AN EFFECTIVE METHOD OF EXCITATION FUNCTION MEASUREMENTS FOR (a,n) REACTIONS AT LOW ENERGIES

<u>Serikov A.^{1,2}</u>, Bezbakh A.A.¹, Gazeeva E.M.^{1,2}, Goldberg V.Z.³, Golovkov M.S.^{1,2}, Kurmanaliyev Zh.K.^{1,4}, Nauruzbayev D.K.^{5,6}, Nurmukhanbetova A.K.⁵

 ¹ Joint Institute for Nuclear Research, Dubna, Russia; ² Dubna State University, Dubna, Russia; ³ Cyclotron Institute, Texas A&M University, College station, Texas, USA;
⁴ L.N. Gumilyov Eurasian National University, Nur-Sultan,010000, Kazakhstan; ⁵ National Laboratory Nur-Sultan, Nazarbayev University, Nur-Sultan, 010000, Kazakhstan; ⁶ Saint Petersburg State University, Saint Petersburg, Russia E-mail: adilzhan_serikov@bk.ru

This work is dedicated to the development of the thick target at inverse kinematics method (TTIK) [1, 2] with an aim to examining the possibility of measuring excitation functions for (α, n) reactions. The usage of pulse beams in the frame of TTIK approach in combination with time of flight measurements enables to measure excitation function in a wide energy range with an experimental resolution of a few dozen keV even at cyclotrons. Test experiment was performed on the basis of the heavy ion accelerator DC-60 at The Institute of Nuclear Physics' Nur-Sultan branch (Nur-Sultan, Kazakhstan). The excitation function of resonance reaction ¹³C (α, n) ¹⁶O in excitation energy range of ~ 8.2–8.9 MeV was measured. The obtained results are compared with the data of other recognized works [3–5] and the future of new approach is discussed.

- 1. K.P.Artemov et al. // Yad.Fiz. 1990. V.52. P.634; Sov.J.Nucl.Phys. 1990. V.52. P.408.
- V.Z.Goldberg, A.E.Pakhomov // Yad.Fiz. 1993. V.56. No 9. P.31; Phys.Atomic Nuclei 1993. V.56. P.1167.
- 3. R.B.Walton et al. // Phys. Rev. 1957. V.107. P.1065.
- 4. B.K.Barnes et al. // Phys. Rev. 1965. V.140. P.616.
- 5. M.Heil et al. // Phys. Rev. C. 2008. V.78. 025803.