α -decay study of the new neutron-deficient isotope ²¹⁰Pa

Authors: B. Yang¹; Chunli Yang¹; Jinaguo Wang²; Long Ma¹; M. H. Huang¹; Mingming Zhang³; Z. G. Gan¹; Z. Y. Zhang¹

- ¹ Heavy Ion Science and Technology Key Laboratory, Institute of Modern Physics, Chinese Academy of Sciences
- ² Institute of Modern physics, Chinese Academic of science
- ³ FLNR, Joint Institute for Nuclear Research

Corresponding Author: zmm@impcas.ac.cn

Synthesizing new isotopes far from the line of β -stability and studying their decay properties is one of the frontiers in present-day nuclear physics. However, mapping the boundaries of nuclear land-scape is exceptionally challenging due to the tiny production cross sections and short half-lives of nuclei. In this work, the fusion-evaporation reaction $^{40}\text{Ca+}^{175}\text{Lu}$ aimed at synthesizing new neutron-deficient protactinium isotopes was investigated at the newly constructed China Accelerator Facility for Superheavy Elements. The cross sections for the xn and pxn evaporation channels were measured. At a beam energy of 212 MeV, a new isotope ^{210}Pa produced through the 5n evaporation channel was identified for the first time. The measured α -decay properties of ^{210}Pa allow us to extend the α -decay systematics and test the predictive power of selected theoretical models for the heavy nuclei near the proton drip line.