STUDY OF ALPHA CLUSTER STRUCTURES IN THE ⁴⁶Ti NUCLEUS

T. Issatayev^{1,2}, N. Skobelev¹, T. Shneidman¹, Yu. Penionzhkevich¹ ¹Joint Institute for Nuclear Research; ²Institute of Nuclear Physics, Kazakhstan; ³L.N. Gumilyov Eurasian National University E-mail: talgat_136@mail.ru

We present the results of experimental and theoretical studies on the role of clustering on the structure of excited states of ⁴⁶Ti. The ⁴⁶Ti nuclei were produced in a ⁴⁵Sc(³He, d)⁴⁶Ti proton pickup reaction at a bombarding energy of 30 MeV [1]. Excited levels of ⁴⁶Ti were observed in a wide energy range from 2 to 16.5 MeV. Levels from 10.4 to 16.5 MeV were observed for the first time and populated with a high probability. Calculations within the framework of the dinuclear system model [2] showed that the population of states with energies $Ex \geq 10$ MeV in ⁴⁶Ti as well as their structure can be explained by the formation of the ⁴²Ca+⁴He alpha cluster system, corresponding to the superdeformed state of ⁴⁶Ti. The structure of alpha-cluster states in the ⁴⁴⁻⁵²Ti isotopic chain has been analyzed. The results are compared with experimental data on the formation of alpha-cluster binary systems in ^{44,46,52}Ti, obtained previously in the reactions ^{40,42,48}Ca(⁷Li,t\alpha)^{40,42,48}Ca [3].

1. T. Issatayev et al., Investigation into Excited States of 46 Ti Nuclei in Reactions with the 3 He Beam at 29 MeV, Phys.Part. and Nucl.Lett. 20, 988 (2023).

2. T. M. Shneidman, G.G. Adamian, N.V. Antonenko, R.V. Jolos, S.-G. Jolos, Cluster approach to the structure of 240 Pu // Phys.Rev. C 92, 034302 (2015).

3. Fukada M., Takimoto M. K., Ogino K., Ohkubo S. α Cluster States in 44,46,52 Ti // Phys. Rev. C. 2009. V. 80. P. 064613.