EXPERIMENTAL STUDY OF CLUSTER STRUCTURE OF ⁹Be NUCLEI IN THE MECHANISM OF THEIR INTERACTION

Mendibayev K.^{1,2,3}, Denikin A.S.^{1,4}, Issatayev T.^{1,2,3}, Janseitov D.M.^{1,2}, Kuterbekov K.A.³, Lukyanov S.M.¹, Mrazek J.⁵, Naumenko M.A.¹, Penionzhkevich Vu F.^{1,6}, Trzaska W.H.⁷, Urazbekov B.A.^{1,8}

 Penionzhkevich Yu.E.^{1,6}, Trzaska W.H.⁷, Urazbekov B.A.^{1,8}
¹ Joint Institute for Nuclear Research, Dubna, Russian Federation; ² Institute of Nuclear Physics, Almaty, Kazakhstan; ³ L.N. Gumilev Eurasian National University, Nur-Sultan, Kazakhstan; ⁴ University "Dubna", Dubna, Moscow Region, Russia; ⁵ Nuclear Physics Institute, Řež, Czech Republic; ⁶ National Research Nuclear University MEPhI, Moscow, Russia; ⁷ Department of Physics, University of Jyväskylä, Jyvaskylä, Finland; ⁸University of Campania "Luigi Vanvitelli", Caserta, Italy E-mail: kayrat1988@bk.ru

The inelastic scattering and multi-nucleon transfer reactions was studied by bombarding a ⁹Be target with a ³He beam at the incident energy of 30, 40 and 47 MeV. The experimental angular distributions for ⁹Be(³He, ³He)⁹Be, ⁹Be(³He, ⁴He)⁸Be, ⁹Be(³He, ⁷Be)⁵He, ⁹Be(³He, ⁶Li)⁶Li and ⁹Be(³He, ⁷Li)⁵Li reaction channels were measured on the extracted beams of the cyclotrons K-120 of the University of Jyväskylä (Jyväskylä, Finland) and U-120 of the Institute of Nuclear Physics (Řež, Czech Republic). Registration and identification of the scattered reaction products was carried out by the $\Delta E-E$ telescope of silicon semiconductor detectors [1].

Experimental angular distributions for the corresponding ground states (g.s.) were analyzed within the framework of the optical model, the coupled-channel approach and the distorted-wave Born approximation. The contributions of different exit channels have been determined confirming that the (α + ⁵He) configuration plays an important role [2]. ⁹Be consisting of two bound helium clusters (³He + ⁶He) is significantly suppressed, whereas the two-body configurations (n + ⁸Be) and (α + ⁵He) including unbound ⁸Be and ⁵He are found more probable. From the analysis of these data, the probabilities of cluster configurations n + ⁸Be and α + ⁵He were determined, which were 69% and 25%, respectively.

- S.M.Lukyanov, K.Mendibayev, Yu.E.Penionzhkevich, et al. // Preprint of JINR E-7-2017-65.
- S.M.Lukyanov, Yu.E.Penionzhkevich, et al. // Journ. Phys.: Conf. Ser. 2017. V.863. 012027.