INVESTIGATION OF LOW-ENERGY SPECTRUM IN ^{250–260}No CHAIN

<u>M. Mardyban</u>, V. Nesterenko Joint Institute for Nuclear Research E-mail: mmardyban@theor.jinr.ru

The low-energy multipole spectrum in isotopes $^{250-260}$ No is investigated in the framework of fully self-consistent Quasiparticle-Random-Phase-Approximation (QRPA) method with Skyrme forces [1,2]. The representative set of Skyrme parametrizations (SLy5, SLy6, SkM* and SVbas) is applied. The main attention is paid to nuclei 252 No and 254 No, where we have most of the experimental spectroscopic information [3,4]. In addition to low-energy one-phonon collective states (lm=20,22,30,31,32) and their rotational band, the isomeric states are inspected. In general, a good agreement with the experimental data is obtained. It is shown that, a shell gap in the neutron single-particle spectra of 252 No and 254 No can lead to specific properties of these two nuclei. In connection with the first experimental evidence of the scissors mode in the 254 No [5], the distribution of M1 strength in this nucleus is analyzed.

- 1. P.-G. Reinhard, B. Schuetrumpf, and J. A. Maruhn, Comp. Phys. Commun. 258, 107603 (2021).
- 2. A. Repko, J. Kvasil, V.O. Nesterenko and P.-G. Reinhard, arXiv:1510.01248[nucl-th].
- 3. R.-D. Herzberg and P.T. Greenlees, Prog. Part. Nucl. Phys. 61, 674 (2008).
- 4. R.-D. Herzberg, arXiv:2309.10468[nucl-ex].
- 5. F.L. Bello Garrote et all, Phys. Lett. B834, 137479 (2022).