IMPROVEMENT OF THE DATA PROCESSING TECHNIQUE IN TANGRA SETUP

<u>Fedorov N.A.^{1,2}</u>, Tretyakova T.Yu.³, Kopatch Yu.N.¹, Bystritsky V.M.¹, Grozdanov D.N.^{1,4}, Aliyev F.A.^{1,5}, Ruskov I.N.^{1,4}, Skoy V.R.¹, Hramco C.^{1,6}, Kumar A.⁷, Gandhi A.⁷, Wang D.⁸, Bogolyubov E.P.⁹, Barmakov Yu.N.⁹, TANGRA collaboration

 ¹ Joint Institute for Nuclear Research (JINR), Dubna, Russia; ² Faculty of Physics, Lomonosov Moscow State University (MSU), Moscow, Russia; ³ Skobeltsyn Institute of Nuclear Physics Lomonosov Moscow State University (SINP MSU), Moscow, Russia;
⁴ Institute for Nuclear Research and Nuclear Energy of Bulgarian Academy of Sciences (INRNE-BAS), Sofia, Bulgaria; ⁵ Institute of Geology and Geophysics, Baku, Azerbaijan;
⁶ Institute of Chemistry, Academy of Science of Moldova, Chisinau, Republic of Moldova;
⁷ Banaras Hindu University, Varanasi, India; ⁸ Xi'an Jiao Tong University, Xi'an, China; ⁹ All-Russia Research Institute of Automatics (VNIIA), Moscow, Russia E-mail: na.fedorov@physics.msu.ru

The correct determination of the full-energy absorption peak area in a gamma-spectrum obtained by a scintillation detector is quite complex task in case if there are a lot of peaks in it. There are several processes of gamma-quantum interaction with the scintillator crystal, as a result there are several components in the measured gamma-spectrum appear. The correct description of the gamma-detector response can significantly improve our data analysis procedure results.

Moreover, the influence of the neutron and gamma-quanta absorption and scattering in the experimental setup construction elements and in the surrounding items has to be taken into account. There are several sources distorting the measured data: the absorption of neutrons and gamma-quanta in the irradiated sample, interaction of direct and scattered neutrons with BGO detectors, random (α – γ) coincidences, neutron scattering from the setup construction and environment materials.

To take into account the impact of these effects and improve our results for gamma-quanta angular distributions, we used Monte-Carlo simulation-based methods for estimation of the neutrons and gamma-rays absorption inside the irradiated sample and the cases of the detectors. A similar method was used for estimation of the data uncertainties.

In this work a prototype of the gamma-ray detector response function Geant4 simulation-based is presented.