DECAY PROPERTIES OF THE ²⁶⁰Sg ISOTOPE

L. Kuznetsova¹, A. Kuznetsova², A. Popeko², A. Svirikhin², A. Rahmatinejad², A. Isaev¹, A. Yeremin²,

B. Sailaubekov², E. Sokol², H. Devaraja², I. Izosimov², M. Chelnokov², M. Tezekbayeva²,

N. Zamyatin², O. Malyshev², R. Mukhin², T. Shneidman², V. Chepigin², Yu. Popov²

¹Dubna State University; ²Joint Institute for Nuclear Research

E-mail: lyuba.kuznetzova1833@yandex.ru

An experiment on the study of the ²⁶⁰Sg decay properties was conducted using the SHELS separator. The isotope was synthesized in the complete fusion reaction of ⁵⁴Cr beam ions and ²⁰⁷Pb target nuclei. The alpha-spectrum was investigated and its fine structure was discovered.

The neutron multiplicities of ²⁶⁰Sg spontaneous fission ($\nu = 4.66 \pm 0.14$) were obtained for the first time using the SFiNx detector system. The multiplicity distribution of emitted prompt neutrons was restored using the Tikhonov method of statistical regularisation.