodynamics [3, 4]. Dirac’s Hamilto-

nian approach to QED in 1927 was based on a gauge-invariant action

on the surface of constraint

WDirac
QED = WQED

∣∣∣ δWQED

δA�
0

=0
, (8.26)

where a component A�
0 = (A · �) is defined as the scalar product of the

vector Aμ and a unit time-like vector �μ.

Such an elimination of the time component results into static in-

teractions that form simultaneous bound states in QED, described by

the Schrödinger equation, and in QCD, described by Salpeter equation
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(see Appendix B). It was shown that the Dirac Hamiltonian approach

leads to the correct relativistic transformations of observed quantized

fields in non-Abelian gauge theories and theories of massive vector

fields [7, 10, 11]. The Hamiltonian formulation [9] is considered as a

justification of modern methods of quantization of gauge theories3, in-

cluding the method of Faddeev – Popov [12], which used to describe

the Standard Model of elementary particles [13].

The operator of creation of the Universe in the approximation

(8.19) describes the three classes of processes: vacuum creation of

matter, given in the previous chapter on the example of gravitons;

scattering and decay of elementary particles described by the S-matrix

and the interference of the S-matrix and vacuum creation. Below, we

describe the physical content of the operator of creation of the Universe

(8.19), having considered the two extreme cases: when the cosmologi-

cal scale factor tends to zero (as a statement of the problem of origin of

matter in the Universe), and when the cosmological scale factor tends

to unity (as a modified description of the S-matrix elements of the scat-

tering, decay, and formation of bound states of elementary particles).

8.3 Summary

Classical and quantum theory of the Universe appear as a result of

solving of all constraint equations in the conformal-invariant theory.

Herewith, the only source of the violation of the conformal symme-

3There is a stronger statement of Julian Schwinger “we rejected all Lorentz gauge formulations

as unsuited to the role of providing the fundamental operator quantization” (see [7] p.324).
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try is quantum anomalies such as the Casimir energy type, or Casimir

condensates, arising via normal ordering of products of field operators

in this theory. Dominance of the Casimir energy, confirmed, as was

shown in Chapter 6, by the present data on Supernovae, leads to the

approximation of a nearly empty Universe. This approximation means

the factorization constructed above of the operator of creation and evo-

lution of the Universe, on the wave function of the Universe, describing

data on the Supernova by the Casimir energy and modified by the op-

erator of evolution of fields of matter in QFT. As a result, we have

a well-defined cosmological modification of the operator of evolution

of fields, under their quantization in the phase space of field variables

that remain after the solution of the constraint equations in the con-

sidered theory of gravity. Thus, the Hamiltonian approach provides an

adequate formalism for unification of the theory of gravitational field

with the Standard Model of elementary particles, in which both the-

ories are considered at the quantum level, after solving all constraint

equations in a certain frame of reference. In the future, we will consider

in detail the above mentioned cosmological modification of the opera-

tor of evolution of fields in QFT, and also the creation of particle-like

perturbations of these fields from the vacuum of the Universe.
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Chapter 9

Creation of matter in

the Universe

9.1 The Big Bang or the vacuum creation?

9.1.1 Statement of the problem

Recall that quantum field theory in the Early Universe describes a

set of particles as oscillators interacting with the cosmological scale

factor. The scale factor squeezes the phase space of these oscillators.

This squeezing is a source of the cosmological creation of the particles

from vacuum. There is the following classification of these squeezed

oscillators. Massless particles (fermions and photons) are not squeezed

and created; massive particles (fermions and transversal components

of massive vectorW -, Z- bosons) are created very weakly; and strongly

279
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squeezed oscillators (gravitons, scalar particles, and longitudinal com-

ponents of electroweak massive vector bosons) suffer the intensive cos-

mological creation from vacuum due to their strong dependence on the

cosmological scale factor. The Cosmic Microwave Background radi-

ation and the baryon matter in the Early Universe can be the decay

products of such primordial electroweak bosons and their annihilations.

The question: Is modern theory able to explain the origin of ob-

served matter in the Universe by its cosmological production from a

vacuum? was considered at the end of the 60s – early 70s of the last

century in the set of papers [1, 2, 3, 4, 5]. As it is well known, the

answer to this question is associated with the problem of particle cre-

ation in the vicinity of a cosmological singularity. Thus far, it has been

common practice to assume that the number of product pairs is by far

insufficient for explaining the total amount of observed matter [6]. We

recall that the cosmological creation of massive particles is calculated

by going over to conformal variables [7, 8], for which the limit of zero

scale factor (point of a cosmic singularity) means vanishing of masses.

Massive vector and scalar bosons are the only particles of the Stan-

dard Model that have a singularity at zero mass [9, 10]. In this limit,

the normalization of the wave function for massive bosons is singular in

mass [9, 10]. The absence of the massless limit in the theory of massive

vector bosons is well known [11, 12]. In calculations in the lowest order

of perturbation theory, this leads to a divergence of the number of pro-

duced longitudinal bosons [6, 8]. There exist two opinions concerning

the removal of this singularity. In [6], the divergence of the number

of particles is removed by means of a standard renormalization of the
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gravitational constant. However, it is also indicated in the monograph

of Grib et al, [6] that the number of produced particles is determined

by the imaginary part of loop Feynman diagrams; since, in quantum

field theory, it is the real parts of these diagrams that are subjected

to renormalization, this means that the above mentioned divergence

of the number of particles does not belong to the class of divergences

in quantum field theory that are removed by means of a conventional

renormalization of physical quantities. Indeed, the physical origin of

this divergence is that the problem of a cosmological creation of par-

ticles from a vacuum is treated within an idealized formulation. The

point is that the quantum production of particles in a finite volume for

a system featuring interaction and exchange effects may lead to a set

of Bose particles having a specific statistical distribution with respect

to energy, so that it is able to ensure the convergence of the respective

integral of the momentum distribution. In the present study, we ana-

lyze physical conditions and models for which the number of product

vector bosons may be quite sufficient for explaining the origin of mat-

ter in the Universe. Such cosmological models include the Conformal

cosmology [13, 14], where conformal quantities of the General Theory

of Relativity and of the Standard Model are defined as observables for

which there are relative reference units of intervals.

The ensuing exposition of this Chapter is organized as follows. The

next Subsection 9.1.2 is devoted to discussion of the problem of an ori-

gin of the Cosmic Microwave Background (CMB) radiation in the light

of our classification of observational data in order to determine the ini-

tial data of the CMB origin. Section 9.2 describes the cosmological
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creation of the primordial scalar bosons that are a source of the origin

of all matter in the Unverse. In Section 9.3 the physical states of the

matter are classified in the context of the irreducible unitary represen-

tation of the Poincaré group. In Section 9.4 we give the generation

and modification of the Faddeev – Popov path integral method in the

light of this classification at the present day value of the cosmological

scale factor a = 1.

9.1.2 Observational data on the CMB

radiation origin

Observational data on the CMB testify about the first instances of cre-

ation and evolution of the matter in the Universe. According to these

data obtained by means of satellites, air-balloons, and in observatories,

the picture of temperature distribution of the CMB radiation is asym-

metrical. This asymmetry is treated in the modern cosmology [15] as a

signal of the motion of the Earth with reference to the CMB radiation.

This motion has a velocity 368 km/sec towards the constellation Leo.

To remove this asymmetry one should pass to a co-moving frame of

reference, where the CMB radiation takes the symmetric form. Such a

co-moving frame of reference by no means can be associated with any

heavy body, as it was accepted in the celestial mechanics. In physics a

new situation arises, when a frame of reference is connected with the

parameters of the photon gas. In this case the choice of the co-moving

frame of reference allows us to remove the dipole component of CMB

radiation, separating out the motion of the very observer. As it was
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shown in the previous chapters, the choice of the conformal etalons

allows us to separate out the cosmic evolution of massive devices of

the very observer. In terms of conformal etalons [18] observational Su-

pernovae data [16, 17] allows us to obtain dependence of the horizon

r(z) on the redshift 1 + z

r(z) = (1 + z)−2 ·H−1
0 � (1 + z)−2 × 1029 mm,

that is almost universal for all epoch, including the Beginning of the

Universe. We propose that this Hubble law was valid at the instances

of creation of the primordial particles and the origin of the CMB tem-

perature. What does an origin of the concept of temperature mean?

And how to define the range of the validity of this concept? According

to D.I. Blokhintsev [19], the definition of the ranges of the validity of

concepts can predict new effects and determine the values of physical

magnitudes describing these effects, as we wrote in Chapter 1.

The concept of the temperature begins arising when the mean wave-

length of a CMB photon coincides with the horizon (id est with the

visible size of the Universe)

r(zI) � (1 + zI)
−2 × 1029mm = 1 mm.

From this it follows that at this instance the redshift is equal to

1 + zI � 3× 1014. (9.1)

The second observational fact consists in the present day values of

masses of the primordial particles, the decay products of which give

the CMB photons at the Beginning

M0 = (1 + zI) · T0 ∼ 100 GeV, (9.2)
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Dmitry I. Blokhintsev (29 December 1907 (11 January 1908), Moscow – 27 January

1979, Dubna), Russian physicist. Independently studied the basics of differential and

integral calculus. Corresponded with K.E. Tsiolkovsky. From Tsiolkovsky Dmitry

Ivanovich took the spirit of Russian science of the early 20-th century, which is not

expressed so much in the quest to achieve concrete results, but how to create a

holistic harmonious world. He graduated from the Physics Department of Moscow

State University (1930). He taught there (since 1936 - professor, then head of the

Department of Theoretical Nuclear Physics). He was the founder of the Division of

Nuclear Physics at the Physics Department of Moscow State University. In 1935-

1947 he worked in the Lebedev Physics Institute of the USSR Academy of Sciences.

Since 1947 he was the Director of the Research Laboratory in Obninsk, on the basis of

which under his leadership the Physics – Energy Institute was created. Together with

I.V. Kurchatov, Blokhintsev initiated the establishment of the world’s first nuclear

power electrostation. Blokhintsev initiated the establishment of the Joint Institute

for Nuclear Research (JINR) in Dubna. In 1956, he was elected as first director of

the Institute. In the years 1956–1965 — JINR Director, since 1965 – Director of the

Laboratory of Theoretical Physics, JINR.
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that are in the region of the electroweak scale defined by the values of

W - Z- masses.

Here

T0 = 2.35× 10−13 GeV

is the mean energy of the CMB photons

(1 + zI) � 3× 1014

is the critical value of the redshift obtained above. The third observa-

tional fact is that the time of the CMB origin (1+zI) � 3·1014 coincides
with the time when the Higgs particle Compton size becomes of order

of the visible size of the Universe H0/a
2
I . The equality of such times

yields the same region for e-w boson mass values.

M0 =

√
T 3
0

H0

∼ 100 GeV.

Just at this time one can introduce the concepts of these particles,

and at this instance they are created from the vacuum [14, 20, 21]. This

approximal coincidence of the instances of origin of the CMB temper-

ature and the creation of the primordial e-w bosons points out that

the CMB is the decay product of these bosons. In the next Section we

give the direct calculation of the occupation number of the primordial

Higgs particles created from the vacuum.

9.2 Vacuum creation of scalar bosons

In our model the interaction of scalar bosons and gravitons with the

dilaton may be considered on an equal footing [22]. Using this fact, we
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can consider the intensive creation of the Higgs scalar particles from

the vacuum using the results of Section 7.3 devoted to the creation of

gravitons.

To proceed we have to add the SM sector to the theory under

construction. In order to preserve the common origin of the conformal

symmetry breaking by the Casimir vacuum energy, we have to exclude

the unique dimensional parameter from the SM Lagrangian, id est the

Higgs term with a negative squared tachyon mass. However, following

Kirzhnits [23], we can include the vacuum expectation of the Higgs

field φ0, so that:

φ = φ0 + h/[a
√
2],

∫
d3xh = 0.

The origin of this vacuum expectation value φ0 can be associated with

the Casimir energy arising as a certain external initial data at a = aPl.

In fact, let us apply the Planck least action postulate to the Standard

Model action:

φ0 ≈ a3PlH0

in agreement with its value in Table 6.1.

The standard vacuum stability conditions at a = 1

< 0|0 > |φ=φ0
= 1,

d < 0|0 >

dφ

∣∣∣∣
φ=φ0

= 0 (9.3)

Veff(φ0) = 0,
dVeff(φ0)

dφ0

= 0. (9.4)

It results in a zero contribution of the Higgs field vacuum expectation

into the Universe energy density. In other words, the SM mechanism
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of a mass generation can be completely repeated in the framework of

our approach to the spontaneous symmetry breaking.

In particular, one obtains that the Higgs boson mass is determined

from the equation V ′′eff(〈φ〉) = M 2
h . Note that in our construction the

Universe evolution is provided by the dilaton, without making use of

any special potential and/or any inflaton field. In this case we have no

reason to spoil the renormalizablity of the SM by introducing the non-

minimal interaction between the Higgs boson and the gravity. In the

middle field approximation (far from heavy masses), our gravitation

theory supplemented by the Standard Model the Higgs bosons are

described by the action

Wh =

∫
dτ
∑
k2 �=0

vhkv
h
−k−hkh−ka

2ωh
0k

2

2
=
∑
k2 �=0

ph−kv
h
k − H

h
τ , (9.5)

where

ωh
0k(a) =

√
k2 + a2M 2

0h (9.6)

is the massive one–particle energy with respect to the conformal time

interval.

There are values of the scale factor a, when the mass term in one–

particle energy is less than the conformal Hubble parameter value

aM0h < H0a
−2.

As a result, the Casimir energy for the Higgs particles coincides with

the graviton one at the considered epoch:

H
h
Cas �

∑
k

√
k2

2
= H

g
Cas.
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In this case the calculation of the scalar particle creation energy com-

pletely repeats the scheme for the graviton creation discussed in Chap-

ter 7. Assuming thermalization in the primordial epoch, we expect that

the occupation number of the primordial Higgs bosons is of the order

of the known CMB photon one

Nh ∼ Nγ = 411mm−3 × 4πr3h
3

� 1087. (9.7)

Thus, the CGR provides a finite occupation number of the produced

primordial particles. Note that in other approaches [6] a subtraction

is used to achieve a finite result. Moreover, the number of produced

particles happens to be of the order of the known CMB photon number.

To our opinion this coincidence supports our model, since the number

of photons can naturally inherit the number of primordial Higgs bosons

(if one considers the photons as one of the final decay products of the

bosons). According to our model, the relativistic matter has been

created very soon after the Planck epoch at zPl � 1015. Later on it

cooled down and at zCMB � 1000 the CMB photons decoupled from

recombined ions and electrons as discussed by Gamow. In our model

the CMB temperature is defined directly from the Hubble parameter

and the Planck mass (related to the Universe age aPl).

Note that the obtained occupation number corresponds to the ther-

malized system of photons with the mean wave length T � 3◦ K in

finite volume V0 ∼ H−3
0 :

(Nγ)
1/3 � 1029 � λCMBH

−1
0 . (9.8)

As concerns vacuum creation of spinor and vector SM particles, it
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Figure 9.1: The process of the vacuum creation of Nh ∼ 1088 Higgs particles

during the first 10−12 sec is shown. Here ↗ is the time axis, ↑ is the number

of scalar bosons and longitudinal components of vector ones, and ↘ is the axis of

their momenta [21].

is known [6] to be suppressed very much with respect to the one of

scalars and gravitons.

The intensive creation of primordial gravitons and Higgs bosons is

described assuming that the Casimir vacuum energy is the source of

this process [21].

The vacuum creation of massive spinors and transversal compo-

nents of vector bosons [6] is suppressed with respect to the creation of

scalar particles and gravitons.

9.3 Physical states of matter

According to the general principles of quantum field theory (QFT),

physical states of the lowest order of perturbation theory are com-

pletely covered by local fields as particle-like representations of the
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Poincaré group of transformations of four-dimensional space-time. The

existence of each elementary particle is associated with a quantum field

ψ. These fields are operators defined in all space-time and acting on

states |P , s〉 in the Hilbert space with positively defined scalar product.

The states correspond to the wave functions Ψα(x) = 〈0|ψα(x)|P , s〉 of
free particles.

Its algebra is formed by generators of the four translations P̂μ = i∂μ

and six rotations M̂μν = i[xμ∂ν − xν∂μ]. The unitary and irreducible

representations are eigen-states of the Casimir operators of mass and

spin, given by

P̂2|P , s〉 = m2
ψ |P , s〉, (9.9)

−ŵ2
p|P , s〉 = s(s+ 1)|P , s〉, (9.10)

ŵρ =
1

2
ελμνρP̂λM̂μν. (9.11)

The unitary irreducible Poincaré representations describe wave-like dy-

namical local excitations of two transverse photons in QED

AT
(b)(t,x) = (9.12)

=

∫
d3k

(2π)3

∑
α=1,2

1√
2ω(k)

ε(b)α

[
eı(ωkt−kx)A+

k,α + e−ı(ωkt−kx)A−k,α

]
.

Two independent polarizations ε(b)α are perpendicular to the wave vec-

tor and to each other, and the photon dispersion is given by ωk =
√
k2.

The creation and annihilation operators of photon obey the commuta-

tion relations

[A−k,α, A
+

k′,β
] = δα,βδ(k− k′).
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The bound states of elementary particles (fermions) are associated

with bilocal quantum fields formed by the instantaneous potentials (see

[24, 25, 26])

M(x, y) =M(z|X) =
∑
H

∫
d3P

(2π)3
√
2ωH

∫
d4qeıq·z

(2π)4
× (9.13)

×
[
eıP·XΓH(q

⊥|P)a+H(P, q
⊥) + e−ıP·XΓ̄H(q

⊥|P)a−H(P, q
⊥)
]
,

where

P ·X = ωHX0 −PX, q⊥μ = qμ −
P · q
M 2

H

Pμ,

Pμ = (ωH ,P) are the momentum components on the mass shell,

ωH =
√

M 2
H +P

2,

and

X =
x+ y

2
, z = x− y, (9.14)

are the total coordinate and the relative one, respectively. The func-

tions Γ belong to the complete set of orthonormalized solutions of the

BS equation [27] in a specific gauge theory, a±H(P, q
⊥) are coefficients

treated in quantum theory as the creation (+) and annihilation (-)

operators (see Appendix B).

The irreducibility constraint, called the Markov – Yukawa con-

straint, is imposed on the class of instantaneous bound states [24]

zμP̂μM(z|X) ≡ ızμ
d

dXμ
M(z|X) = 0. (9.15)

In Ref. [28] the in- and out- asymptotical states are the “rays” defined

as a product of these irreducible representations of the Poincaré group

〈out| = 〈
∏
J

PJ , sJ
∣∣, |in〉 =

∣∣∏
J

PJ , sJ〉. (9.16)
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This means that all particles (elementary and composite) are far enough

from each other to neglect their interactions in the in-, out- states. All

their asymptotical states 〈out| and |in〉 including the bound states are

considered as the irreducible representations of the Poincaré group.

Moisei A. Markov (30 April (13 May)

1908, Rasskazovo, Tambov province 1

October 1994, Moscow), Russian physi-

cist - theorist, Academician. Markov

graduated from Moscow State University

in 1930. He is a member of the Presidium

of the Academy of Sciences of the USSR.

He has been chairman of the Interdepart-

mental Commission for Nuclear Physics

since 1971. He was one of the organiz-

ers of the Joint Institute for Nuclear Re-

search. He made a pioneer contribution

into the development of neutrino inves-

tigations, demonstrated the expediency

of conducting neutrino experiments at

great depths underground and the pos-

sibility of conducting such experiments

in accelerators. He studied fundamental

problems of elementary particle physics

and quantum gravitation on the bound-

ary of particle physics and cosmology.

These irreducible representations form a complete set of states,

and the reference frames are distinguished by the eigenvalues of the

appropriate time operator �̂μ =
P̂μ

MJ

�̂μ|P , s〉 =
PJμ

MJ
|PJ , s〉, (9.17)
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where the Bogoliubov – Logunov – Todorov rays (9.16) can include

bound states.

9.4 QU modification of S-matrix in QFT

The S-matrix elements are defined as the evolution operator expecta-

tion values between in- and out- states

Min,out︸ ︷︷ ︸
P−inv,G−inv

= 〈out|︸ ︷︷ ︸
P−covariant

Ŝ[�̂]︸︷︷︸
P−covariant,G−inv

|in〉︸︷︷︸
P−covariant

, (9.18)

where the abbreviation “G − inv′′, or “gauge-invariant”, assumes the

invariance of S-matrix with respect to the gauge transformations, and

“P−covariant′′ means relativistic covariance with respect to the Poincaré

group transformations. The conformal modification of S− matrix, in

this case, means that the conformal symmetry can be violated by the

quantization procedure with the vacuum postulate. in the reduced

phase space after resolution of all constraints. Such reduced phase

space quantization coincides with the Dirac approach to the gauge in-

variant theories. The Dirac approach to gauge-invariant S-matrix was

formulated at the rest frame �0μ = (1, 0, 0, 0) [29, 30, 31]. The Dirac

Hamiltonian approach to QED of 1927 was based on the constraint-

shell action [29]

WDirac
QED = WQED

∣∣∣ δWQED

δA�
0

=0
, (9.19)

where the component A�
0 is defined by the scalar product

A�
0 = (A · �)
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of vector field Aμ and the unit time-like vector �μ. The gauge was

established by Dirac as the first integral of the Gauss constraint∫ t

dt
δWQED

δA�
0

= 0, t = (x · �). (9.20)

In this case, the S-matrix elements (9.18) are relativistic invariant and

independent of the frame reference provided the condition (9.17) is

fulfilled [26].

Dirac introduced the radiation variables

ıeA∗k[Aj] = u∗[Aj] (ıeAk − ∂k) (u
∗)−1[Aj], (9.21)

ψ∗[Aj, ψ] = u∗[Aj]ψ, (9.22)

where the phase factors u∗[Aj] satisfy the equation

u∗[Aj] (ıea0[Aj]− ∂0) (u
∗)−1[Aj] = 0; (9.23)

here a0[Aj] is a solution of the Gauss constraint equation

�a0[Aj] = ∂j∂0Aj. (9.24)

One can be convinced that the radiation variables (9.21) are gauge-

invariant functionals.

Then the problem arises how to construct a gauge-invariant S-

matrix in an arbitrary frame of reference. It was Heisenberg and Pauli’s

question to von Neumann [30]: “How to generalize the Dirac Hamilto-

nian approach to QED of 1927 [29] to any frame?” [30, 31, 32, 33]. The

reply of von Neumann was to go back to the initial Lorentz-invariant

formulation

ıeAk = (u∗)−1[Aj] (ıeA
∗
k[Aj]− ∂k) u

∗[Aj], (9.25)

ψ = (u∗)−1[Aj]ψ
∗[Aj, ψ], (9.26)
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and to choose the co-moving frame

�0μ = (1, 0, 0, 0)→ �co−moving
μ = �μ, �μ�

μ = (� · �) = 1 (9.27)

and to repeat the gauge-invariant Dirac scheme in this frame for calcu-

lation of the spectrum and S− matrix elements(9.18). In the following

we call this gauge-invariant approach the von Neumann – Polubarinov

formulation because Polubarinov constructed the corresponding gauge

transformations (9.27) in the manifest form [31, 32, 33]. In this ap-

proach the S− matrix elements (9.18) are relativistic invariant and do

not contain nonphysical states with indefinite metrics provided by the

constraint (9.17) [26, 34]. Therefore, relativistic bound states can be

successfully included in the relativistic covariant unitary perturbation

theory [34]. They satisfy the Markov – Yukawa constraint (9.15), where

the time axis �0 is the eigenvalue of the total momentum operator of

instantaneous bound states.

In QED this framework yields the observational spectrum of bound

states [35], and leads to the Schrödinger equation (see Appendix B),

and paves the way for constructing a bound state generating func-

tional in QCD. The functional construction is based on the Poincaré

group representations with �0 being the eigenvalue of the total mo-

mentum operator of instantaneous bound states. In order to demon-

strate the Lorentz-invariant version of the Dirac method [29] given by

Eq. (9.19) in a non-Abelian theory, we consider the simplest example

of the Lorentz-invariant formulation of the naive path integral without

any ghost fields and FP-determinant. Recall that the simplest example

of the Lorentz formulation that uses the naive path integral without
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any ghost fields and FP-determinant is described by the generating

functional

Z[J, η, η] =

∫ [∏
μ,a

dAa
μ

]
dψdψeıW [A,ψ,ψ]+ıS[J,η,η]. (9.28)

We use standard the QCD action W [A,ψ, ψ] and the source terms

W =

∫
d4x

[
−1

4
F a
μνF

aμν − ψ(ıγμ(∂μ + Âμ)−m)ψ

]
, (9.29)

F a
0k = ∂0A

a
k − ∂0A

a
k∂ + gfabcAb

0A
c
k ≡ Ȧa

k −∇ab
k A

b
0, (9.30)

S[Aμ] =

∫
d4x
[
AμJ

μ + ηψ + ψη
]
, Âμ = g

λaAa
μ

2ı
. (9.31)

There are a lot of drawbacks of this path integral (9.28) from the point

of view of QFT and the Faddeev – Popov functional [37]. They are

the following:

1. The time component A0 has indefinite metric.

2. The integral (9.28) contains the infinite gauge factor.

3. The bound state spectrum contains tachyons.

4. The analytical properties of field propagators are gauge depen-

dent.

5. Operator foundation is absent [36].

6. Low-energy region of hadronization is not separated from the

high-energy one.

All these defects can be removed by the integration over the indefinite

metric time component Aμ�
μ ≡ (A · �), where �μ is an arbitrary unit
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time-like vector: �2 = 1. If �0 = (1, 0, 0, 0) then Aμ�
μ = A0. In this

case the generational functional (9.28) takes the form

Z[�0] =

∫ [∏
x,j,a

dAa∗
j (x)

]
eıW

∗
YM δ (La)

[
det (∇j(A

∗))2
]−1/2

Zψ,

La =

t∫
dt∇ab

i (A
∗)Ȧ∗bi = 0,

W ∗
YM =

∫
d4x

(Ȧa
j

∗
)2 − (Ba

j )
2

2
,

Zψ[J
∗, η∗, η∗] =

∫
dψ∗dψ∗e−

ı
2(ψ∗ψ∗,Kψ∗ψ∗)−(ψ∗ψ∗,G

−1
A∗)+ıS[J∗,η∗,η∗] (9.32)(

ψ∗ψ∗, G−1A∗

)
=

∫
d4xψ∗

[
ıγ0∂0−γj(∂j + Â∗j)−m

]
ψ∗,

(
ψ∗ψ∗,Kψ∗ψ∗

)
=

∫
d4xd4yja0(x)

[
1

(∇j(A∗))2
δ4(x− y)

]ab
jb0(y).

The infinite factor is removed by the gauge fixing (9.20) treated as

an antiderivative function of the Gauss constraint. A∗ai denotes fields

Aa
i under gauge fixing condition (9.20). It becomes homogeneous

∇ab
i (A

∗)Ȧ∗bi = 0,

because A∗0 is determined by the interactions of currents. It is just the

non-Abelian generalization [32, 33] of the Dirac approach to QED [29].

In the case of QCD there is a possibility to include the nonzero

condensate of transverse gluons

〈A∗aj A∗bi 〉 = 2Cgluonδijδ
ab

as a source of the conformal symmetry breaking. The Lorentz-invariant

bound state matrix elements can be obtained, if we choose the time-

axis � of the Dirac Hamiltonian dynamics as the operator acting in
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the complete set of bound states (9.17) and given by Eqs. (9.14) and

(9.15). This scheme enables us to restore the Lorentz-invariance, if the

time-axis is taken as the operator �̂ proper frame of reference of each

bound state. This means the von Neumann substitution (9.27) given

in [30]

Z[�0 ]→ Z[ � ]→ Z[ �̂]. (9.33)

Thus, we shown how to use the Dirac Hamiltonian formulation in order

to describe bound states by a relativistic-invariant manner with the

Feynman rules depending on the Markov – Yukawa frame of reference

In the modern literature such dependence is treated as a defect

that complicates the perturbation theory. In order to remove this

dependence, in the Faddeev – Popov approach [37] one passes to the

variables of the type of gauge transformation,

Â∗k[A
Lb
j ] = u∗[ALb

j ]
(
ÂL

k + ∂k

)
u∗−1[ALb

j ], (9.34)

ψ∗[ALb
j , ψL] = u∗[ALb

j ]ψL, (9.35)

where AL
μ obeys to condition that does not depend on a frame of ref-

erence, in particular, the Lorentz constraint ∂μA
L
μ = 0, and the phase

factors u∗[AL
j ] satisfy the equation

u∗[AL
j ]
(
â0[A

L
j ] + ∂0

)
(u∗)−1[AL

j ] = 0. (9.36)

Here ac0[Aj] is a solution of the Gauss constraint

[((∇j(A
L))2]cbab0 = ∇cb

i (A
L)ȦLb

i . (9.37)
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A solution of Eq. (9.36) takes the form

u∗[ALb
j ] = v(x)T exp

⎧⎨⎩
t∫
dtâ0[A

Lb
j ]

⎫⎬⎭ , (9.38)

where the symbol T means the time ordering of matrix under the

exponent sign, v(x) are initial data of Eq. (9.36). These gauge trans-

formations keep the action due to its gauge invariance.

W ∗ = W [AL
μ ]. (9.39)

Such variable change is known as the choice of a gauge [37]. The

choice of gauge changes the Feynman rules. One can choose a gauge

for which the Feynman rules completely do not depend on initial data

[38]. However, in the generating functional (9.32), there are sources of

the transversal fields S[J∗, η∗, η∗] that depend on initial data v(x) of

Eq. (9.36).

The assertion about the gauge-independence of the physical con-

tents of the generating functional that removes any initial data is called

the Faddeev theorem [38]. To prove this theorem one has to be con-

vinced also that the sources of the radiation variables can be replaced

by the sources of the fields in the Lorentz gauge formulation

S[J∗, η∗, η∗] =

∫
d4x
[
J∗ck A∗ck [A

Lb
j ] + η∗ψ∗[ALb

j , ψL] + ψ∗[ALb
j , ψL]η∗

]
→ S[AL

μ , ψ
L, ψ

L
], (9.40)

where S[AL
μ ] is given by Eq. (9.31). Actually, this theorem was proved

in paper [38] only for the scattering processes of the elementary parti-

cles in QED.
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However, as we saw above, this change of a gauge can disturb the

bound state spectrum. In any case, questions arise about the range

of validity of the Faddeev theorem [38]. In the next chapters we shall

return to these questions and discuss the status of the primordial initial

data and their physical effects.

9.5 Summary

The gravitation theory treated as the joint nonlinear realization of

affine and conformal symmetry groups in terms of the diffeoinvari-

ant Cartan forms allows us to quantize these forms. This quantum

gravitation theory is unified with the Standard Model of the elemen-

tary particles on the equal footing in the form of the wave function

of the Universe as a joint irreducible unitary representation (IUR) of

the affine and conformal symmetry groups constructed in the previous

Chapter 8. Results given in Chapter 9 testify that this wave function

of the Universe yields the classification of real physical processes in the

Universe, including its creation from vacuum together with its matter

content in agreement with observational and experimental data.

In this Chapter we present theoretical and observational arguments

in favor of the fact that there was the Beginning and there arose from

vacuum 1088 primordial Higgs particles at the Beginning during the

first 10−12 sec. All matter content of the present day Universe can

be the decay products of these primordial bosons. In this case, one

can expect that the wave function of the Universe yields classification

of the real processes in the Universe at present time. In any case, we
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reminded the Poincaré classification of the particle states including the

bound ones and obtained relation of our approach to QFT with the

accepted Faddeev – Popov path integral. The next Chapter will be

devoted to the status of the initial data in QCD.
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Chapter 10

Reduced phase space

QCD

10.1 Topological confinement

At the beginning of the sixties of the twentieth century Feynman found

that the naive generalization of his path integral method (9.28) of con-

struction of QED fails in the non-Abelian theories. The unitary S-

matrix in the non-Abelian theory was obtained in the form of the Fad-

deev – Popov (FP) path integral by the brilliant application of the the-

ory of connections in vector bundle (see [37] in the previous Chapter).

Many physicists are of opinion that the FP path integral is the highest

level of quantum description of the gauge constrained systems. Really,

the FP integral at least allows us to prove both renormalizability of

the unified theory of electroweak interactions and asymptotic freedom

of the non-Abelian theory. However, the FP integral still remains se-

rious and challenging problems of the quark confinement (in the form

308
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of the Feynman quark-hadron duality), spontaneous chiral symmetry

breaking and hadronization. These problems require generalization of

the FP path integral to the bound states in the non-Abelian theories

in their frame of reference, including corresponding initial data.

In this Chapter, we consider these problems in the context of the

Quantum Universe (QU) modification of QCD described in the previ-

ous Chapter. The QU modification of QCD means QCD in the reduced

phase space obtained by the manifest resolution of all constraints in a

concrete frame of reference with initial data. The choice of the vac-

uum and normal ordering of the field products leads to a source of

spontaneous conformal symmetry breaking in the quantum theory.

The role of constraints is played by the equations of the time compo-

nent. In the YM theory ([1], §16) the time component of a Yang-Mills

field occupies a particular place, since it has no canonical momentum.

Dirac [2] and other authors of the first classical theories on quantization

of gauge fields [3, 4], who followed him, removed the time component

of gauge fields by gauge transformation. In our case, the similar trans-

formation is

Â∗k[A
b
j] = u∗[Ab

j]
(
Âk + ∂k

)
u∗−1[Ab

j], (10.1)

ψ∗[Ab
j, ψ] = u∗[Ab

j]ψ, (10.2)

u∗[Ab
j] = v(x)T exp

⎧⎨⎩
t∫
dtâ0[A

b
j]

⎫⎬⎭ , (10.3)

where the symbol T denotes the time ordering of the matrices under

the exponent sign. It determines a non-Abelian analogue of the Dirac

variables (see also [5], Section 2.2) within arbitrary stationary matrices
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v(x considered as initial data of the solution to the equation (9.36)

[((∇j(A
∗))2]cbab0 = ∇cb

i (A
∗)Ȧ∗bi = 0 (10.4)

at the time instant t0. Here â0[A
b
j] is the solution of the Gauss con-

straint. One can see that at the level of Dirac variables the Lorentz

transformations of initial fields become nonlinear (formula (28) in [5]),

and the group of gauge transformations reduces to the group of sta-

tionary transformations, which set the degeneration of the initial data

of physical fields (including the classical vacuum A0 = Ai = 0, deter-

mined as a state of zero energy). We imply as a gauge fixation, in the

given case, the putting of the initial data in perturbation theory as a

transversality condition [5, 6].

In non-Abelian theories a set of stationary gauge transformations

is the set of three-dimensional paths in the group space of the Lie

group SUc(2) subdivided into topological manifolds. These manifolds

are determined by integers, degrees of the map [7]:

n = − 1

24π2

∫
d3xεijk× (10.5)

×Tr[v(n)(x)∂iv(n)(x)−1v(n)(x)∂jv(n)(x)−1v(n)(x)∂kv(n)(x)−1].

The degree of the map shows how many times a three-dimensional

path v(x) turns around the SUc(3) manifold when the coordinate xi

runs over the space where it is given. The condition (10.5) means that

all the sets of three-dimensional paths have the homotopy group

π3(SUc(3)) = Z,



10.1. Topological confinement 311

and all the fields v(n)∂iv
(n)−1 are given in the class of functions for

which the integral (10.5) has a finite (or countable) value

Â
(n)
i = v(n)(Â

(0)

i + ∂i)v
(n)−1, v(n)(x) = exp[nΦ0(x)] . (10.6)

Due to the gauge invariance of the action, the phase factors of the

topological degeneration disappear. However, these phase factors re-

main at the sources of physical fields in the generating functional. The

theory with the topological degeneration of the initial data, where the

sources contain the phase factors of the topological degeneration,

tr[Ĵ iv(n)
¯̂
A

(0)

i v(n)−1],

differs from the theory without the degeneration and with the sources

tr[Ĵ i ¯̂A
(0)

i ]. In the theory with the degeneration of the initial data it is

necessary to average the amplitudes over the degeneration parameters.

Such averaging can lead to the disappearance of a series of physical

states.

It has been shown in [8, 9] that the topology can be the origin

of color confinement as complete destructive interference of the phase

factors of the topological degeneration of initial data.

The mechanical analogy of the topological degeneration of initial

data is the free rotator N(t) with the action of free particle

W (Nout, Nin|t1) =
t1∫
0

dt
Ṅ 2

2
I, p = ṄI, H0 =

p2

2I
(10.7)

given on a ring where the points N(t) + n (n is integer) are physically

equivalent. Instead of a initial date N(t = 0) = Nin in the mechanics
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in the space with the trivial topology, the observer of the rotator has

the manifold of initial data

N (n)(t = 0) = Nin + n; n = 0,±1,±2, . . . .

An observer does not know where is the rotator. It can be at points

Nin, Nin ± 1, Nin ± 2, Nin ± 3, . . . .

Therefore, he should to average a wave function

Ψ(N) = eıpN .

over all values of the topological degeneration with the θ-angle measure

exp(ıθn). In the result we obtain the wave function

Ψ(N)observable = lim
L→∞

1

2L

n=+L∑
n=−L

eıθnΨ(N + n) = exp{ı(2πk + θ)N} ,

(10.8)

where k is integer. In the opposite case p �= 2πk+ θ the corresponding

wave function (id est, the probability amplitude) disappears

Ψ(N)observable = 0

due to the complete destructive interference.

The consequence of this topological degeneration is that a part

of values of the momentum spectrum becomes unobservable in the

comparison with the trivial topology.

This fact can be treated as confinement of those values which do

not coincide with the discreet ones

pk = 2πk + θ, 0 ≤ θ ≤ π . (10.9)
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The observable spectrum follows also from the constraint of the equiv-

alence of the point N and N + 1

Ψ(N) = eıθΨ(N + 1), Ψ(N) = eıpN . (10.10)

In the result we obtain the spectral decomposition of the Green func-

tion of the free rotator (10.7) (as the probability amplitude of tran-

sition from the point Nin to Nout) over the observable values of spec-

trum (10.9)

G(Nout, Nin|t1) ≡ < Nout| exp(−ıĤt1)|Nin >= (10.11)

=
1

2π

k=+∞∑
k=−∞

exp

[
−ı p

2
k

2I
t1 + ıpk(Nout −Nin)

]
.

Using the connection with the Jacobian theta-functions [10]

Θ3(Z|τ) =
k=+∞∑
k=−∞

exp[ıπk2τ + 2ıkZ] = (−ıτ)−1/2 exp[ Z
2

ıπτ
]Θ3

(
Z

τ | − 1
τ

)
we can represent expression (10.11) in a form of the sum over all paths

G(Nout, Nin|t1) =
√

I

(ı4πt1)

n=+∞∑
n=−∞

exp[ıθn] exp [+ıW (Nout, Nin + n|t1)] ,

(10.12)

where

W (Nout + n,Nin|t1) =
(Nout + n−Nin)

2I

2t1

is the rotator action (10.7).

10.2 Quark–hadron duality

All physical states and the Green functions should be averaged over all

topological copies in the group space. Averaging over all parameters of
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the degenerations can lead to a complete destructive interference of all

color amplitudes [8, 9]. In this case, only colorless (“hadron”) states

have to form a complete set of physical states. Using the example

of a free rotator, we have seen that the disappearance of a part of

physical states due to the topological degeneration (confinement) does

not violate the composition law for Green functions

Gij(t1, t3) =
∑
h

Gih(t1, t2)Ghj(t2, t3) (10.13)

defined as the amplitude of the probability to find a system with the

Hamiltonian H in a state j at the time t3, if at the time t1 this system

was in a state i, where (i, j) belongs to a complete set of all states {h}:

Gij(t1, t3) =< i| exp

⎛⎝−ı t3∫
t1

H dt

⎞⎠ |j >
The particular case of this composition law (10.13) is the unitarity of

S-matrix

SS+ = I ⇒
∑
h

< i|S|h >< h|S+|j >=< i|j >

known as the law of probability conservation for S-matrix elements

S = I + iT :

∑
h

< i|T |h >< h|T ∗|j >= 2Im < i|T |j > . (10.14)

The left side of this law is the analogy of the spectral series of the

free rotator (10.11). The destructive interference keeps only colorless

“hadron” states. Whereas, the right side of this law far from resonances
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can presented in a form of the perturbation series over the Feynman

diagrams that follow from the Hamiltonian. Due to gauge invariance

H[A(n), q(n)] = H[A(0), q(0)] this Hamiltonian does not depend on the

topological phase factors and it contains the perturbation series in

terms of only the zero - map fields (id est, in terms of constituent

color particles) that can be identified with the Feynman partons. The

Feynman path integral as the generation functional of this perturbation

series is the analogy of the sum over all path of the free rotator (10.12).

Therefore, confinement in the spirit of the complete destructive in-

terference of color amplitudes [8, 9] and the law of probability conser-

vation for S-matrix elements (10.14) leads to Feynman quark-hadron

duality, that is foundation of all the parton model [11] and QCD ap-

plication [12]. The quark-parton duality gives the method of direct

experimental measurement of the quark and gluon quantum numbers

from the deep inelastic scattering cross-section [11]. For example, ac-

cording to Particle Data Group the ratio of the sum of the probabilities

of τ -decay hadron modes to the probability of τ -decay muon mode is

∑
h

wτ→h

wτ→μ
= 3.3± 0.3 .

This is the left-hand side of Eq. (10.14) normalized to the value of

the lepton mode probability of τ -decay. On the right-hand side of

Eq. (10.14) we have the ratio of the imaginary part of the sum of quark-

gluon diagrams (in terms of constituent fields free from the topological

phase factors) to the one of the lepton diagram. In the lowest order of

QCD perturbation on the right-hand side we get the number of colors
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Nc and, therefore,

3.3± 0.3 = Nc .

Thus in the constraint-shell QCD we can understand not only “why

we do not see quarks”, but also “why we can measure their quantum

numbers”. This mechanism of confinement due to the quantum inter-

ference of phase factors (revealed by the explicit resolving the Gauss

law constraint [8, 9]) disappears after the change of “physical” sources

A∗J∗ ⇒ AJ that is called the transition to another gauge in the

gauge-fixing method.

10.3 Chiral symmetry breaking in QCD

Instantaneous QCD interactions are described by the non-Abelian gen-

eralization of the Dirac gauge in QED The relativistic invariant bilocal

effective action obtained in [5], takes the form for the quark sector, in

the color singlet channel

Winstant =

∫
d4xq̄(x) (ı/∂ − m̂0)q(x)− (10.15)

−1

2

∫
d4xd4yja0(x)

[
1

(∇j(A∗))2
δ4(x− y)

]ab
jb0(y),

where

ja0(x) = q̄(x)
λa

2
γ0q(x)

is the 4-th component of the quark current, with the Gell-Mann color

matrices λa (see the notations in Appendix A). For simplicity indices

(1, 1′|2, 2′) denote in (1) all spinor, color and flavor ones. The symbol

m̂0 = diag(m0
u,m

0
d,m

0
s)
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denotes the bare quark mass matrix. The normal ordering of the trans-

verse gluons in the nonlinear action (10.15)

∇dbAb
0∇dcAc

0

leads to the condensate of gluons

g2f ba1dfda2c〈Aa1∗
i Aa2∗

j 〉 = 2g2Ncδ
bcδijCgluon = M 2

g δ
bcδij, (10.16)

where

〈A∗aj A∗bi 〉 = 2Cgluonδijδ
ab. (10.17)

This condensate yields the squared effective gluon mass in the squared

covariant derivative

∇dbAb
0∇dcAc

0 =: ∇dbAb
0∇dcAc

0 : +M 2
gA

d
0A

d
0.

The constant

Cgluon =

∫
d3k

(2π)32
√
k2 +M 2

g

is finite after substraction of the infinite volume contribution, and its

value is determined by the hadron size like the Casimir vacuum energy.

Finally, in the lowest order of perturbation theory, this gluon condensa-

tion yields the effective Yukawa potential in the colorless meson sector

[13]

V (k) =
4

3

g2

k2 +M 2
g

(10.18)

and the NJL type model with the effective gluon mass M 2
g . While

deriving the last equation, we use the relation⎡⎣a=N2
c−1∑

a=1

λa
1,1′

2

λa
2,2′

2

⎤⎦ =
1

2
δ1,2′δ2,1′ −

1

6
δ1,1′δ2′,2′.
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The product of this expression by the unit matrix δ1,2′ and summation

yield the coefficient 3/2− 1/6 = 4/3 in front of the Yukawa potential

(10.18). Below we consider the potential model (10.18) in the form

Winstant[q, q̄] =

∫
d4xq̄(x) (ı/∂ − m̂0)q(x)− (10.19)

−1

2

∫
d4xd4yja� (x)V (x⊥ − y⊥)δ((x− y) · �)ja� (y) ≡

≡ ı
(
qq̄, G−10

)
− 1

2
(qq̄,Kqq̄) ,

with the choice of the time axis as the eigenvalues of the bound state

total momentum. This model can formulate the effective action in

terms of bound state bilocal fields given in Appendix B. In this case

the semiclassical approach repeats the ladder approximation.

In particular, the equation of stationarity (B.8) coincides with the

Schwinger – Dyson (SD) equation

Σ(x− y) = m0δ(4)(x− y) + ıK(x, y)GΣ(x− y) . (10.20)

It describes the spectrum of Dirac particles in bound states. In the

momentum space with

Σ(k) =

∫
d4xΣ(x)eık·x

for the Coulomb type kernel, we obtain the following equation for the

mass operator Σ

Σ(k) = m0 − ı

∫
d4q

(2π)4
V (k⊥ − q⊥)/�GΣ(q)/�, (10.21)

where

GΣ(q) ≡ (/q − Σ(q))−1
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is the Fourier representation of the potential,

k⊥μ = kμ − �μ(k · �)

is the relative transverse momentum. The quantity Σ depends only on

the transverse momentum Σ(k) = Σ(k⊥), because of the instantaneous

form of the potential V (k⊥). We can put

Σa(q) = Ea(q) cos 2υa(q) ≡Ma(q). (10.22)

Here Ma(q) is the constituent quark mass and

cos 2υa(q) =
Ma(q)√

M 2
a (q) + q2

(10.23)

determines the Foldy – Wouthuysen type matrix

Sa(q) = exp[ı(qγ/q)υa(q)] = cos υa(q) + ı(qγ/q) sin υa(q), (10.24)

with the vector of Dirac matrices γ = (γ1, γ2, γ3) lying in the range

0 � υa(q) � π/2, and υa(q) is the Foldy – Wouthuysen angle. The

fermion spectrum can be obtained by solving the SD equation (10.21).

It can be integrated over the longitudinal momentum q0 = (q · �) in

the reference frame �0 = (1, 0, 0, 0), where q⊥ = (0,q). By using

Eq. (10.24), the quark Green function can be presented in the form

GΣa
= [q0/�− Ea(q

⊥)S−2a (q⊥)]−1 =

=

⎡⎣ Λ
(�)
(+)a

(q⊥)

q0 − Ea(q⊥) + ıε
+

Λ
(�)
(−)a(q

⊥)

q0 + Ea(q⊥) + ıε

⎤⎦ /�, (10.25)

where

Λ
(�)
(±)a(q

⊥) = Sa(q
⊥)Λ

(�)
(±)(0)S

−1
a (q⊥), Λ

(�)
(±)(0) = (1± /�)/2 (10.26)
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are the operators separating the states with positive (+Ea) and nega-

tive (−Ea) energies. As a result, we obtain the following equations for

the one-particle energy E and the angle υ (10.23) with the potential

given by Eq. (10.18)

Ea(k
⊥) cos 2υa(k

⊥) = m0
a +

1

2

∫
d3q⊥

(2π)3
V (k⊥ − q⊥) cos 2υa(q

⊥).

In the rest frame �0 = (1, 0, 0, 0) this equation takes the form

Ma(k) = m0
a +

1

2

∫
d3q

(2π)3
V (k− q) cos 2υa(q). (10.27)

By using the integral over the solid angle

∫ π

0

dϑ sinϑ
2π

M 2
g + (k− q)2

=

+1∫
−1

dξ
2π

M 2
g + k2 + q2 − 2kqξ

=

=
π

kq
ln

M 2
g + (k + q)2

M 2
g + (k − q)2

and the definition of the QCD coupling constant αs = 4πg2, it can be

rewritten as

Ma(k) = m0
a +

αs

3πk

∞∫
0

dq
qMa(q)√
M 2

a (q) + q2
ln

M 2
g + (k + q)2

M 2
g + (k − q)2

. (10.28)

The suggested scheme allows us to consider the SD equation (10.27)

in the limit when the bare current mass m0
a equals to zero [14]. Then

the ultraviolet divergence is absent, and, hence, the renormalization

procedure can be successfully avoided. This kind of nonlinear integral

equations was considered in the paper [15] numerically.

The solution for Ma(q) in the separable approximation [16] in the

form of the step function was used for the estimation of the quark and
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meson spectra in agreement with the experimental data. Currently,

numerical solutions of the nonlinear equation (10.28) are under way,

and the details of computations will be published elsewhere.

As discussed in the Appendix B, the SD equation (10.27) can be

rewritten in the form (10.28). Once we know the solution of Eq. (10.28)

for Ma(q), we can determine the Foldy – Wouthuysen angles υa, (a =

u, d) for u-,d- quarks with the help of relation (10.23). Then the BS

equations in the form

MπL
π
2(p) = [Eu(p) + Ed(p)]L

π
1(p)− (10.29)∫

d3q

(2π)3
V (p−q)Lπ

1(q)[c
−(p)c−(q)+ξs−(p)s−(q)],

MπL
π
1(p) = [Eu(p) + Ed(p)]L

π
2(p)−∫

d3q

(2π)3
V (p− q)Lπ

2(q)[c
+(p)c+(q)+ξs+(p)s+(q)]

yield the pion mass Mπ and wave functions Lπ
1(p) and Lπ

2(p). Here

mu,md are the current quark masses,

Ea =
√
p2 +M 2

a (p), (a = u, d)

are the u-,d- quark energies, ξ = (p q)/pq, and we use the notations

E(p) = Ea(p) + Eb(p) , (10.30)

c
±(p) = cos[υa(p)± υb(p)] , (10.31)

s
±(p) = sin[υa(p)± υb(p)] . (10.32)

The model is simplified in some limiting cases. Once the quark masses

mu andmd are small and approximately equal, Eqs. (10.27) and (10.29)
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take the form

ma = Ma(p)−
1

2

∫
d3q

(2π)3
V (p− q) cos 2υu(q), (10.33)

MπL
π
2(p)

2
= Eu(p)L

π
1(p)−

1

2

∫
d3q

(2π)3
V (p−q)Lπ

1(q). (10.34)

Solutions of equations of this type are considered in the numerous pa-

pers [17, 18, 19, 20, 21] (see also review [15]) for different potentials.

One of the main results of these papers was the pure quantum effect

of spontaneous chiral symmetry breaking. In this case, the instanta-

neous interaction leads to rearrangement of the perturbation series and

strongly changes the spectrum of elementary excitations and bound

states in contrast to the naive perturbation theory.

In the limit of massless quarksmu = 0 the left-hand side of Eq. (10.33)

is equal to zero. The nonzero solution of Eq. (10.33) implies that there

exists a mode with zero pion massMπ = 0 in accordance with the Gold-

stone theorem. This means that the BS equation (10.34), being the

equation for the wave function of the Goldstone pion, coincides with

the the SD equation (10.33) in the case of mu = Mπ = 0. Comparison

of the equations yields

Lπ
1(p) =

Mu(p)√
2FπEu(p)

=
cos 2υu(p)√

2Fπ

, (10.35)

where the constant of the proportionality Fπ in Eq. (10.35) is called

the weak decay constant. In the more general case of massive quark

mu �= 0, Mπ �= 0, this constant is determined from the normalization

condition (B.40)

1 =
4Nc

Mπ

∫
d3q

(2π)3
L2L1 =

4Nc

Mπ

∫
d3q

(2π)3
L2

cos 2υu(p)

Fπ
(10.36)
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with Nc = 3. In this case the wave function Lπ
1(p) is proportional to

the Fourier component of the quark condensate

Cquark =

n=Nc∑
n=1

〈qn(t,x)qn(t,y)〉 = (10.37)

= 4Nc

∫
d3p

(2π)3
Mu(p)

2
√
p2 +M 2

u(p)
.

Using Eqs. (10.23) and (10.35), one can rewrite the definition of the

quark condensate (10.37) in the form

Cquark = 4Nc

∫
d3q

2(2π)3
cos 2υu(q). (10.38)

Let us assume that the representation for the wave function L1 (10.35)

is still valid for non-zero but small quark masses. Then the subtraction

of the BS equation (10.34) from the SD one (10.33) multiplied by the

factor 1/Fπ determines the second meson wave function L2

Mπ

2
Lπ
2(p) =

mu√
2Fπ

. (10.39)

The wave function Lπ
2(p) is independent of the momentum in this ap-

proximation. Substituting the equation

L2 =
2mu√
2MπFπ

= const

into the normalization condition (10.36), and using Eqs. (10.35) and

(10.38), we arrive at the Gell-Mann – Oakes – Renner (GMOR) relation

[22]

M 2
πF

2
π = 2muCquark . (10.40)

Thus, in the framework of instantaneous interaction we prove the Gold-

stone theorem in the bilocal variant, and the GMOR relation directly
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results from the existence of the gluon and quark condensates. Strictly

speaking, the postulate that the finiteness of the quark condensate is

finite implies that in QCD the ultraviolet divergence can be removed.

Here one can remind that the ultraviolet divergence in the observa-

tional Casimir energy of photons between two metal plates in one di-

mensional space is removed by the Bose - distribution function with

the temperature as the inverse free length [23]. In this case, it is well

known that the spectrum of the vacuum oscillations coincides with the

spectrum of an absolute black body with the energy density

ρ1Cas =
1

2L

∞∑
n=0

ωn =
1

π

∞∫
0

dωω

1− e2Lω
= − π

24L2
(10.41)

where ωn = πn/L, n = 1, 2, ... is the complete set of the one-photon

energy in the space between two metal plates of a size L.

We suppose that the energy of the vacuum oscillations of fermions

in the Dirac sea is suppressed by the Fermi - distribution function (see

Appendix C)

f(+)(q) =
1

exp{(ω(q)− 1)L}+ 1
, (10.42)

ω(q) =
√
1 + (q2/M 2(0)),

where L is the inverse effective temperature in the unit of the con-

stituent mass. The substitution of this Fermi - distribution function

under the sign of the integral in Eq. (10.38) and the change of variable

of integration

dp p2 = dω ω
√

ω2 − 1

leads to the expression of the Casimir condensate in the units of the
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mass M(0) = 1

Cquark(L) =
3

π2

∞∫
1

dω
√
ω2 − 1

1 + e(ω−1)L

∣∣∣∣∣
L=1

� 0.39, (10.43)

where L is the inverse effective temperature and the constituent mass

is the unit. In the chiral massless limit (m0 → 0) the solution of

the Schwinger–Dyson equation and the Salpeter one yield a meson

spectrum via the constituent quark masses Mconst � 320 GeV [24].

Using the GMOR relation (10.40) and the constituent quark mass value

∼ 320 MeV we can define a conformal invariant as the ratio of the

condensate value to the cubed constituent mass

< uū >

M 3
u

=
M 2

πF
2
π

2muM 3
u

� 0.41± 0.08. (10.44)

The comparison of the theoretical value (10.43) with the experimental

one (10.44) shows us that the inverse effective temperature L coincides

with the Compton length (L = M−1
u = 1).

Thus, the breakdown of the chiral symmetry in QCD can be char-

acterized by the quark condensate (10.44). It is clear that the sub-

stitution of the effective vacuum temperature factor (10.42) f(+)(q) at

(L = M−1
u = 1) in the integral (10.27) at the large momenta allows

us to neglect in the potential its dependence on the momentum of

integration q

Ma(k) = m0
a +

1

2

∫
d3q

(2π)3
V (k− q) cos 2υa(q)f(+)(q) =

� m0
a + V (k)

1

2

∫
d3q

(2π)3
cos 2υa(q)f(+)(q) =

= m0
a +

g2

3(k2 +M 2
g )

< uū >, (10.45)
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where V (k) is given by Eq. (10.18). This expression is in agreement

with the short distance operator product expansion applied to quark

fields [26].
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10.4 Summary

We considered the status of the initial data in QCD in the context

of the Quantum Universe wave function classification of physical pro-

cesses in the Universe given in Chapters 8 and 9. This classification

proposes the reduced space phase QCD Hamiltonian. One of the main

results is the topological degeneration of initial data that leads to

the color confinement in the form of quark-hadron duality. In the

constraint-shell QCD we can understand not only “why we do not see

quarks”, but also “why we can measure their quantum numbers”. The

normal ordering of the field products in the reduced space phase QCD

Hamiltonian leads to both the QCD inspired model of the low energy

meson physics [16] with the Gell-Mann – Oakes – Renner (GMOR) re-

lation [22] and the short distance operator product expansion applied

to quark fields [26].
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Chapter 11

QU modification of the

Standard Model

11.1 SM Lagrangian

The Standard Model (SM) known as the Weinberg – Salam – Glashow

minimal electroweak theory was constructed on the basis of the Yang

– Mills theory [1] with the symmetry group SU(2) ⊗ U(1) [2] in two

steps. The first step was the choice of the Lagrangian LG and physical

variables. The second step was the choice of a mechanism of the mass

generation. Let us consider the gauge-invariant Lagrangian

LG = −1

4
Ga

μνG
μν
a − 1

4
FμνF

μν (11.1)

+
∑
s

s̄R1 ıγ
μ
(
D(−)

μ + ıg′Bμ

)
sR1 +

∑
s

L̄sıγ
μD(+)

μ Ls,

where

Ga
μν = ∂μA

a
ν − ∂νA

a
μ + gεabcA

b
μA

c
ν

332
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is the tension of the non-Abelian SU(2) fields and

Fμν = ∂μBν − ∂νBμ

is the tension of the Abelian U(1) field,

D(±)
μ = ∂μ − ıg

τa
2
Aa

μ ±
ı

2
g′Bμ

are covariant derivatives, and L̄s = (s̄L1 s̄
L
2 ) are the fermion duplets, g

and g′ are the Weinberg coupling constants.

The physical variables as measurable bosons W+
μ , W−

μ , Zμ are de-

termined by the relation

W±
μ ≡ A1

μ ± A2
μ = W 1

μ ±W 2
μ , (11.2)

Zμ ≡ −Bμ sin θW + A3
μ cos θW , (11.3)

tan θW =
g′

g
, (11.4)

where θW is the Weinberg angle. In terms of these variables the La-

grangian (11.1) takes the form

LG = −1

4
(∂μAν − ∂νAμ)

2 − 1

4
(∂μZν − ∂νZμ)

2 −

− 1

2
|DμW

+
ν −DνW

+
μ |2 − ıe(∂μAν − ∂νAμ)W

+μW−ν −

− g2 cos2 θW [Z2(W+W−)− (W+Z)(W−Z)] +

+ ıg cos θW (∂μZν − ∂νZμ)W
+μW−ν +

+
1

2
ıg cos θW [(DμW

+
ν −DνW

+
μ )(W

−μZν −W−νZμ)− h.c.],

where Dμ = ∂μ+ ıeAμ is covariant derivative, Aμ is a photon field, e is

the electromagnetic interaction coupling. According to the principles

of quantum Universe, the conformal symmetry of the theory can be
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broken by only the normal ordering of the quantum field products in

the reduced phase space after resolution of all constraint equations. In

the previous Chapter 10, it was shown that the non-Abelian fields have

the topological degeneration of initial data. This degeneration can be

removed by the interaction of non-Abelian fields with an elementary

scalar field. The conformal-invariant Lagrangian of the scalar field h

interacting with vector bosons and fermions f is chosen in the form

Lh =
1

2
(∂μh)

2 − λ2

8
h4 +

∑
f=s1,s2

f̄ [ıγ∂ − gfh] f

+
1

8
h2g2

[
(W+W− +W−W+) + Z2

μ/ cos
2 θW

]
where W±-, Z- are vector fields with the Weinberg coupling g = 0.645;

θW is the Weinberg angle, and sin2 θW = 0.22. Masses of the vector

bosons arise if the scalar field h has the zero harmonics

h = v +H,

∫
d3xH = 0. (11.5)

The value of the zero harmonics v is determined by the Casimir conden-

sate. They automatically arise after the normal ordering procedure for

all field operators. The normal ordering of the interaction Hamiltonian

of the scalar field yields the condensate density 〈HH〉Cas

〈HH〉Cas =
1

V0

∑
p

1

2
√

p2 +m2
. (11.6)

This magnitude is connected with the Casimir energy [3, 4]

ECas =
1

2

∑
p

√
p2 +m2 (11.7)

by the relation

〈HH〉Cas =
2

V0

∂

∂m2
ECas . (11.8)
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In the continual limit of the QFT one has

1

V0

∑
p

1

2
√
p2 +m2

t

⇒
∫

d3p

(2π)3
1

2
√

p2 +m2
=

= m2

∫
d3x

(2π)3
1

2
√
x2 + 1

≡ γ0 ·m2. (11.9)

Thus, the Casimir condensate density of a massive scalar field in the

absence of any additional scale is proportional to its squared mass

〈HH〉Cas = γ0 ·m2 ⇒ 〈HH〉Cas
m2

≡ γ0 , (11.10)

where γ0 is a dimensionless conformal parameter with a zero confor-

mal weight (see discussion on conformal weights in [5]). The normal

ordering of a fermion pair (we intentionally interchange the order of

fermion fields to deal with positive condensates)

ff̄ =: ff̄ : +〈ff̄〉

yields the condensate density of the fermion field 〈ff̄〉 in the Yukawa

interaction term in Eq. (11.13). In virtue of the above given results,

we have for the top quark Casimir condensate density

〈tt̄〉Cas = 4Nc
mt

V0

∑
p

1

2
√

p2 +m2
t

= 4Nc · γ0 ·m3
t , (11.11)

where Nc = 3 is the color number.

11.2 The condensate mechanism of Higgs

boson mass

Recently a few research groups have reported upon the discovery of

scalar particles with almost similar masses around 125 − 126 GeV
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[6, 7, 8]. The experimentalists express extreme caution in the iden-

tification of these particles with the long-waiting Higgs boson. Indeed,

the literature contains a plethora of predictions on lower and upper

limits of the Higgs mass based on many different ideas, models and

numerical techniques which are close to the observed values. The ques-

tion on a genuine mechanism which provides an unambiguous answer

about the Higgs mass is a real challenge to high energy physics and

is crucial for the base of the Standard Model (SM) 1. It is especially

noteworthy that in the SM the Higgs mass is introduced ad hoc.

According to the general wisdom, all SM particles (may be ex-

cept neutrinos) own masses due to the spontaneous symmetry break-

ing (SSB) of the electroweak gauge symmetry [9, 10, 11]. In particular,

one deals with the potential (in notation of Ref. [12]):

VHiggs(φ) =
λ2

2
(φ†φ)2 + μ2φ†φ, (11.12)

where one component of the complex scalar doublet field

φ =

⎛⎝ φ+

φ0

⎞⎠
acquires a non-zero vacuum expectation value

〈φ0〉 = v√
2
.

Note that the tachyon-like mass term in the potential is critical for

this construction. In contrast to the SSB, it breaks the conformal sym-

metry explicitly being the only fundamental dimension-full parameter

1Rencontres de Moriond. La Thuile, Italy (2013).
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in the SM. We recall that the explicit conformal symmetry breaking in

the Higgs sector gives rise to the unsolved problem of fine tuning in the

renormalization of the Higgs boson mass. That is certainly one of the

most unpleasant features of the SM. In the classical approximation,

from the condition of the potential minimum one obtains the relation

between the vacuum expectation value and the primary parameters μ

and λ in the form v =
√
−2μ2 /λ. This quantity can be defined as well

with the aid of the Fermi coupling constant derived from the muon life

time measurements:

v = (
√
2GFermi)

−1/2 ≈ 246.22 GeV.

The experimental studies at the LHC [6, 7] and Tevatron [8] observe an

excess of events in the data compared with the background in the mass

range around ∼ 126 GeV. Taking into account radiative corrections,

such a mass value makes the SM being stable up to the Planck mass

energy scale [13]. Nevertheless, the status of the SM and the problem of

the mechanism of elementary particle mass generation are still unclear.

The idea on dynamical breaking of the electroweak gauge symme-

try with the aid of the top quark condensate has been continuously

discussed in literature since the pioneering papers [14, 15, 16] (see also

review [17] and references therein). Such approaches suffer, however,

from formal quadratic divergences in tadpole loop diagrams leading, in

particular, to the naturalness problem (or fine tuning) in the renormal-

ization of the Higgs boson mass. All mentioned facts suggest that it

might be good to examine if the SSB is also responsible for the Higgs

field. To begin with, we suppose that there is a general mechanism
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of the SSB, which is responsible for the appearance of all SM field

condensates.

Peter Ware Higgs, (born 29 May 1929, Newcastle Upon Tyne, England) is a British

theoretical physicist, Nobel Prize laureate (shared with Francois, Baron Englert) and

emeritus professor at the University of Edinburgh. He is best known for his 1960s

proposal of broken symmetry in electroweak theory, explaining the origin of mass of

elementary particles in general and of the W- and Z- bosons in particular. This so-

called Higgs mechanism, which was proposed by several physicists besides Higgs at

about the same time, predicts the existence of a new particle, the Higgs boson. CERN

announced on 4 July 2012 that they had experimentally established the existence of a

Higgs-like boson, but further work is needed to analyze its properties and see if it has

the properties expected from the Standard Model Higgs boson. Higgs himself said on

this occasion, that he did not expect the experimental confirmation of his theory in

his life. On 14 March 2013, the newly discovered particle was tentatively confirmed

to be “+” parity and zero spin, two fundamental criteria of a Higgs boson, making

it the first known scalar particle to be discovered in nature. The Higgs mechanism

is generally accepted as an important ingredient in the Standard Model of particle
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physics, without which certain particles would have no mass.

Francois, Baron Englert (born 6 Novem-

ber 1932) is a Belgian theoretical physi-

cist and 2013 Nobel prize laureate

(shared with Peter Higgs). He is Pro-

fessor emeritus at the Université libre de

Bruxelles where he is member of the Ser-

vice de Physique Théorique. He is also

a Sackler Professor by Special Appoint-

ment in the School of Physics and As-

tronomy at Tel Aviv University and a

member of the Institute for Quantum

Studies at Chapman University in Cal-

ifornia. He was awarded the 2010 J.

J. Sakurai Prize for Theoretical Parti-

cle Physics (with Gerry Guralnik, C. R.

Hagen, Tom Kibble, Peter Higgs, and

Robert Brout), the Wolf Prize in Physics

in 2004 (with Brout and Higgs) and the

High Energy and Particle Prize of the

European Physical Society (with Brout

and Higgs) in 1997 for the mechanism

which unifies short and long range in-

teractions by generating massive gauge

vector bosons. He is the recipient of the

2013 Prince of Asturias Award in techni-

cal and scientific research, together with

Peter Higgs and the CERN.

The main feature of our approach is the assumption about the un-

derlying (softly broken) conformal symmetry which protects the jump
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of the Higgs boson mass to a cut-off scale. We will call this mechanism

the spontaneous conformal symmetry breaking (SCSB) [18]. Evidently,

in this case one should require the conservation of the conformal sym-

metry of the genuine theory fundamental Lagrangian. It will be shown

that the SCSB provides the breaking of the gauge, chiral, and con-

formal symmetries on equal footing. Therefore, it allows one also to

introduce the universal relation between different condensates deter-

mined relative to the corresponding mass power depending on quantum

statistics (see Eq. (11.19)). Our basic assumption is that this relation

is not violated by the SCSB.

Following the ideas of Nambu [14, 15], we generate the SCSB of the

Higgs potential, using the top quark condensate. It is assumed that the

general construction of the SM should remain unchanged. Let us start

with the conformal invariant Lagrangian of Higgs boson interactions

(11.12)

Lint = −
λ2

8
h4 − gth t̄t. (11.13)

Here, for the sake of discussion, we consider only the most intensive

terms: the self-interaction and the Yukawa ones of the top quark cou-

pling constant gt. From the beginning, we assume that the O(4) sym-

metry of the Higgs sector is spontaneously broken to the O(3) symme-

try. Contributions of other interaction terms will be considered below

as well.

Keeping in mind all these results, we are ready to treat the contri-

bution of the top quarks to the effective potential [4] generated by the
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term Eq. (11.13):

Vcond(h) =
λ2

8
h4 − gt〈tt̄ 〉h. (11.14)

The extremum condition for the potential

dVcond

dh

∣∣∣∣∣
h=v

= 0

yields the relation

v3
λ2

2
= gt〈tt̄ 〉. (11.15)

This relation follows from the fact that the Higgs field has a zero

harmonic v in the standard decomposition of the field h over harmonics

h = v +H,

where H is the sum of all nonzero harmonics with a condition∫
d3xH = 0.

Here, the Yukawa coupling of the top quark gt ≈ 1/
√
2 is known from

the experimental value of top quark mass

mt = vgt � 173.4 GeV.

The spontaneous symmetry breaking yields the potential minimum

which results in the nonzero vacuum expectation value v and Higgs

boson mass. The substitution h = v + H into the potential (11.14)

leads to the result

Vcond(h) = Vcond(v) +
m2

H

2
H2 +

λ2v

2
H3 +

λ2

8
H4, (11.16)
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which defines the scalar particle mass as

m2
H ≡

λ2

2
3v2. (11.17)

We stress that this relation is different from the one (mH = λv) which

emerges in the SM with the Higgs potential (11.12).

With the aid of Eqs. (11.15), (11.17), the squared scalar particle

mass can be expressed in terms of the t quark condensate:

m2
H =

3gt〈tt̄ 〉
v

. (11.18)

The hypothesis on universality of the conformal invariant ratios of

the field condensate densities and the corresponding mass powers (see

Eqs. (11.9)–(11.11)) allows us to determine the t quark condensate

density with the aid of the light quark one.

11.3 Estimation of the Higgs boson mass

The supposition about the Casimir condensate density of the light

quarks in Chapter 10 (see (10.44), (11.9)–(11.11)) allows us to deter-

mine the Casimir condensate density of the t-quark

〈tt̄〉
m3

t

=
〈qq̄〉
m3

q

, (11.19)

and estimate the Higgs boson mass. We consider the left and right hand

sides as scale invariants. However, their numerators and denominators

are scale variables. Therefore, we have to choose the proper scales. For

the left hand side, the scale is naturally defined by the known t quark

mass. We define the scale of the right hand side by the light quark
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condensate density 〈qq̄〉. It is quite accurately determined in the chiral

limit of the QCD low-energy phenomenology [12]:

〈qq̄〉 � (250 eV)3. (11.20)

At this scale, the light quark possesses the constituent mass

mq ≈ 330 MeV

estimated in the QCD-inspired model [19]. With the aid of Eq. (11.19)

one determines the top quark condensate value

〈tt̄ 〉 ≈ (126 GeV)3. (11.21)

Such a large value of the top quark condensate does not affect the

low energy QCD phenomenology, since its contribution is very much

suppressed by the ratio of the corresponding energy scales (squared).

By means of Eqs. (11.19), (11.20), in the tree approximation we

obtain for the scalar particle mass

(m0
H)

2 = (130± 15 GeV)2 . (11.22)

Here, we have assigned 10% uncertainty into the ratio light quark

condensate and its constituent mass.

The tentative estimate of the Higgs boson mass given above is

rather preliminary. In order to improve this value we consider below

the contributions of other condensates at the tree level. The mass can

be also affected by radiative corrections which will be analyzed else-

where. Under the assumption of γ0 universality, the normal ordering

of the field operators

HH =: HH : +〈HH〉
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yields
〈HH〉
m2

H

= γ0. (11.23)

The normal ordering of the vector fields ViVj defines the vector field

condensates normalized on each degree of freedom

〈V V 〉 = M2
V · γ0, V = W±, Z , (11.24)

calculated in the gauge V0 = 0. Here, MV is a corresponding mass of

the vector field. Transverse and longitudinal components are consid-

ered on equal footing in the reduced phase space quantization of the

massive vector theory [20]. As a result, one obtains the upper limit of

the vector field condensate contributions for the mass formula (11.22)

at the tree level for the SM

Δm2
H =

3λ2

4
〈HH〉+ 3

8
g2
(
2〈WW 〉+ 〈ZZ〉

cos2 θW

)
, (11.25)

where g and θW are the Weinberg coupling constant and the mixing

angle. In Eq. (11.25) the first term is a contribution to the square mass

due to the very scalar field condensate 〈HH〉. Taking into account the

values of coupling constants, mixing angle, masses, and condensates,

we arrive to the following result

mH = m0
H

[
1 + 4

Δm2
H

v2

]1/2
≈ m0

H × (1 + 0.02) , (11.26)

where m0
H is given by Eq. (11.22). If there exist additional heavy

fields interacting with the SM Higgs boson, their condensates would

contribute to the Higgs boson mass.



11.4. Summary and literature 345

11.4 Summary

In conclusion, we suggest the condensate mechanism of Spontaneous

Conformal Symmetry Breaking in the Standard Model of strong and

electroweak interactions. We suppose that this mechanism is related to

the vacuum Casimir energy in the Standard Model. Our key assump-

tion is that the condensates of all fields normalized to their masses and

degrees of freedom represent a conformal invariant. This idea enables

us to avoid efficiently the problem of the regularization of the divergent

tadpole loop integral. The top quark condensate supersedes the phe-

nomenological negative square mass term in the Higgs potential. In

contrast to the standard Higgs mechanism, the condensate mechanism

allows one to establish relations between all condensates and masses

including the Higgs one. According to our results, the latter is of the

order 130± 15 GeV, if the universality relation (11.19) holds true.
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Chapter 12

Electroweak vector

bosons

12.1 Cosmological creation of electroweak

vector bosons

Let us consider the vector massive particles in the conformal flat met-

rics

d̃s
2
= g̃μνdx

μdxν = (dη)2 − (dxi)2, (12.1)

in the cosmological model, with the time interval

dη = N̄0(x
0)dx0 (12.2)

that follows from the homogeneous approximation of our gravitation

theory developed in the previous chapters. The field motion equations

including the dilaton one are derived from the action

W = WCas +Wv . (12.3)
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Here

WCas = −V0

x0
2∫

x0
1

dx0N̄0

[(
da

N̄0dx0

)2

+ ρCas(a)

]
(12.4)

is the action of the cosmological scale factor in the supposition of the

Casimir energy dominance

ρCas(a) =
H2

0

a2
;

Wv =

∫
d4x
√
−g
[
−1

4
FμνF

μν − 1

2
M 2

v vμv
μ

]
(12.5)

is the vector boson action.

The classification of observational data in the framework of the

considered model of the quantum Universe as representations of the

A(4) ⊗ C group supposes that the concept of a particle in QFT can

be associated with the fields that have positive energy and the posi-

tive probability. The negative energies are removed by resolution of

constraints and the causal quantization in the reduced phase space.

According to the causal quantization the creation operator of a parti-

cle with a negative energy is replaced by the annihilation operator of

a particle with a positive energy. The results of such quantization in

the metrics (12.1) are given in Appendix A.

The Quantum Universe model supposes the identification of real

observational magnitudes with the conformal variables. This identi-

fication yields the Universe evolution that differs from the Standard

model. In the following we shall use the Hamiltonian form of the field

Fourier harmonics

vIk =

∫
d3xeık·xvI(x).
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The action takes the form

W =

x0
2∫

x0
1

dx0
∑
k

[
p⊥k ∂0v

⊥
k + p

||
k∂0v

||
k

]
+ (12.6)

+

x0
2∫

x0
1

dx0
(
−Pa

da

dx0
+N0

[
P 2
a

4V0

− (H⊥ +H ||)

])
,

where p⊥k ,p
||
k are transversal and longitudinal momenta and

H⊥ =
∑
k

1

2

[
p⊥k

2 + ω2v⊥k
2
]
, (12.7)

H || =
∑
k

1

2

[(
ω(a, k)

Mva

)2

p
||
k
2 + (Mva)

2v
||
k
2

]
are the free Hamiltonian with one-particle energy

ω(a, k) =
√
k2 + (Mva)2;

here we introduced the notions

p
||
k
2 ≡ (p

||
k · p

||
−k).

Let us consider the case of the rigid equation state with initial data

a(η) = aI
√
1 + 2HI(η − ηI), (a2IHI = H0),

aI = a(η = ηI) :

τ = 2ηHI =
η

ηI
, x =

q

MI
, γv =

MI

HI
, (12.8)

MI = Mv(η = ηI).

In terms of the conformal variables the one particle energy takes

the form

ωv = HIγv
√

1 + τ + x2.
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Then the Bogoliubov equations are[
γv
2

√
(1 + τ) + x2 − dθ

||
v

dτ

]
tanh(2r||v) (12.9)

= −
[

1

2(1 + τ)
− 1

4 [(1 + τ) + x2]

]
sin(2θ||v),

d

dτ
r||v =

[
1

2(1 + τ)
− 1

4 [(1 + τ) + x2]

]
cos(2θ||v),[

γv
2

√
(1 + τ) + x2 − d

dτ
θ⊥v

]
tanh(2r⊥v ) = −

[
1

4 [(1 + τ) + x2]

]
sin(2θ⊥v ),

d

dτ
r⊥v =

[
1

4 [(1 + τ) + x2]

]
cos(2θ⊥v ). (12.10)

We solved these equations numerically [1, 2, 3] at positive values of

the momentum x = q/MI , considering that the asymptotic behavior

of the solutions is given by

r(τ)→ const · τ, θ(τ) = O(τ), τ → +0.

The distributions of longitudinalN||(x, τ) and transverseN⊥(x, τ) vec-

tor bosons are given in Fig. 12.1 for the initial data HI = MI , γv = 1.

From the figure, it can be seen that for x > 1 the longitudinal

component of the boson distribution is everywhere much greater than

the transverse component, demonstrating a more copious cosmological

creation of longitudinal bosons in relation to transverse bosons. A slow

decrease in the longitudinal component as a function of momentum

leads to a divergence of the integral for the density of product particles

nv(η) =
1

2π2

∞∫
0

dqq2
[
N||(q, η) + 2N⊥(q, η)

]
→∞. (12.11)
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Figure 12.1: Longitudinal (N ||(q, η)) and transverse (N⊥(q, η)) components of the

boson distribution versus the dimensionless time τ = 2ηHI and the dimensionless

momentum x = q/MI at the initial data MI = HI MI = HI (γv = 1) [1, 2, 3].

The divergence of the integral in (12.11) stems from idealizing the

problem of the production of a pair of particles in a finite volume for a

system where there are simultaneous interactions associated with the

removal of fields having a negative probability and where identical par-

ticles affect one another (so-called exchange effects). It is well-known

[4, 5] that in this case one deals with the production of a set (rather

that a pair) of particles, which acquires, owing to the aforementioned

interactions, the properties of a statistical system. As a model of such

a statistical system, we consider here a degenerate Bose – Einstein gas

with the Boltzmann – Chernikov distribution function that has the

form

F (Tv, q,Mv(η), η) =

{
exp

[
ωv(η)−Mv(η)

Tv

]
− 1

}−1
, (12.12)

(we use the system of units where the constant is kB = 1), where Tv

is the boson temperature. We set apart the problem of theoretically

validating such a statistical system and its thermodynamic exchange,
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only assuming fulfillment of specific conditions ensuring its existence.

In particular, we can introduce the notion of the temperature Tv only in

an equilibrium system. A thermal equilibrium is thought to be stable if

the time within which the vector-boson temperature Tv is established,

that is, the relaxation time [6, 7]

ηrel = [n(Tv)σscat]
−1 (12.13)

[as expressed in terms of their density n(Tv) and the scattering cross

section σscat ∼ 1/M2
I ], does not exceed the time of vector-boson-

density formation owing to cosmological creation, the latter time be-

ing controlled by the primordial Hubble parameter, ηv = 1/HI . From

(12.13), it follows that the particle-number density is proportional to

the product of the Hubble parameter and the mass squared (this prod-

uct being an integral of the motion in the present example); that is,

n(Tv) = n(Tv, ηv) � CHHIM
2
I , (12.14)

where CH is a constant. The expression for the density n(Tv, η) in

Eq. (12.14) assumes the form

nv(Tv, η) =
1

2π2

∞∫
0

dqq2F (Tv, q,M(η), η)
[
N||(q, η) + 2N⊥(q, η)

]
.

(12.15)

Here, the probability of the production of a longitudinal and a trans-

verse boson with a specific momentum in an ensemble featuring ex-

change interaction is given (in accordance with the multiplication law

for probabilities) by the product of two probabilities, the probability

of their cosmological creation, N||,⊥, and the probability of a single-

particle state of vector bosons obeying the Bose – Einstein distribution
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in (12.12). A dominant contribution to the integral in (12.15) from the

region of high momenta (in the above idealized analysis disregarding

the Boltzmann factor this resulted in a divergence) implies the rela-

tivistic temperature dependence of the density,

n(Tv, ηv) = CTT
3
v , (12.16)

where CT is a coefficient. A numerical calculation of the integral in

(12.15) for the values Tv = MI = HI , which result from the assumption

about the choice of initial data (CT = CH), reveals that this integral

is weakly dependent on time in the region η ≥ ηv = H−1
I and, for the

constant CT , yields the value

CT =
nv

T 3
v

=
1

2π2

{
[1.877]|| + 2[0.277]⊥ = 2.431

}
, (12.17)

where the contributions of longitudinal and transverse bosons are la-

beled with the superscripts (||) and ⊥), respectively.

On the other hand, the lifetime ηL of boson product in the early

Universe in dimensionless units, τL = ηL/ηI , where ηI = (2HI)
−1, can

be estimated by using the equation of state and the W-boson lifetime

within the Standard Model. Specifically, we have

1 + τL =
2HI sin

2 θ(W )

αQEDMW (ηL)
=

2 sin2 θ(W )

αQEDγv
√
1 + τL

, (12.18)

where θ(W ) is the Weinberg angle, αQED = 1/137 and γv = MI/HI ≥ 1.

From the solution to Eq. (12.18),

τL + 1 =

(
2 sin2 θ(W )

γvαQED

)2/3

� 16

γ
2/3
v

(12.19)



356 12. Electroweak vector bosons

it follows that, at γv = 1, the lifetime of bosons product is an order of

magnitude longer than the Universe relaxation time:

τL =
ηL
ηI
� 16

γ
2/3
v

− 1 = 15. (12.20)

Therefore, we can introduce the notion of the vector-boson tempera-

ture Tv, which is inherited by the final vector-boson-decay products

(photons). According to currently prevalent concepts, these photons

form Cosmic Microwave Background radiation in the Universe. Indeed,

suppose that one photon comes from the annihilation of the products

of W±-boson decay and that the other comes from Z bosons. In view

of the fact that the volume of the Universe is constant within the evo-

lution model being considered, it is then natural to expect that the

photon density coincides with the boson density [1]

nγ = T 3
γ

1

π2
× 2.404 � nv. (12.21)

On the basis of (12.14), (12.16), (12.17), and (12.21), we can estimate

the temperature Tγ of Cosmic Microwave Background radiation arising

upon the annihilation and decay of W− and Z− bosons. This yields

Tγ �
[

2.431

2.404× 2

]1/3
Tv = 0.8× Tv, (12.22)

where the vector-boson temperature

Tv = [HIM
2
I ]

1/3

is an invariant quantity within the model being considered. This in-

variant can be estimated at

Tv = [HIM
2
I ]

1/3 = [H0M
2
W ]1/3 = 2.73/0.8 K = 3.41 K, (12.23)
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which is a value that is astonishingly close to the observed temperature

of Cosmic Microwave Background radiation. In the present case, this

directly follows, as is seen from the above analysis of our numerical

calculations, from the dominance of longitudinal vector bosons with

high momenta and from the fact that the relaxation time is equal to the

inverse Hubble parameter. The inclusion of physical processes, like the

heating of photons owing to electronpositron annihilation [8], amounts

to multiplying the photon temperature (12.22) by (11/4)1/3 = 1.4;

therefore, we have

Tγ(e
+ e−) � (11/4)1/3 × 0.8 Tv = 2.77 K . (12.24)

We note that in other models [9] the fluctuations of the product-particle

density are related to primary fluctuations of Cosmic Microwave Back-

ground radiation [10].

One can find the relation of the energy density of the vector bosons

ρv(ηI) ∼ T 4 ∼ H4
I ∼M 4

I

to the Universe density:

ρv(ηI)

ρtot(ηI)
=

M 2
I

(MPlaI)2
=

M 2
W

M 2
Pl

= 10−34. (12.25)

This value indicates that the inverse effect of product particles on the

evolution of the Universe is negligible.

Thus, the quantum version of General Relativity and the Standard

Model, considered as the result of a spontaneous breakdown of the

scale symmetry of a conformal-invariant theory in a specific frame and

initial data can explain the origin of the Universe and its matter from

vacuum.
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12.2 Sources of CMB radiation anisotropy

In Sections 7.3 and 9.2 we discussed two different methods of the esti-

mation of the primordial boson number. The first of them is the direct

solution of the equations for Bogoliubov transformation coefficients

with initial data determined by the Planck principle of minimal action

for the Universe filled in the Casimir vacuum energy. The second is the

cut of the momentum integral by means of the Boltzmann – Chernikov

distribution function [5, 11], where the temperature parameter value

(12.23), (12.24) is determined from the quantum uncertainty principle,

and this conformal temperature is the cosmological motion integral of

the vacuum equation of state with the dominance of the same Casimir

energy.

The coincidence of these two different methods of calculation of

the primordial boson number testifies to the early thermalization of

the primordial bosons before the instance of formation of their decay

products that include the Cosmic Microwave Background radiation.

Really, the arguments considered before, mean that the CMB pho-

tons can inform us about the parameters of electroweak interactions

and masses, including the Higgs particle mass [12], and a possibility to

estimate the magnitude of the CMB anisotropy.

Its observational value about α2
QED ∼ 10−5 [13] testifies to the dom-

inance of the two photon processes. Therefore, the CMB anisotropy
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revealed in the region of the three peaks

220± 20, 546± 50, 800± 80

can reflect parameters of the primordial bosons and their decay pro-

cesses, in particular

h→ γγ, W+W− → γγ, and ZZ → γγ.

These values were known until quite recently with accuracy as mini-

mum 10%. For their description by means of the Standard cosmolog-

ical model one uses the metric scalar perturbations with the negative

probability [14], that are forbidden in the considered Conformal Gen-

eral Relativity with the vacuum postulate [15], as we have seen above

in Chapter 8.

In this case, two-photon decays of primordial Higgs particles and

annihilation processes of primordialW , and Z bosons can explain three

clear peaks in the CMB power spectrum without any acoustic waves

with negative energy [16], if the values for multipole momenta �P of

their processes are proportional to number of emitters at the horizon

length

�P = H̃−1(zP)M̃(zP) ∼ (1 + zP)
−3

(in accordance with the new CC analysis of Supernovae type Ia data)

and the energy of any photon is proportional to the mean photon

energy in CMB multiplied by the effective scale factor

(1 + zP )
−1 ∼ �

1/3
P

in accordance with the experience of description of the recombination

epoch and the primordial helium abundance [17, 18].
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One can be convinced that first three peaks

�1 = 220, �2 = 546, �3 = 800

reflect the ratio of W and Z masses

MZ/MW = 1.134 ≈ (800/546)1/3 = 1.136, (12.26)

consequently,

sin2 θW ≈ 0.225,

and the value of Higgs particle mass as

mh = 2MW (�1/�2)
1/3 = (12.27)

= 2MW (220± 20/546± 50)1/3 � 120± 8GeV.

The Higgs boson mass is close to the present fit of the LEP experi-

mental data supporting rather low values just above the experimental

limit

114.4 < mh < 128 GeV.

To get a more accurate estimate of the Higgs mass and a better descrip-

tion of the CMB power spectrum within the model under considera-

tion, one has to perform an involved analysis of the kinetic equations

for nonequilibrium Universe [6] with primordial particle creation and

subsequent decays.

For a reader who wishes to describe these peaks as acoustic distur-

bances according to the formulas given in the book [14], we will make

the following remarks. The first is the choice of conformal magnitudes,

as the real observables, instead of worlds. The second is the choice of
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the rigid state equation, instead of dominance of radiation. The third

is the history of evolution of masses, instead of temperature history of

the Universe. In this case, all the characteristic resonance processes

of the history of evolution of masses (like the transition from plasma

to the atoms) occur at the same values of the redshift z � 1100, as in

the temperature history of the Universe. However, in the Conformal

cosmology the constant temperature (12.23), (12.24) plays the role of

a fundamental parameter, determined from the microscopic quantum

theory.

12.3 Baryon asymmetry of the Universe

It is well known that, because of a triangle anomaly, W− and Z−
boson interaction with lefthanded fermion doublets

ψ
(i)
L , i = 1, 2, ...nL,

leads to a nonconservation of the number of fermions of each type (i)

[19, 20, 21, 22],

∂μj
(i)
Lμ =

1

32π2
TrF̂μν

∗F̂μν, (12.28)

where

F̂μν = −ıF a
μνgW τa/2

is the strength of the vector fields

F a
μν = ∂μA

a
ν − ∂νA

a
μ + gεabcAb

μA
c
ν.

In each of three generations of leptons (, μ, τ) and color quarks, we

have four fermion doublets, in all there are: nL = 12 of them. Each
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of the 12 fermions doublets interacts with the triplet of non-Abelian

fields

A1 = (W (−)+W (+))/
√
2, A2 = ı(W (−)−W (+))/

√
2, A3 = Z/ cos θ(W )

with constant g = e/ sin θ(W ).

Taking the integral of the quality in (12.28) with respect to confor-

mal time and three-dimensional variables d4x, we can find a relation

between the change

ΔF (i) =

∫
d4x∂μj

(i)
Lμ

of the fermionic number

F (i) =

∫
d3xj

(i)
0

and the Chern class functional:

NCS =
1

32π2

∫
d4xTrF̂μν

∗F̂μν.

The difference is equal to

ΔF (i) = NCS �= 0, i = 1, 2, ..., nL. (12.29)

The equality (12.29) is considered as a selection rule: that, the fermionic

number changes identically for all fermion types [21]:

NCS = ΔLe = ΔLμ = ΔLτ = ΔB/3,

at the same time, the change in the baryon charge B and the change

in the lepton charge

L = Le + Lμ + Lτ
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are related to each other in such a way that B −L is conserved, while

B+L is not invariant. Upon taking the sum of the equalities in (12.29)

over all doublets, one can obtain

Δ(B + L) = 12NCS.

One can evaluate the expectation value of the Chern functional

(12.29) (in the lowest order of perturbation theory in the coupling

constant) in the Bogoliubov vacuum b|0 >sq= 0. Specifically, we have

NCS = NW ≡ −
1

32π2

ηL∫
0

dη

∫
d3x 〈0|TrF̂W

μν
∗F̂W

μν |0〉, (12.30)

where ηLW
is the W- boson lifetime, and NW is the contribution of the

primordial W–bosons. η = 0 and η = ηL is given by

NW = 2αWV0

ηL∫
0

dη

∞∫
0

dk|k|3RW(k, η),

where

αW = αQED/sin
2 θW

and

RW =
ı

2
b < 0|b+b+ − b−b−|0 >b= − sinh(2r(ηL)) sin(2θ(ηL))

is the Bogoliubov condensate, that is specified by relevant solutions to

the Bogoliubov equations.

By calculating the integral, with time values of life of vector bosons

τLW
= 15, nγ � nv,
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we obtain the estimate of the average value of the functional of Chern

– Simons on states of the primary bosons [22]

NCS

V0

=
(NW )

V0

=
αQED

sin2 θ(W )

T 34× 1.44 = 0.8 nγ. (12.31)

Hence we obtain the following estimate of the value of violation of

density of fermion number in the considered cosmological model [22]

ΔF (i)

V0

=
NCS

V0

= 0.8 nγ, (12.32)

where

nγ = 2.402× T 3/π2

is the density of number of relic photons. According to Sakharov [23],

the violation of the fermion number is frozen by CP - non-conservation,

which leads to the density of baryon numbers

nb = XCP

ΔF (i)

V(r)
� XCPnγ . (12.33)

where a multiplier XCP is defined by electroweak interaction between

d and s quarks (d+ s → s+ d), responsible for CP -violation, exper-

imentally observed in the decay of K-mesons [24].

From the ratio of the number of baryons to number of photons it

is possible to estimate the constant of ultra-weak interaction: XCP ∼
10−9. Thus, the evolution of the Universe, the primary vector bosons

and ultra-weak interaction [24], responsible for the violation of CP -

symmetry with the constant XCP ∼ 10−9, lead to the baryonic asym-

metry of the Universe with a density

ρb(η = ηL) � 10−9 × 10−34ρcr(η = ηL), (12.34)
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where for ηL it is possible to assess the future evolution of the density

of baryons, select the lifetime of the W-boson.

After the decay of bosons their temperature is inherited by the

Cosmic Microwave Background radiation. All subsequent evolution of

matter in a constant cold Universe scenario repeats the known hot

Universe one [25], because this evolution is defined as a conformally

invariant relation of mass and temperature m/T .

Formulae (12.18), (12.25), and (12.34) provide an opportunity to

assess the ratio of the present values of the baryon density and Casimir

energy density played the role of primary quintessence of the considered

model:

Ωb(η0) =
ρb(η0)

ρcr(η0)
=

[
a0
aL

]3
=

[
a0
aI

]3 [
aI
aL

]3
. (12.35)

It is take into account that the baryon density increases as mass, and

the density of Casimir energy decreases as the inverse square of the

mass. Recall the value of relationships[
a0
aI

]3
∼ 1043,

and relation [aI/aL]
3 given by a lifetime of bosons (12.19) and by the

equation of state of matter a(η) ∼ √η, hence we obtain Ωb(η0): taking

into account the delay of baryon production for the life of the vector

bosons

Ωb(η0) =

[
a0
aL

]3
10−43 ∼ 1043

[
ηI
ηL

]3/2
10−43 ∼

[
αQED

sin2 θ(W )

]
∼ 0.03,

(12.36)

which is consistent with observations [26].
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12.4 Summary

General Relativity and Standard Model are considered as a theory of

dynamical scale symmetry with definite initial data compatible with

the accepted Higgs mechanism. In this theory the Early Universe be-

haves like a factory of electroweak bosons and Higgs scalars, and it

gives a possibility to identify three peaks in the Cosmic Microwave

Background power spectrum with the contributions of photonic de-

cays and annihilation processes of primordial Higgs, W and Z bosons

in agreement with the QED coupling constant,Weinbergs angle, and

Higgs particle mass of about 120± 6 GeV.

The key points of our construction are the choice of the conformal

variables and conformal interval. Thus the Standard Model supple-

mented with the Casimir vacuum energy does not contradict with the

following scenario of the evolution of the Universe within the Confor-

mal cosmology [27]:

η ∼ 10−12s, creation of vector bosons from a “vacuum”;

10−12s < η < 10−10s, formation of baryon-antibaryon asymmetry;

η ∼ 10−10s, decay of vector bosons;

10−10s < η < 1011s, primordial chemical evolution of matter;

η ∼ 1011s, recombination or separation of Cosmic Microwave Back-

ground radiation;

η ∼ 1015s, formation of galaxies;

η > 1017s, terrestrial experiments and evolution of Supernovae.

Our description is not complete, but it gives us a clear consistent

statement of the problems in the framework of the well established
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principles of classification of observational and experimental facts in

physics and astrophysics. There are tendencies in modern cosmology

[16, 28] to ignore these principles, in particular, to replace the ini-

tial data with the fundamental parameters of the equations of motion.

However, this replacement leads to contradictions in modern models

in applying mathematical tools of the type of the classification of rel-

ativistic states, or the Hamiltonian method because the latter were

developed especially to solve equations with initial data. The scale-

invariant cosmological model has several features quite different from

those in the widely accepted ΛCDM model.

In particular, the model considered here does not need

1) considering acoustic waves PD �= 0 and their creation from vac-

uum, when the vacuum postulate excludes these waves by the Dirac

constraint PD = 0;

2) proposing “a dynamical inflation” V0 �= VI and K �= 0, when the

inflation equation ρ = K+ V = −p = −K+ V is valid only if K = 0;

3) proclaiming the dominance of the potential term VI/KI ∼ a−6

at the Planck epoch, when a−1I ∼ 1061 is valid, and the kinetic term

K has a huge enhancement factor of a−6I ∼ 10366 times with respect to

the potential one V;

4) use of the Planck epoch initial data in the dynamical theory,

where these initial data should be free from any fundamental parame-

ters of equations including the Planck one.

Thus, here we propose to construct Cosmology as a theory of a

quantum relativistic Universe in a direct analogy to the quantum field

theory. In the model the Universe evolves in the field super-space of
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events [29] with respect to four-dimension interval in the Minkowskian

space-time. The latter is defined as the tangent space-time of invisible

Riemannian manifold as an object of general coordinate transforma-

tions that lead to constraints including the energy one.

Within the conformal formulation of the General Theory of Rela-

tivity and the Standard Model, we have investigated conditions under

which the origin of matter can be explained by its cosmological creation

from a vacuum. We have presented some arguments in support to the

statement that the number of product vector-boson pairs is sufficient

for explaining the total amount of observed matter and its content, pro-

vided that the Universe is considered as a conventional physical object

that is characterized by a finite volume and a finite lifetime and which

is described by a conformal invariant version of the General Theory of

Relativity and the Standard Model featuring scale invariant equations

where all masses, including the Planck mass, are replaced by the dila-

ton variable and where the spatial volume is replaced by a constant. In

this case, the energy of the entire Universe in the field space of events

is described by analogy with the description of the energy of a rela-

tivistic quantum particle in the Minkowski space: one of the variables

(dilaton in the case being considered) becomes an evolution parame-

ter, while the corresponding canonically conjugate momentum assumes

the role of energy. This means that measured quantities are identified

with conformal variables that are used in observational cosmology and

in quantum field theory in calculating cosmological particle creation

from a vacuum. Within the errors of observation, this identification of

conformal variables with observables is compatible with data on the
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chemical evolution of matter and data on Supernovae, provided that

cosmic evolution proceeds via the regime dominated by the density

of the vacuum. Thus, the identification of conformal coordinates and

variables used in observational cosmology and in quantum field theory

with measured quantities is the first condition under which the origin of

matter can be explained by its cosmological creation from the vacuum.

This is possible within a conformal invariant unified theory, where the

Planck mass, which is an absolute quantity in the General Theory of

Relativity, becomes an ordinary present-day value of the dilaton and

where the Planck era loses its absolute meaning. The construction of

a stable vacuum of perturbation theory by eliminating (through the

choice of gauge-invariant variables) unphysical fields whose quantiza-

tion leads to a negative normalization of the wave function in this

reference frame is the second condition.

Finally, the elimination of divergences in summing the probabilities

of product particles over their momenta by thermalizing these particles

in the region where the Boltzmann H-theorem is applicable is the third

condition. Under these conditions, it has been found in the present

study that, in describing the creation of vector bosons from a vacuum in

terms of conformal variables, one arrives at the temperature of Cosmic

Microwave Background radiation as an integral of the motion of the

Universe and at the baryon antibaryon asymmetry of the Universe with

the superweak-interaction coupling constant and the baryon density of

these results being in satisfactory agreement with the corresponding

observed values and being compatible with the most recent data on

Supernovae and nucleosynthesis.
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In Chapter 9, it was shown that only gravitons, Higgs bosons (and

the corresponding longitudinal components of the vector bosons) can

be created from the vacuum in an empty Universe. One of the central

results is the creation from the vacuum of 1088 particles of boson Higgs

field, decays of which form all the material content of the Universe in

accordance with modern observational facts on Supernovae and pri-

mordial nucleosynthesis. We have presented arguments in favor of the

fact that the data on Supernovae, primordial nucleosynthesis, and cos-

mological particle production converted to units of relative standard

length, can be described in conformal evolution scenario of the Uni-

verse by a single regime of the Casimir vacuum energy dominance.

This chapter shows that transversal bosons in the course of their life-

times, form baryon asymmetry of the Universe as a consequence of

“polarization” of these bosons the vacuum Dirac sea of left fermions

according to the selection rules of the Standard Model [21]. In this case

the difference between the number of baryons and leptons remains, and

their sum is not preserved. The experimentally observed ultra-weak

interaction [24], responsible for the violation of CP-symmetry with the

constant XCP ∼ 10−9, freezes the baryon asymmetry of the Universe

with a density (12.34). After the decay of bosons, their temperature

is inherited by Cosmic Microwave Background radiation.

All subsequent evolution of matter in the constant cold Universe

follows the known scenario of the hot Universe [25], because this evo-

lution is defined as conformally invariant relations of mass and tem-

perature m/T . Baryon density increases as the mass, and density of

the Casimir energy decreases as the inverse square of the mass. As a
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result, the present value of the relative baryon density is equal, up to

a factor of order unity, to the Weinberg constant

Ωb(η0) �
αQED

sin2 θW
∼ 0.03

in agreement with observations.

In this Chapter we have shown that the standard definition of the

temperature of the primary boson (a fundamental constant in the con-

formal evolution of the Universe) as the square root of the product

of the density of the particles and their scattering cross sections is

not contrary to the direct calculation of number of produced particles

with a constant temperature. In other words, the temperature of the

primary vector W-, Z-bosons can be estimated from the same formula

which is used to describe the chemical evolution of matter [25]: time of

setting of temperature, equal to the inverse of the product of the parti-

cle density on the cross section of scattering can not exceed the lifetime

of the Universe, which is proportional to the inverse of the Hubble pa-

rameter. The temperature history of the hot Universe, rewritten in

conformal variables, looks like the history of evolution of the masses of

elementary particles in the Universe at a constant cold temperature of

the CMB.

Independence of the temperature of the background radiation TCMB ∼
2.725 K from the redshift z, at first glance, is in contrast to the obser-

vation 6. 0 K ¡ TCMB (z = 2.3371) ¡ 14 K. The relative occupancy of the

various energy levels, where the temperature was brought to this obser-

vation, follows from the Boltzmann statistics. However, the argument

of the Boltzmann factor as the weight ratio of the temperature has the
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same dependence on factor z and in the cold Universe. Therefore, this

ratio can be interpreted as the dependence of the energy levels, id est

mass, of redshift at constant temperature. Distribution of chemical

elements as well, determined mainly by Boltzmann factors, depend on

conformal invariant relationship of temperature to mass.
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Chapter 13

Conformal cosmological

perturbation theory

13.1 The equations of the theory of

perturbations

In this Chapter, the conformal cosmological theory of perturbations

will be considered for calculation of the lapse functionN and nonzeroth

harmonics of dilaton D, with a certain geometric interval (5.67)

d̃s
2

= e−4DN 2dη2 − (13.1)

−
(
dX(b) −X(c)[ω

R
(c)(b)(d) + ωL

(c)(b)(d)]−N(b)dτ
)2

,

where

N =
〈
√
H̃〉2

H̃
.
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Recall that in the general case the local energy density (5.31) is

H̃ = −4

3
e−7D/2�e−D/2 +

∑
J=0,2,3,4,6

e−JDTJ(F̃ ), (13.2)

� = ∂i[e
i
(b)e

j
(b)∂j]

is the Beltrami – Laplace operator. The sum is over of the densities

of states: rigid radiation (J = 2), matter (J = 3), curvature (J = 4),

Λ-type term (J = 6), respectively, in terms of the conformal fields

F̃ (n) = enDF (n), (13.3)

where is the conformal weight.

In this case, the equation of the nonzeroth harmonics (5.65) and

(5.66) takes the form [1]

TD − 〈TD〉 = 0, (13.4)

where

TD =
2

3

{
7N e−7D/2�e−D/2 + e−D/2�

[
N e−7D/2

]}
+ (13.5)

+N
∑

J=0,2,3,4,6

Je−JDTJ .

One can solve all Hamiltonian equations (13.2), and (13.4) to define

simplex components

ω̃(0) = e−2DNdτ, N =
〈
√
H̃〉√
H̃

, (13.6)

ω̃(b) = dX(b) −X(c)ω
R
(c)(b) +N(b)dτ. (13.7)

Recall that in the lowest order of perturbation theory, ωR
(c)(b) describes

the free one-component transverse strong gravitational wave considered
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in Section 3. The longitudinal component of the shift-vector N(b),

unambiguously determined by the constraint (5.50), becomes equal to

∂ηe
−3D + ∂(b)

(
e−3DN(b)

)
= 0. (13.8)

13.2 The solution of the equations for

small fluctuations

For small fluctuations

N e−7D/2 = 1− ν1, e−D/2 = 1 + μ1 + · · · (13.9)

the first order Eqs. of (13.2) and (13.5) take the form

[−�̂+ 14ρ(0) − ρ(1)]μ1 + 2ρ(0)ν1 = T (0),

[7 · 14ρ(0) − 14ρ(1) + ρ(2)]μ1 + [−�̂+ 14ρ(0) − ρ(1)]ν1 = 7T (0) − T (1),

where

ρ(n) = 〈T(n)〉 ≡
∑

J=0,2,3,4,6

(2J)n(1 + z)2−J〈TJ〉, (13.10)

T(n) =
∑

J=0,2,3,4,6

(2J)n(1 + z)2−JTJ . (13.11)

In the first order of perturbation with respect to the Newton cou-

pling constant the lapse function and the dilaton takes the form [1]

e−D/2=1+
1

2

∫
d3y

[
G(+)(x, y)T

(D)

(+)(y)+G(−)(x, y)T
(D)

(−)(y)

]
,(13.12)

N e−7D/2=1−1

2

∫
d3y

[
G(+)(x, y)T

(N)

(+) (y)+G(−)(x, y)T
(N)

(−) (y)

]
,(13.13)
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where G(±)(x, y) are the Green functions satisfying the equations

[±m2
(±) −�]G(±)(x, y) = δ3(x− y).

Here

m2
(±) = H2

0

3(1+z)2

4

[
14(β ± 1)Ω(0)(a)∓ Ω(1)(a)

]
,

β =
√

1 + [Ω(2)(a)− 14Ω(1)(a)]/[98Ω(0)(a)],

and

T
(D)

(±) = T (0) ∓ 7β[7T (0) − T (1)], (13.14)

T
(N)

(±) = [7T (0) − T (1)]± (14β)−1T (0), (13.15)

are the local currents, and

Ω(n)(a) =
∑

J=0,2,3,4,6

(2J)n(1 + z)2−JΩJ , (13.16)

where

ΩJ=0,2,3,4,6 =
〈TJ〉
H2

0

are partial densities of states: rigid, radiation, matter, curvature, Λ-

term, respectively;

Ω(0)(a = 1) = 1, 1 + z = a−1

is the Hubble parameter.

In the context of these definitions, a full family of solutions (13.12),

(13.13) for the lapse function and the nonzeroth dilaton harmonics

of the Hamiltonian constraints (5.63) – (5.64) yields a Newton-type
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potential. In particular, for a point mass distribution in a finite volume

which corresponds to the nonzero terms with

a)J = 0, 3 in Eq. (13.10);

b)J = 3 in Eq. (13.11);

c)J = 0, 3 in Eq. (13.16)

(otherwise zero), we have

T (0)(x) =
T (1)(x)

6
≡ 3

4a2
M

[
δ3(x− y)− 1

V0

]
. (13.17)

As a result, solutions (13.12) and (13.13) are transformed to the

Schwarzschild-type form

e−D/2 = 1 +
rg
4r

[
1 + 7β

2
e−m(+)(a)r+

1− 7β

2
cosm(−)(a)r

]
,(13.18)

N e−7D/2 = 1− rg
4r

[
14β + 1

28β
e−m(+)(a)r+

14β − 1

28β
cosm(−)(a)r

]
,(13.19)

where

rg = M/M 2
Pl, β = 5/7, m(+) = 3m(−),

m(−) = H0

√
3(1 + z)ΩMatter/2.

These solutions describe the Jeans-like spatial oscillations of the scalar

potentials (13.18) and (13.19) even for the case of zero pressure. These

spatial oscillations can determine the clustering of matter in the recom-

bination epoch, when the redshift is close to the value zrecomb. � 1100.

Indeed, if we use for the matter clustering parameter (that follows

from spatial oscillations of the modified Newton law (13.18), (13.19))

the observational value [2]

rclustering � 130Mps � 1

m(−)
=

1

H0[ΩMatter(1 + zrecomb)]1/2
, (13.20)
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one obtains ΩMatter ∼ 0.2. This estimation is in agreement with the

one recently discovered in the quest of the large scale periodicity dis-

tribution (see for details in [3]).

Constraint (5.50) yields the shift of the coordinate origin in the

process of the evolution

N i =

(
xi

r

)(
∂ηV

∂rV

)
, V (η, r) =

r∫
dr̃ r̃2e−3D(η,r̃). (13.21)

In the limitH0 = 0 at a0 = 1, the solutions (13.18) and (13.19) coincide

with the isotropic Schwarzschild solutions:

e−D/2 = 1 +
rg
4r

, N e−7D/2 = 1− rg
4r

, Ni = 0.

Solution (13.18) doubles the angle of the photon beam deflection by

the Sun field. Thus, the CGR provides also the Newtonian limit in our

variables.

13.3 Summary

Chapter 13 was developed to the conformal diffeoinvariant version of

the cosmological perturbation theory. We have received a modification

of the Schwarzschild solutions for the evolution of the Universe. It was

shown that the non zero harmonics of the dilaton lead to the Jeans

oscillations even in the case of a massive dust.
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Chapter 14

Cosmological

modification of

Newtonian dynamics

14.1 Free motion in conformally flat

metric

The considered above joint unitary irreducible representations of the

affine and conformal groups added by the SM fields contain both the

Newtonian dynamics of a massive classical particle and the Friedmann

cosmological metrics. The problem of the validity of the Newtonian

dynamics arises when the Newtonian velocity value of a cosmic object

becomes the order of the Hubble velocity value of this object [1]. An-

other problem is the choice of a frame of reference where initial data

are given.

385
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In the cosmological models considered above, we faced with the

three classes of frames of reference. First of them is the world time-

space interval in the Friedmann – Lemâitre – Robertson – Walker

(FLRW) metrics

ds2 = dt2 − a2(t)dx2i = a2(η)d̃s
2
= a2(η)

[
dη2 − dx2i

]
, (14.1)

associated with heavy massive body. Here dt is the world time, η is

the conformal time, x1, x2, x3 are the conformal coordinates, and a(η)

is the conformal scale factor. The second class differs from the first

one by the conformal long interval

d̃s
2
=
[
dη2 − dx2i

]
. (14.2)

and varying mass

m(η) = m0a(η). (14.3)

The third class of frames of reference is associated with luminosity

interval

dsL
2 = a−6(η)ds2 = a−4d̃s

2
= a−4

[
dη2 − dx2i

]
. (14.4)

This class of frames of reference comoves the void local volume element.

In this Chapter we consider the dynamics of a classical particle in

both the world interval (14.1) and the conformal one (14.2) [2, 3, 4, 5].

The one-particle energy E = p0 is defined by the constraint

pμpν −m2(η) = 0, (14.5)

which implies that

p0 =
√

p2 +m2(η) � m(η) +
p2

2m(η)
, (14.6)
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where m(η) = m0a(η) is a running mass (14.3).

The action of a relativistic particle in a conformally flat metric

(14.2) in the non-relativistic limit leads to the classical action for a

particle

S0 =

η0∫
ηI

dη [pix
′
i − p0 +m] , (14.7)

where x′i = dxi/dη, p0 is given by expression (14.6).

Let us consider action (14.7) for the radial motion in the non-

relativistic limit:

SN =

η0∫
ηI

dη
r′2m(η)

2
; (14.8)

here r =
√
xixi and r′ = dr/dη. In this case, the equation of motion is

[r′(η)m(η)]′ = 0 (14.9)

with initial data

rI = r(ηI), r′I = pI/m0, mI = m(ηI).

This equation has the following solution:

r(η) = rI + pI

η∫
ηI

dη̄

m(η̄)
. (14.10)

The Friedmann world time dt = dη a(η) and the absolute coordi-

nate

R(t) = a(η)r(η) (14.11)

are determined by the conformal transformation with the scale factor

a(η(t)) = a(t),
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which is usually chosen to be unity for the modern age

η = η0 : a(η0) = 1,

the scale factor in the initial time moment η = ηI is defined by the

z-factor:

a(ηI) = aI =
1

(1 + zI)
,

where z(ηI) = zI . Since Friedmannian variables are tied to the modern

era η = η0, the time ηI is convenient to replace by η0. Then the world

spatial interval

R(t) = a(η)r(η)

is set by the expression

R(t) = a(t)

⎡⎣r0 + pI
m0

t∫
tI

dt̄

a2(t̄)

⎤⎦ (14.12)

and satisfies the equation of motion

R̈(t)− (H2 + Ḣ)R = 0, (14.13)

where H(t) = ȧ(t)/a(t) is the Hubble parameter. The equation of

motion follows from the action

SN(t) =

t0∫
tI

dt

(
Ṙ−HR

)2
m0

2
. (14.14)

The same action can be obtained geometrically using the definitions

of the measured intervals in the Standard cosmology

dl = a(t)dr = d[ra(t)]− rȧ(t)dt = [Ṙ−HR]dt,
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including the world space interval R(t) = r a(t) in a space-time with

the Friedmann – Lemâitre – Robertson – Walker (FLRW) metric

(ds2) = (dt)2 − a2(t)(dxi)2. (14.15)

The observable coordinates X i of the expanding Universe can be writ-

ten as

X i = a(t)xi, dX i = a(t)dxi + xida(t), (14.16)

and instead of the Euclidean differentials dX i the covariant ones are

used

a(t)dxi = d[a(t)xi]− xida(t) = dX i −X ida(t)

a(t)
. (14.17)

In the Standard cosmology a particle mass is constant.

The interval (14.15) in terms of variables (14.16) becomes equal to

(ds2) = (dt)2 −
∑

i=1,2,3

(
dX i −H(t)X idt

)2
, (14.18)

where H(t) is the world Hubble parameter. All these equations by

conformal transformations are reduced to the equations given in the

book of Peebles [6].

14.2 The motion of a test particle

in a central field

The energy of a particle that moves along a geodesic line in a space

with a given metric can be found by solving the equation of the mass
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shell. Equating the square of 4-momentum pμp
μ to the square of the

mass in the metric (14.2):

p2 = gμνpμpν = m2 (14.19)

we find an expression for the energy p0

p0 ≈ ±
[(

1− rg
2r

)
m+

p2r
2m

+
p2θ

2mr2

]
. (14.20)

From the condition of positive energy p0 > 0 in the right-hand side

(14.20) we choose a positive sign; as a result, in the non-relativistic

limit, we arrive to the action1

Sclassic =

η0∫
ηI

dη [prr
′ + pθθ

′ − Eclassic] , (14.21)

where

Eclassic =
p2r
2m

+
p2θ

2mr2
− rgm

2r
, (14.22)

and m = m(η) is the conformal mass of a test body, which depends on

the time (evolution) and is determined by (14.3). The product rgm is a

conformal invariant independent of time. For a constant mass m = m0

one obtains the classical action.

In the case of a particle with a constant mass moving along a circle

(r = r0) the Newtonian speed

w0 =

√
rg
2r0

coincides with the orbital one

v0 =
pθ

m0r0
.

1The equations of motion for a free particle, taking into account the expansion of the Universe,

do not differ from the ones given in the monograph of Peebles [6].
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The equality w0 = v0 is the basis of the analysis of observational data

on dark matter in the Universe [7].

To determine the region of applicability of the Newton theory with

a constant mass and the status of the circular trajectories, we shall

investigate the Kepler problem for variable masses (14.54), the depen-

dence on time of which is determined by astrophysical data on the

Supernovae [2].

14.3 The Kepler problem in the

Conformal theory

Taking into consideration the dependence of the coordinate distance

from the conformal time (14.2) and cosmic evolution in a rigid state

condition one can move from the evolution parameter η to a monoton-

ically increasing function a(η)

a(η) =
√

1 + 2H0(η − η0). (14.23)

Then from the equation of motion for the Newtonian action (14.21)

taking into account the dependence of the mass from the conformal

time (14.54) and relation (14.23) we obtain an explicit parametric so-

lution a(τ) and r(τ) with a parameter τ introduced in [4, 5, 8]:

a(τ) = c1
N1(τ)

τ 2/3N(τ)
,

r(τ)

r0
= c2τ

2/3N(τ), (14.24)

where

N(τ) = α1U(τ)2 + β1U(τ)V (τ) + γ1V (τ)2, (14.25)
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N1(τ) =

(
τ
dN(τ)

dτ
+

2

3
N(τ)

)2

± 4τ 2N(τ)2 + ω2Δ, (14.26)

Δ = 4α1γ1 − β2
1 > 0, c1, c2, α1, β1, γ1 = const, (14.27)

c1 =

(
3w2

0

4c20

)1/3
c0v0

2w2|ω|Δ1/2
, c2 =

(
4c20
3w2

0

)1/3
v0

|ω|Δ1/2
. (14.28)

Here

w2
0 =

rg
2r0

, v0 =
pθ

m0r0
, c0 = H0r0 (14.29)

are the Newtonian, orbital and cosmic velocity, respectively.

For the upper sign in (14.26)

U(τ) = J1/3(τ), V (τ) = Y1/3(τ), ω =
2

π
, (14.30)

where J1/3(τ) and Y1/3(τ) are the Bessel functions of the first and the

second kind. For the lower sign

U(τ) = I1/3(τ), V (τ) = K1/3(τ), ω = −1, (14.31)

where I1/3(τ) and K1/3(τ) are the modified Bessel functions of the first

and the second kind.

The solution (14.24) – (14.31) includes five independent constants

which can be found from the following algebraic system of equations:

r

r0

∣∣∣∣
τ=τ0

= 1,
dr

da

∣∣∣∣
τ=τ0

= 0, a|τ=τ0
= 1,

(14.32)

9

64

(
c22
c1

)2

ω2Δ =
v20
c20
,

9

128

(
c2
c1

)3

=
w2

0

c20
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in the region of their solvability. For example, for

τ0 = 1, v20 = 0, 25, w2
0 = 0, 05, c0 = 1

the system has the following solution:

c1 = −0, 48, c2 = −0, 32, α1 = −0, 78, β1 = 0, γ1 = −0, 48,

with the condition Δ > 0.

The solution corresponding to the lower sign in (14.26) is restricted

to zero and is not limited in infinity because of the properties of the

function K1/3(τ). The solution corresponding to the upper sign in

(14.26) is limited in infinity and describes a finite motion along an

ellipse. A character of the motion at short times can be regarded as

the determination of a periodic regime after some initial perturbation.

These two types of solutions correspond to two different signs of en-

ergy (14.22): positive energy corresponds to a free motion of a particle

and its negative energy corresponds to a bound state.

14.4 Capture of a particle by a central

field

From the equations of motion resulting from (14.21) and determination

of the energy (14.22) one can find the rate of the energy change of the

object:
dEclassic

dη
= −H(η)

[
p2r + p2θ/r

2

2m

]
, (14.33)

where H(η) = da/dη/a is the Hubble parameter. From (14.33) it

follows that the derivative of the energy is always negative and tends
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to zero, so the energy itself asymptotically decreases to a negative

value, and the reason of the non-conservation of energy is the cosmic

evolution of the masses (see Fig. 14.1) [9, 10].

Figure 14.1: The upper part of the graph shows the solution of the equations for

action (14.21) in dimensionless variables y(x) = R/RI and x = HI(t − tI) with the

boundary conditions y(x = 0) = 1 and y′(x = 0) = 0. The curve in the lower part

of the graph shows the evolution of the total energy (14.22) in variables R = ar and

P = p/a.

Thus, the cosmic evolution of the mass reduces the energy of the

test particle to negative asymptotic values under the condition E = 0

which, in particular, takes place under the initial data v2I = 2w2
I ; par-

ticle transfers to a bound state and its trajectory is an ellipse. The

described mechanism of capturing particles can be applied to the dy-

namics of stars and galaxies and should lead to the formation of galax-

ies and clusters with an anisotropic distribution of the Hubble flows in

the Local Group, which is supported by the observations [11, 12].
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14.5 The problem of dark matter

in Superclusters

In modern cosmological investigations, the effects of dark matter are

analyzed by using characteristics of the Newtonian motion in the grav-

itational fields or clusters of galaxies [7, 13, 14, 15, 16]; however, the

following discrepancy occurs: The Newtonian motion of galaxies is

described in a flat space-time

ds2 = dt2 −
∑
i

(dxi)2,

and analysis of the observational data is carried out in terms of the

metric FLRW (14.15).

Let us consider the Newtonian motion of a particle in a gravita-

tional field of a space with the FLRW metric in which for the ob-

served coordinates in an expanding Universe the coordinates (14.16)

are adopted and instead of differentials of the Euclidean space dX i the

covariant differentials of the FLRW space are used (14.17). In this

case, the Kepler problem is defined by the equation

R̈(t)− (H2 + Ḣ)R− (m0R
2θ̇)2

m2
0R

3
+

rg
2R2

= 0. (14.34)

This equation reduces to the equation that has been solved by transi-

tion to conformal variables.

The law of conservation of energy in the flat space (H(t) = 0) leads

to the next dependence of the radius from the orbital speed:

Rθ̇ =

√
rg
2R

, (14.35)
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where rg = 2α/mI � 3 · 105M cm is the gravitational radius of the

object, M is its mass expressed in solar masses. In the considered case

of the rigid state equation (14.34) in the class of solutions R = RI ,

ṘI = 0 one has the expression

RI θ̇ =

√
rg
2RI

+ 2(HIRI)2, (14.36)

or

vI =
√
w2

I + 2c2I ,

where

vI = RI θ̇, w2
I =

rg
2RI

, cI = RIHI . (14.37)

In a more general case, for the metric (14.2)

(ds2) = a2(η)
[
dη2 − (dxi)2

]
with the equation of state (2.69)

1

H2
0

(
da

dη

)2

= Ω(a),

where Ω(a) is defined in (2.70) one has

Ḣ +H2 = −H2

(
1− a

2Ω

dΩ

da

)
,

or, substituting it into (14.34), we get

R̈ +H2

(
1− a

2Ω

dΩ

da

)
R− (m0R

2θ̇)2

m2
0R

3
+

rg
2R2

= 0.

In this case, the equality v2I = w2
I becomes the following relation:

v2I = w2
I + (HRI)

2

(
1− a

2Ω

dΩ

da

)
.
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Ω(a) = Ωrigida
−2 Ωrad ΩMa ΩΛa

4

(
1− a

2Ω

dΩ

da

)
= 2 1 1/2 -1

The Table shows that the lowest deficit of the dark matter of the

four “pure” states is related to the rigid state Ωrigid which corresponds

to the case under consideration (14.36). Note that in the Standard

cosmology, the cosmic evolution increases the deficit of dark matter:

RI θ̇ =

√
rg
2RI

− (HIRI)2

2
. (14.38)

From (14.38) it follows that the conventional Newtonian character-

istics to describe the behavior of the orbital velocities are not appli-

cable to radial distances when the double square of cosmic speed is

comparable in magnitude to square Newtonian velocities2: 2c2I ≥ w2
I .

For evaluation of the radial distance, in this case one can get the

distance (we will call it a critical distance) Rcr, wherein 2c2I = w2
I ,

hence

Rcr =

(
rg
2H2

I

)1/3

. (14.39)

The current value of the Hubble parameter H−1
0 � 1028 cm leads to

the value of the critical distance

Rcr � 1020
(

M

M 

)1/3

cm. (14.40)

2This fact was known to Einstein and Straus [1] (see also [3, 4, 9, 10]).
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The critical radius for the Coma cluster (M � 1015M [7]) is compa-

rable with the size of the cluster:

Rsize ∼ 3 · 1025 cm > Rcr ∼ 1025 cm, (14.41)

and our arguments are applicable. For our galaxy, (M �1012M ) the

corresponding estimate gives

Rsize ∼ 1023 cm < Rcr ∼ 1024 cm, (14.42)

that is the critical radius of our galaxy, an order of magnitude larger

than its size.

Figure 14.2: The dependence of the orbital velocity of the “particle” vI on its

radius id est the distance from the center of the object, ξ = R/Rsize, where Rsize is a

radius of the object, γ = (Rsize/Rcr)
3 and Rcr = [rg/H

2]1/3 = 1020M1/3 cm is a value

of radius for which Newtonian velocity coincides with the Hubble one, M is a mass

of the object in units of solar masses. Under γ = 0 a rotation curve coincides with

the curve obtained in Newtonian mechanics.

It is convenient to consider the rotational curve of the circular speed

vI = RI θ̇ (14.36) in dimensionless terms ξ = R/Rsize and γ:

vI
vsize

=

√
1

ξ
+ 2γξ2, (14.43)
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where

vsize =

√
rg

2Rsize

, γ =

(
Rsize

Rcr

)3

,

Rsize is a size of the object and

Rcr =
( rg
H2

)1/3
= 1020M 1/3cm

is the value of radius in cm, for which the Newtonian velocity co-

incides with the Hubble one, M is the mass of the object in units of

solar masses (Fig. 14.2). The dependence (14.43) at γ = 0 corresponds

to the Newtonian case, and the curve at γ �= 0 deviates from the New-

tonian curve. This deviation cannot be explained by the introduction

of the halo of dark matter [13, 14, 15, 16], but rather a cosmological

modification of the Newtonian dynamics described in this monograph.

Therefore, the violation of the virial theorem for R ≥ Rcr, found in

clusters of galaxies and interpreted as evidence for the existence of

dark matter, in the Conformal cosmology is considered as the result

of evolution of the Universe [3, 4, 9, 10], as was predicted by Einstein

and Strauss in [1].

14.6 The Kepler problem in the

generalized Schwarzschild field

Let us consider the general case of the motion of a test body or a par-

ticle in a spherically-symmetric gravitational field of the heavy mass.

We generalize the Schwarzschild metric in the synchronous reference

frame by replacing the ordinary mass m0 by its conformal analogue
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m0a(η) = m(η):

ds2 =

(
1− 2α

mr

)
dt2 − dr2

1− 2α/(mr)
− r2 sin(θ)2dθ2, (14.44)

where

m = m(η), r =
√

xixi, a(η) =
√

1 + 2HI(η − ηI),

and consider the motion in the cylindrical coordinates

X1 = R cosΘ, X2 = R sinΘ, R = ar. (14.45)

Here HI is the initial value of the Hubble velocity in the space with

the rigid state equation of matter [2] when the density of energy and

pressure are equal. In terms of the conformal time dη = dt/a and

conformal values r = R/a let us write the action for a particle in the

form

SSchw =

η0∫
ηI

dη

[
Pr

dr

dη
+ Pθ

dθ

dη
− ESchw

]
, (14.46)

where

QSchw =
(
1− rg

r

mI

m

)1/2
, rg = MOG,

Pr, Pθ are conjugated momenta of the corresponding coordinates and

ESchw is the energy of the system

ESchw = QSchw

√
P 2
rQ

2
Schw + P 2

θ /r
2 +m2 −m. (14.47)

The trajectory of the test particle is shown in Fig. 14.3, and the

Newtonian limit of the action (14.46) takes the form

SA =

η0∫
ηI

dη

[
Pr

dr

dη
+ Pθ

dθ

dη
− P 2

r + P 2
θ /r

2

2m
− α

r

]
, (14.48)
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Figure 14.3: The solution of the equations of motion for the action (14.46) at

cI = 1, vI = 1, and w2
I = 0, 25. In both figures there is shown the trajectory of

the same object from the starting point (1, 0) for different intervals of time in the

generalized Schwarzschild field (14.44).

Figure 14.4: The solution of the

equations of motion for (14.46) at

cI = 0, 25, vI = 0, 25, and w2
I =

0, 015625. These values of param-

eters correspond to the relativis-

tic limit of equations for (14.46) in

which the classical ellipse begins to

turn counterclockwise.

Figure 14.5: The solution of the

equations of motion for (14.46) at

cI = 0, 01, vI = 0, 01, and w2
I =

2, 5 · 10−5. These values of parame-

ters correspond to the classical limit

and the classical ellipse on relatively

large times since the beginning of

motion. Just as in the original case

cI = 1 (generalized Schwarzschild

field), the particle at small times is

“captured” by an ellipse.
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where

α = MOmIG

is the Newton constant of interaction of the galaxy with a mass mI in

the central gravitational field with a central mass MO.

Let us consider three velocities:

wI =

√
rg
2rI

, vI =
Pθ

mIrI
, cI = HIrI (14.49)

Newtonian, orbital and cosmic, respectively. The limit of small veloc-

ities wI , vI , cI −→ 0 corresponds to the classical approximation (see

Fig. 14.5) — classical Kepler’s problem with the expansion of the Uni-

verse. In this limit, we obtain the action (14.46), where instead of the

Schwarzschild Hamiltonian (14.47) its Newtonian limit is:

ESchw ∼ Eclassic =
P 2
r

2amI
+

P 2
θ

2amIr2
− rgmI

2r
. (14.50)

It is convenient to study the solution of the problem in terms of

dimensionless magnitudes

x = HI(η − ηI), r = rIy, Pr = mIp, (14.51)

in terms of which the effective action for the radial motion takes the

form

Seff = rImI

x0∫
xI

dx

(
p
dy

dx
− 1

cI
Eeff

)
, (14.52)

where

Eeff =
ESchw

mI
=

=
√
1− 2w2

I/(ay)
√
a2 + (1− 2w2

I/(ay)) p
2 + v2I/y

2 − a �
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� p2 + v2I/y
2

2a
− w2

I

y
, (14.53)

a =
√
1 + 2x. The approximate equality holds here for small velocities,

whereas if we put a = 1, we obtain the classical orbital motion y =

1, p = 0, where the Newtonian velocity wI coincides with the orbital vI .

This equality, rather its violation, is the basis for theoretical analysis

of observational data on dark matter in the Universe [7, 13, 14, 16].

In Fig. 14.3, there is shown a numerical solution in dimensionless

magnitudes (14.51) of the Schwarzschild equations of motion which

begins in the state of zero energy (14.47) and zero radial velocity PI =

0. It can be seen that the particle is being trapped in a bound state and

this is true for all space velocities. In Figs. 14.3, 14.4, and 14.5, there

are shown solutions of equations (14.46) following under the initial

conditions

y(0) = 1,
dy

dx
(0) = 0

and parameters

vI = cI , w2
I = 0, 25c2I , (cI = 1, 0, 25, 0, 01).

In all the figures a trajectory starts from the point (1, 0). It can be

seen that a trajectory of a test object is removed at some distance

from the starting point and then becomes a periodic (“capture” of an

object) in both time and space (Fig.14.5). In decreasing velocities of

particles, their trajectories gradually pass into the classical ellipses of

the Kepler problem. Thus, the exact solution of a modified Kepler

problem with Hamiltonian (14.50) and numerical solutions in the case

of Hamiltonian (14.47) show that the cosmic evolution of mass reduces
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the energy of a test particle (stars and galaxies). Cosmic evolution

reduces the energy of free stars and galaxies causing them to form

bound states such as galaxies or their clusters, respectively.

14.7 Quantum mechanics of a particle

in Conformal cosmology

Let us consider a quantum mechanics of a particle in the Conformal

cosmology, where the masses of elementary particles also become dy-

namic [4]

m(η) = m0 · ã(η). (14.54)

These masses determine the emission spectrum of atoms at time mo-

ment η; their change m′/m = a′/a ∼ 10−42 GeV is significantly less

than the energy levels of the atom for ã(η0) = 1 with quantum number

k

E0
k = −mα2

2k2
∼ 10−8 GeV, (14.55)

being the eigenvalues of the Schrödinger stationary equation

Ê(p, x)Ψ0 ≡
[

p̂2

2m0

− α

r

]
Ψ0 = E0

kΨ
0. (14.56)

The spectrum of the hydrogen atom with a mass-dependent time (14.54),

at any other instant η = η0 − r can be found by solving the quasista-

tionary Schrödinger equation

Êc(p, x)Ψ ≡
[

p̂2

2m0ã(η)
− α

r

]
Ψ = Ek(η)Ψ. (14.57)

Its solution is the spectrum

Ek(η) = ã(η)E0
k, (14.58)
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where E0
k are the levels of the atom with constant mass (14.55). A

rigorous derivation of (14.58) is based on the canonical transformation

to the Friedmann variables [4, 5]

(p, x) −→ (P = p/a,X = xa),

and the non-stationary Schrödinger equation with the variable mass

Êc(p, x)Ψc = −ı
∂

∂η
Ψc

results into the Schrödinger equation

Ê(P,X)Ψ = −ı ∂
∂t

Ψ−H(t)PXΨ (14.59)

with a constant mass and an additional term disappearing at H → 0,

where H(t) is the Hubble parameter.

From (14.58) follows the definition of the redshift z(r)

z(r) + 1 =
Ek(η0)

Ek(η0 − r)
=

1

ã(η0 − r)
(14.60)

of the spectral lines on a space object at coordinate distance r from

the Earth, relative to the spectral lines of the Earth atoms

E0
k = Ek(η0)

when photons are being detected under the condition ã(η0) = 1.
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14.8 Summary

In this Chapter, there were considered equations of dynamics of a test

particle in a central gravitational field taking into account the evolu-

tion of the Universe and found the exact analytical solution for the

Conformal cosmological model, compatible with the latest data on the

Supernovae. These equations were used to describe the effect of the

capture of a test particle in a gravitational field of the expanding Uni-

verse. It was shown that the capture effect can lead to the formation

of galaxies and their clusters with anisotropic radial vector field of

velocities. Such a velocity field could explain the anisotropy of the

Hubble flow of velocities in the Local Group of galaxies observed by I.

Karachentsev with the colleagues.

In the framework of the model the limits of applicability of the

Newtonian approximation commonly used in the literature to describe

the dark matter were assessed. The formula to describe the orbital

speeds with the cosmological evolution of the Universe predicted by

Einstein and Straus in 1945 [1] is obtained. According to this formula,

the evolution of the Universe can imitate the effect of dark matter for

Superclusters of galaxies.
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Chapter 15

Afterword

15.1 Questions of Genesis

In the far away future descendants will certainly define our time as the

time of great astrophysical discoveries comparable in importance to the

era of great geographical discoveries of the late fifteenth and early six-

teenth centuries. On unknown vastness of the Universe, scientists have

discovered traces of hitherto unseen physical objects: neutron stars,

quasars, pulsars, almost homogeneous Cosmic Microwave Background

radiation with temperature about three kelvins, filling the entire visible

Universe, and much more. Astrophysicists found a redshift of spectral

lines of atoms that emit photons at distant space objects obeying the

Hubble law: The farther the object – the greater the redshift. Mod-

ern researchers, as once brave explorers of past centuries, have realized

that they can already reach the limits of the visible Universe, those

distances that a light beam flies over the lifetime of the Universe. As-

trophysicists can see space objects remote from us at distances of the

410
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order of the size of the Universe, and thus can determine the depen-

dence of large redshift of the distances comparable to the size of the

visible part of the Universe. New data for large values of the redshift

suggest that our Universe is filled with basically not massive dust of

distant galaxies, but invisible and mysterious substance of completely

different nature, with a different equation of state, called dark energy.

The results of measuring of the distribution of chemical elements in the

Universe indicate the predominance of the photons in the era of the

primary chemical synthesis of elements and negligibly small contribu-

tion of the visible baryonic matter (about 3 %) to the cosmic evolution.

On the other hand, the speed of rotation of stars in spiral galaxies and

the speed of rotation of galaxies in all giant superclusters, according to

Newtonian mechanics, shows that apart from the baryonic matter of

which we are composed dark matter is present in galaxies, the mass of

which is ten times larger the mass of the visible baryonic matter. As a

result of these recent discoveries, the following most pressing questions

of the Universe face the Standard cosmology:

1. How was our Universe created?

2. What had been in the Universe before its appearance?

3. What is the Universe made?

4. What is the nature of the dark energy and the dark matter?

5. Why did background radiation flash in the early Universe?

6. How was the matter created?
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7. How can the baryon asymmetry of the Universe in which one

baryon corresponds to billion photons be explained?

8. Is it possible to build a physical theory that would not only

answer all these questions, but could predict the evolution of

matter in the Universe, just as Newton’s celestial mechanics was

able not only to explain to his contemporaries problems of the

Universe current at that time, but also to calculate the movement

of the planets and predict the existence of new planets really

discovered later?

Modern physicists have to answer these questions and to explain them

on the basis of the first principles. According to Wigner, there are

three levels of “explanation”:

1. New empirical phenomena and mechanisms of the type of mech-

anism of inflation.

2. New laws of dynamics.

3. New additional symmetry principles of theories of gravitation

and elementary particles.

Recall that in the Standard cosmology to explain the data on the

Supernova there is a mechanism of inflationary expansion of the Uni-

verse, just the one that was proposed and developed by modern physi-

cists to solve the problems of the Standard cosmology. However, the

initial energy density of the inflation of the Universe differs 1057 times

from the present energy density of the inflation. This huge difference
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has not yet found a convincing explanation at the level of new laws of

dynamics in the framework of the dynamic model of inflation with a

single scalar field (inflanton). On the other hand, the mechanism of

primary inflation absolutizes the current values of the constants of the

Newton and Hubble parameter measured by contemporary observers,

just as Ptolemy’s system absolutizes the position and velocity of the

Earth observer in celestial mechanics.

To explain the data on the Supernova, the authors of this book have

preferred the third level, choosing as new principles of symmetry the

groups of affine and conformal transformations and the corresponding

conformal Dirac’s variational principle.

15.2 General discussion of results

15.2.1 Results of the work

Let us briefly list the results and conclusions of this monograph. For

the formulation of the problem of classification of data on physical

measurements and astrophysical observations we trace the evolution

of ideas and mathematical methods of theoretical physics in the last

five centuries of its development from Copernicus’ principle of relativ-

ity to Einstein’s principles of relativity, Poincaré’s group and gauge

theories. Irreducible unitary representations of Poincaré’s group un-

derlie the classification of quantum relativistic particles and quantum

field theory, which describes the creation of particles, their decays and

interactions.
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The book is devoted to the construction of the quantum wave func-

tion of the Universe as a joint unitary irreducible representation of

affine and conformal groups with the inclusion of the Standard Model

of electroweak interactions and QCD. This arrangement consists of the

following stages.

1. Derivation of the theory of gravitation as joint nonlinear realiza-

tion of affine and conformal groups (Ogievetsky and Borisov) in

the tangent Fock space in terms of Cartan’s forms.

2. Choice of conformal measurement standards (Dirac), which allow

us to separate the cosmic evolution of the devices of observation

from the evolution of cosmic objects.

3. Choice of the reference frame of the Universe (Markov and Yukawa).

4. Solution of constraints in the event space (Dirac).

5. Primary and secondary quantization with the postulate of the

vacuum (Fock).

6. The definition of the initial data according to the uncertainty

principle (Blokhintsev).

7. Diagonalization of the operators of creation and annihilation of

particles and the Universe (Bogoliubov).

It is shown that such a construction leads to the following results.

1. The postulate of the vacuum gives the arrow of the proper time

interval and its beginning as a quantum anomaly.
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2. The source of violation of conformal symmetry and the origin of

the masses of elementary particles is the only normal ordering of

field operators leading to Casimir’s energies and condensates.

3. Planck’s quantum of action leads to a hierarchy of cosmologi-

cal scales for the matter fields, in accordance with their confor-

mal weights (n). These scales include the current value of Hub-

ble’s parameter (n = 0), temperature of the Cosmic Microwave

Background radiation (n = 2), the mass scale of the electroweak

bosons (n = 3), and the Planck mass (n = 4).

4. Observational data on the Supernova (1998 – 2013), recalculated

for Dirac’s conformal long space-time intervals testify that our

Universe is cold and almost empty.

5. The wave function of the quantum Universe as a joint irreducible

unitary representation of affine and conformal symmetry groups

is factorized by the wave function of the empty Universe and the

S-matrix used in high energy physics to describe the processes of

creation and interaction of particles.

6. The resulting S-matrix corresponds to the quantization of gauge

fields in the reduced phase space of the field variables. Thus, the

Hamiltonian formulation is a basis for unification of the theory

of the gravitational field with the Standard Model of elementary

particles, in which both the theories are considered at the quan-

tum level in a certain frame of reference after solving of constraint

equations.
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7. The physical consequences of reduced quantization for QED,

QCD, SM and the theory of gravity were considered. The so-

lution of the Gaussian constraint in QED coincides with Dirac’s

approach to the quantization of electrodynamics in 1927. It is

shown that the quantization of massive vector field is consis-

tent with the principles of axiomatic approach to quantum field

theory, in particular, with the postulate of the existence of the

vacuum.

8. By solving the Gaussian constraint for the non-Abelian theory,

in particular QCD, the corresponding generating functional was

obtained in terms of gauge-invariant observables of color fields in-

cluding their bound states. The method of generating functional

is compared with the standard Faddeev – Popov path integral

one. The difference of the modified QCD from the standard

Faddeev – Popov approach consists in that the initial data of

gauge-invariant observables of color fields are topologically de-

generated. Destructive interference of these phase factors of the

topological degeneration leads to zero amplitudes of creation of

all color states. Therefore, this destructive interference can be

interpreted as a purely kinematic confinement of colored particles

and conditions. As a result of the kinematic confinement, there

arises a quark-hadron duality, widely used in high-energy QCD

to describe the deep inelastic interactions, where free quarks and

gluons are treated as free partons with the standard propagators.

9. The normal ordering of field operators is a source of the sponta-
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neous symmetry breaking and the appearance of dimensional pa-

rameters such as local two-particle correlation functions (Casimir’s

condensates) of quarks and gluons. The reduced QCD gives a

possibility to obtain relations of these condensates with the pa-

rameters of low-energy interactions of quarks and mesons. In

particular, we obtain the Gell-Mann – Oakes – Renner relation.

10. In the Standard Model of electroweak interactions the topologi-

cal degeneration of non-Abelian fields is removed by their inter-

actions with the Higgs field. After the normal ordering of the

electroweak bosons and fermions in SM there appear quantum

anomalies as two-particle correlations (id est the Casimir con-

densates). Assuming the universality of the ratio of the Casimir

condensates of fields to their masses in power of their conformal

weight, we estimated the mass spectrum of these bosons. The

obtained mass of the Higgs boson∼ 130± 15 GeV is in agreement

with recent experimental data.

11. The affine gravitons (in terms of linear Cartan’s forms) are de-

scribed by the free action in the approximation of zero Newtonian

interaction. We consider some arguments testified that the affine

gravitons can play a role of the dark matter in spiral galaxies.

12. It is shown that in the empty Universe there is a possibility of the

intensive vacuum creation of only gravitons and Higgs particles

(and the corresponding longitudinal components of the vector

bosons). One of the main results is the creation from the vac-
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uum of an order of 1088 of the Higgs boson particles and longi-

tudinal components of the vector fields, decays of which form all

the matter content of the Universe, in accordance with current

observational facts. The values of the baryon density, the ratio of

the number of photons to the number of baryons, and the CMB

temperature are in agreement with observations.

13. The data on the Supernovae, primordial nucleosynthesis and cos-

mological particle creation, re-calculated to units of relative stan-

dard length, can be described by a single regime of vacuum dom-

inance of the Casimir energy.

14. On the basis of the developed Hamiltonian method the theory

of cosmological perturbations is formulated. The Schwarzschild-

type solutions are obtained with Jeans-like spatial oscillations.

15. Cosmic evolution of the masses leads to the capture of cosmic

objects by a central field and provides a mechanism of formation

of galaxies and clusters of galaxies; in this case there is a class

of essentially ellipsoidal trajectories of galaxies. The reality of

existence of this type of trajectories is confirmed by recent ob-

servations of the anisotropy of the Hubble flow velocities in the

Local Group of galaxies by I.D. Karachentsev’s group. Finally,

the chaos of freely moving particles is organized by a cosmic mo-

tion in the observational structures of matter.

16. According to the cosmological modified Newtonian dynamics, the

square of Newton’s velocity of the galaxy in the COMA-type
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superclasters is replaced by the sum of squares of two velocities

(Hubble and Newton ones). Therefore, violation of the virial

theorem found in clusters of galaxies and interpreted as evidence

for the existence of dark matter, in the Conformal cosmology, can

be explained by the Hubble velocities of these galaxies, without

the dark matter halo, as was predicted by Einstein and Strauss

in 1945 yet.

Thus, on the basis of the principles of the quantum Universe, for-

mulated before 1974, it is possible to explain different properties of the

world.

15.2.2 Discussion

One can send, imaginatively, an observer to the beginning of the Uni-

verse, just as Copernicus put his observer, imaginatively, on the Sun.

Our observer knows that there was the beginning, and at the beginning

there was an empty Universe. The observer finds that in this Universe

there is only the dilaton zero mode and Casimir’s energy. A method of

measuring the dilaton is the redshift. There are systems of reference,

co-moving to an empty element of the space, where the initial data of

the dilaton are constants of motion. These constants of motion define

its position (the present value of Newton’s constant) and speed (the

present value of the Hubble parameter). The principles of symmetry,

of which the action of Dirac is derived, and the postulate of vacuum

lead to a hierarchy of cosmological scales and the wave function of the

Universe. The wave function of the Universe allows us to unify mod-
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ern observational data on the Supernova with the latest experimental

value of the Higgs particle mass.

The level of mathematical description of the nature, claimed in

modern physics, formulates a lot of other questions. How can the

affine group extend to include all fields of the Standard Model in the

Goldstone fields? Why does the world have these symmetries, and not

others? Why is there such a precise fit of the initial data and the

dimensionless coupling constants under the anthropic principle?

Maybe in the future someone will find the answers to these ques-

tions in harmony of the very principles of symmetry, like Copernicus

and Kepler found their answers to the questions of the Universe in

harmony of epicycles, and Einstein, Weyl and other researchers in the

20th century found their answers in harmony of the laws of nature.

Steven Weinberg fatefully wrote in the Introduction of his book1

about the future of the Standard Cosmological model: “Can we really

be sure of the standard model? Will new discoveries overthrow it and

replace the present standard model with some other cosmogony, or even

revive the steady-state model? Perhaps. I cannot deny a feeling of

unreality in writing about the thirst three minutes as if we really know

what we are talking about”.

In this book, we gave theoretical and observational arguments in

favour of Steven Weinberg’s predictions. New present-day discoveries,

in particular, the recent LHC experimental data on a small value of

the Higgs particle mass confirm the conformal symmetry principle on

1Weinberg, S.: The First Three Minutes: A Modern View of the Origin of the Universe. Basic

Books, New York (1977).
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which the Standard Model of elementary particles is based. The origin

of elementary particle masses is explained by the quantum anomaly of

the vacuum postulate, not by the phenomenological Higgs potential.

The same quantum anomaly in the form of the vacuum Casimir energy

explained the present-day Supernovae observational data without the

lambda-term in the framework of the Conformal cosmology.



Appendix A

Reduced Abelian field

theory

A.1 Reduced QED

A.1.1 Action and frame of reference

Let us recall the Dirac approach to QED [1, 2, 3]. The theory is given

by the well-known action

S =

∫
d4x

(
− 1

4
FμνF

μν + ψ̄[ı/∂ −m]ψ + Aμj
μ

)
, (A.1)

where Fμν = ∂μAν − ∂νAμ is tension, Aμ is a vector potential, ψ is the

Dirac electron-positron bispinor field, and jμ = eψ̄γμψ is the charge

current, /∂ ≡ ∂μγμ. This action is invariant with respect to the collec-

tion of gauge transformations

Aλ
μ = Aμ + ∂μλ, ψλ = e+ıeλψ. (A.2)

422
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The variational principle used for the action (A.1) gives the Euler –

Lagrange equations of motion known as the Maxwell equations

∂νF
μν + jμ = 0, (A.3)

Physical solutions of the Maxwell equations are obtained in a fixed

inertial reference frame distinguished by a unit time-like vector nμ.

This vector splits the gauge field Aμ into the time-like A0 = Aμnμ and

space-like

A⊥ν = Aν − nν(Aμnμ)

components. Now we rewrite the Maxwell equations in terms of com-

ponents

ΔA0 − ∂0∂kAk = j0, (A.4)

�Ak − ∂k[∂0A0 − ∂iAi] = −jk. (A.5)

The field component A0 cannot be a degree of freedom because its

canonical conjugate momentum vanishes. The Gauss constraints (A.4)

have the solution

A0 + ∂0Λ = − 1

4π

∫
d3y

j0(x0, yk)

|x− y| , (A.6)

where

Λ = − 1

Δ
∂kAk =

1

4π

∫
d3y

∂kAk

|x− y| (A.7)

is a longitudinal component. The result (A.6) is treated as the Coulomb

potential field leading to the static interaction.
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A.1.2 Elimination of time component

Dirac [1] proposed to eliminate the time component by substituting

the manifest resolution of the Gauss constraints given by (A.6) into

the initial action (A.1). This substitution – known as the reduction

procedure – allows us to eliminate nonphysical pure gauge degrees of

freedom. After this step the action (A.1) takes the form

S=

∫
d4x

(
1

2
(∂μA

T
k )

2+ψ̄[ı/∂−m]ψ−j0∂0Λ−AT
k jk+

1

2
j0

1

�j0

)
, (A.8)

where

AT
k =

(
δij −

∂i∂j
�

)
Aj. (A.9)

This substitution leaves the longitudinal component Λ given by Eq. (A.7)

without any kinetic term.

There are two possibilities. The first one is to treat Λ as the La-

grange factor that leads to the conservation law (A.3). In this ap-

proach, the longitudinal component is treated as an independent vari-

able. This treatment violates gauge invariance because this compo-

nent is gauge-variant and it cannot be measurable. Moreover, the

time derivative of the longitudinal component in Eq. (A.6) looks like

a physical source of the Coulomb potential. By these reasons we will

not consider this approach in this paper.

In the second possibility, a measurable potential stress is identified

with the gauge-invariant quantity (A.6)

AR
0 = A0 −

∂0∂k
� Ak , (A.10)

This approach is consistent with the principle of gauge invariance that

identifies observables with gauge-invariant quantities. Therefore, ac-
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cording to the gauge-invariance, the longitudinal component should be

eliminated from the set of degrees of freedom of QED, too.

A.1.3 Elimination of longitudinal component

This elimination is fulfilled by the choice of the “radiation variables” as

gauge invariant functionals of the initial fields, id est “dressed fields”

[1]

AR
μ = Aμ + ∂μΛ, ψR = eıeΛψ, (A.11)

In this case, the linear term ∂kAk disappears in the Gauss law (A.4)

ΔAR
0 = jR0 ≡ eψ̄Rγ0ψ

R. (A.12)

The source of the gauge-invariant potential field AR
0 can be only an

electric current jR0 whereas the spatial components of the vector field

AR
k coincide with the transversal one

∂kA
R
k = ∂kA

T
k ≡ 0. (A.13)

In this manner the frame-fixing Aμ = (A0, Ak) is compatible with un-

derstanding of A0 as a classical field, and the use of the Dirac dressed

fields (A.11) of the Gauss constraints (A.4) leads to understanding of

the variables (A.11) as gauge-invariant functionals of the initial fields.

A.1.4 Static interaction

Substitution of the manifest resolution of the Gauss constraints (A.4)

into the initial action (A.1) calculated on constraints leads to that the
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initial action can be expressed in terms of the gauge-invariant radiation

variables (A.11) [1, 3]

S =

∫
d4x

(
1

2
(∂μA

R
k )

2 + ψ̄R[ı/∂ −m]ψR − AR
k j

R
k +

1

2
jR0

1

�jR0

)
.(A.14)

The Hamiltonian, which corresponds to this action, has the form

H =
(ΠR

k )
2 + (∂jA

R
k )

2

2
+ pRψγ0[ıγk∂k +m]ψR+ (A.15)

+AR
k j

R
k −

1

2
jR0

1

�jR0 ,

where ΠR
k , p

R
ψ are the canonical conjugate momentum fields of the the-

ory calculated in a standard way. Hence, the vacuum can be defined as

a state with minimal energy obtained as the value of the Hamiltonian

for the equations of motion. Relativistic covariant transformations of

the gauge-invariant fields are proved at the level of the fundamental

operator quantization in the form of the Poincaré algebra generators

[4]. The status of the theorem of equivalence between the Dirac ra-

diation variables and the Lorentz gauge formulation is considered in

[5, 6, 7, 8].

A.1.5 Comparison of radiation variables with the

Lorentz gauge ones

The static interaction and the corresponding bound states are lost in

any frame free formulation including the Lorentz gauge one. The action

(A.8) transforms into

S =

∫
d4x

(
−1

2
(∂μA

L
ν )

2 + ψ̄L[ı/∂ −m]ψL + AL
μj

Lμ

)
, (A.16)



A.1. Reduced QED 427

where

AL
μ = Aμ + ∂μΛ

L, ψL = eieΛ
L

ψ, ΛL = − 1

�
∂μAL

μ (A.17)

are the manifest gauge-invariant functionals satisfying the equations

of motion

�AL
μ = −jLμ , (A.18)

with the current

jLμ = −eψ̄Lγμψ
L

and the gauge constraints

∂μA
Lμ ≡ 0. (A.19)

Really, instead of the potential, satisfying the Gauss constraints

�AR
0 = jR0 ,

and two transverse variables in QED in terms of the radiation variables

(A.11) we have here three independent dynamic variables, one of which

AL
0 satisfies the equation

�AL
0 = −j0, (A.20)

and gives a negative contribution to the energy.

We can see that there are two distinctions of the “Lorentz gauge for-

mulation” from the radiation variables. The first is the loss of Coulomb

poles (id est static interactions). The second is the treatment of the

time component A0 as an independent variable with the negative con-

tribution to the energy; therefore, in this case, the vacuum as the
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state with the minimal energy is absent. In other words, one can say

that the static interaction is the consequence of the vacuum postu-

late, too. The inequivalence between the radiation variables and the

Lorentz ones does not mean violation of the gauge invariance, because

both the variables can be defined as the gauge-invariant functionals of

the initial gauge fields (A.11) and (A.17).

In order to demonstrate the inequivalence between the radiation

variables and the Lorentz ones, let us consider the electron-positron

scattering amplitude

TR = 〈e+, e−|Ŝ|e+, e−〉.

One can see that the Feynman rules in the radiation gauge give the

amplitude in terms of the current jν = ēγνe

TR =
j20
q2

+

(
δik −

qiqk
q2

)
jijk

q2 + ıε
(A.21)

≡ −j2
q2 + ıε

+
(q0j0)

2 − (q · j)2
q2[q2 + ıε]

.

This amplitude coincides with the Lorentz gauge one

TL = − 1

q2 + ıε

[
j2 − (q0j0 − q · j)2

q2 + ıε

]
(A.22)

when the box terms in Eq. (A.21) can be eliminated. Thus, the Fad-

deev equivalence theorem [6, 7] is valid if the currents are conserved

q0j0 − q · j = qj = 0, (A.23)

However, for the action with the external sources the currents are not

conserved. Instead of the classical conservation laws we have the Ward
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– Takahashi identities for Green functions, where the currents are not

conserved

q0j0 − q · j �= 0. (A.24)

In particular, the Lorentz gauge perturbation theory (where the prop-

agator has only the light cone singularity qμq
μ = 0) cannot describe

instantaneous Coulomb atoms; this perturbation theory contains only

the Wick – Cutkosky bound states whose spectrum is not observed in

the Nature.

Thus, we can give a response to the question: What are new physi-

cal results that follow from the Hamiltonian approach to QED in com-

parison with the frame-free Lorentz gauge formulation? In the frame-

work of the perturbation theory, the Hamiltonian presentation of QED

contains the static Coulomb interaction (A.21) forming instantaneous

bound states observed in the Nature, whereas all frame free formu-

lations lose this static interaction together with instantaneous bound

states in the lowest order of perturbation theory on retarded interac-

tions called the radiation correction. Nobody has proved that the sum

of these retarded radiation corrections with the light-cone singular-

ity propagators (A.22) can restore the Coulomb interaction that was

removed from propagators (A.21) by hand on the level of the action.
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A.2 Reduced vector boson theory

A.2.1 Lagrangian and reference frame

The classical Lagrangian of massive QED is

L = −1

4
FμνF

μν +
1

2
M 2V 2

μ + ψ̄(ı/∂ −m)ψ + Vμj
μ , (A.25)

In a fixed reference frame this Lagrangian takes the form

L =
(V̇k − ∂kV0)

2 − (∂jV
T
k )2+M 2(V 2

0 −V 2
k )

2
+ (A.26)

+ψ̄(ı/∂ −m)ψ+V0j0 − Vkjk,

where V̇ = ∂0V and V T
k is the transverse component defined by the

action of the projection operator given in Eq. (A.9). In contrast to

QED this action is not invariant with respect to gauge transformations.

Nevertheless, from the Hamiltonian viewpoint the massive theory has

the same problem as QED. The time component of the massive boson

has a vanishing canonical momentum.

A.2.2 Elimination of time component

In [8], one supposed to eliminate the time component from the set

of degrees of freedom like the Dirac approach to QED, id est, using

the action principle. In the massive case it produces the equation of

motion

(�−M 2)V0 = ∂iV̇i + j0. (A.27)

which is understood as constraints and has the solution

V0 =

(
1

�−M 2
∂iVi

)·
+

1

�−M 2
j0. (A.28)
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In order to eliminate the time component, let us insert (A.28) into the

Lagrangian (A.26) [1, 8]

L =
1

2

[
(V̇ T

k )2 + V T
k (�−M 2)V T

k + j0
1

�−M 2
j0

]
+

+ψ̄(ı � ∂ −m)ψ − V T
k jk+ (A.29)

+
1

2

[
V̇
||
k M

2 1

�−M 2
V̇
||
k −M 2(V

||
k )

2

]
− V

||
k jk+

+j0
1

�−M 2
∂kV̇

||
k ,

where we decomposed the vector field

Vk = V T
k + V

||
k

by means of the projection operator by analogy with (A.9). The last

two terms are the contributions of the longitudinal component only.

This Lagrangian contains the longitudinal component which is the dy-

namical variable described by the bilinear term. Now we propose the

following transformation:

ψ̄(ı � ∂ −m)ψ − V
||
k jk + j0

1

�−M 2
∂kV̇

||
k = (A.30)

= ψ̄R(ı � ∂ −m)ψR − V
R||
k jk,

where

V
R||
k = V

||
k − ∂k

1

�−M 2
∂iVi = −M 2 1

�−M 2
V
||
k , (A.31)

ψR = exp

{
−ıe 1

�−M 2
∂iVi

}
ψ (A.32)
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are the radiation-type variables. It removes the linear term ∂iV̇i in the

Gauss law (A.27). If the mass M �= 0, one can pass from the initial

variables V
||
k to the radiation ones V

R||
k by the change

V
||
k = ẐV

R||
k , Ẑ =

M 2 −�
M 2

(A.33)

Now the Lagrangian (A.29) goes into

L =
1

2

[
(V̇ T

k )2 + V T
k (�−M 2)V T

k + j0
1

�−M 2
j0

]
+ ψ̄R(ı � ∂ −m)ψR+

+
1

2

[
V̇

R||
k ẐV̇

R||
k + V

R||
k (�−M 2)ẐV

R||
k

]
− V T

k jk − V
R||
k jk. (A.34)

The Hamiltonian corresponding to this Lagrangian can be constructed

in the standard canonical way. Using the rules of the Legendre trans-

formation and canonical conjugate momenta

ΠV T
k
, Π

V
R||
k

, ΠψR

we obtain

H =
1

2

[
Π2

V T
k
+ V T

k (M 2 −�)V T
k + j0

1

M 2 −�j0

]
−

−ΠψRγ0(ıγk∂k +m)ψR (A.35)

+
1

2

[
Π

V
R||
k

Ẑ−1Π
V

R||
k

+ V
R||
k (M 2 −�)ẐV

R||
k

]
+

+V T
k jk + V

R||
k jk.

One can be convinced [8] that the corresponding quantum system has

a vacuum as a state with minimal energy and correct relativistic trans-

formation properties.
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A.2.3 Quantization

We start the quantization procedure from the canonical quantization

by using the following equal time canonical commutation relations

(ETCCRs): [
Π̂V T

k
, V̂ T

k

]
= ıδTijδ

3(x− y), (A.36)

[
Π̂

V
R||
k

, V̂
R||
k

]
= ıδ

||
ijδ

3(x− y). (A.37)

The Fock space of the theory is built by the ETCCRs[
a−
(λ) (±k) , a

+
(λ′) (±k

′)
]
= δ3 (k− k′) δ(λ)(λ′); (A.38)

{
b−α (±k) , b+α′ (±k′)

}
= δ3 (k− k′) δαα′; (A.39)

{
c−α (±k) , c+α′ (±k′)

}
= δ3 (k− k′) δαα′. (A.40)

with the vacuum state |0〉 defined by the relations

a−
(λ)|0〉 = b−α |0〉 = c−α |0〉 = 0. (A.41)

The field operators have the Fourier decompositions in the plane wave

basis

Vj (x) =

∫
[dk]vε

(λ)
j

[
a+
(λ) (ω,k) e

−ıωt+ıkx + a−
(λ) (ω,−k) e

ıωt−ıkx
]

ψ (x) =
√
2ms

∫
[dk]s

[
b+α (k) uαe

−ıωt+ıkx + c−α (−k) ναeıωt−ıkx
]

ψ+ (x) =
√
2ms

∫
[dk]s

[
b−α (k)u+αe

ıωt−ıkx + c+α (−k) ν+α e−ıωt+ıkx
]
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with the integral measure

[dk]v,s =
1

(2π)3/2
d3k√
2ωv,s(k)

and the frequency of oscillations

ωv,s(k) =
√

k2 +m2
v,s.

One can define the vacuum expectation values of the instantaneous

products of the field operators

Vi(t, �x)Vj(t, �y) =: Vi(t, �x)Vj(t, �y) : +〈Vi(t, �x)Vj(t, �y)〉, (A.42)

ψα(t, �x)ψβ(t, �y) =: ψα(t, �x)ψβ(t, �y) : +〈ψα(t, �x)ψβ(t, �y), (A.43)

where

〈Vi(t, �x)Vj(t, �y)〉 =
1

(2π)3

∫
d3k

2ωv(k)

∑
(λ)

ε
(λ)
i ε

(λ)
j e−ık(x−y), (A.44)

〈ψα(t, �x)ψβ(t, �y)〉 =
1

(2π)3

∫
d3k

2ωs(k)
(k�γ +m)αβ e

−ık(x−y) (A.45)

are the Pauli – Jordan functions.

A.2.4 Propagators and condensates

The vector field in the Lagrangian (A.34) is given by the formula

V R
i =

[
δTij + Ẑ−1δ

||
ij

]
Vj = V T

i + Ẑ−1V
||
i . (A.46)

Hence, the propagator of the massive vector field in radiative variables

is

DR
ij(x− y) = 〈0|TV R

i (x)V R
j (y)|0〉 = (A.47)
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= −ı
∫

d4q

(2π)4
e−ıq·(x−y)

q2 −M 2 + ıε

(
δij −

qiqj
q2 +M 2

)
.

Together with the instantaneous interaction described by the current–

current term in the Lagrangian (A.34) this propagator leads to the

amplitude

TR = DR
μν(q)j̃

μj̃ν = (A.48)

j̃20
q2 +M 2

+

(
δij −

qiqj
q2 +M 2

)
j̃ij̃j

q2 −M 2 + ıε

of the current-current interaction which differs from the acceptable one

T L = j̃μDL
μν(q)j̃

ν = −j̃μ
gμν −

qμqν
M 2

q2 −M 2 + ıε
j̃ν. (A.49)

The amplitude given by Eq. (A.48) is the generalization of the radiation

amplitude in QED. As it was shown in [8], the Lorentz transformations

of classical radiation variables coincide with the quantum ones and they

both (quantum and classical) correspond to the transition to another

Lorentz frame of reference distinguished by another time-axis, where

the relativistic covariant propagator takes the form

DR
μν(q|n) = (A.50)

=
−gμν

q2 −M 2 + ıε
+

nμnν(qn)
2 − [qμ − nμ(qn)][qν − nν(qn)]

(q2 −M 2 + ıε)(M 2 + |qμ − nμ(qn)|2)
,

where nμ is determined by the external states. Remember that the con-

ventional local field massive vector propagator takes the form (A.49)

DL
μν(q) = −

gμν −
qμqν
M 2

q2 −M 2 + ıε
. (A.51)
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In contrast to this conventional massive vector propagator the radiation-

type propagator (A.50) is regular in the limit M → 0 and is well be-

haved for large momenta, whereas the propagator (A.51) is singular.

The radiation amplitude (A.48) can be rewritten in the alternative

form

TR = − 1

q2 −M 2 + ıε

[
j̃2ν +

(j̃iqi)
2 − (j̃0q0)

2

�q2 +M 2

]
, (A.52)

for comparison with the conventional amplitude defined by the propa-

gator (A.51). One can find that for a massive vector field coupled to a

conserved current (qμj̃
μ = 0) the collective current-current interactions

mediated by the radiation propagator (A.50) and by the conventional

propagator (A.51) coincide

j̃μDR
μν j̃

ν = j̃μDL
μν j̃

ν = T L . (A.53)

If the current is not conserved

j̃0q0 �= j̃kqk,

the collective radiation field variables with the propagator (A.50) are

inequivalent to the initial local variables with the propagator (A.51)

and the amplitude (A.48). The amplitude (A.53) in the Feynman

gauge is

T L = − j2

q2 −M 2 + ıε
, (A.54)

and corresponds to the Lagrangian

LF =
1

2
(∂μVμ)

2 − jμVμ +
1

2
M 2V 2

μ (A.55)



A.2. Reduced vector boson theory 437

In this theory the time component has a negative contribution to the

energy. According to this, a correctly defined vacuum state could not

exist. Nevertheless, the vacuum expectation value

〈Vμ(x)Vμ(x)〉

coincides with the values for two propagators (A.50) and (A.51) be-

cause in both these propagators the longitudinal part does not give a

contribution if one treats them as derivatives of constant like

〈∂Vμ(x)Vμ(x)〉 = ∂〈Vμ(x)Vμ(x)〉 = 0.

In this case, we have

〈Vμ(x)Vμ(x)〉 = −
2

(2π)3

∫
d3k

ωv(k)
, (A.56)

〈ψα(x)ψα(x)〉 = −
ms

(2π)3

∫
d3k

ωs(k)
, (A.57)

where ms, Mv are masses of the spinor and vector fields.
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Appendix B

Quantum field theory

for bound states

B.1 Ladder approximation

The generating functional of quantum field theory for bound states can

be presented by means of the relativistic generalization of the Hubbard

– Stratonovich (HS) transformation [1, 2]. The Hubbard – Stratonovich

transformation is an exact mathematical transformation

exp[−ax2/2] = [2πa]−1/2
∫ +∞

−∞
dy exp[−ıxy − y2/(2a)]. (B.1)

The basic idea of the HS transformation is to reformulate a system of

particles interacting through two-body potentials (10.18) in the theory

(10.19) into a system of independent particles interacting with a bilocal

auxiliary field Mab(x, y). The HS transformation was invented by

the Russian physicist Ruslan L. Stratonovich and popularized by the

440
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British physicist John Hubbard.

Zψ =

∫
dψdψeıWinstant[ψψ]+ıS[J∗,η∗,η∗] = (B.2)

=

∫
dψdψe−

ı
2(ψψ,Kψψ)−(ψψ,G

−1
0 )+ıS[J∗,η∗] = (B.3)

=

∫ ⎡⎣ ∏
x,y,a,b

dMab(x, y)

⎤⎦ exp{ıWeff [M] + ı(ηη,GM)}. (B.4)

The effective action in Eq. (B.4) can be decomposed in the form

Weff [M] = −1

2
Nc(M,K−1M) + ıNcTr ln(1 + Φ), (B.5)

Tr ln(1 + Φ) =
∞∑
n=1

1

n
Φn. (B.6)

Here Φ ≡ G0M,Φ2,Φ3, etc. mean the following expressions

Φ(x, y) ≡ G0M =

∫
d4zG0(x, z)M(z, y),

Φ2 =

∫
d4xd4yΦ(x, y)Φ(y, x), (B.7)

Φ3 =

∫
d4xd4yd4zΦ(x, y)Φ(y, z)Φ(z, x) , etc.

The first step to the semi-classical quantization of this construction

[1] is the determination of its minimum of the effective action

N−1
c

δWeff(M)

δM ≡ −K−1M+
ı

G−10 −M
= 0. (B.8)

This equation is known as the Schwinger – Dyson one. We denote the

corresponding classical solution for the bilocal field by Σ(x − y). It

depends only on the difference x− y at A∗ = 0 because of translation

invariance of vacuum solutions.
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The next step is the expansion of the effective action around the

point of minimum M = Σ+M′,

Weff(Σ +M′) = W
(2)

eff +Wint; (B.9)

W
(2)

eff(M′) = WQ(Σ) +Nc

[
−1

2
M′K−1M′ +

ı

2
(GΣM′)2

]
, (B.10)

Wint =
∞∑
n=3

W (n) = ıNc

∞∑
n=3

1

n
(GΣM′)n, (B.11)

GΣ = (G−10 − Σ)−1. (B.12)

The bilocal function M′(x, y) in terms of the Jacobi – type variables

z = x− y, X =
x+ y

2

can be decomposed over the complete set of orthonormalized solutions

Γ of the classical equation

δ2Weff(Σ +M′)

δM′2 · Γ = 0. (B.13)

This series takes the form:

M′(x, y) =M′(z|X) = (B.14)

=
∑
H

∫
d3P

(2π)3
√
2ωH

∫
d4qeıq·z

(2π)4
×

×
[
eıP·XΓH(q

⊥|P)a+H(P) + e−ıP·XΓ̄H(q
⊥|P)a−H(P)

]
,

with a set of quantum numbers (H) including masses

MH =
√
P2

μ
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and energies

ωH =
√

P
2 +M 2

H .

The bound state creation and annihilation operators obey the commu-

tation relations[
a−H ′(P ′), a+H(P)

]
= δH ′Hδ

3(P ′ −P) . (B.15)

The corresponding Green function takes the form

G(q⊥, p⊥|P) = (B.16)

=
∑
H

(
ΓH(q

⊥|P)Γ̄H(p
⊥| − P)

(P0 − ωH − ıε)2ωH
− Γ̄H(p

⊥|P))ΓH(p
⊥| − P)

(P0 − ωH − ıε)2ωH

)
.

To normalize vertex functions Γ, we can use the ”free” part of the

effective action (B.10) for the quantum bilocal meson M′ with the

commutation relations (B.15). The substitution of the off-shell

√
P2 �= MH

decomposition (9.13) into the “free” part of effective action defines the

reverse Green function of the bilocal field G(P0)

W
(0)

eff [M]=2πδ(P0 − P′0)
∑
H

∫
d3P√
2ωH

a+H(P)a−H(P)G−1H (P0) (B.17)

where G−1H (P0) is the reverse Green function which can be represented

as a difference of two terms

G−1H (P0) = I(
√
P2)− I(M ab

H (ω)) (B.18)
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whereMab
H (ω) is the eigenvalue of the equation for small fluctuations (B.11)

and

I(
√
P2) = ıNc

∫
d4q

(2π)4
×

tr

[
GΣb

(
q − P

2

)
Γ̄H
ab(q

⊥| − P)GΣa

(
q +

P
2

)
ΓH
ab(q

⊥|P)
]
,

where

GΣ(q) =
1

� q − Σ(q⊥)
, Σ(q) =

∫
d4xΣ(x)eıqx (B.19)

is the fermion Green function. The normalization condition is defined

by the formula

2ω =
∂G−1(P0)

∂P0

|P0=ω(P1) =
dM(P0)

dP0

dI(M)

dM
|P0=ω . (B.20)

Finally, we get that solutions of equation (B.13) satisfy the normaliza-

tion condition [3]

ıNc
d

dP0

∫
d4q

(2π)4
tr

[
GΣ

(
q − P

2

)
Γ̄H(q

⊥| − P)GΣ

(
q +

P
2

)
ΓH(q

⊥|P)
]

= 2ωH . (B.21)

The achievement of the relativistic covariant constraint-shell quantiza-

tion of gauge theories is the description of both the spectrum of bound

states and their S-matrix elements.

It is convenient to write the relativistic-invariant matrix elements

for the action (B.9) in terms of the field operator

Φ′(x, y) =

∫
d4x1GΣ(x− x1)M′(x1, y) = Φ′(z|X).
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Using the decomposition over the bound state quantum numbers (H)

Φ′(z|X) =
∑
H

∫
d3P

(2π)3/2
√
2ωH

∫
d4q

(2π)4
× (B.22)(

eıP·XΦH(q
⊥|P)a+H(P) + e−ıP·XΦ̄H(q

⊥| − P)a−H(P)
)
,

where

ΦH(ab)(q
⊥|P) = GΣa(q + P/2)ΓH(ab)(q

⊥|P) , (B.23)

we can write the matrix elements W (n) (B.10) for the interaction be-

tween the vacuum and the n-bound state [4]

〈H1P1, ..., HnPn|ıW (n)|0〉 =

= −ı(2π)4δ4
(

n∑
i=1

Pi

)
n∏

j=1

[
1

(2π)32ωj

]1/2
M (n)(P1, ...,Pn), (B.24)

M (n) =

∫
ıd4q

(2π)4n

∑
{ik}

Φa1,a2
Hi1

(q|Pi1)×

Φa2,a3
Hi2

(q − Pi1 + Pi2

2
|Pi2)Φ

a3,a4
Hi3

(
q − 2Pi2 + Pi1 + Pi3

2
|Pi3

)
×

...Φan,a1
Hin

(
q − 2(Pi2 + ...+ Pin−1

) + Pi1 + Pin

2
|Pin

)
, (B.25)

where {ik} denotes permutations over ik).

Expressions (B.16), and (B.25) represent Feynman rules for the

construction of a quantum field theory with the action (B.10) in terms

of bilocal fields.
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B.2 Bethe – Salpeter Equations

Equations for the spectrum of the bound states (B.13) can be rewritten

in the form of the Bethe – Salpeter (BS) one [5, 6]

Γ = ıK(x, y)
∫

d4z1d
4z2GΣ(x− z1)Γ(z1, z2)GΣ(z2 − y) . (B.26)

In the momentum space with

Γ(q|P) =
∫

d4xd4yeı
x+y
2 Peı(x−y)qΓ(x, y)

the Coulomb type kernel we obtain the following equation for the ver-

tex function ( Γ ):

Γ(k,P) = (B.27)

= ı

∫
d4q

(2π)4
V (k⊥ − q⊥)/�

[
GΣ

(
q +

P
2

)
Γ(q|P)GΣ

(
q − P

2

)]
/�

where V (k⊥) means the Fourier transform of the potential,

k⊥μ = kμ − �μ(k · �)

is the relative momentum transversal with respect to �μ, and Pμ is the

total momentum.

The quantity Γ depends only on the transversal momentum

Γ(k|P) = Γ(k⊥|P),

because of the instantaneous form of the potential V (k⊥) in any frame.

The Bethe – Salpeter equation (B.26) for potential independent of the

longitudinal momentum allows to make integration over it which at
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the rest frame is equal to q0
1. We consider the Bethe – Salpeter equa-

tion (B.27) after integration over the longitudinal momentum. The

vertex function takes the form

Γab(k
⊥|P) =

∫
d3q⊥

(2π)3
V (k⊥ − q⊥)/�Ψab(q

⊥)/�, (B.28)

where the bound state wave function Ψab is given by

Ψab(q
⊥) = (B.29)

= /�

[
Λ̄(+)a(q

⊥Γab(q
⊥|P)Λ(−)b(q

⊥)

ET −
√
P2 + ıε

+
Λ̄(−)a(q

⊥Γab(q
⊥|P)Λ(+)b(q

⊥)

ET +
√
P2 − ıε

]
/�.

Here the sum of one-particle energies of the two particles (a) and (b )

ET = Ea + Eb

defined by (10.27) and the notation (10.26)

Λ̄(±)(q
⊥) = S−1(q⊥)Λ(±)(0)S(q

⊥) = Λ(±)(−q⊥). (B.30)

has been introduced.

Acting with the operators (B.30) on equation (B.28) one gets the

equations for the wave function ψ in an arbitrary moving reference

frame

(ET (k
⊥)∓

√
P2)Λ

(�)
(±)a(k

⊥)Ψab(k
⊥)Λ

(�)
(∓)b(−k

⊥) = (B.31)

= Λ
(�)
(±)a(k

⊥)

∫
d3q⊥

(2π)3
V (k⊥ − q⊥)Ψab(q

⊥)]Λ
(�)
(∓)b(−k

⊥).

1This integral has poles of the product of two Green functions of the parton-quarks (or leptons

in QED)
ı

2π

∫
dq0

1

(q0 − a− ıε)(q0 + b+ ıε)
=

1

a+ b
.
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All these equations (B.28) and (B.31) have been derived without any

assumption about the smallness of the relative momentum |k⊥| and for

an arbitrary total momentum

Pμ =

(√
M 2

A + P2, P �= 0

)
. (B.32)

We expand the function Ψ on the projection operators

Ψ = Ψ+ +Ψ−, Ψ± = Λ
(�)
± ΨΛ

(�)
∓ . (B.33)

According to Eq. (B.29), Ψ satisfies the identities

Λ
(�)
+ ΨΛ

(�)
+ = Λ

(�)
− ΨΛ

(�)
− ≡ 0 , (B.34)

which permit the determination of unambiguous expansion of Ψ in

terms of the Lorentz structures:

Ψa,b± = S−1a

(
γ5La,b±(q

⊥) + (γμ − �μ � �)Nμ
a,b±

)
Λ
(�)
∓ (0)S−1b , (B.35)

where

L± = L1 ± L2, N± = N1 ±N2.

In the rest frame �μ = (1, 0, 0, 0) we get

Nμ = (0, N i) ; N i(q) =
∑
a=1,2

Nα(q)e
i
α(q) + Σ(q)q̂i .

The wave functions L,Nα,Σ satisfy the following equations.

1. Pseudoscalar particles.

ML

0

L2 (p) = E
0

L1 (p)−
∫

d3q

(2π)3
V (p− q)(c−p c

−
q − ξs−p s

−
q )

0

L1 (q) ;



B.2. Bethe – Salpeter Equations 449

ML

0

L1 (p) = E
0

L2 (p)−
∫

d3q

(2π)3
V (p− q)(c+p c

+
q − ξs+p s

+
q )

0

L2 (q) .

Here, in all equations, we use the following definitions

E(p) = Ea(p) + Eb(p) , (B.36)

c
±
p = cos[va(p)± vb(p)] , (B.37)

s
±
p = sin[va(p)± vb(p)] , (B.38)

ξ = p̂i · q̂i , (B.39)

whereEa, Eb are one-particle energies and va, vb are the Foldy –Wouthuy-

sen angles of particles (a,b) given by Eqs. (10.27) and (10.28).

2. Vector particles.

MN

0

N 2
α = E

0

N 1
α−

−
∫

d3q

(2π)3
V (p−q){(c−p c−q δαβ+s−p s−q (δαβξ−ηαηβ))

0

N
β

1 +(ηαc−p c
+
q )

0

Σ1} ;

MN

0

N 1
α = E

0

N 2
α−

−
∫

d3q

(2π)3
V (p−q){(c+p c+q δαβ+s+p s+q (δαβξ−ηαηβ))

0

N
β

2 +(ηαc+p c
−
q )

0

Σ2} .

ηα = q̂iê
α
i (p),

ηα = p̂iê
α
i (q),

δαβ = êαi (q)ê
β
i (p).

3. Scalar particles.
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MΣ

0

Σ2= E
0

Σ1 −

−
∫

d3q

(2π)3
V (p− q){(ξc+p c+q + s

+
p s

+
q )

0

Σ1 +(ηβc−p c
+
q )

0

N 1
β} ;

MΣ

0

Σ1= E
0

Σ2 −

−
∫

d3q

(2π)3
V (p− q){(ξc−p c−q + s

−
p s

−
q )

0

Σ2 +(ηβc+p c
−
q )

0

N2

β

} .

The normalization of these solutions is uniquely determined by

equation (B.21)

2Nc

ML

∫
d3q

(2π)3
{L1(q)L

∗
2(q) + L2(q)L

∗
1(q)} = 1 , (B.40)

2Nc

MN

∫
d3q

(2π)3
{Nμ

1 (q)N
μ∗
2 (q) +Nμ

2 (q)N
μ∗
1 (q)} = 1 , (B.41)

2Nc

MΣ

∫
d3q

(2π)3
{Σ1(q)Σ

∗
2(q) + Σ2(q)Σ

∗
1(q)} = 1 . (B.42)

If the atom is at rest ( Pμ = (MA, 0, 0, 0) ) equation (B.31) coincides

with the Salpeter equation [6]. If one assumes that the current massm0

is much larger than the relative momentum, then the coupled equations

(B.28) and (B.31) turn into the Schrödinger equation. In the rest

frame ( P0 = MA) equation (10.27) for a large mass (m0/|q⊥| → ∞)

describes a nonrelativistic particle

Ea(k) =
√

(m0
a)

2 + k2 � m0
a +

1

2

k2

m0
a

,

tan 2υ =
k

m0
→ 0; S(k) � 1; Λ(±) �

1± γ0
2

.

Then, in equation (B.31) only the state with positive energy remains

Ψαβ
P � Ψαβ

(+)
= [Λ(+)γ5]

αβ
√
4μψSch, Λ(−)Ψ

αβ
P Λ(+) � 0, (B.43)
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where

μ ≡ ma ·mb

(ma +mb)
.

And finally the Schrödinger equation results in[
1

2μ
k−2 + (m0

a +m0
b −MA)

]
ψSch(k) = (B.44)

=

∫
d3q

(2π)3
V (k− q)ψSch(q),

with the normalization

1

(2π)3

∫
d3q|ψSch|2 = 1.

For an arbitrary total momentum Pμ (B.32) equation (B.44) takes

the form [
− 1

2μ
(k⊥ν )

−2 + (m0
a +m0

b −
√
P2)

]
ψSch(k

⊥) = (B.45)

=

∫
d3q⊥

(2π)3
V (k⊥ − q⊥)ψSch(q

⊥),

where

k⊥μ = kμ −
Pk
M 2

H

Pμ,

and describes a relativistic atom with nonrelativistic relative momen-

tum |k⊥| � m0
a,b. In the framework of such a derivation of the

Schrödinger equation it is sufficient to define the total coordinate as

X = (x + y)/2, independently of the magnitude of the masses of the

two particles forming an atom.

In particular, the Coulomb interaction leads to a positronium at
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rest with the bilocal wave function (B.43)

Ψαβ
P (z) =

(
1 + γ0

2
γ5

)αβ

ψ
Sch

(z)

√
me

2
, (B.46)

ψ
Sch

(z) =

∫
d3p

(2π)3
e(ıp·z)ψSch(z); (B.47)

where ψ
Sch

(z) is the Schrödinger normalizable wave function of the

relative motion (
− 1

me

d2

dz2
− α

|z|

)
ψ
Sch

(z) = εψ
Sch

(z) (B.48)

with the normalization ∫
d3z‖ ψ

Sch
(z) ‖2 = 1

where MP = (2me − ε) is the mass of a positronium, (1 + γ0)/2 is the

projection operator on the state with positive energies of an electron

and positron.
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Appendix C

Abel – Plana formula

Only a few series in mathematics can be calculated in an exact form.

Therefore, it is very important to express the sums of series in terms of

contour integrals. One of the popular methods is based on the following

theorem [1].

Let a function f(z) be holomorphic in the strip a < "z < b and

satisfy the inequality

|f(x+ ıy)| ≤Mea|y|, a < 2π. (C.1)

Then at k ≥ a+ 1, n ≤ b− 1, n > k, and for any 0 < θ < 1

n∑
s=k

f(s) =

n+θ∫
k+θ−1

f(x) dx+ (C.2)

+
1

2ı

θ+ı∞∫
0

[f(n+ z)− f(k − 1 + z)](cot πz + ı) dz +

+
1

2ı

θ−ı∞∫
0

[f(k − 1 + z)− f(n+ z)](cot πz − ı) dz.

454



C. Abel – Plana formula 455

Proof.

We denote by Ch a rectangle

k − 1 + θ < "z < n+ θ, |#z| < h,

which in view of the conditions on k and n is in the band a < "z < b,

and by J an integral of f(z) cot πz along Ch. According to the residue

theorem, we have for z = s:

J = 2πı
n∑
k

resf(z) cot πz = 2ı
n∑
k

f(s).

We denote by C+
h the upper half of Ch, and by C−h the lower half

Ch, and the direction of C+
h and C−h we assume to be the direction of

a point z = k − 1 + θ to a point z = n+ θ. Then we have

J =

∫
C−h

f(z) cot πz dz −
∫
C+

h

f(z) cot πz dz

and

J =

∫
C−h

f(z)(cot πz − ı) dz + ı

∫
C−h

f(z) dz −

−
∫
C+

h

f(z)(cot πz + ı) dz + ı

∫
C+

h

f(z) dz.

The integral of f(z) depends only on the ends of the loop, so the

integrals of f(z) along C+
h and C−h can be replaced by the integral over
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the interval (k − 1 + θ, n+ θ). Hence,

J = 2ı

n+θ∫
k−1+θ

f(x) dx+

+

∫
C−h

f(z)(cot πz − ı) dz −
∫
C+

h

f(z)(cot πz + ı) dz.

Further, ∫
C+

h

f(z)(cot πz + ı) dz =

=

θ+ıh∫
0

[f(k − 1 + z)− f(n+ z)](cot πz + ı) dz +

+

n+θ+ıh∫
h−1+θ+ıh

f(z)(cot πz + ı) dz.

Since for k − 1 + θ ≤ x ≤ n+ θ∣∣∣∣∣∣
n+θ+ıh∫

k−1+θ+ıh

f(z)(cot πz + ı) dz

∣∣∣∣∣∣ ≤
≤ (n− k + 1)|f(x+ ıh)|| cot π(x+ ıh) + ı|.

Since

| cot π(x+ ıh) + ı| < 2

e2πh − 1

at h > 0, then, in force (C.1), we have at h→ +∞:∣∣∣∣∣∣
n+θ+ıh∫

k−1+θ+ıh

f(z)(cot πz + ı) dz

∣∣∣∣∣∣ ≤ (n− k + 1)Meah
2

e2πh − 1
→ 0
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and∫
C+

h

(cot πz + ı) dz =

=

θ+ı∞∫
θ

[f(k − 1 + z)− f(n+ z)](cot πz + ı) dz.

Analogously, for the integral C−h . Comparing the two expressions de-

rived for J, we arrive at the formula (C.2).

Corollary.

Let a function f(z) be holomorphic in the half-plane "z > 0 and

satisfy the inequality

|f(x+ ıy)| < ε(x)ea|y|, 0 < a < 2π,

where ε(x)→ 0 under x→ +∞. Then for any 0 < θ < 1

lim
n→∞

⎛⎝ n∑
1

f(s)−
n+θ∫
θ

f(x) dx

⎞⎠ = (C.3)

=
1

2ı

θ−ı∞∫
θ

f(z)(cot πz − ı) dz − 1

2ı

θ+ı∞∫
θ

f(z)(cot πz + ı) dz.

This formula is called the Abel – Plana formula. It results from (C.2),

so that∣∣∣∣∣∣
θ±ı∞∫
θ

f(n+ z)(cot πz ∓ ı) dz

∣∣∣∣∣∣ ≤ ε(n+ θ)

∞∫
0

Me−(2π−a)y dy → 0

as n→∞.

In quantum field theory an infinite number of degrees of freedom

leads to zero vacuum fluctuations that give a divergent contribution
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to the physical values. To calculate the quantum values of the energy-

momentum tensor the Abel – Plana formula (C.3) reduces to the form

[2]:

∞∑
n=0

F (n) =

∞∫
0

F (x) dx+
1

2
F (0) + ı

∞∫
0

F (ıt)− F (−ıt)
exp(2πt)− 1

dt. (C.4)

The first term on the right-hand side is the energy-momentum tensor

of unlimited space. Regularization is reduced to its subtraction. For

the regularized sum of the divergent series (C.4) we obtain the formula

[3]:

reg
∞∑
n=0

F (n) =
1

2
F (0) + ı

∞∫
0

F (ıt)− F (−ıt)
exp(2πt)− 1

dt. (C.5)

A modification of the derivation of formula (C.4) allows one to get a

regularization analogous to (C.5) for divergent series in which the sum

is over a half-integer values of the argument [3]:

reg
∞∑
n=0

F

(
n+

1

2

)
= −ı

∞∫
0

F (ıt)− F (−ıt)
exp(2πt) + 1

dt. (C.6)

This formula is used for carrying out calculations with a fermion field.

The Casimir effect consists of a polarization of the vacuum of quan-

tized fields which arises as a result of a change in the spectrum of

vacuum oscillations. Calculations of the effect for manifolds of various

configurations and for fields with various spins with using the Abel–

Plana formulae (C.5), and (C.6) for the regularization are presented

in paper [4]. The distribution functions for bosons and fermions over

energy

f∓(ε) =
1

exp (ε− μ)/kBT ∓ 1
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are similar to the expressions under the integral signs in (C.5) and

(C.6). See, for example, a family of curves f+(ε) in Fig.16.1.

A family of curves f+(ε) describes the Fermi–Dirac distribution of identical fermions

over single-particle energy states, where no more than one fermion can occupy a

state. Using the Fermi–Dirac distribution, one can find the distribution of identical

fermions over energy, where more than one fermion can have the same energy.
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Appendix D

Functional Cartan

forms

D.1 Dynamical model with high

derivatives

Albert Einstein in fifth edition of his book “The Meaning of Relativity”

added his paper “Relativistic theory of the non-symmetric field”, writ-

ten with collaboration with B. Kaufman [1]. A system of differential

equations of motion does not determine the field completely. There

still remail certain free data. The smaller the number of free data, the

“stronger” is the system. Einstein introduced a notion of “strength”

of a system of field equations.

How can we determine the degree of freedom of the functions? This

problem is studied by Whittaker under considering spherical harmonics

[2]. How can we set the initial conditions for systems of differential

461
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equations if there are gauge degrees of freedom or identities? The

problem of identifying the dynamical variables is associated with the

formulation of the Cauchy problem [3]. There is an interesting problem

without dynamical degrees of freedom [4].

Let us consider here an instructive example of a system with con-

straints: a string theory whose Lagrangian is the nth power of the

Gauss curvature of a space–time (n ∈ N, n > 1) [5]. Insofar the

Hilbert functional of gravitation in (1+1)-dimensional space-time gives

the Gauss–Bonnet topological invariant, we take as a Lagrangian the

Gauss curvature in the nth power. The theory keeps its covariance.

Although the calculations are cumbersome, the problem can be solved

fully. It turns out to be a useful example of using the generalized

Maurer–Cartan forms.

We analyze the dynamics of a space–time metric taken in the ADM

form:

(gμν) =

⎛⎝ α2 + β2 γβ

γβ γ2

⎞⎠ ,
√
g = αγ, (D.1)

where the metric functions α(t, x) and β(t, x) have the meaning of

Lagrange multipliers. The Gauss curvature can be expressed by [6]

R = − 1

2α3γ2
det

⎛⎜⎜⎜⎝
α β γ

α̇ β̇ γ̇

α′ β′ γ′

⎞⎟⎟⎟⎠− (D.2)

− 1

2αγ

⎛⎝[(γ2)
. − (γβ)

′

αγ

].
−
[
(γβ). − (α2 + β2)

′

αγ

]′⎞⎠ .
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The functional of action is in the form

S =
1

2

∫
t,x

Rnαγ = (D.3)

=
1

2

∫
t,x

(αγ)1−n

⎡⎣(β′ − γ̇

α

).

+

(
βγ̇

αγ

)′
−
(
(α2 + β2)

′

2αγ

)′
⎤⎦n

,

where
∫
t,x denotes integration over the space-time. Varying S by the

metric one gets the Euler—Lagrange equations:

∂L

∂α
− ∂

∂t

∂L

∂α̇
− ∂

∂x

∂L

∂α′
+

∂2

∂x2
∂L

∂α′′
= 0,

∂L

∂β
− ∂

∂x

∂L

∂αβ ′
+

∂2

∂t∂x

∂L

∂β̇ ′
+

∂2

∂x2
∂L

∂β ′′
= 0, (D.4)

∂L

∂γ
− ∂

∂t

∂L

∂γ̇
− ∂

∂x

∂L

∂γ ′
+

∂2

∂t2
∂L

∂γ̈
+

∂2

∂t∂x

∂L

∂γ̇ ′
= 0,

where L is the density of the Lagrange function.

The differential equations of the extremals (D.4) are very compli-

cated. The matter is clearer in the Hamiltonian formulation since we

deal with a nondegenerated theory with higher derivatives. So we use

a slightly modified version of the Ostrogradski method [7]. It is rele-

vant to introduce, along with generalized coordinates (α, β, γ), the new

variable

u ≡ β
′ − γ̇

α
. (D.5)

Then the action in the coordinates (α, β, γ, u) takes the form

S =
1

2

∫
t,x

(αγ)1−n
[
u̇−

(
βu+ α

′

γ

)′]n
. (D.6)

Momentum densities are calculated, using the functional derivatives

πu ≡
δS

δu̇
=

∂L

∂u̇
=

n

2
αγ1−n

[
u̇−

(
βu+ α

′

γ

)′]n−1
,
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πα ≡
δS

δα̇
=

∂L

∂α̇
,

πβ ≡
δS

δβ̇
= − ∂

∂x

∂L

∂β̇ ′
,

πγ ≡
δS

δγ̇
=

∂L

∂γ̇
− ∂

∂t

∂L

∂γ̈
− ∂

∂x

∂L

∂γ̇ ′
.

Taking into consideration (D.5), the Hamiltonian

H =

∫
x

(πuu̇+παα̇+πββ̇+πγγ̇−L[α, α̇, α
′

, α
′′

; β, β
′

, β̇
′

, β
′′

; γ, γ̇, γ
′

, γ̈, γ̇
′

])

becomes

H =

∫
x

(πuu̇+παα̇+πββ̇+πγ(β
′−αu)−L[α, α

′

, α
′′

; β, β
′

; γ, γ
′

; u, u̇, u
′

]).

Ignoring boundary terms one has the following expression for the Hamil-

tonian:

H=

=

∫
x

(
παα̇ + πββ̇ + α

[
(n− 1)

(
2

nn

)1/(n−1)
γπn/(n−1)

u − uπγ +

(
π
′

u

γ

)′]
+

+ β

[
−u
(
π
′

u

γ

)
− π

′

γ

])
.

Along with the equations of motion obtained by varying the Hamilto-

nian by variables u(t, x), γ(t, x), there are two differential constraints:

(n− 1)

(
2

nn

)1/(n−1)
γπn/(n−1)

u − uπγ +

(
π
′

u

γ

)′
= 0,

u

(
π
′

u

γ

)
+ π

′

γ = 0.

The system can be integrated once and then takes the form

1

2n− 1

(
2

n

)n/(n−1)
π(2n−1)/(n−1)
u +

(
π
′

u

γ

)2

+ π2
γ = c(t),
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uπ
′

u + γπ
′

γ = 0,

where c(t) is an arbitrary function of time.

The Hamiltonian formulation is defined by the Poisson structure Ĵ

on the functional phase space. Its nonzero brackets are

{γ(t, x), πγ(t′, x′)} = δ(t− t′)δ(x− x′),

{u(t, x), πu(t′, x′)} = δ(t− t′)δ(x− x′).

In geometrodynamics, U could be considered as the phase space of the

Wheeler—De Witt space.

Then we construct on the basis of constraints the functionals

Φ[φ] =

=

∫
t,x

(
1

2n− 1

(
2

n

)n/(n−1)
π(2n−1)/(n−1)
u +

(
π
′

u

γ

)2

+ π2
γ − c(t)

)
φ(t, x),

Ξ[ξ] =

∫
t,x

(uπ
′

u + γπ
′

γ)χ(t, x)

and calculate their Poisson bracket

{Φ,Ξ} =
∫
t,x;t′,x′

δΦ

δz
Ĵ
δΦ

δz
. (D.7)

The result of the calculation is

{Φ[φ],Ξ[ξ]} = Φ[(φχ)
′

] +

∫
c(t)φ(t, x).

So the differential constraints form a closed algebra (there are no

other constraints in the theory) and they do not annihilate the Poisson

bracket. We can express the variables πγ and u from the constraints

as

π2
γ = c(t)− 1

2n− 1

(
2

n

)n/(n−1)
π(2n−1)/(n−1)
u −

(
π
′

u

γ

)2

,
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u = −γ
(
π
′

γ

π′u

)
.

D.2 Variational De Rham complex

For the investigation of covariant theories, mathematical tools of the

theory of variational complexes [8] that are generalization of the De

Rham complexes of differential forms prove to be useful. The varia-

tional complexes are decomposed into two components. The first part

is obtained by reformulation of the De Rham complex onto spaces of

a set of differential functions set on V ⊂ X × D, where X is a space

of independent variables and U is a space of dependent variables. A

differential r−form is given by

ωr =
∑
J

PJ [u] dx
j, (D.8)

where PJ are differential functions and

dxJ = dxj1 ∧ . . . ∧ dxjr , 1 ≤ j1 < . . . < jr ≤ p

constitute the basis of a space of differential r−forms ∧rT
∗X.

Since for relativistic theories a consequence of covariance of the de-

scription is that the Hamiltonian is zero, we will be interested here

only in the second part of the variational complex. Let us suppose the

Hamiltonian constraint to be resolved. Differential forms are active on

“horizontal” variables X from M , and vertical forms are constructed

analogously—they are active on “vertical” variables u and their deriva-

tives. A vertical k-form is a finite sum

ω̂k =
∑

P α
J [u] du

α1

J1
∧ . . . ∧ duαk

Jk
, (D.9)
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where P α
J are differential functions. Here independent variables are

like parameters.

Insofar the vertical form ω̂ is built on a space of finite jets M (n),

a vertical differential has properties of bilinearity, antidifferentiation,

and closure like an ordinary differential. Here we use functional forms

connected with the introduced vertical forms, as functionals connected

with differential functions.

Let ωk =
∫
x ω̂

k be a functional k−form corresponding to a vertical

k−form ω̂k. A variational differential of a form ωk is a functional (k+1)-

form corresponding to a vertical differential of a form ω̂k. The basic

properties are deduced from the properties of the vertical differential,

so we get a variational complex. A variational differential defines an

exact complex

0
δ−→ Λ0

∗
δ−→ Λ1

∗
δ−→ Λ2

∗
δ−→ Λ3

∗
δ−→ · · · (D.10)

on spaces of functional forms on M.

Of particular interest in theoretical physics problems are functional

forms: ω0, ω1, ω2. In the present problem, after the constraints are

utilized, we get a functional 1–form as a generalization of a differential

Cartan form for dynamical systems:

ω1 =

∫
t,x

[
πγ

(
t, πu,

(
π
′

u

γ

))
dγ − u

(
t, πu,

(
π
′

u

γ

)
,

(
π
′

u

γ

)′)
dπu

]
(D.11)

Equations of motion are obtained as a condition of the closedness of

the 1-form: δω1 = 0.
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But, as we demonstrate below, there is a 0-form ω0:

ω0 =

∫
t,x

ω̂0(t, γ, πu) (D.12)

so that δω0 = ω1, id est ω1 is not only a closed form, it is an exact one.

Acting by the operator of the variational differential δ on the form

(D.12), we get

δω0 =

∫
t,x

[
δω0

δγ
dγ +

δω0

δπu
dπu

]
. (D.13)

From this we find conditions on ω̂0(t, γ, πu):

∂ω̂0

∂γ
= πγ

(
t, πu,

(
π
′

u

γ

))
, (D.14)

∂ω̂0

∂πu
=

∂

∂x

(
∂ω̂0

∂π′u

)
= −u

(
t, πu,

(
π
′

u

γ

)
,

(
π
′

u

γ

)′)
. (D.15)

The system of differential equations (D.14), (D.15) can be solved

analytically:

ω̂0 =

∫
t,x

γ

[
c(t)− 1

2n− 1

(
2

n

)n/(n−1)
π(2n−1)/(n−1)
u −

(
π
′

u

γ

)2
]1/2

+

+

∫
t,x

π
′

u arcsin

⎡⎣π′u
γ

(
c(t)− 1

2n− 1

(
2

n

)n/(n−1)
π(2n−1)/(n−1)
u

)−1/2⎤⎦ ,
where πu(α, α̇, α

′

, α
′′

; β, β
′

, β̇
′

, β
′′

; γ, γ̇, γ̈, γ̇
′

) in the initial variables is

πu =
1

αγ

⎡⎣(β ′ − γ̇

α

).

+

(
2βγ̇ − (α2 + β2)

′

2αγ

)′
⎤⎦ . (D.16)

We get a generalized De Rham variational complex:

0
δ−→ Λ0

∗
δ−→ Λ1

∗
δ−→ 0 (D.17)
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because the operator of the variational differential δ is nilpotent: δ2 =

0. So the generalized De Rham cohomology group is trivial. Translat-

ing into a physical language we conclude that the functional of action

(D.3) does not define any dynamical problem.
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Appendix E

Dynamics of the

mixmaster model

E.1 Pseudo–Euclidean generalized

Toda chain

The metric of the mixmaster model [1] is

ds2 = N 2dt2 − e2α
(
e2β
)
ij
ωiωj, (E.1)

where the differential forms

ω1 = sinψ dθ − cosψ sin θ dφ,

ω2 = cosψ dθ + sinψ sin θ dφ, (E.2)

ω3 = −(dψ + cosθ dφ)

are expressed through the Euler angles (ψ, θ, φ) on SO(3) group. The

structure constants of the corresponding algebra so(3) appear in the

471
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relations

dωi =
1

2
εijkω

i ∧ ωj.

The symmetric traceless matrix (β)ij can be presented in the form

(β)ij = diag(β+ + β−
√
3, β+ − β−

√
3,−2β+),

where β+, β− are two field amplitudes as generalized coordinates.

The Misner’s cosmological model does not belong to the completely

integrable systems [2]. It is an example of the pseudo–Euclidean gen-

eralized Toda chains at a level of energy H = 0 [3]. The Hamiltonian

has the form

H =
1

2
(−p2α + p2+ + p2−) + exp(4α)V (β+, β−), (E.3)

where the potential function V (β+, β−) is an exponential polynomial:

V (β+, β−) = exp(−8β+) + exp(4β+ + 4
√
3β−) + exp(4β+ − 4

√
3β−)−

−2 exp(4β+)− 2 exp(−2β+ + 2
√
3β−)− 2 exp(−2β+ − 2

√
3β−).

The Hamiltonian of the generalized Toda chain has the form

H =
1

2
< p,p > +

N∑
i=1

civi, (E.4)

where <,> is a scalar product in the Minkowski space R
1,n−1, ci are

some real coefficients, vi ≡ exp(ai,q), (, ) is a scalar product in the

Euclidean space R
n, and ai are real vectors. For the considered mix-

master model: n = 3, N = 6. Pseudo-euclidity of a momentum space

is a distinctive peculiarity of gravitational problems so they cannot be

referred to as analytical dynamics problems, where the corresponding

form quadratic in momenta is the kinetic energy.
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E.2 Kovalevski exponents

On the other hand, the cosmological models can be considered as dy-

namical systems [4]. So it is possible to carry out strict methods of

analysis traditionally used in the analytical mechanics, and adopt them

to systems like (E.3). Let us apply the Painlevé test for calculation of

Kovalevski exponents [5]. The term “Kovalevski exponents” was in-

troduced in paper [6], thus marking an outstanding contribution of the

Russian woman to the solution of the important problem of integration

of rigid body rotation.

Expanding the 2n–dimensional phase space to the 2N–dimensional

one by homeomorphism (p,q) �→ (v,u):

vi ≡ exp(ai,q), ui ≡< ai,p >, i = 1, . . . , N, (E.5)

one gets a Hamiltonian system which equations of motion are the au-

tonomous homogeneous differential equations with polynomial right

side:

v̇i = uivi, u̇i =
N∑
j=1

Mijvj, i = 1, . . . , N. (E.6)

The matrix M̂ is constructed of scalar products of vectors ai in the

Minkowski space R
1,n−1:

Mij ≡ −cj < ai, aj > .

The system of equations (E.6) is quasi-homogeneous. The power

of quasi-homogeneity on variables ui is one, and on vi is two. The

property of integrability of a dynamical system appears in a character

of singularities of solutions so only singular points represent particular
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interest for investigation. The differential equations have the following

partial meromorphic solutions:

ui =
Ui

t
, vi =

Vi

t2
, i = 1, . . . , N, (E.7)

the coefficients Ui, Vi satisfy the system of algebraic equations

2Vi = UiVi, −Ui =
N∑
j=1

MijVj.

Now let us analyze the special types of solutions. Let V1 �= 0, the

rest V2, V3, . . . , VN = 0, then we get a solution: if M11 �= 0, then

V1 =
2

M11

, U1 = −2, U2 = −
2M21

V11

, . . . , UN = −2MN1

M11

.

Analogously the last solutions will be obtained. If for some i: Vi �= 0,

and Vj = 0 for all j �= i, then at Mii �= 0 we get

Ui = −2, Uj = −2Mji/Mii for all i �= j.

It follows from the obtained solutions that the significant point of anal-

ysis is a nonequality of the corresponding diagonal element of the ma-

trix M̂ to zero that it is possible in the case of isotropy of the vector

ai. It is a principal distinctive feature of pseudo-Euclidean chains.

For investigating single–valuedness of the obtained solutions we use

the Lyapunov method [5] based on studying the behavior of their vari-

ations:

d

dt
(δui) =

N∑
j=1

Mijδvj,

d

dt
(δvi) =

Uiδvi
t

+
Viδui
t2

, i = 1, . . . , N.
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We seek their solutions in the form of

δui = ξit
ρ−1, δvi = ηit

ρ−2, i = 1, . . . , N.

Then for searching the coefficients ξi, ηi one gets a linear homogeneous

system of equations with the parameter ρ:

(ρ− 2− Ui)ηi = Viξi, (E.8)

(ρ− 1)ξi =
N∑
j=1

Mijηj, i = 1, . . . , N. (E.9)

Values of the parameter ρ are called the Kovalevski exponents.

Let us consider solutions when Vi �= 0. If η1 �= 0 and the rest ηi = 0,

then from the first system of equations (E.8) one gets ξ1 = M11ρη1/2,

a substitution of it into the second system (E.9) gives a condition of

values of the parameter ρ:

ρ(ρ− 1)− 2 = 0,

id est ρ1 = −1, ρ2 = 2. The remaining equations (E.9) give us solutions

ξi = ξi(η1, ρ).

Let η2 �= 0, then η3, η4, . . . , ηN = 0,

ρ = 2− 2
M21

M11

, ρη1 = 2
ξ1
M11

.

The second system gives functions ξi = ξi(η2), i = 1, 2, . . . , N, and so

on. As a result, having looked through all solutions of the first series

for the case V1 �= 0, we obtain the formula for the spectrum ρ:

ρ = 2− 2
< ai, a1 >

< a1, a1 >
, . . . , i = 2, 3, . . . , N.
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As a final result, having considered the rest solutions, we obtain a

formula for the Kovalevski exponents ρ that generalizes the Adler—van

Moerbeke formula [7] for the case of indefinite spaces:

ρ = 2− 2
< ai, ak >

< ak, ak >
, i �= k, < ak, ak > �= 0. (E.10)

The requirement ρ ∈ Z is a necessary condition for meromorphy

of solutions on a complex plane of t. It should be noticed that while

obtaining formula (E.10) no restrictions on a metric signature were

imposed. It is correct not only for spaces of the Minkowski signature.

Now let us apply the elaborated method to analyze the integrability

of the mixmaster model of the Universe, “root vectors” of which have

the form:

a1(4,−8, 0), a2(4, 4, 4
√
3), a3(4, 4,−4

√
3),

a4(4, 4, 0), a5(4,−2, 2
√
3), a6(4,−2,−2

√
3).

“Cartan matrix” composed of scalar products of the “root vectors” in

the Minkowski space has the form:

< ai, aj >= 48

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 −1 −1 −1 0 0

−1 1 −1 0 0 −1
−1 −1 1 0 −1 0

−1 0 0 0 −1/2 −1/2
0 0 −1 −1/2 0 −1/2
0 −1 0 −1/2 −1/2 0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
.

One gets three “root vectors” disposed out of a light cone (space–

like vectors), the rest three are isotropic on the light cone. Using the
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generalized Adler—van Moerbeke formula (E.10), taking account of

zero norm of three vectors, we get integer ρ1 = 2, ρ2 = 4. As the

Killing metric in the generalized Adler—van Moerbeke formula (E.10)

is indefinite, it should be pointed out in the classification scheme of the

noncompact Lie algebras for getting exact solutions of Toda lattices,

as it was done in [3].

Due to isotropic character of three vectors, we transit from the

Misner phase variables to some other [4]

(α, β+, β−; pα, p+, p−) �→ (X, Y, Z; px, py, pz).

Now the Hamiltonian has a more symmetric form:

X =
1

12
exp(2(α + β+ +

√
3β−)), Y =

1

12
exp(2(α + β+ −

√
3β−)),

Z =
1

12
exp(2(α− 2β+));

px =
1

12
(2pα+p++

√
3p−), py =

1

12
(2pα+p+−

√
3p−), pz =

1

6
(pα−p+).

The equations of motion are represented as Hamiltonian equations

on a direct sum of two–dimensional solvable Lie algebras

g(6) = g(2)⊕ g(2)⊕ g(2) :

{X, px} = X, {Y, py} = Y, {Z, pz} = Z (E.11)

with the Hamiltonian H:

H = −1

2
(p2x+p2y+p2z)+

1

4
(px+py+pz)

2−2(X2+Y 2+Z2)+(X+Y +Z)2.

The Hamiltonian has a form of a kinetic energy of a top:

H =
1

2

6∑
i,j=1

Iijx
ixj,
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where the phase variables are enumerated as

x1 = X, x2 = Y, x3 = Z; x4 = px, x5 = py, x6 = pz,

and the energy tensor Iij has a block type. So the mixmaster cosmo-

logical model can be considered as the Euler—Poincaré top on a Lie

algebra (E.11). The Euler—Poincaré equations are generalization of

the famous dynamical Euler equations describing a rotation of a rigid

body with the corresponding algebra of rotations so(3).

The partial meromorphic solution of the obtained system of differ-

ential equations is xi = Ci/t. Then the problem is reduced to investi-

gation of a spectrum of Kovalevski’s matrix

Kij = (cijkIkl + cljkIki)C
l + δij, (E.12)

where ckij are the structure constants of the algebra and Ci are solutions

of an algebraic system:

Ci + ckijIjlCkCl = 0.

Calculations give an integer–valued spectrum of the matrix (E.12):

ρ = −1, 1, 1, 2, 2, 2,

which point to the regular character of behavior of the considered dy-

namical system.
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