THE PROPERTIES OF ¹²C STATES AT HIGH EXCITATION ENERGIES

Starastsin V.I.¹, Demyanova A.S.¹, Danilov A.N.¹, Ogloblin A.A.¹, Dmitriev S.V.¹, Sergeev V.M.¹, Maslov V.A.², Sobolev Yu.G.²,

Goncharov S.A.³, Trzaska W.H.⁴, Heikkinen P.⁴, Gurov Yu.B.⁵, Belyaeva T.L.⁶, Burtebayev N.⁷

¹ National Research Centre Kurchatov Institute, Moscow, 123182, Russia; ² JINR, Dubna,

Moscow Region, 141700, Russia; ³ Moscow State University, Moscow, 119992 Russia;

⁴ JYFL, Department of Physics, University of Jyvskyl, FI-40014 Jyvskyl, Finland; ⁵ MEPHI,

Moscow, 115409, Russia; ⁶ Universidad Autonoma del Estado de Mexico, 50000, Mexico;

⁷ Nuclear Physics Institute, Almaty, 050032, Kazakhstan

E-mail: starastsinvi@ya.ru

The experiment was done on K-130 cyclotron in Jyväskylä (Finland) to study ${}^{11}B({}^{3}He,d){}^{12}C$ reaction with energy $E({}^{3}He) = 25$ MeV. The aim of the experiment was to determine the properties of high-lying excited state of ${}^{12}C$: 1) to verify the spin-parity value of the 13.35 MeV state (2⁻ [1–3] or 4⁻ [4–5]); 2) to search for states with large spin (5⁻ or 6⁺) around the excitation energy 20 MeV and check if they belong to rotational bands.

From our experimental data spin-parity of the 13.35 state was confirmed to be 4^- .

In [6] new 22.4 (5⁻, T = 1) MeV state was observed and an assumption was made that it is a member of proposed negative parity branch (9.64 (3⁻) – 13.35 (4⁻)) of g.s. rotational band (g.s. (0⁺) – 4.44 MeV (2⁺) – 14.08 MeV (4⁺)). However, there are facts which contradict this prediction: 1) all states except 22.4 MeV have isospin T = 0; 2) in [7] was shown that 9.64 MeV state has an increased radius while all other members have normal radii.

In our experiment we observed the state at 22.4 MeV. Coupled-channel analysis of angular distribution for this state showed the following variants of spin-parity: 5⁻ with probability of 30% and 6⁺ with probability of 70%. The question remains whether we can assume that the state of 22.4 MeV is the next member of the Hoyle band: 7.65 (0⁺) – 9.9 (2⁺) – 13.75 (4⁺).

1. F.Ajzenberg-Selove // Nucl. Phys. A. 1990. V.506. P.1.

2. G.M.Reynolds et al. // Phys. Rev. C. 1971. V.3. P.442.

- 3. P.K.Bindal et al. // Phys. Rev. C. 1974. V.9. P.2154.
- 4. M.Freer et al. // Phys. Rev. Lett. 2014. V.113. 012502.
- 5. O.S.Kirsebom et al. // Phys. Rev. C. 2010. V.81. 064313.
- 6. M.Freer et al. // Phys. Rev. Lett. 2014. V.113. 012502.

7. A.S.Demyanova et al. // Int. J. Mod. Phys. E. 2008. V.17. P.2118.