MEASUREMENT OF ANGULAR DISTRIBUTIONS OF DIFFERENTIAL CROSS SECTIONS OF PRODUCTS OF THE ⁷Li+¹⁰B REACTION

<u>S. Stukalov¹</u>, Yu. Sobolev¹, A. Shakhov¹, Yu. Penionzhkevich¹, N. Burtebayev², M. Nassurlla², A. Demyanova³, A. Danilov³, V. Starastsin³, Yu. Gurov¹

¹Joint Institute for Nuclear Research; ²Institute of Nuclear Physics, ME of Republic of Kazakhstan;

³NRC "Kurchatov Institute"

E-mail: stukalov@jinr.ru

Measurements were carried out of the angular distributions of the differential cross sections of the reaction products ${}^{7}\text{Li}+{}^{10}\text{B}$ $E_{\text{LAB}} = 58$ MeV. One of the objectives of the measurements was to compare the root-mean-square radii of the ground and excited states of nuclei obtained in the reaction. In the experiment, the angular distributions of ${}^{7}\text{Li}_{\text{g.s.}}$, ${}^{6}\text{Li}_{\text{g.s.}}$, ${}^{6}\text{Li}^{*}(3.56 \text{ MeV})$, as well as ${}^{11}\text{B}^{*}(8.56 \text{ MeV})$ were of interest. The ${}^{6}\text{Li}^{*}$ nucleus is in the $J^{\pi} = 0^{+}$; T = 1; E = 3.56 MeV is the isobaric analogue state of ${}^{6}\text{He}_{\text{g.s.}}$. The ${}^{11}\text{B}^{*}$ nucleus is in the $J^{\pi} = 3/2^{-}$ state; E = 8.56 MeV, according to [1], is a cluster state, similar to the previously discovered Hoyle state ${}^{12}\text{C}^{*}$, $J^{\pi} = 0^{+}$; T = 0; E = 7.65 MeV, predicted in [2] and first discovered in [3] by measuring the angular distributions of differential cross sections. The measurements were carried out on the ${}^{7}\text{Li}$ beam $(E_{\text{LAB}} = 58 \text{ MeV})$ of the U-400 accelerator of the FLNR JINR using 8 dE - E semiconductor telescopes. A typical two-dimensional dE - E spectrum is shown in Fig. 1.

Experimental matrix $dE \times E$ of reaction products ⁷Li + ¹⁰B, at an angle $\Theta_{\text{LAB}} = 28^{\circ}$ at energy $E_{\text{LAB}} = 58$ MeV.

This research was funded by the Russian Science Foundation, project No. 24-22-00117.

- 1. Y. Kanada-En'yo, Phys. Rev. C 75, 024302 (2007);
- 2. F. Hoyle, Astrophys. J. Suppl. Ser. 1 (1954) 12.
- 3. D.N.F. Dunbar, R.E. Pixley, W.A. Wenzel, W. Whaling, Phys. Rev. 92 (1953) 649.