ISOBAR ANALOG STATES IN ¹²B AND ¹²N: SEARCH FOR STATES WITH ENHANCED RADII

Demyanova A.S.¹, <u>Danilov A.N.¹</u>, Ogloblin A.A.¹, Starastsin V.I.¹, Dmitriev S.V.¹, Sergeev V.M.^{1,2}, Goncharov S.A.², Belyaeva T.L.³, Maslov V.A.⁴, Sobolev Yu.G.⁴, Penionzhkevich Yu.E.⁴, Trzaska W.H.⁵, Khlebnikov S.V.⁶, Tyurin G.P.⁶, Burtebayev N.⁷, Janseitov D.M.^{4,7}, Gurov Yu.B.⁸

¹ NRC Kurchatov Institute, Moscow 123182, Russia; ² Lomonosov Moscow State University, GSP-1, Leninskie Gory, Moscow 119991, Russia; ³ Universidad Autónoma del Estado de México, C.P. 50000, Toluca, México; ⁴ Flerov Laboratory for Nuclear Research, JINR, Dubna, Moscow Region 141980, Russia; ⁵ Department of Physics, University of Jyväskylä, P.O. Box 35, FI-40014 Jyväskylä, Finland; ⁶ V.G. Khlopin Radium Institute, St. Petersburg 194021, Russia; ⁷ Institute of Nuclear Physics, National Nuclear Center of Republic of Kazakhstan, Almaty 050032, Republic of Kazakhstan; ⁸ National Research Nuclear University

MEPhI, Moscow 115409, Russia E-mail: danilov1987@mail.ru

On base of Asymptotic normalization coefficients (ANC) analysis halo was observed for 2 states of ¹²B: 2⁻, 1.67 MeV and 1⁻, 2.62 MeV [1]. Independently on base of ANC analysis of our experimental data [2, 3] on reaction ¹¹B(d,p)¹²B at E(d) = 21.5 MeV [3] neutron halo existence was confirmed for these states. Some new results were obtained for higher excited states: halo-like states were observed for 0⁺, 2.72 MeV and 3⁻, 3.39 MeV states [3]. It should be mentioned that the last one is unbound state, which is 19 keV above the neutron emission threshold and in both states last neutron has a non-zero orbital momentum.

Natural question arises – what can we expect in isobar-analogues 2⁻ and 1⁻ states in ¹²N. To study them we propose to use MDM [4, 5]: this method can be applied to the reaction (³He,*t*). Its first application made it possible to determine the proton halo in unbound state of ¹³N [6]. We have studied existing literature data on ¹²C(³He,*t*)¹²N reaction. This data is incomplete and there is no possibility to make definite answer on question about halo in 2⁻ and 1⁻ states of ¹²N. By this reason experiment was done by our group on ¹²C(³He,*t*)¹²N reaction at the end of 2018. The measurements were conducted at the University of Jyväskylä (Finland) using the K130 cyclotron at $E(^{3}He) = 40$ MeV. The 150 cm diameter Large Scattering Chamber was equipped with three ΔE -E detector. The differential cross sections of the (³He,*t*) reaction on ¹²C were measured in the angular range 8°–70° c.m. Preliminary results for angular distributions are obtained. MDM analysis of preliminary (³He,*t*) experimental data will be done soon.

- 1. Z.H.Liu et al. // Phys. Rev. C. 2001. V.64. 034312.
- 2. T.L.Belyaeva et al. // EPJ Web Conf. 2017. V.165. 01004.
- 3. T.L.Belyaeva et al. // Phys. Rev. C. 2018. V.98. 034602.
- 4. A.N.Danilov et al. // Phys. Rev. C. 2009. V.80. 054603.
- 5. A.S.Demyanova et al. // Phys. Atom. Nucl. 2017. V.80. P.831.
- 6. A.S.Demyanova et al. // JETP Letters. 2016. V.104 (8). P.526.