EXPERIMENTAL STUDY OF CLUSTER STRUCTURE OF ${ }^{9} \mathrm{Be}$ NUCLEI IN THE MECHANISM OF THEIR INTERACTION

Mendibayev K. ${ }^{1,2,3}$, Denikin A.S. ${ }^{1,4}$, Issatayev T. ${ }^{1,2,3}$, Janseitov D.M. ${ }^{1,2}$, Kuterbekov K.A. ${ }^{3}$, Lukyanov S.M. ${ }^{1}$, Mrazek J. ${ }^{5}$, Naumenko M.A. ${ }^{1}$, Penionzhkevich Yu.E. ${ }^{1,6}$, Trzaska W.H. ${ }^{7}$, Urazbekov B.A. ${ }^{1,8}$
${ }^{1}$ Joint Institute for Nuclear Research, Dubna, Russian Federation; ${ }^{2}$ Institute of Nuclear Physics, Almaty, Kazakhstan; ${ }^{3}$ L.N. Gumilev Eurasian National University, Nur-Sultan, Kazakhstan; ${ }^{4}$ University "Dubna", Dubna, Moscow Region, Russia; ${ }^{5}$ Nuclear Physics Institute, Ǩež, Czech Republic; ${ }^{6}$ National Research Nuclear University MEPhI, Moscow, Russia; ${ }^{7}$ Department of Physics, University of Jyväskylä, Jyvaskylä, Finland; ${ }^{8}$ University of Campania "Luigi Vanvitelli", Caserta, Italy
E-mail: kayrat1988@bk.ru

The inelastic scattering and multi-nucleon transfer reactions was studied by bombarding a ${ }^{9} \mathrm{Be}$ target with a ${ }^{3} \mathrm{He}$ beam at the incident energy of 30,40 and 47 MeV . The experimental angular distributions for ${ }^{9} \mathrm{Be}\left({ }^{3} \mathrm{He},{ }^{3} \mathrm{He}\right)^{9} \mathrm{Be}$, $\left.\left.{ }^{9} \mathrm{Be}\left({ }^{3} \mathrm{He},{ }^{4} \mathrm{He}\right)\right)^{8} \mathrm{Be}, \quad{ }^{9} \mathrm{Be}\left({ }^{3} \mathrm{He},{ }^{7} \mathrm{Be}\right)\right)^{5} \mathrm{He}, \quad{ }^{9} \mathrm{Be}\left({ }^{3} \mathrm{He},{ }^{6} \mathrm{Li}\right){ }^{6} \mathrm{Li}$ and $\left.\quad{ }^{9} \mathrm{Be}\left({ }^{3} \mathrm{He},{ }^{7} \mathrm{Li}\right)\right)^{5} \mathrm{Li}$ reaction channels were measured on the extracted beams of the cyclotrons K-120 of the University of Jyväskylä (Jyväskylä, Finland) and U-120 of the Institute of Nuclear Physics (Řež, Czech Republic). Registration and identification of the scattered reaction products was carried out by the $\Delta E-E$ telescope of silicon semiconductor detectors [1].

Experimental angular distributions for the corresponding ground states (g.s.) were analyzed within the framework of the optical model, the coupled-channel approach and the distorted-wave Born approximation. The contributions of different exit channels have been determined confirming that the $\left(\alpha+{ }^{5} \mathrm{He}\right)$ configuration plays an important role [2]. ${ }^{9} \mathrm{Be}$ consisting of two bound helium clusters $\left({ }^{3} \mathrm{He}+{ }^{6} \mathrm{He}\right)$ is significantly suppressed, whereas the two-body configurations ($n+{ }^{8} \mathrm{Be}$) and ($\alpha+{ }^{5} \mathrm{He}$) including unbound ${ }^{8} \mathrm{Be}$ and ${ }^{5} \mathrm{He}$ are found more probable. From the analysis of these data, the probabilities of cluster configurations $n+{ }^{8} \mathrm{Be}$ and $\alpha+{ }^{5} \mathrm{He}$ were determined, which were 69% and 25%, respectively.

1. S.M.Lukyanov, K.Mendibayev, Yu.E.Penionzhkevich, et al. // Preprint of JINR E-7-2017-65.
2. S.M.Lukyanov, Yu.E.Penionzhkevich, et al. // Journ. Phys.: Conf. Ser. 2017. V.863. 012027.
