BREAK-UP REACTIONS OF ⁶Li, ⁷Be, AND ⁸B

Issatayev T.^{1,2,3}, Lukyanov S.M.¹, Hue B.M.^{1,4}, Mendibayev K.^{1,2,3}, Artukh A.G.¹, Aznabayev D.^{1,5}, Borcea C.⁶, Calinescu S.⁶, Erdemchimeg B.¹, Kabyshev A.², Klygin S.A.¹, Kononenko G.A.¹, Kuterbekov K.A.², Maslov V.A.¹, Ostashko V.V.⁵, Rotaru F.⁶, Sailiant F.⁷,

Sereda Yu.M.¹, Sobolev Yu.G.¹, Vorontsov A.N.¹, Thiep T.D.^{1,4} ¹ FLNR, Dubna, Russia; ² Gumilyov L.N. Eurasian National University, Nur-Sultan,

Kazakhstan; ³ Institute of Nuclear Physics, Almaty, Kazakhstan; ⁴ Institute of Physics, VAST, Hanoi, Vietnam; ⁵ Nuclear Physics Institute, Kyev, Ukraine; ⁶ National Inst. for Physics and

Nuclear Engineering, IFIN-HH, Bucharest Magurele, Romania;

Ganil, Bp 5027, 14076 Caen cedex 5, France;

E-mail: issatayev@jinr.ru

Secondary beams (⁶Li, ⁷Be, ⁸B) obtained by separation of fragmentation products of ¹⁵N beam (50 MeV/A) impinging on a Be target using COMBAS spectrometer. The secondary products were detected by a telescope consisting of five Si-detectors (ΔE) and CsI(Tl) detector (E_r). By the $\Delta E - E$ method, the telescope allowed us to achieve unambiguous particle identification originating from incident secondary beams as well as theirs reaction products resulting from reactions with one of Si detectors chosen as the target. Accordingly, break-up reactions of ⁶Li, ⁷Be, ⁸B (Fig.1) were studied in this experiment. The parallel momentum distribution of ^{3,4}He, ⁶Li, ⁷Be produced from the break-up of ⁶Li, ⁷Be and ⁸B was also determined. Theoretical analysis of presented experimental data was carried out using a numerical solving of the time-dependent Schrödinger equation for the outer weakly bound nucleons of the projectile nuclei.

Fig. 1. Two-dimensional energy spectrum of ⁴He, ⁶Li, ⁷Be, and ⁸B after the secondarv reaction.