Effective matter radii of ^{10,11,12}Be nuclei determined from their total reaction cross sections on ²⁸Si target

Authors: Mikhail Naumenko¹; Viacheslav Samarin¹; Yuri Sobolev¹; Sergei Stukalov¹; Yuri Penionzhkevich¹

Corresponding Author: samarin@jinr.ru

In this work, we studied the total reaction cross sections for the 10,11,12 Be nuclei on the 28 Si target by the 4π method based on the registration of the prompt γ quanta and neutrons accompanying the interaction using the multidetector spectrometer. It was found that the total reaction cross sections for the 11 Be nuclei are significantly larger than those for 10 Be. Along with the low value of the neutron separation energy (0.5 MeV) for 11 Be, it is an indication of its halo structure. The total reaction cross sections for the 12 Be nuclei are larger than those for 10 Be. Along with the pairing of two outer neutrons and the larger value of the neutron separation energy (3.2 MeV) for 12 Be, it is an indication of its more compact outer shell (compared to a halo) which can be called a skin.

¹ Joint Institute for Nuclear Research, Dubna, Russia

Using the measured values of the total reaction cross sections and the phenomenological optical model, the effective matter radii of the 10,11,12 Be nuclei were determined. A new theoretical approach based on the combination of the optical model with the modified optical potential and classical trajectories was applied to the calculations of the effective matter radii of the colliding nuclei (details are given in [1]).

References

1. Yu. G. Sobolev, V. V. Samarin, Yu. E. Penionzhkevich, S. S. Stukalov, and M. A. Naumenko, Phys. Rev. C 110, 014609 (2024).