INVESTIGATION OF SPECTRAL STRUCTURE OF $^{11}\mathrm{Be}$ IN BREAKUP REACTIONS WITHIN QUANTUM-QUASICLASSICAL APPROACH

D. Valiolda^{1,3}, D. Janseitov^{1,2}, V. Melezhik¹

¹ Joint Institute for Nuclear Research; ² INP; ³ KAZNU

E-mail: valiolda.dinara@gmail.com

We investigate the breakup of the ¹¹Be halo nuclei on a light (¹²C) target within quantum-quasiclassical approach in a wide range of beam energy (5–67 MeV/nucleon) including the low-lying resonances of ¹¹Be. The obtained results are in good agreement with existing experimental data at 67 MeV/nucleon. The developed computational scheme can potentially be used for interpretation of low-energy breakup experiments on different targets in studying spectral properties of nuclei. In particular, the region around 20-10 MeV/nucleon is of great interest, since this is the energy range of HIE-ISOLD at CERN and the future ReA12 at MSU, it has hardly been investigated theoretically so far.