EXAMINATION OF COLLECTIVE AND SINGLE-PARTICLE MODELS FOR EXCITED STATES OF ¹³C BELOW 10 MeV IN NUCLEAR REACTIONS INDUCED BY 18 MeV DEUTERON BEAM

D. Janseitov¹, A. Dilshod³, A. Demyanova⁴, A. Danilov⁴, B. Urazbekov¹, D. Valiolda^{1,2}, M. Nassurlla³, N. Burtebayev³ ¹Joint Institute for Nuclear Research; ²KazNU; ³Institute of Nuclear Physics, ME of Republic of

Joint Institute for Nuclear Research; "KazNU; "Institute of Nuclear Physics, ME of Republic of Kazakhstan; ⁴NRC "Kurchatov Institute"

E-mail: janseit@theor.jinr.ru

The first 10 excited states of the carbon isotope were studied in terms of single-particle and collective models of excitation. Experimental cross sections were obtained by the well-known $\Delta E-E$ method. Elastic scattering data were analyzed using an optical model including a nucleus–nucleus interaction potential, while inelastic scattering data were processed using the coupled-channels approach. For the single-particle model, the spectroscopic amplitudes were obtained through calculations of the large-scale shell model with the YSOXT effective NN-potential. A double folding potential was obtained for the d + ¹³C system. A comparison of model calculations with the experimental cross sections was demonstrated.