MECHANISM OF *N/Z* EQUILIBRATION IN ⁵⁸Ni, ⁴⁰Ca + ²⁰⁸Pb **REACTIONS AT NEAR-BARRIER ENERGIES**

<u>Saiko V.V.^{1,2}</u>, Karpov A.V.^{1,2} ¹ Flerov Laboratory of Nuclear Research, Joint Institute for Nuclear Research, Dubna, Russia;² Dubna State University, Dubna, Russia E-mail: saiko@jinr.ru

An essential feature of 58 Ni. 40 Ca + 208 Pb reactions is the significant difference in the N/Z ratio of the projectile and target. It leads to the nucleon redistribution at the initial stage of reaction called N/Z equilibration or isospin relaxation. This particular feature of dynamics of collisions of heavy nuclei affects the N/Z values of formed fragments and can be observed in the isotopic distributions of the multinucleon transfer (MNT) reaction products.

Investigation of the N/Z equilibration process in the MNT reactions was done on the basis of Langevin-type dynamical model [1]. It allow one to achieve a good agreement in complex description of experimentally observable characteristics of the MNT reactions such as energy, angular and mass distributions of the binary products [2].

The ⁵⁸Ni. 64 Ni + ²⁰⁸Pb reactions have been compared in order to define better system for production of heavy nuclides. An influence of the neutron-deficient projectile or the N/Z equilibration on isotopic yields in these collisions are discussed.

This work was supported by RSF Grant No. 19-42-02014.

1. A.V.Karpov and V.V.Saiko // Phys. Rev. C. 2017. V.96. P.024618.

2. V.V.Saiko and A.V.Karpov // Phys. Rev. C. 2019. V.99. P.014613.