SEARCH FOR SINGLE AND TRI-NUCLEON DECAYS OF ⁷⁶Ge IN GERDA

<u>A. Smolnikov</u> for the GERDA collaboration Joint Institute for Nuclear Research E-mail: smoln@jinr.ru

Single- and multi-nucleon decays, violating baryon number conservation, are predicted in several extensions of the Standard Model. The main goal of the GERDA (GERmanium Detector Array) experiment was to search for the neutrinoless double-beta decay of ⁷⁶Ge. Beside this, many other GERDA results of searching for various processes beyond the Standard Model were obtained. Among them, a possible manifestation of the inclusive, i.e. mode independent, decay of a single neutron and proton as well as specific modes of tri-nucleon decays in ⁷⁶Ge is investigated.

GERDA explores the possible disappearance of a single nucleon in ⁷⁶Ge by looking for the β -decay of the ⁷⁵Ge ground state to an excited state of ⁷⁵As in coincidence with the γ -ray emitted in the subsequent ⁷⁵As de-excitation. Proton decay could populate first the unstable ⁷⁵Ga nucleus that later decays by β emission to ⁷⁵Ge. The tri-nucleon ppp-, ppn-, and pnn-decays of ⁷⁶Ge lead to ⁷³Cu, ⁷³Zn, and ⁷³Ga nuclei, respectively. These nuclei are unstable and eventually proceed by the β -decay of ⁷³Ga to ⁷³Ge (stable). Searching for the ⁷³Ga decay, which dominantly populates the 66.7 keV ^{73m}Ga state, is considered. Our analysis also includes nnn-decay occurring through ^{73m}Ge.

No signal candidates were found for either single or tri-nucleon decays of ⁷⁶Ge. This leads to lifetime limits for the inclusive decay of a single nucleon in ⁷⁶Ge: for neutrons $\tau_n > 1.5 \times 10^{24}$ yr and for protons $\tau_p > 1.3 \times 10^{24}$ yr at 90% CI. This is the first limit obtained for ⁷⁶Ge. The limit on the sum of the decay widths of the four inclusive tri-nucleon decays was obtained that corresponds to a lower lifetime limit of 1.2×10^{26} yr (90% CI). This result improves previous limits for tri-nucleon decays by one to three orders of magnitude.