Experimental study of properties of atomic nuclei. Section 1

THE HEAVIEST NUCLEI ²⁹⁴Ts AND ²⁹⁴Og: EXPERIMENTAL STUDY AND PERSPECTIVES

 <u>Voinov A.A.</u>¹, Utyonkov V.K.¹, Oganessian Yu.Ts.¹, Rykaczewski K.P.², Brewer N.T.^{2,3,4}, Abdullin F.Sh.¹, Boll R.A.², Dean D.J.², Dmitriev S.N.¹,
Ezold J.G.², Felker L.K.², Grzywacz R.K.^{2,4}, Itkis M.G.¹, Kovrizhnykh N.D.¹,
McInturff D.C.², Miernik K.^{3,5}, Owen G.D.², Polyakov A.N.¹, Popeko A.G.¹,
Roberto J.B.³, Sabelnikov A.V.¹, Sagaidak R.N.¹, Shirokovsky I.V.¹,
Shumeiko M.V.¹, Sims N.J.², Smith E.H.², Subbotin V.G.¹, Sukhov A.M.¹,
Svirikhin A.I.¹, Tsyganov Yu.S.¹, Van Cleve S.M.³, Vostokin G.K.¹,
White C.S.², Hamilton J.H.⁶, Stoyer M.A.⁷

³ JINPA, ORNL, Oak Ridge, TN 37831, USA; ⁴ Dep. of Phys. and Astron., UT, Knoxville, TN 37996, USA; ⁵ Faculty of Physics, UW, Warsaw, Poland; ⁶ Dep. of Phys. and Astron., VU, Nashville, TN 37235, USA; ⁷ Nucl. and Chem. Sci. Division, LLNL, Livermore, CA 94551,

USA

E-mail: voinov@jinr.ru

More than 50 new inhabitants of the predicted "Island of stability" of the superheavy elements have been observed in the experiments using accelerated ⁴⁸Ca ions and targets ranging from ²³⁵U to ²⁵¹Cf. The determined decay properties of all the observed isotopes indicate increase of their life-times with approach to the hypothetic closed neutron shell N = 184 [1]. However, the heaviest nuclei synthesized by now, ²⁹⁴Ts (Z = 117) and ²⁹⁴Og (Z = 118), have 177 and 176 neutrons [2, 3] and are still 7 and 8 neutrons apart from N = 184.

This work reviews experimental studies that have been performed employing the DGFRS (JINR, Dubna) and resulted in production of the heaviest ²⁹⁴Ts and ²⁹⁴Og in the most recent experiments. Future possibilities of synthesizing new nuclides in the region of SHEs with higher Z (119 and 120), as well as of more neutron-rich isotopes of Lv, Ts, and Og nuclei are discussed.

1. Yu.Ts.Oganessian and V.K.Utyonkov // Nucl. Phys. A. 2015. V.944. P.62.

2. Yu.Ts.Oganessian et al. // Phys. Rev. Lett. 2012. V.109. P.162501.

3. N.T.Brewer et al. // Phys. Rev. C. 2018. V.98. P.024317.