SPONTANEOUS FISSION OF ^{254,256}Rf AND ²⁵⁰No – NEW EXPERIMENTAL DATA

Svirikhin A.I.¹, Andreev A.V.¹, Yeremin A.V.¹, Izosimov I.N.¹, Isaev A.V.¹, Kuznetsov A.N.¹, Kuznetsova A.A.¹, Malyshev O.N.¹, Popeko A.G.¹, Popov Yu.A.¹, Sokol E.A.¹, Chelnokov M.L.¹, Chepigin V.I.¹, Schneidman T.M.¹, Andel B.², Mosat P.², Kalaninova Z.², Asfari M.Z.³, Gall B.³, Dorvaux O.³, Brione P.³, Yoshihiro N.⁴, Mullins S.⁵, Jones P.⁵, Piot J.⁶, Stefanova E.⁷, Tonev D.⁷, Hauschild K.⁸, Lopez-Martens A.⁸, Rezynkina K.⁸

¹ Joint Institute for Nuclear Research, Dubna, Russia; ² Comenius University, Bratislava, Slovakia; ³ IPHC, IN2P3-CNRS, Strasbourg, France; ⁴ Kyushu University, Fukuoka, Japan; ⁵ iThemba LABS, Cape Town, South Africa; ⁶ GANIL, Caen, France; ⁷ INRNE, Sofia, Bulgaria; ⁸ CSNSM, IN2P3-CNRS, Orsay, France E-mail: asvirikhin@jinr.ru

In the last years we carried out several experiments aimed to investigate properties of short-lived SF isotopes.

The neutron-deficient isotopes ^{254,256}Rf were produced in fusion-evaporation

The neutron-deficient isotopes ^{254,256}Rf were produced in fusion-evaporation reactions using an enriched lead targets and an intense ⁵⁰Ti beam. Fusion-evaporation residues were separated by the SHELS separator (FLNR, Dubna) and implanted into a large-area double-sided silicon 48x48 strip detector surrounded by ³He-based neutron counters. The half-life, decay branching ratio and average number of neutrons per spontaneous fission ^{254,256}Rf is measured.

Next we carried out an experiment aimed at investigating the properties of spontaneous fission of neutron deficient isotope 250 No produced in the reaction with 48 Ca-beam and 204 Pb-target. Earlier two spontaneous fission half-lives ($t_{1/2} \approx 4$ and $t_{1/2} \approx 40$ µs) originate from 250 No were registered. The obtained excitation functions after the evaporation of 2 neutrons from the compound 252 No nuclei have been compared with similar data obtained earlier. From the experimental data for the first time the average number of neutrons per spontaneous fission and TKE-spectra of fission fragments of both 250 No activities was determined.