STUDY OF ELASTIC AND INELASTIC SCATTERING OF ALPHA PARTICLES BY ⁹Be NUCLEI AT ENERGY *E*_a=29 MeV

Burtebayev N.¹, Kerimkulov Zh.K.^{1,2}, Galanina L.I.³, Saduyev N.O.^{1,4}, Mukhamejanov Y.S.^{1,4}, <u>Janseitov D.M.^{1,4,5}</u>, Nassurlla Maulen^{1,4}, Alimov D.K.^{1,2}, Talpakova K.A.^{1,2}

¹ Institute of Nuclear Physics, Almaty Kazakhstan; ² L.N. Gumilev Eurasian National University, Nur-Sultan, Kazakhstan; ³ SINP MSU, Moscow, Russia; ⁴ al-Farabi.Kazakh National University, Almaty, Kazakhstan; ⁵ Joint Institute for Nuclear Research, Dubna, Russia

E-mail: zhambul-k@yandex.ru, janseit.daniar@gmail.com

The angular distributions of elastic and inelastic scattering of alpha particles by ⁹Be nuclei have been measured at the U-150M cyclotron of the Institute of Nuclear Physics (Almaty, Kazakhstan) at energy $E_{\alpha,lab} = 29$ MeV. The following measured excited states of the ⁹Be nucleus have been measured: $1/2^+$ ($E_x = 1.68$ MeV), $5/2^-$ ($E_x = 2.43$ MeV) and $5/2^+$ ($E_x = 3.05$ MeV). The error of the obtained data does not exceed 10%.

The levels of the main band $3/2^-$ (ground state) and $5/2^-$ ($E_x = 2.43$ MeV) were analyzed within the framework of the coupled channels method using the FRESCO computer code [1]. The global values of the optical potential from [2] were taken as starting parameters. In the process of fitting, only the depths of the real and imaginary parts of the potential were varied, and only a small correction was made for radii and diffusions. The levels of positive parity $3/2^+$ (neutron halo) and $5/2^+$ were analyzed using the single-particle model and the modified diffraction model (MDM). The obtained optical potentials, deformation parameters, spectroscopic amplitudes and radii (MDM) [3] are in good agreement with the literature data.

- 1. I.J.Thompson // Comput.Phys.Rep. 1988. V.7. P.167.
- 2. Ashok Kumar, S.Kailas, Sarla Rathi, K.Mahata // Nucl. Phys. A. 2006. V.776. P.105.
- 3. A.A.Ogloblin et al. // Nucl. Phys. A. 2010. V.834. P.143.