"MULTI" SET-UP FOR SPECTROSCOPY NUCLEAR REACTIONS

Stukalov S.S. ${ }^{1}$, Penionzhkevich Yu.E. ${ }^{1,2}$, Siváček I. ${ }^{1,3}$, Sobolev Yu.G. ${ }^{1}$
${ }^{1}$ Joint Institute for Nuclear Research, Dubna, Russia; ${ }^{2}$ National Nuclear Research University MEPhI, 115409 Moscow, Russia; ${ }^{3}$ Nuclear Physics Institute, ASCR, Řež, Czech Republic
E-mail: stukalov@jinr.ru

The detector setup "MULTI" is a multi-module $4-\pi \gamma$-spectrometer designed for spectroscopy nuclear reactions and nuclear spectroscopy studies. Spectrometer is consist of γ part ($9 \mathrm{CeBr}_{3}-\mathrm{NaI}(\mathrm{Tl})$ phoswitch scintillation detectors), neutron part ($16{ }^{3} \mathrm{He}$ counters with hydrogenous moderators for decreasing energy of neutrons) (Fig. 1).

To measure the total cross sections, as well as the outputs of individual reaction channels, the addition of a $\mathrm{CeBr}_{3}-\mathrm{NaI}(\mathrm{Tl})$ detectors 12 with a modular γ-spectrometer built at FLNR is provided. Spectra and response functions on $n-\gamma$ radiation will be presented. In particular, it is planned to carry out measurements on the MAVR installation [1].

The spectrometer is continuously developed for achieving better detection parameters. Previous upgrade raised detection efficiency. Actual aim is to enhance gamma identification with precise, high-resolution gamma detectors for spectroscopy of prompt gamma. Parameters of the setup with ${ }^{3} \mathrm{He}$ counters and CeBr_{3} detectors in various geometries (Fig. 1) are investigated with Monte Carlo method in Geant4. The efficiency of He_{3} neutron counters is about 13% for neutrons with energy of 10 MeV (Fig. 2). Efficacy $\mathrm{CeBr}_{3}-\mathrm{NaI}(\mathrm{Tl})$ detector was about 64% for gamma rays with an energy of 2 MeV . The efficiency at the peak of the total absorption is about 15% for 2 MeV gamma quanta.

Fig. 1. Various geometries MULTI.

Fig.2. Efficiency of registration of neutrons of various energies.

1. G.D.Kabdrakhimova, Yu.G.Sobolev, I.N.Kuhtina, K.A.Kuterbekov, K.O.Mendibaev, Yu.E.Penionzhkevich // Phys. Atom. Nucl. V.80. P.32; Yad. Fiz. 2017. V.80. P.33.
