THE HEAVIEST NUCLEI ${ }^{294}$ Ts AND ${ }^{294} \mathrm{Og}$: EXPERIMENTAL STUDY AND PERSPECTIVES

Voinov A.A. ${ }^{1}$, Utyonkov V.K. ${ }^{1}$, Oganessian Yu.Ts. ${ }^{1}$, Rykaczewski K.P. ${ }^{2}$, Brewer N.T. ${ }^{2,3,4}$, Abdullin F.Sh. ${ }^{1}$, Boll R.A. ${ }^{2}$, Dean D.J. ${ }^{2}$, Dmitriev S.N. ${ }^{1}$, Ezold J.G. ${ }^{2}$, Felker L.K. ${ }^{2}$, Grzywacz R.K. ${ }^{2,4}$, Itkis M.G. ${ }^{1}$, Kovrizhnykh N.D. ${ }^{1}$, McInturff D.C. ${ }^{2}$, Miernik K. ${ }^{3,5}$, Owen G.D. ${ }^{2}$, Polyakov A.N. ${ }^{1}$, Popeko A.G. ${ }^{1}$, Roberto J.B. ${ }^{3}$, Sabelnikov A.V. ${ }^{1}$, Sagaidak R.N. ${ }^{1}$, Shirokovsky I.V. ${ }^{1}$, Shumeiko M.V. ${ }^{1}$, Sims N.J. ${ }^{2}$, Smith E.H. ${ }^{2}$, Subbotin V.G. ${ }^{1}$, Sukhov A.M. ${ }^{1}$, Svirikhin A.I. ${ }^{1}$, Tsyganov Yu.S. ${ }^{1}$, Van Cleve S.M. ${ }^{3}$, Vostokin G.K. ${ }^{1}$, White C.S. ${ }^{2}$, Hamilton J.H. ${ }^{6}$, Stoyer M.A. ${ }^{7}$
${ }^{1}$ FLNR, JINR, Dubna 141980, Russian Federation; ${ }^{2}$ ORNL, Oak Ridge, TN 37831, USA; ${ }^{3}$ JINPA, ORNL, Oak Ridge, TN 37831, USA; ${ }^{4}$ Dep. of Phys. and Astron., UT, Knoxville, TN 37996, USA; ${ }^{5}$ Faculty of Physics, UW, Warsaw, Poland; ${ }^{6}$ Dep. of Phys. and Astron., VU, Nashville, TN 37235, USA; ${ }^{7}$ Nucl. and Chem. Sci. Division, LLNL, Livermore, CA 94551, USA
E-mail: voinov@jiinr.ru

More than 50 new inhabitants of the predicted "Island of stability" of the superheavy elements have been observed in the experiments using accelerated ${ }^{48} \mathrm{Ca}$ ions and targets ranging from ${ }^{235} \mathrm{U}$ to ${ }^{251} \mathrm{Cf}$. The determined decay properties of all the observed isotopes indicate increase of their life-times with approach to the hypothetic closed neutron shell $N=184$ [1]. However, the heaviest nuclei synthesized by now, ${ }^{294} \mathrm{Ts}(Z=117)$ and ${ }^{294} \mathrm{Og}(Z=118)$, have 177 and 176 neutrons [2,3] and are still 7 and 8 neutrons apart from $N=184$.

This work reviews experimental studies that have been performed employing the DGFRS (JINR, Dubna) and resulted in production of the heaviest ${ }^{294} \mathrm{Ts}$ and ${ }^{294} \mathrm{Og}$ in the most recent experiments. Future possibilities of synthesizing new nuclides in the region of SHEs with higher Z (119 and 120), as well as of more neutron-rich isotopes of Lv, Ts, and Og nuclei are discussed.

1. Yu.Ts.Oganessian and V.K.Utyonkov // Nucl. Phys. A. 2015. V.944. P.62.
2. Yu.Ts.Oganessian et al. // Phys. Rev. Lett. 2012. V.109. P.162501.
3. N.T.Brewer et al. // Phys. Rev. C. 2018. V.98. P. 024317.
