STUDY OF THE STRUCTURE OF $^{12}\mathrm{C}$ AND $^{6}\mathrm{Li}$ NUCLEI IN THE ALPHA-CLUSTER MODEL BY HYPERSPHERICAL FUNCTIONS AND FEYNMAN'S PATH INTEGRALS

A. Bazhin^{1,2}, V. Samarin^{1,2}

¹Dubna State University; ²Joint Institute for Nuclear Research
E-mail: vichshizik@gmail.com

The light nuclei 12 C and 6 Li used as target and projectile nuclei in the many experimental studies of the nuclear reactions, including Flerov Laboratory of Nuclear Reaction (JINR). The study of the structure of these nuclei is necessary for theoretical description of such reactions. Wave functions of the ground state of the 12 C and 6 Li nuclei in the alpha-cluster model are calculated using Feynman's path integrals and hyperspherical functions [1]. Cubic spline interpolation is applied for solving hyperradial equations [1]. The alpha-alpha interaction in the 12 C nucleus is changed in comparison with well-known Ali-Bodmer potential [2]. As a result, the energy of separation to alpha-particles and the charge distributions were calculated and agreement with experimental data [3–5] was obtained (Fig. 1). The alpha-cluster model may explain the strong oblate deformation of the 12 C nucleus (with $\beta_2 = -0.59$ [6]). In addition, the shell model of the deformed nuclei is used to calculate the nucleon states in the 12 C nucleus for comparison against alpha-cluster model.

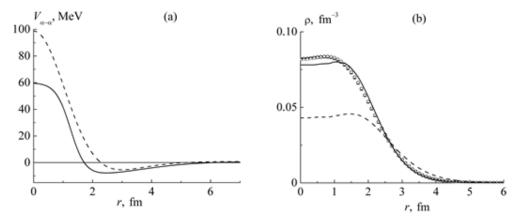


Fig.1. (a) The Ali-Bodmer potentials of the interaction between free α -particles [2] (dashed curve) and potentials between α -clusters in the 12 C nucleus (solid curve); (b) The charge distribution in the 12 C nucleus: experimental data [3–5] (symbols), results of calculations with Ali-Bodmer potentials from [2] (dashed curve) and with potentials between α -clusters in the 12 C nucleus (solid curve).

1. V.V. Samarin, Eur. Phys. J. A, 2022, V. 58. 117. 2. S. Ali, A.R. Bodmer, Nucl. Phys. 1966. V. 80. P. 99. 3. I. Sick, Phys. Lett. B. 1982. V. 116. P. 212. 4. L.S. Cardman, J.W. Lightbody Jr., S. Penner, et al., Phys. Lett. B. 1980. V. 91. P. 203. 5. W. Reuter, C. Fricke, K. Merle and H. Miska, Phys. Rev. C. 1982. V. 26. P. 806. 6. Chart of nucleus shape and size parameters, http://cdfe.sinp.msu.ru/services/radchart/radmain.html.