PROMPT NEUTRONS FROM THE SPONTANEOUS FISSION OF ²⁴⁴Fm

I. Ulanova¹, A. Isaev¹, R. Mukhin², A. Andreev², M. Chelnokov², V. Chepigin², H. Devaraja²,

I. Izosimov², A. Kuznetsova², O. Malyshev², A. Popeko², Yu. Popov², A. Rahmatinejad²,

B. Sailaubekov², T. Shneidman², E. Sokol², A. Svirikhin², M. Tezekbayeva², A. Yeremin², N. Zamyatin²

¹Dubna State University; ²Joint Institute for Nuclear Research

E-mail: uii.20@uni-dubna.ru

An experiment on the study of the 244 Fm spontaneous fission was conducted using the SHELS separator. The isotope was synthesized in the complete fusion reaction of 40 Ar beam ions and 206 Pb target nuclei.

The neutron yields of ²⁴⁴Fm spontaneous fission ($\nu = 3.62 \pm 0.12$, $\sigma \nu 2 = 1.79$) were obtained with the best precision using the SFiNx detector system.

The multiplicity distribution of emitted prompt neutrons was restored using the Tikhonov method of statistical regularisation. The experimental data were compared with scission point model predictions.