MEASUREMENTS OF GAMMA-RAY YIELDS AND ANGULAR CORRELATIONS FROM REACTIONS INDUCED BY 14.1 MEV NEUTRONS USING TAGGED NEUTRON METHOD

<u>Kopatch Yu.N.¹</u>, Bystritsky V.M.¹, Fedorov N.A.^{1,2}, Grozdanov D.N.^{1,3}, Ruskov I.N.^{1,3}, Skoy V.R.¹, Tretyakova T.Yu.^{1,4}, Aliyev F.A.^{1,5}, Gundorin N.A.¹, Hramco C.^{1,6}, Kumar A.⁷, Gandhi A.⁷, Wang D.⁸, Bogolyubov E.P.⁹, Barmakov Yu.N.⁹, TANGRA collaboration

 ¹ Joint Institute for Nuclear Research (JINR), Dubna, Russia; ² Faculty of Physics, Lomonosov Moscow State University (MSU), Moscow, Russia; ³ Institute for Nuclear Research and Nuclear Energy of Bulgarian Academy of Sciences (INRNE-BAS), Sofia, Bulgaria; ⁴ Skobeltsyn Institute of Nuclear Physics Lomonosov Moscow State University (SINP MSU), Moscow, Russia; ⁵ Institute of Geology and Geophysics, Baku, Azerbaijan; ⁶ Institute of Chemistry, Academy of Science of Moldova, Chisinau, Republic of Moldova;
⁷ Banaras Hindu University, Varanasi, India; ⁸ Xi'an Jiao Tong University, Xi'an, China;

⁹ All-Russia Research Institute of Automatics (VNIIA), Moscow, Russia E-mail: kopatch@nf.jinr.ru

Fast neutrons with the energy of ~ 14 MeV can be produced by the $D(T,\alpha)n$ nuclear reaction where deuterons are accelerated up to ~ 100 keV toward tritium target. In this process, both neutrons and α -particles are emitted into 4π . It has been shown long time ago (e.g., [1]) that the neutrons can be "tagged" by detecting the associated 3.5 MeV alpha-particle, which is emitted at opposite direction to the neutron (in c.m. system). These "tagged" neutrons interact with the investigated target and can produce γ quanta in $(n, n'\gamma)$ or other reactions. The use of the tagged neutron method (TNM) gives the information about the time of emission and the direction of the corresponding neutron and leads to a significant reduction of the background in the experimental data.

We used the TNM technique to measure angular distributions and yields of the γ -rays emitted from the reactions of 14.1 MeV neutrons with various nuclei. As a source of tagged neutrons we used the portable neutron generator ING-27 produced by VNIIA (Moscow). The 3.5 MeV α -particles were registered by a built-in 64-pixel Si charged particle detector. The gamma-rays from the interaction of neutrons with the sample we registered by an array of 18 BGO scintillator detectors placed at different angles to measure the angular correlations. A dedicated series of measurements with the same targets was performed using an HPGe detector giving the information about the relative yields of gamma-lines for each investigated sample.

We report the results of measurements in comparison with the available data from other authors.

1. V.Valkovic et al. // Nucl. Instr. Meth. 1969. V.76. P.29.