NEUTRON DETECTION EFFICIENCY OF SCINTILLATION DETECTORS

M. Povolotskiy^{1,2}, S. Stukalov¹, Yu. Penionzhkevich^{1,2}, Yu. Sobolev¹, A. Bezbakh¹, G. Salakhutdinov² ¹Joint Institute for Nuclear Research; ²NRNU MEPhI

E-mail: mark.povolotskiy@gmail.com

The results of measurements of neutron detection efficiency $\varepsilon(En)$, $En \approx 0.1-6$ MeV for detectors of MULTI setup [1, 2] are presented. The measurements of $\varepsilon(En)$ for scintillation detectors (CeBr3, NaI(Tl), CsI(Tl), stilbene) were carried out by tagged neutron method using

 239 Pu/⁹Be and 238 Pu/¹³C n- γ sources and Trigger-detector (see 2 in Fig.1). Trigger-detector was used for registering γ -quanta with $E_{\gamma} = 4.43$ MeV and 6.13 MeV from sources 239 Pu/⁹Be and 238 Pu/¹³C respectively. Neutron energy values was taken from the time of flight TOF. Time scale of TOF was calibrated by γ - γ coincidence measuring (Single escape and Double escape peaks in Trigger detector and annihilation γ -peak in tested detectors).

The measurements have shown that CeBr3, NaI(Tl), and CsI(Tl) detectors have a relatively high neutron detection efficiency which is weakly dependent on the energy at $En \approx 0.5 - 6$ MeV and can be used for neutron detection by TOF. For example, efficiency is $\varepsilon(En) \approx 36\%$ at En = 0.5 - 6 MeV for CeBr3 $5 \times 5 \times 5$ cm³ detector.

Stilbene detectors have good n- γ pulse shape separation, but sharp energy dependence of the efficiency $\varepsilon(En)$ at energy range $En \approx 0.5-6$ MeV ($\varepsilon \approx 50\%$ and 10% for En = 0.5 MeV and 6.0 MeV, respectively).

Fig.1 Scheme of measurement 1-CeBr₃-NaI(Tl) phosvich, 2-CeBr₃ \mathbb{N} 1(Trig.), 3-NaI(Tl), 4-CsI, 5-C₁₄H₁₂ (stilbene), 6-CeBr₃ \mathbb{N} 2

This research was funded by the Russian Science Foundation, project No. 24-22-00117.

1. Penionzhkevich Yu. E., Sobolev Yu. G., Samarin V. V., et al., Energy dependence of the total cross section for the ${}^{11}\text{Li} + {}^{28}\text{Si}$ reaction, Phys. Rev. C 99, 014609 (2019);

2. Siváček I., Penionzhkevich Yu. E., Sobolev Yu. G., and Stukalov S. S., MULTI-2, a 4π spectrometer for total reaction cross section measurements, Nucl. Instrum. Methods Phys. Res. Sect. A 976, 164255 (2020);