MICROSCOPIC DESCRIPTION OF NEGATIVE PARITY STATES IN ¹⁵⁴Sm

Ganev H.G.

Joint Institute for Nuclear Research, Dubna, Russia E-mail: huben@theor.jinr.ru

The structure of the negative-parity states in ¹⁵⁴Sm is studied within the framework of the fully microscopic proton-neutron symplectic model (PNSM) with Sp(12,R) dynamical algebra without involving additional degrees of freedom, inherent to other approaches to odd-parity states. A good description of the energy levels (Fig.1) of the $K = 0_1^-$ and $K = 1_1^-$ bands, as well as the reproduction of some energy splitting quantities which are usually introduced in the literature as a measure of the octupole correlations, is obtained. The microscopic structure of low-lying collective states with negative-parity in ¹⁵⁴Sm shows that practically there are no admixtures from the higher shells and hence the presence of a very good U(6) dynamical symmetry. Additionally, the structure of the collective states under consideration shows also the presence of a good SU(3) quasi-dynamical symmetry (Fig.2). The intraband ground state B(E2) and interband B(E1) transition strengths between the states of ground and K= 0_1^- bands are reproduced without the use of an effective charge.

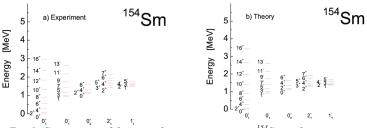
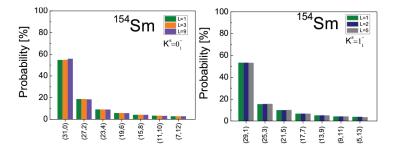



Fig. 1. Comparison of theoretical excitation energies ¹⁵⁴Sm with experiment.

Fig. 2. Calculated SU(3) probability distributions for the wave functions of the $K = 0_1^-$ *and* $K = 1_1^-$ *bands for three different angular momentum values.*