"MULTI" SET-UP FOR SPECTROSCOPY NUCLEAR REACTIONS

Stukalov S.S.¹, Penionzhkevich Yu.E.^{1,2}, Siváček I.^{1,3}, Sobolev Yu.G.¹

Joint Institute for Nuclear Research, Dubna, Russia; ² National Nuclear Research

University MEPhI, 115 409 Moscow, Russia; ³ Nuclear Physics Institute, ASCR, Řež, Czech

Republic

E-mail: stukalov@jinr.ru

The detector setup "MULTI" is a multi-module $4-\pi$ γ -spectrometer designed for spectroscopy nuclear reactions and nuclear spectroscopy studies. Spectrometer is consist of γ part (9 CeBr₃–NaI(Tl) phoswitch scintillation detectors), neutron part (16 ³He counters with hydrogenous moderators for decreasing energy of neutrons) (Fig. 1).

To measure the total cross sections, as well as the outputs of individual reaction channels, the addition of a CeBr₃–NaI(Tl) detectors 12 with a modular γ -spectrometer built at FLNR is provided. Spectra and response functions on n- γ radiation will be presented. In particular, it is planned to carry out measurements on the MAVR installation [1].

The spectrometer is continuously developed for achieving better detection parameters. Previous upgrade raised detection efficiency. Actual aim is to enhance gamma identification with precise, high-resolution gamma detectors for spectroscopy of prompt gamma. Parameters of the setup with ³He counters and CeBr₃ detectors in various geometries (Fig. 1) are investigated with Monte Carlo method in Geant4. The efficiency of He₃ neutron counters is about 13% for neutrons with energy of 10 MeV (Fig. 2). Efficacy CeBr₃–NaI(Tl) detector was about 64% for gamma rays with an energy of 2 MeV. The efficiency at the peak of the total absorption is about 15% for 2MeV gamma quanta.

Fig. 1. Various geometries MULTI.

Fig.2. Efficiency of registration of neutrons of various energies.

 G.D.Kabdrakhimova, Yu.G.Sobolev, I.N.Kuhtina, K.A.Kuterbekov, K.O.Mendibaev, Yu.E.Penionzhkevich // Phys. Atom. Nucl. V.80. P.32; Yad. Fiz. 2017. V.80. P.33.