SOURCE VELOCITY IN COLLISIONS OF 3.6 GeV PROTONS WITH GOLD TARGET

<u>Avdeyev S.P.</u>¹, Karcz W.¹, Kirakosyan V.V.¹, Rukoyatkin P.A.¹, Stegailov V.I.¹, Botvina A.S.²

¹ Joint Institut1 for Nuclear Research, Dubna, Russia; ²Frankfurt Institute for Advanced Studies Johann Wolfgang Goethe University, Frankfurt am Main, Germany E-mail: avdeyev@aol.com

One way of evaluating the degree of equilibration in a reaction, as well as determining the average source velocity, is through invariant cross section analysis as a function of longitudinal and transverse velocity.

In the present work the source characteristics of multifragmentation are investigated for the p + Au collisions at 3.6 GeV. Beam of 3.6 GeV protons were obtained from the Dubna superconducting accelerator NUCLOTRON. Invariant cross sections of carbon fragments from target spectator were measured with the 4π setup FASA [1]. Fig. 1 shows the longitudinal versus transverse velocity plot (β_{\perp} vs β_{\parallel}) along points of constant invariant cross section fragments. The lines in Fig. 1 are fits to the data for a constant value of invariant cross section in the (β_{\perp} vs β_{\parallel}) plane.

It was found to a good approximation that the data for a given invariant cross section are isotropic; i.e., they can be described by a circle with fixed locus, corresponding to a single average source velocity. This suggests that the system is at least in "kinetic equilibrium" prior to fragment emission. Mean source velocity ($\beta = v/c$) of target spectator is 0.0095 ± 0.0003.

The research was supported by the Russian Foundation for Basic Research, Grant No. 19-02-00499.

Fig. 1. Longitudinal versus transverse velocity plot along points of constant invariant cross section for carbon fragments. Points - experiment. Lines are fits to the data for a constant value of invariant cross section in the $(\beta_{\perp}, \beta_{\parallel})$ plane.

1. V.V.Kirakosyan et al. // Instr. and Exp. Techn. 2008. V.51. No.2. P.159.