²²⁸Ra - ²²⁸Ac - ²²⁸Th RADIONUCLIDE GENERATOR BASED ON A REVERSE-TANDEM SEPARATION SCHEME

<u>Dadakhanov J.A.</u>^{1,2}, Velichkov A.I.^{1,3}, Karaivanov D.V.^{1,3}, Temerbulatova N.T.^{1,4}, Marinov G.M.¹, Filosofov D.V.¹

¹ Joint Institute for Nuclear Research, ul. Joliot-Curie 6, Dubna, Moscow region, 141980 Russia; ² Institute of Nuclear Physics, Academy of Sciences of Uzbekistan Republic, Ulugbek, Tashkent, 100214 Uzbekistan; ³ Institute for Nuclear Research and Nuclear Power Engineering, Bulgarian Academy of Sciences, Tsarigradsko shose 72, Sofia, 1784 Bulgaria; ⁴ Institute of Nuclear Physics of the Kazakhstan Republic, ul. Ibragimova 1, Almaty, 050032 Kazakhstan

E-mail: dadakhanov@jinr.ru

Ac-228 is formed as a daughter decay product of Ra-228. The aim of the work is to separate ²²⁸Ac and ²²⁸Th from the parent isotope ²²⁸Ra, and simultaneously from each other. The distribution coefficients of ²²⁵Ac, ²²⁷Th and ²²³Ra between cation- exchange resin Dowex 50W × 8 200-400 mesh, NH₄⁺ form, Chelex-100 Resin 200-400 mesh, NH₄⁺ form, TODGA and UTEVA on the one hand and mixed solutions of CH₃COOH – CH₃COONH₄, on the other. A number of modifications of the operation of the ²²⁸Ra-²²⁸Ac-²²⁸Th generator based on reverse separation schemes have been investigated. As chemical basis were used the studied generator systems: cation exchanger - ammonium acetate solution and acetic acid solution. As a tandem was selected a column with TODGA resin. The optimal operation setup of the ²²⁸Ra-²²⁸Ac-²²⁸Th generator based on the reverse-tandem scheme with periodic transfer of the parent radionuclide to the liquid phase has been determined.